1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2007 Jeremy Teo */ 26 27 #ifdef _KERNEL 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/mntent.h> 35 #include <sys/mkdev.h> 36 #include <sys/u8_textprep.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vfs.h> 39 #include <sys/vfs_opreg.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/kmem.h> 43 #include <sys/errno.h> 44 #include <sys/unistd.h> 45 #include <sys/mode.h> 46 #include <sys/atomic.h> 47 #include <vm/pvn.h> 48 #include "fs/fs_subr.h" 49 #include <sys/zfs_dir.h> 50 #include <sys/zfs_acl.h> 51 #include <sys/zfs_ioctl.h> 52 #include <sys/zfs_rlock.h> 53 #include <sys/zfs_fuid.h> 54 #include <sys/dnode.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/kidmap.h> 57 #endif /* _KERNEL */ 58 59 #include <sys/dmu.h> 60 #include <sys/refcount.h> 61 #include <sys/stat.h> 62 #include <sys/zap.h> 63 #include <sys/zfs_znode.h> 64 #include <sys/sa.h> 65 #include <sys/zfs_sa.h> 66 #include <sys/zfs_stat.h> 67 68 #include "zfs_prop.h" 69 #include "zfs_comutil.h" 70 71 /* 72 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 73 * turned on when DEBUG is also defined. 74 */ 75 #ifdef DEBUG 76 #define ZNODE_STATS 77 #endif /* DEBUG */ 78 79 #ifdef ZNODE_STATS 80 #define ZNODE_STAT_ADD(stat) ((stat)++) 81 #else 82 #define ZNODE_STAT_ADD(stat) /* nothing */ 83 #endif /* ZNODE_STATS */ 84 85 /* 86 * Functions needed for userland (ie: libzpool) are not put under 87 * #ifdef_KERNEL; the rest of the functions have dependencies 88 * (such as VFS logic) that will not compile easily in userland. 89 */ 90 #ifdef _KERNEL 91 /* 92 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 93 * be freed before it can be safely accessed. 94 */ 95 krwlock_t zfsvfs_lock; 96 97 static kmem_cache_t *znode_cache = NULL; 98 99 /*ARGSUSED*/ 100 static void 101 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 102 { 103 /* 104 * We should never drop all dbuf refs without first clearing 105 * the eviction callback. 106 */ 107 panic("evicting znode %p\n", user_ptr); 108 } 109 110 /*ARGSUSED*/ 111 static int 112 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 113 { 114 znode_t *zp = buf; 115 116 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 117 118 zp->z_vnode = vn_alloc(kmflags); 119 if (zp->z_vnode == NULL) { 120 return (-1); 121 } 122 ZTOV(zp)->v_data = zp; 123 124 list_link_init(&zp->z_link_node); 125 126 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 127 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 128 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 129 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 130 131 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 132 avl_create(&zp->z_range_avl, zfs_range_compare, 133 sizeof (rl_t), offsetof(rl_t, r_node)); 134 135 zp->z_dirlocks = NULL; 136 zp->z_acl_cached = NULL; 137 zp->z_moved = 0; 138 return (0); 139 } 140 141 /*ARGSUSED*/ 142 static void 143 zfs_znode_cache_destructor(void *buf, void *arg) 144 { 145 znode_t *zp = buf; 146 147 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 148 ASSERT(ZTOV(zp)->v_data == zp); 149 vn_free(ZTOV(zp)); 150 ASSERT(!list_link_active(&zp->z_link_node)); 151 mutex_destroy(&zp->z_lock); 152 rw_destroy(&zp->z_parent_lock); 153 rw_destroy(&zp->z_name_lock); 154 mutex_destroy(&zp->z_acl_lock); 155 avl_destroy(&zp->z_range_avl); 156 mutex_destroy(&zp->z_range_lock); 157 158 ASSERT(zp->z_dirlocks == NULL); 159 ASSERT(zp->z_acl_cached == NULL); 160 } 161 162 #ifdef ZNODE_STATS 163 static struct { 164 uint64_t zms_zfsvfs_invalid; 165 uint64_t zms_zfsvfs_recheck1; 166 uint64_t zms_zfsvfs_unmounted; 167 uint64_t zms_zfsvfs_recheck2; 168 uint64_t zms_obj_held; 169 uint64_t zms_vnode_locked; 170 uint64_t zms_not_only_dnlc; 171 } znode_move_stats; 172 #endif /* ZNODE_STATS */ 173 174 static void 175 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 176 { 177 vnode_t *vp; 178 179 /* Copy fields. */ 180 nzp->z_zfsvfs = ozp->z_zfsvfs; 181 182 /* Swap vnodes. */ 183 vp = nzp->z_vnode; 184 nzp->z_vnode = ozp->z_vnode; 185 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 186 ZTOV(ozp)->v_data = ozp; 187 ZTOV(nzp)->v_data = nzp; 188 189 nzp->z_id = ozp->z_id; 190 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 191 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 192 nzp->z_unlinked = ozp->z_unlinked; 193 nzp->z_atime_dirty = ozp->z_atime_dirty; 194 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 195 nzp->z_blksz = ozp->z_blksz; 196 nzp->z_seq = ozp->z_seq; 197 nzp->z_mapcnt = ozp->z_mapcnt; 198 nzp->z_gen = ozp->z_gen; 199 nzp->z_sync_cnt = ozp->z_sync_cnt; 200 nzp->z_is_sa = ozp->z_is_sa; 201 nzp->z_sa_hdl = ozp->z_sa_hdl; 202 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2); 203 nzp->z_links = ozp->z_links; 204 nzp->z_size = ozp->z_size; 205 nzp->z_pflags = ozp->z_pflags; 206 nzp->z_uid = ozp->z_uid; 207 nzp->z_gid = ozp->z_gid; 208 nzp->z_mode = ozp->z_mode; 209 210 /* 211 * Since this is just an idle znode and kmem is already dealing with 212 * memory pressure, release any cached ACL. 213 */ 214 if (ozp->z_acl_cached) { 215 zfs_acl_free(ozp->z_acl_cached); 216 ozp->z_acl_cached = NULL; 217 } 218 219 sa_set_userp(nzp->z_sa_hdl, nzp); 220 221 /* 222 * Invalidate the original znode by clearing fields that provide a 223 * pointer back to the znode. Set the low bit of the vfs pointer to 224 * ensure that zfs_znode_move() recognizes the znode as invalid in any 225 * subsequent callback. 226 */ 227 ozp->z_sa_hdl = NULL; 228 POINTER_INVALIDATE(&ozp->z_zfsvfs); 229 230 /* 231 * Mark the znode. 232 */ 233 nzp->z_moved = 1; 234 ozp->z_moved = (uint8_t)-1; 235 } 236 237 /*ARGSUSED*/ 238 static kmem_cbrc_t 239 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 240 { 241 znode_t *ozp = buf, *nzp = newbuf; 242 zfsvfs_t *zfsvfs; 243 vnode_t *vp; 244 245 /* 246 * The znode is on the file system's list of known znodes if the vfs 247 * pointer is valid. We set the low bit of the vfs pointer when freeing 248 * the znode to invalidate it, and the memory patterns written by kmem 249 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 250 * created znode sets the vfs pointer last of all to indicate that the 251 * znode is known and in a valid state to be moved by this function. 252 */ 253 zfsvfs = ozp->z_zfsvfs; 254 if (!POINTER_IS_VALID(zfsvfs)) { 255 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 256 return (KMEM_CBRC_DONT_KNOW); 257 } 258 259 /* 260 * Close a small window in which it's possible that the filesystem could 261 * be unmounted and freed, and zfsvfs, though valid in the previous 262 * statement, could point to unrelated memory by the time we try to 263 * prevent the filesystem from being unmounted. 264 */ 265 rw_enter(&zfsvfs_lock, RW_WRITER); 266 if (zfsvfs != ozp->z_zfsvfs) { 267 rw_exit(&zfsvfs_lock); 268 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 269 return (KMEM_CBRC_DONT_KNOW); 270 } 271 272 /* 273 * If the znode is still valid, then so is the file system. We know that 274 * no valid file system can be freed while we hold zfsvfs_lock, so we 275 * can safely ensure that the filesystem is not and will not be 276 * unmounted. The next statement is equivalent to ZFS_ENTER(). 277 */ 278 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 279 if (zfsvfs->z_unmounted) { 280 ZFS_EXIT(zfsvfs); 281 rw_exit(&zfsvfs_lock); 282 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 283 return (KMEM_CBRC_DONT_KNOW); 284 } 285 rw_exit(&zfsvfs_lock); 286 287 mutex_enter(&zfsvfs->z_znodes_lock); 288 /* 289 * Recheck the vfs pointer in case the znode was removed just before 290 * acquiring the lock. 291 */ 292 if (zfsvfs != ozp->z_zfsvfs) { 293 mutex_exit(&zfsvfs->z_znodes_lock); 294 ZFS_EXIT(zfsvfs); 295 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 296 return (KMEM_CBRC_DONT_KNOW); 297 } 298 299 /* 300 * At this point we know that as long as we hold z_znodes_lock, the 301 * znode cannot be freed and fields within the znode can be safely 302 * accessed. Now, prevent a race with zfs_zget(). 303 */ 304 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 305 mutex_exit(&zfsvfs->z_znodes_lock); 306 ZFS_EXIT(zfsvfs); 307 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 308 return (KMEM_CBRC_LATER); 309 } 310 311 vp = ZTOV(ozp); 312 if (mutex_tryenter(&vp->v_lock) == 0) { 313 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 314 mutex_exit(&zfsvfs->z_znodes_lock); 315 ZFS_EXIT(zfsvfs); 316 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 317 return (KMEM_CBRC_LATER); 318 } 319 320 /* Only move znodes that are referenced _only_ by the DNLC. */ 321 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 322 mutex_exit(&vp->v_lock); 323 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 324 mutex_exit(&zfsvfs->z_znodes_lock); 325 ZFS_EXIT(zfsvfs); 326 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 327 return (KMEM_CBRC_LATER); 328 } 329 330 /* 331 * The znode is known and in a valid state to move. We're holding the 332 * locks needed to execute the critical section. 333 */ 334 zfs_znode_move_impl(ozp, nzp); 335 mutex_exit(&vp->v_lock); 336 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 337 338 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 339 mutex_exit(&zfsvfs->z_znodes_lock); 340 ZFS_EXIT(zfsvfs); 341 342 return (KMEM_CBRC_YES); 343 } 344 345 void 346 zfs_znode_init(void) 347 { 348 /* 349 * Initialize zcache 350 */ 351 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 352 ASSERT(znode_cache == NULL); 353 znode_cache = kmem_cache_create("zfs_znode_cache", 354 sizeof (znode_t), 0, zfs_znode_cache_constructor, 355 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 356 kmem_cache_set_move(znode_cache, zfs_znode_move); 357 } 358 359 void 360 zfs_znode_fini(void) 361 { 362 /* 363 * Cleanup vfs & vnode ops 364 */ 365 zfs_remove_op_tables(); 366 367 /* 368 * Cleanup zcache 369 */ 370 if (znode_cache) 371 kmem_cache_destroy(znode_cache); 372 znode_cache = NULL; 373 rw_destroy(&zfsvfs_lock); 374 } 375 376 struct vnodeops *zfs_dvnodeops; 377 struct vnodeops *zfs_fvnodeops; 378 struct vnodeops *zfs_symvnodeops; 379 struct vnodeops *zfs_xdvnodeops; 380 struct vnodeops *zfs_evnodeops; 381 struct vnodeops *zfs_sharevnodeops; 382 383 void 384 zfs_remove_op_tables() 385 { 386 /* 387 * Remove vfs ops 388 */ 389 ASSERT(zfsfstype); 390 (void) vfs_freevfsops_by_type(zfsfstype); 391 zfsfstype = 0; 392 393 /* 394 * Remove vnode ops 395 */ 396 if (zfs_dvnodeops) 397 vn_freevnodeops(zfs_dvnodeops); 398 if (zfs_fvnodeops) 399 vn_freevnodeops(zfs_fvnodeops); 400 if (zfs_symvnodeops) 401 vn_freevnodeops(zfs_symvnodeops); 402 if (zfs_xdvnodeops) 403 vn_freevnodeops(zfs_xdvnodeops); 404 if (zfs_evnodeops) 405 vn_freevnodeops(zfs_evnodeops); 406 if (zfs_sharevnodeops) 407 vn_freevnodeops(zfs_sharevnodeops); 408 409 zfs_dvnodeops = NULL; 410 zfs_fvnodeops = NULL; 411 zfs_symvnodeops = NULL; 412 zfs_xdvnodeops = NULL; 413 zfs_evnodeops = NULL; 414 zfs_sharevnodeops = NULL; 415 } 416 417 extern const fs_operation_def_t zfs_dvnodeops_template[]; 418 extern const fs_operation_def_t zfs_fvnodeops_template[]; 419 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 420 extern const fs_operation_def_t zfs_symvnodeops_template[]; 421 extern const fs_operation_def_t zfs_evnodeops_template[]; 422 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 423 424 int 425 zfs_create_op_tables() 426 { 427 int error; 428 429 /* 430 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 431 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 432 * In this case we just return as the ops vectors are already set up. 433 */ 434 if (zfs_dvnodeops) 435 return (0); 436 437 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 438 &zfs_dvnodeops); 439 if (error) 440 return (error); 441 442 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 443 &zfs_fvnodeops); 444 if (error) 445 return (error); 446 447 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 448 &zfs_symvnodeops); 449 if (error) 450 return (error); 451 452 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 453 &zfs_xdvnodeops); 454 if (error) 455 return (error); 456 457 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 458 &zfs_evnodeops); 459 if (error) 460 return (error); 461 462 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 463 &zfs_sharevnodeops); 464 465 return (error); 466 } 467 468 int 469 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 470 { 471 zfs_acl_ids_t acl_ids; 472 vattr_t vattr; 473 znode_t *sharezp; 474 vnode_t *vp; 475 znode_t *zp; 476 int error; 477 478 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 479 vattr.va_type = VDIR; 480 vattr.va_mode = S_IFDIR|0555; 481 vattr.va_uid = crgetuid(kcred); 482 vattr.va_gid = crgetgid(kcred); 483 484 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 485 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs)); 486 sharezp->z_moved = 0; 487 sharezp->z_unlinked = 0; 488 sharezp->z_atime_dirty = 0; 489 sharezp->z_zfsvfs = zfsvfs; 490 sharezp->z_is_sa = zfsvfs->z_use_sa; 491 492 vp = ZTOV(sharezp); 493 vn_reinit(vp); 494 vp->v_type = VDIR; 495 496 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 497 kcred, NULL, &acl_ids)); 498 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); 499 ASSERT3P(zp, ==, sharezp); 500 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 501 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 502 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 503 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 504 zfsvfs->z_shares_dir = sharezp->z_id; 505 506 zfs_acl_ids_free(&acl_ids); 507 ZTOV(sharezp)->v_count = 0; 508 sa_handle_destroy(sharezp->z_sa_hdl); 509 kmem_cache_free(znode_cache, sharezp); 510 511 return (error); 512 } 513 514 /* 515 * define a couple of values we need available 516 * for both 64 and 32 bit environments. 517 */ 518 #ifndef NBITSMINOR64 519 #define NBITSMINOR64 32 520 #endif 521 #ifndef MAXMAJ64 522 #define MAXMAJ64 0xffffffffUL 523 #endif 524 #ifndef MAXMIN64 525 #define MAXMIN64 0xffffffffUL 526 #endif 527 528 /* 529 * Create special expldev for ZFS private use. 530 * Can't use standard expldev since it doesn't do 531 * what we want. The standard expldev() takes a 532 * dev32_t in LP64 and expands it to a long dev_t. 533 * We need an interface that takes a dev32_t in ILP32 534 * and expands it to a long dev_t. 535 */ 536 static uint64_t 537 zfs_expldev(dev_t dev) 538 { 539 #ifndef _LP64 540 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 541 return (((uint64_t)major << NBITSMINOR64) | 542 ((minor_t)dev & MAXMIN32)); 543 #else 544 return (dev); 545 #endif 546 } 547 548 /* 549 * Special cmpldev for ZFS private use. 550 * Can't use standard cmpldev since it takes 551 * a long dev_t and compresses it to dev32_t in 552 * LP64. We need to do a compaction of a long dev_t 553 * to a dev32_t in ILP32. 554 */ 555 dev_t 556 zfs_cmpldev(uint64_t dev) 557 { 558 #ifndef _LP64 559 minor_t minor = (minor_t)dev & MAXMIN64; 560 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 561 562 if (major > MAXMAJ32 || minor > MAXMIN32) 563 return (NODEV32); 564 565 return (((dev32_t)major << NBITSMINOR32) | minor); 566 #else 567 return (dev); 568 #endif 569 } 570 571 static void 572 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, 573 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) 574 { 575 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 576 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 577 578 mutex_enter(&zp->z_lock); 579 580 ASSERT(zp->z_sa_hdl == NULL); 581 ASSERT(zp->z_acl_cached == NULL); 582 if (sa_hdl == NULL) { 583 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, 584 SA_HDL_SHARED, &zp->z_sa_hdl)); 585 } else { 586 zp->z_sa_hdl = sa_hdl; 587 sa_set_userp(sa_hdl, zp); 588 } 589 590 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; 591 592 /* 593 * Slap on VROOT if we are the root znode 594 */ 595 if (zp->z_id == zfsvfs->z_root) 596 ZTOV(zp)->v_flag |= VROOT; 597 598 mutex_exit(&zp->z_lock); 599 vn_exists(ZTOV(zp)); 600 } 601 602 void 603 zfs_znode_dmu_fini(znode_t *zp) 604 { 605 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 606 zp->z_unlinked || 607 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 608 609 sa_handle_destroy(zp->z_sa_hdl); 610 zp->z_sa_hdl = NULL; 611 } 612 613 /* 614 * Construct a new znode/vnode and intialize. 615 * 616 * This does not do a call to dmu_set_user() that is 617 * up to the caller to do, in case you don't want to 618 * return the znode 619 */ 620 static znode_t * 621 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, 622 dmu_object_type_t obj_type, sa_handle_t *hdl) 623 { 624 znode_t *zp; 625 vnode_t *vp; 626 uint64_t mode; 627 uint64_t parent; 628 uint64_t uid, gid; 629 sa_bulk_attr_t bulk[9]; 630 int count = 0; 631 632 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 633 634 ASSERT(zp->z_dirlocks == NULL); 635 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 636 zp->z_moved = 0; 637 638 /* 639 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 640 * the zfs_znode_move() callback. 641 */ 642 zp->z_sa_hdl = NULL; 643 zp->z_unlinked = 0; 644 zp->z_atime_dirty = 0; 645 zp->z_mapcnt = 0; 646 zp->z_id = db->db_object; 647 zp->z_blksz = blksz; 648 zp->z_seq = 0x7A4653; 649 zp->z_sync_cnt = 0; 650 651 vp = ZTOV(zp); 652 vn_reinit(vp); 653 654 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); 655 656 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); 657 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); 658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 659 &zp->z_size, 8); 660 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 661 &zp->z_links, 8); 662 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 663 &zp->z_pflags, 8); 664 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); 665 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 666 &zp->z_atime, 16); 667 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 668 &uid, 8); 669 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 670 &gid, 8); 671 672 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) { 673 if (hdl == NULL) 674 sa_handle_destroy(zp->z_sa_hdl); 675 kmem_cache_free(znode_cache, zp); 676 return (NULL); 677 } 678 679 zp->z_uid = zfs_fuid_map_id(zfsvfs, uid, CRED(), ZFS_OWNER); 680 zp->z_gid = zfs_fuid_map_id(zfsvfs, gid, CRED(), ZFS_GROUP); 681 zp->z_mode = mode; 682 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 683 684 vp->v_type = IFTOVT((mode_t)mode); 685 686 switch (vp->v_type) { 687 case VDIR: 688 if (zp->z_pflags & ZFS_XATTR) { 689 vn_setops(vp, zfs_xdvnodeops); 690 vp->v_flag |= V_XATTRDIR; 691 } else { 692 vn_setops(vp, zfs_dvnodeops); 693 } 694 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 695 break; 696 case VBLK: 697 case VCHR: 698 { 699 uint64_t rdev; 700 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), 701 &rdev, sizeof (rdev)) == 0); 702 703 vp->v_rdev = zfs_cmpldev(rdev); 704 } 705 /*FALLTHROUGH*/ 706 case VFIFO: 707 case VSOCK: 708 case VDOOR: 709 vn_setops(vp, zfs_fvnodeops); 710 break; 711 case VREG: 712 vp->v_flag |= VMODSORT; 713 if (parent == zfsvfs->z_shares_dir) { 714 ASSERT(uid == 0 && gid == 0); 715 vn_setops(vp, zfs_sharevnodeops); 716 } else { 717 vn_setops(vp, zfs_fvnodeops); 718 } 719 break; 720 case VLNK: 721 vn_setops(vp, zfs_symvnodeops); 722 break; 723 default: 724 vn_setops(vp, zfs_evnodeops); 725 break; 726 } 727 728 mutex_enter(&zfsvfs->z_znodes_lock); 729 list_insert_tail(&zfsvfs->z_all_znodes, zp); 730 membar_producer(); 731 /* 732 * Everything else must be valid before assigning z_zfsvfs makes the 733 * znode eligible for zfs_znode_move(). 734 */ 735 zp->z_zfsvfs = zfsvfs; 736 mutex_exit(&zfsvfs->z_znodes_lock); 737 738 VFS_HOLD(zfsvfs->z_vfs); 739 return (zp); 740 } 741 742 static uint64_t empty_xattr; 743 static uint64_t pad[4]; 744 static zfs_acl_phys_t acl_phys; 745 /* 746 * Create a new DMU object to hold a zfs znode. 747 * 748 * IN: dzp - parent directory for new znode 749 * vap - file attributes for new znode 750 * tx - dmu transaction id for zap operations 751 * cr - credentials of caller 752 * flag - flags: 753 * IS_ROOT_NODE - new object will be root 754 * IS_XATTR - new object is an attribute 755 * bonuslen - length of bonus buffer 756 * setaclp - File/Dir initial ACL 757 * fuidp - Tracks fuid allocation. 758 * 759 * OUT: zpp - allocated znode 760 * 761 */ 762 void 763 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 764 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) 765 { 766 uint64_t crtime[2], atime[2], mtime[2], ctime[2]; 767 uint64_t mode, size, links, parent, pflags; 768 uint64_t dzp_pflags = 0; 769 uint64_t rdev = 0; 770 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 771 dmu_buf_t *db; 772 timestruc_t now; 773 uint64_t gen, obj; 774 int err; 775 int bonuslen; 776 sa_handle_t *sa_hdl; 777 dmu_object_type_t obj_type; 778 sa_bulk_attr_t sa_attrs[ZPL_END]; 779 int cnt = 0; 780 zfs_acl_locator_cb_t locate = { 0 }; 781 782 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 783 784 if (zfsvfs->z_replay) { 785 obj = vap->va_nodeid; 786 now = vap->va_ctime; /* see zfs_replay_create() */ 787 gen = vap->va_nblocks; /* ditto */ 788 } else { 789 obj = 0; 790 gethrestime(&now); 791 gen = dmu_tx_get_txg(tx); 792 } 793 794 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; 795 bonuslen = (obj_type == DMU_OT_SA) ? 796 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE; 797 798 /* 799 * Create a new DMU object. 800 */ 801 /* 802 * There's currently no mechanism for pre-reading the blocks that will 803 * be needed to allocate a new object, so we accept the small chance 804 * that there will be an i/o error and we will fail one of the 805 * assertions below. 806 */ 807 if (vap->va_type == VDIR) { 808 if (zfsvfs->z_replay) { 809 err = zap_create_claim_norm(zfsvfs->z_os, obj, 810 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 811 obj_type, bonuslen, tx); 812 ASSERT3U(err, ==, 0); 813 } else { 814 obj = zap_create_norm(zfsvfs->z_os, 815 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 816 obj_type, bonuslen, tx); 817 } 818 } else { 819 if (zfsvfs->z_replay) { 820 err = dmu_object_claim(zfsvfs->z_os, obj, 821 DMU_OT_PLAIN_FILE_CONTENTS, 0, 822 obj_type, bonuslen, tx); 823 ASSERT3U(err, ==, 0); 824 } else { 825 obj = dmu_object_alloc(zfsvfs->z_os, 826 DMU_OT_PLAIN_FILE_CONTENTS, 0, 827 obj_type, bonuslen, tx); 828 } 829 } 830 831 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 832 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); 833 834 /* 835 * If this is the root, fix up the half-initialized parent pointer 836 * to reference the just-allocated physical data area. 837 */ 838 if (flag & IS_ROOT_NODE) { 839 dzp->z_id = obj; 840 } else { 841 dzp_pflags = dzp->z_pflags; 842 } 843 844 /* 845 * If parent is an xattr, so am I. 846 */ 847 if (dzp_pflags & ZFS_XATTR) { 848 flag |= IS_XATTR; 849 } 850 851 if (zfsvfs->z_use_fuids) 852 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 853 else 854 pflags = 0; 855 856 if (vap->va_type == VDIR) { 857 size = 2; /* contents ("." and "..") */ 858 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 859 } else { 860 size = links = 0; 861 } 862 863 if (vap->va_type == VBLK || vap->va_type == VCHR) { 864 rdev = zfs_expldev(vap->va_rdev); 865 } 866 867 parent = dzp->z_id; 868 mode = acl_ids->z_mode; 869 if (flag & IS_XATTR) 870 pflags |= ZFS_XATTR; 871 872 /* 873 * No execs denied will be deterimed when zfs_mode_compute() is called. 874 */ 875 pflags |= acl_ids->z_aclp->z_hints & 876 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| 877 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); 878 879 ZFS_TIME_ENCODE(&now, crtime); 880 ZFS_TIME_ENCODE(&now, ctime); 881 882 if (vap->va_mask & AT_ATIME) { 883 ZFS_TIME_ENCODE(&vap->va_atime, atime); 884 } else { 885 ZFS_TIME_ENCODE(&now, atime); 886 } 887 888 if (vap->va_mask & AT_MTIME) { 889 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 890 } else { 891 ZFS_TIME_ENCODE(&now, mtime); 892 } 893 894 /* Now add in all of the "SA" attributes */ 895 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, 896 &sa_hdl)); 897 898 /* 899 * Setup the array of attributes to be replaced/set on the new file 900 * 901 * order for DMU_OT_ZNODE is critical since it needs to be constructed 902 * in the old znode_phys_t format. Don't change this ordering 903 */ 904 905 if (obj_type == DMU_OT_ZNODE) { 906 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 907 NULL, &atime, 16); 908 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 909 NULL, &mtime, 16); 910 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 911 NULL, &ctime, 16); 912 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 913 NULL, &crtime, 16); 914 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 915 NULL, &gen, 8); 916 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 917 NULL, &mode, 8); 918 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 919 NULL, &size, 8); 920 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 921 NULL, &parent, 8); 922 } else { 923 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 924 NULL, &mode, 8); 925 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 926 NULL, &size, 8); 927 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 928 NULL, &gen, 8); 929 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 930 &acl_ids->z_fuid, 8); 931 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 932 &acl_ids->z_fgid, 8); 933 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 934 NULL, &parent, 8); 935 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 936 NULL, &pflags, 8); 937 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 938 NULL, &atime, 16); 939 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 940 NULL, &mtime, 16); 941 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 942 NULL, &ctime, 16); 943 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 944 NULL, &crtime, 16); 945 } 946 947 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); 948 949 if (obj_type == DMU_OT_ZNODE) { 950 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, 951 &empty_xattr, 8); 952 } 953 if (obj_type == DMU_OT_ZNODE || 954 (vap->va_type == VBLK || vap->va_type == VCHR)) { 955 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), 956 NULL, &rdev, 8); 957 958 } 959 if (obj_type == DMU_OT_ZNODE) { 960 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 961 NULL, &pflags, 8); 962 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 963 &acl_ids->z_fuid, 8); 964 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 965 &acl_ids->z_fgid, 8); 966 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, 967 sizeof (uint64_t) * 4); 968 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, 969 &acl_phys, sizeof (zfs_acl_phys_t)); 970 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { 971 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, 972 &acl_ids->z_aclp->z_acl_count, 8); 973 locate.cb_aclp = acl_ids->z_aclp; 974 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), 975 zfs_acl_data_locator, &locate, 976 acl_ids->z_aclp->z_acl_bytes); 977 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags, 978 acl_ids->z_fuid, acl_ids->z_fgid); 979 } 980 981 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); 982 983 if (!(flag & IS_ROOT_NODE)) { 984 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); 985 ASSERT(*zpp != NULL); 986 } else { 987 /* 988 * If we are creating the root node, the "parent" we 989 * passed in is the znode for the root. 990 */ 991 *zpp = dzp; 992 993 (*zpp)->z_sa_hdl = sa_hdl; 994 } 995 996 (*zpp)->z_pflags = pflags; 997 (*zpp)->z_mode = mode; 998 999 if (vap->va_mask & AT_XVATTR) 1000 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); 1001 1002 if (obj_type == DMU_OT_ZNODE || 1003 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { 1004 err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx); 1005 ASSERT3P(err, ==, 0); 1006 } 1007 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1008 } 1009 1010 /* 1011 * zfs_xvattr_set only updates the in-core attributes 1012 * it is assumed the caller will be doing an sa_bulk_update 1013 * to push the changes out 1014 */ 1015 void 1016 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) 1017 { 1018 xoptattr_t *xoap; 1019 1020 xoap = xva_getxoptattr(xvap); 1021 ASSERT(xoap); 1022 1023 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 1024 uint64_t times[2]; 1025 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); 1026 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), 1027 ×, sizeof (times), tx); 1028 XVA_SET_RTN(xvap, XAT_CREATETIME); 1029 } 1030 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 1031 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, 1032 zp->z_pflags, tx); 1033 XVA_SET_RTN(xvap, XAT_READONLY); 1034 } 1035 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 1036 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, 1037 zp->z_pflags, tx); 1038 XVA_SET_RTN(xvap, XAT_HIDDEN); 1039 } 1040 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 1041 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, 1042 zp->z_pflags, tx); 1043 XVA_SET_RTN(xvap, XAT_SYSTEM); 1044 } 1045 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 1046 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, 1047 zp->z_pflags, tx); 1048 XVA_SET_RTN(xvap, XAT_ARCHIVE); 1049 } 1050 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 1051 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, 1052 zp->z_pflags, tx); 1053 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 1054 } 1055 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 1056 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, 1057 zp->z_pflags, tx); 1058 XVA_SET_RTN(xvap, XAT_NOUNLINK); 1059 } 1060 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 1061 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, 1062 zp->z_pflags, tx); 1063 XVA_SET_RTN(xvap, XAT_APPENDONLY); 1064 } 1065 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 1066 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, 1067 zp->z_pflags, tx); 1068 XVA_SET_RTN(xvap, XAT_NODUMP); 1069 } 1070 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 1071 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, 1072 zp->z_pflags, tx); 1073 XVA_SET_RTN(xvap, XAT_OPAQUE); 1074 } 1075 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 1076 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 1077 xoap->xoa_av_quarantined, zp->z_pflags, tx); 1078 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 1079 } 1080 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 1081 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, 1082 zp->z_pflags, tx); 1083 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 1084 } 1085 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 1086 zfs_sa_set_scanstamp(zp, xvap, tx); 1087 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 1088 } 1089 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 1090 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, 1091 zp->z_pflags, tx); 1092 XVA_SET_RTN(xvap, XAT_REPARSE); 1093 } 1094 } 1095 1096 int 1097 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 1098 { 1099 dmu_object_info_t doi; 1100 dmu_buf_t *db; 1101 znode_t *zp; 1102 int err; 1103 sa_handle_t *hdl; 1104 1105 *zpp = NULL; 1106 1107 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1108 1109 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1110 if (err) { 1111 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1112 return (err); 1113 } 1114 1115 dmu_object_info_from_db(db, &doi); 1116 if (doi.doi_bonus_type != DMU_OT_SA && 1117 (doi.doi_bonus_type != DMU_OT_ZNODE || 1118 (doi.doi_bonus_type == DMU_OT_ZNODE && 1119 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1120 sa_buf_rele(db, NULL); 1121 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1122 return (EINVAL); 1123 } 1124 1125 hdl = dmu_buf_get_user(db); 1126 if (hdl != NULL) { 1127 zp = sa_get_userdata(hdl); 1128 1129 1130 /* 1131 * Since "SA" does immediate eviction we 1132 * should never find a sa handle that doesn't 1133 * know about the znode. 1134 */ 1135 1136 ASSERT3P(zp, !=, NULL); 1137 1138 mutex_enter(&zp->z_lock); 1139 ASSERT3U(zp->z_id, ==, obj_num); 1140 if (zp->z_unlinked) { 1141 err = ENOENT; 1142 } else { 1143 VN_HOLD(ZTOV(zp)); 1144 *zpp = zp; 1145 err = 0; 1146 } 1147 sa_buf_rele(db, NULL); 1148 mutex_exit(&zp->z_lock); 1149 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1150 return (err); 1151 } 1152 1153 /* 1154 * Not found create new znode/vnode 1155 * but only if file exists. 1156 * 1157 * There is a small window where zfs_vget() could 1158 * find this object while a file create is still in 1159 * progress. This is checked for in zfs_znode_alloc() 1160 * 1161 * if zfs_znode_alloc() fails it will drop the hold on the 1162 * bonus buffer. 1163 */ 1164 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, 1165 doi.doi_bonus_type, NULL); 1166 if (zp == NULL) { 1167 err = ENOENT; 1168 } else { 1169 *zpp = zp; 1170 } 1171 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1172 return (err); 1173 } 1174 1175 int 1176 zfs_rezget(znode_t *zp) 1177 { 1178 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1179 dmu_object_info_t doi; 1180 dmu_buf_t *db; 1181 uint64_t obj_num = zp->z_id; 1182 uint64_t mode; 1183 uint64_t uid, gid; 1184 sa_bulk_attr_t bulk[8]; 1185 int err; 1186 int count = 0; 1187 uint64_t gen; 1188 1189 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1190 1191 mutex_enter(&zp->z_acl_lock); 1192 if (zp->z_acl_cached) { 1193 zfs_acl_free(zp->z_acl_cached); 1194 zp->z_acl_cached = NULL; 1195 } 1196 1197 mutex_exit(&zp->z_acl_lock); 1198 ASSERT(zp->z_sa_hdl == NULL); 1199 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1200 if (err) { 1201 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1202 return (err); 1203 } 1204 1205 dmu_object_info_from_db(db, &doi); 1206 if (doi.doi_bonus_type != DMU_OT_SA && 1207 (doi.doi_bonus_type != DMU_OT_ZNODE || 1208 (doi.doi_bonus_type == DMU_OT_ZNODE && 1209 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1210 sa_buf_rele(db, NULL); 1211 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1212 return (EINVAL); 1213 } 1214 1215 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); 1216 1217 /* reload cached values */ 1218 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, 1219 &gen, sizeof (gen)); 1220 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1221 &zp->z_size, sizeof (zp->z_size)); 1222 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 1223 &zp->z_links, sizeof (zp->z_links)); 1224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1225 &zp->z_pflags, sizeof (zp->z_pflags)); 1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 1227 &zp->z_atime, sizeof (zp->z_atime)); 1228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 1229 &uid, sizeof (uid)); 1230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 1231 &gid, sizeof (gid)); 1232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 1233 &mode, sizeof (mode)); 1234 1235 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { 1236 zfs_znode_dmu_fini(zp); 1237 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1238 return (EIO); 1239 } 1240 1241 zp->z_mode = mode; 1242 1243 if (gen != zp->z_gen) { 1244 zfs_znode_dmu_fini(zp); 1245 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1246 return (EIO); 1247 } 1248 1249 zp->z_uid = zfs_fuid_map_id(zfsvfs, uid, CRED(), ZFS_OWNER); 1250 zp->z_gid = zfs_fuid_map_id(zfsvfs, gid, CRED(), ZFS_GROUP); 1251 zp->z_unlinked = (zp->z_links == 0); 1252 zp->z_blksz = doi.doi_data_block_size; 1253 1254 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1255 1256 return (0); 1257 } 1258 1259 void 1260 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1261 { 1262 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1263 objset_t *os = zfsvfs->z_os; 1264 uint64_t obj = zp->z_id; 1265 uint64_t acl_obj = zfs_external_acl(zp); 1266 1267 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1268 if (acl_obj) { 1269 VERIFY(!zp->z_is_sa); 1270 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1271 } 1272 VERIFY(0 == dmu_object_free(os, obj, tx)); 1273 zfs_znode_dmu_fini(zp); 1274 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1275 zfs_znode_free(zp); 1276 } 1277 1278 void 1279 zfs_zinactive(znode_t *zp) 1280 { 1281 vnode_t *vp = ZTOV(zp); 1282 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1283 uint64_t z_id = zp->z_id; 1284 1285 ASSERT(zp->z_sa_hdl); 1286 1287 /* 1288 * Don't allow a zfs_zget() while were trying to release this znode 1289 */ 1290 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1291 1292 mutex_enter(&zp->z_lock); 1293 mutex_enter(&vp->v_lock); 1294 vp->v_count--; 1295 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1296 /* 1297 * If the hold count is greater than zero, somebody has 1298 * obtained a new reference on this znode while we were 1299 * processing it here, so we are done. If we still have 1300 * mapped pages then we are also done, since we don't 1301 * want to inactivate the znode until the pages get pushed. 1302 * 1303 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1304 * this seems like it would leave the znode hanging with 1305 * no chance to go inactive... 1306 */ 1307 mutex_exit(&vp->v_lock); 1308 mutex_exit(&zp->z_lock); 1309 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1310 return; 1311 } 1312 mutex_exit(&vp->v_lock); 1313 1314 /* 1315 * If this was the last reference to a file with no links, 1316 * remove the file from the file system. 1317 */ 1318 if (zp->z_unlinked) { 1319 mutex_exit(&zp->z_lock); 1320 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1321 zfs_rmnode(zp); 1322 return; 1323 } 1324 1325 mutex_exit(&zp->z_lock); 1326 zfs_znode_dmu_fini(zp); 1327 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1328 zfs_znode_free(zp); 1329 } 1330 1331 void 1332 zfs_znode_free(znode_t *zp) 1333 { 1334 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1335 1336 vn_invalid(ZTOV(zp)); 1337 1338 ASSERT(ZTOV(zp)->v_count == 0); 1339 1340 mutex_enter(&zfsvfs->z_znodes_lock); 1341 POINTER_INVALIDATE(&zp->z_zfsvfs); 1342 list_remove(&zfsvfs->z_all_znodes, zp); 1343 mutex_exit(&zfsvfs->z_znodes_lock); 1344 1345 if (zp->z_acl_cached) { 1346 zfs_acl_free(zp->z_acl_cached); 1347 zp->z_acl_cached = NULL; 1348 } 1349 1350 kmem_cache_free(znode_cache, zp); 1351 1352 VFS_RELE(zfsvfs->z_vfs); 1353 } 1354 1355 void 1356 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], 1357 uint64_t ctime[2], boolean_t have_tx) 1358 { 1359 timestruc_t now; 1360 1361 gethrestime(&now); 1362 1363 if (have_tx) { /* will sa_bulk_update happen really soon? */ 1364 zp->z_atime_dirty = 0; 1365 zp->z_seq++; 1366 } else { 1367 zp->z_atime_dirty = 1; 1368 } 1369 1370 if (flag & AT_ATIME) { 1371 ZFS_TIME_ENCODE(&now, zp->z_atime); 1372 } 1373 1374 if (flag & AT_MTIME) { 1375 ZFS_TIME_ENCODE(&now, mtime); 1376 if (zp->z_zfsvfs->z_use_fuids) { 1377 zp->z_pflags |= (ZFS_ARCHIVE | 1378 ZFS_AV_MODIFIED); 1379 } 1380 } 1381 1382 if (flag & AT_CTIME) { 1383 ZFS_TIME_ENCODE(&now, ctime); 1384 if (zp->z_zfsvfs->z_use_fuids) 1385 zp->z_pflags |= ZFS_ARCHIVE; 1386 } 1387 } 1388 1389 /* 1390 * Grow the block size for a file. 1391 * 1392 * IN: zp - znode of file to free data in. 1393 * size - requested block size 1394 * tx - open transaction. 1395 * 1396 * NOTE: this function assumes that the znode is write locked. 1397 */ 1398 void 1399 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1400 { 1401 int error; 1402 u_longlong_t dummy; 1403 1404 if (size <= zp->z_blksz) 1405 return; 1406 /* 1407 * If the file size is already greater than the current blocksize, 1408 * we will not grow. If there is more than one block in a file, 1409 * the blocksize cannot change. 1410 */ 1411 if (zp->z_blksz && zp->z_size > zp->z_blksz) 1412 return; 1413 1414 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1415 size, 0, tx); 1416 1417 if (error == ENOTSUP) 1418 return; 1419 ASSERT3U(error, ==, 0); 1420 1421 /* What blocksize did we actually get? */ 1422 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); 1423 } 1424 1425 /* 1426 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1427 * be calling back into the fs for a putpage(). E.g.: when truncating 1428 * a file, the pages being "thrown away* don't need to be written out. 1429 */ 1430 /* ARGSUSED */ 1431 static int 1432 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1433 int flags, cred_t *cr) 1434 { 1435 ASSERT(0); 1436 return (0); 1437 } 1438 1439 /* 1440 * Increase the file length 1441 * 1442 * IN: zp - znode of file to free data in. 1443 * end - new end-of-file 1444 * 1445 * RETURN: 0 if success 1446 * error code if failure 1447 */ 1448 static int 1449 zfs_extend(znode_t *zp, uint64_t end) 1450 { 1451 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1452 dmu_tx_t *tx; 1453 rl_t *rl; 1454 uint64_t newblksz; 1455 int error; 1456 1457 /* 1458 * We will change zp_size, lock the whole file. 1459 */ 1460 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1461 1462 /* 1463 * Nothing to do if file already at desired length. 1464 */ 1465 if (end <= zp->z_size) { 1466 zfs_range_unlock(rl); 1467 return (0); 1468 } 1469 top: 1470 tx = dmu_tx_create(zfsvfs->z_os); 1471 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1472 zfs_sa_upgrade_txholds(tx, zp); 1473 if (end > zp->z_blksz && 1474 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1475 /* 1476 * We are growing the file past the current block size. 1477 */ 1478 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1479 ASSERT(!ISP2(zp->z_blksz)); 1480 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1481 } else { 1482 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1483 } 1484 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1485 } else { 1486 newblksz = 0; 1487 } 1488 1489 error = dmu_tx_assign(tx, TXG_NOWAIT); 1490 if (error) { 1491 if (error == ERESTART) { 1492 dmu_tx_wait(tx); 1493 dmu_tx_abort(tx); 1494 goto top; 1495 } 1496 dmu_tx_abort(tx); 1497 zfs_range_unlock(rl); 1498 return (error); 1499 } 1500 1501 if (newblksz) 1502 zfs_grow_blocksize(zp, newblksz, tx); 1503 1504 zp->z_size = end; 1505 1506 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1507 &zp->z_size, sizeof (zp->z_size), tx)); 1508 1509 zfs_range_unlock(rl); 1510 1511 dmu_tx_commit(tx); 1512 1513 return (0); 1514 } 1515 1516 /* 1517 * Free space in a file. 1518 * 1519 * IN: zp - znode of file to free data in. 1520 * off - start of section to free. 1521 * len - length of section to free. 1522 * 1523 * RETURN: 0 if success 1524 * error code if failure 1525 */ 1526 static int 1527 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1528 { 1529 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1530 rl_t *rl; 1531 int error; 1532 1533 /* 1534 * Lock the range being freed. 1535 */ 1536 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1537 1538 /* 1539 * Nothing to do if file already at desired length. 1540 */ 1541 if (off >= zp->z_size) { 1542 zfs_range_unlock(rl); 1543 return (0); 1544 } 1545 1546 if (off + len > zp->z_size) 1547 len = zp->z_size - off; 1548 1549 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1550 1551 zfs_range_unlock(rl); 1552 1553 return (error); 1554 } 1555 1556 /* 1557 * Truncate a file 1558 * 1559 * IN: zp - znode of file to free data in. 1560 * end - new end-of-file. 1561 * 1562 * RETURN: 0 if success 1563 * error code if failure 1564 */ 1565 static int 1566 zfs_trunc(znode_t *zp, uint64_t end) 1567 { 1568 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1569 vnode_t *vp = ZTOV(zp); 1570 dmu_tx_t *tx; 1571 rl_t *rl; 1572 int error; 1573 1574 /* 1575 * We will change zp_size, lock the whole file. 1576 */ 1577 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1578 1579 /* 1580 * Nothing to do if file already at desired length. 1581 */ 1582 if (end >= zp->z_size) { 1583 zfs_range_unlock(rl); 1584 return (0); 1585 } 1586 1587 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1588 if (error) { 1589 zfs_range_unlock(rl); 1590 return (error); 1591 } 1592 top: 1593 tx = dmu_tx_create(zfsvfs->z_os); 1594 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1595 zfs_sa_upgrade_txholds(tx, zp); 1596 error = dmu_tx_assign(tx, TXG_NOWAIT); 1597 if (error) { 1598 if (error == ERESTART) { 1599 dmu_tx_wait(tx); 1600 dmu_tx_abort(tx); 1601 goto top; 1602 } 1603 dmu_tx_abort(tx); 1604 zfs_range_unlock(rl); 1605 return (error); 1606 } 1607 1608 zp->z_size = end; 1609 1610 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1611 &zp->z_size, sizeof (zp->z_size), tx)); 1612 1613 dmu_tx_commit(tx); 1614 1615 /* 1616 * Clear any mapped pages in the truncated region. This has to 1617 * happen outside of the transaction to avoid the possibility of 1618 * a deadlock with someone trying to push a page that we are 1619 * about to invalidate. 1620 */ 1621 if (vn_has_cached_data(vp)) { 1622 page_t *pp; 1623 uint64_t start = end & PAGEMASK; 1624 int poff = end & PAGEOFFSET; 1625 1626 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1627 /* 1628 * We need to zero a partial page. 1629 */ 1630 pagezero(pp, poff, PAGESIZE - poff); 1631 start += PAGESIZE; 1632 page_unlock(pp); 1633 } 1634 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1635 B_INVAL | B_TRUNC, NULL); 1636 ASSERT(error == 0); 1637 } 1638 1639 zfs_range_unlock(rl); 1640 1641 return (0); 1642 } 1643 1644 /* 1645 * Free space in a file 1646 * 1647 * IN: zp - znode of file to free data in. 1648 * off - start of range 1649 * len - end of range (0 => EOF) 1650 * flag - current file open mode flags. 1651 * log - TRUE if this action should be logged 1652 * 1653 * RETURN: 0 if success 1654 * error code if failure 1655 */ 1656 int 1657 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1658 { 1659 vnode_t *vp = ZTOV(zp); 1660 dmu_tx_t *tx; 1661 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1662 zilog_t *zilog = zfsvfs->z_log; 1663 uint64_t mode; 1664 uint64_t mtime[2], ctime[2]; 1665 sa_bulk_attr_t bulk[3]; 1666 int count = 0; 1667 int error; 1668 1669 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, 1670 sizeof (mode))) != 0) 1671 return (error); 1672 1673 if (off > zp->z_size) { 1674 error = zfs_extend(zp, off+len); 1675 if (error == 0 && log) 1676 goto log; 1677 else 1678 return (error); 1679 } 1680 1681 /* 1682 * Check for any locks in the region to be freed. 1683 */ 1684 1685 if (MANDLOCK(vp, (mode_t)mode)) { 1686 uint64_t length = (len ? len : zp->z_size - off); 1687 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1688 return (error); 1689 } 1690 1691 if (len == 0) { 1692 error = zfs_trunc(zp, off); 1693 } else { 1694 if ((error = zfs_free_range(zp, off, len)) == 0 && 1695 off + len > zp->z_size) 1696 error = zfs_extend(zp, off+len); 1697 } 1698 if (error || !log) 1699 return (error); 1700 log: 1701 tx = dmu_tx_create(zfsvfs->z_os); 1702 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1703 zfs_sa_upgrade_txholds(tx, zp); 1704 error = dmu_tx_assign(tx, TXG_NOWAIT); 1705 if (error) { 1706 if (error == ERESTART) { 1707 dmu_tx_wait(tx); 1708 dmu_tx_abort(tx); 1709 goto log; 1710 } 1711 dmu_tx_abort(tx); 1712 return (error); 1713 } 1714 1715 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); 1716 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); 1717 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1718 NULL, &zp->z_pflags, 8); 1719 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); 1720 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1721 ASSERT(error == 0); 1722 1723 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1724 1725 dmu_tx_commit(tx); 1726 return (0); 1727 } 1728 1729 void 1730 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1731 { 1732 zfsvfs_t zfsvfs; 1733 uint64_t moid, obj, sa_obj, version; 1734 uint64_t sense = ZFS_CASE_SENSITIVE; 1735 uint64_t norm = 0; 1736 nvpair_t *elem; 1737 int error; 1738 int i; 1739 znode_t *rootzp = NULL; 1740 vnode_t *vp; 1741 vattr_t vattr; 1742 znode_t *zp; 1743 zfs_acl_ids_t acl_ids; 1744 1745 /* 1746 * First attempt to create master node. 1747 */ 1748 /* 1749 * In an empty objset, there are no blocks to read and thus 1750 * there can be no i/o errors (which we assert below). 1751 */ 1752 moid = MASTER_NODE_OBJ; 1753 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1754 DMU_OT_NONE, 0, tx); 1755 ASSERT(error == 0); 1756 1757 /* 1758 * Set starting attributes. 1759 */ 1760 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); 1761 elem = NULL; 1762 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1763 /* For the moment we expect all zpl props to be uint64_ts */ 1764 uint64_t val; 1765 char *name; 1766 1767 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1768 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1769 name = nvpair_name(elem); 1770 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1771 if (val < version) 1772 version = val; 1773 } else { 1774 error = zap_update(os, moid, name, 8, 1, &val, tx); 1775 } 1776 ASSERT(error == 0); 1777 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1778 norm = val; 1779 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1780 sense = val; 1781 } 1782 ASSERT(version != 0); 1783 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1784 1785 /* 1786 * Create zap object used for SA attribute registration 1787 */ 1788 1789 if (version >= ZPL_VERSION_SA) { 1790 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 1791 DMU_OT_NONE, 0, tx); 1792 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 1793 ASSERT(error == 0); 1794 } else { 1795 sa_obj = 0; 1796 } 1797 /* 1798 * Create a delete queue. 1799 */ 1800 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1801 1802 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1803 ASSERT(error == 0); 1804 1805 /* 1806 * Create root znode. Create minimal znode/vnode/zfsvfs 1807 * to allow zfs_mknode to work. 1808 */ 1809 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1810 vattr.va_type = VDIR; 1811 vattr.va_mode = S_IFDIR|0755; 1812 vattr.va_uid = crgetuid(cr); 1813 vattr.va_gid = crgetgid(cr); 1814 1815 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1816 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1817 rootzp->z_moved = 0; 1818 rootzp->z_unlinked = 0; 1819 rootzp->z_atime_dirty = 0; 1820 rootzp->z_is_sa = USE_SA(version, os); 1821 1822 vp = ZTOV(rootzp); 1823 vn_reinit(vp); 1824 vp->v_type = VDIR; 1825 1826 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1827 1828 zfsvfs.z_os = os; 1829 zfsvfs.z_parent = &zfsvfs; 1830 zfsvfs.z_version = version; 1831 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1832 zfsvfs.z_use_sa = USE_SA(version, os); 1833 zfsvfs.z_norm = norm; 1834 1835 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 1836 &zfsvfs.z_attr_table); 1837 1838 ASSERT(error == 0); 1839 1840 /* 1841 * Fold case on file systems that are always or sometimes case 1842 * insensitive. 1843 */ 1844 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1845 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1846 1847 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1848 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1849 offsetof(znode_t, z_link_node)); 1850 1851 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1852 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1853 1854 rootzp->z_zfsvfs = &zfsvfs; 1855 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1856 cr, NULL, &acl_ids)); 1857 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); 1858 ASSERT3P(zp, ==, rootzp); 1859 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1860 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1861 ASSERT(error == 0); 1862 zfs_acl_ids_free(&acl_ids); 1863 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1864 1865 ZTOV(rootzp)->v_count = 0; 1866 sa_handle_destroy(rootzp->z_sa_hdl); 1867 kmem_cache_free(znode_cache, rootzp); 1868 1869 /* 1870 * Create shares directory 1871 */ 1872 1873 error = zfs_create_share_dir(&zfsvfs, tx); 1874 1875 ASSERT(error == 0); 1876 1877 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1878 mutex_destroy(&zfsvfs.z_hold_mtx[i]); 1879 } 1880 1881 #endif /* _KERNEL */ 1882 1883 static int 1884 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table) 1885 { 1886 uint64_t sa_obj = 0; 1887 int error; 1888 1889 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); 1890 if (error != 0 && error != ENOENT) 1891 return (error); 1892 1893 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table); 1894 return (error); 1895 } 1896 1897 static int 1898 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp, 1899 dmu_buf_t **db) 1900 { 1901 dmu_object_info_t doi; 1902 int error; 1903 1904 if ((error = sa_buf_hold(osp, obj, FTAG, db)) != 0) 1905 return (error); 1906 1907 dmu_object_info_from_db(*db, &doi); 1908 if ((doi.doi_bonus_type != DMU_OT_SA && 1909 doi.doi_bonus_type != DMU_OT_ZNODE) || 1910 doi.doi_bonus_type == DMU_OT_ZNODE && 1911 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1912 sa_buf_rele(*db, FTAG); 1913 return (ENOTSUP); 1914 } 1915 1916 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp); 1917 if (error != 0) { 1918 sa_buf_rele(*db, FTAG); 1919 return (error); 1920 } 1921 1922 return (0); 1923 } 1924 1925 void 1926 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db) 1927 { 1928 sa_handle_destroy(hdl); 1929 sa_buf_rele(db, FTAG); 1930 } 1931 1932 /* 1933 * Given an object number, return its parent object number and whether 1934 * or not the object is an extended attribute directory. 1935 */ 1936 static int 1937 zfs_obj_to_pobj(sa_handle_t *hdl, sa_attr_type_t *sa_table, uint64_t *pobjp, 1938 int *is_xattrdir) 1939 { 1940 uint64_t parent; 1941 uint64_t pflags; 1942 uint64_t mode; 1943 sa_bulk_attr_t bulk[3]; 1944 int count = 0; 1945 int error; 1946 1947 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL, 1948 &parent, sizeof (parent)); 1949 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, 1950 &pflags, sizeof (pflags)); 1951 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1952 &mode, sizeof (mode)); 1953 1954 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) 1955 return (error); 1956 1957 *pobjp = parent; 1958 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); 1959 1960 return (0); 1961 } 1962 1963 /* 1964 * Given an object number, return some zpl level statistics 1965 */ 1966 static int 1967 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table, 1968 zfs_stat_t *sb) 1969 { 1970 sa_bulk_attr_t bulk[4]; 1971 int count = 0; 1972 1973 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1974 &sb->zs_mode, sizeof (sb->zs_mode)); 1975 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL, 1976 &sb->zs_gen, sizeof (sb->zs_gen)); 1977 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL, 1978 &sb->zs_links, sizeof (sb->zs_links)); 1979 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL, 1980 &sb->zs_ctime, sizeof (sb->zs_ctime)); 1981 1982 return (sa_bulk_lookup(hdl, bulk, count)); 1983 } 1984 1985 static int 1986 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl, 1987 sa_attr_type_t *sa_table, char *buf, int len) 1988 { 1989 sa_handle_t *sa_hdl; 1990 sa_handle_t *prevhdl = NULL; 1991 dmu_buf_t *prevdb = NULL; 1992 dmu_buf_t *sa_db = NULL; 1993 char *path = buf + len - 1; 1994 int error; 1995 1996 *path = '\0'; 1997 sa_hdl = hdl; 1998 1999 for (;;) { 2000 uint64_t pobj; 2001 char component[MAXNAMELEN + 2]; 2002 size_t complen; 2003 int is_xattrdir; 2004 2005 if (prevdb) 2006 zfs_release_sa_handle(prevhdl, prevdb); 2007 2008 if ((error = zfs_obj_to_pobj(sa_hdl, sa_table, &pobj, 2009 &is_xattrdir)) != 0) 2010 break; 2011 2012 if (pobj == obj) { 2013 if (path[0] != '/') 2014 *--path = '/'; 2015 break; 2016 } 2017 2018 component[0] = '/'; 2019 if (is_xattrdir) { 2020 (void) sprintf(component + 1, "<xattrdir>"); 2021 } else { 2022 error = zap_value_search(osp, pobj, obj, 2023 ZFS_DIRENT_OBJ(-1ULL), component + 1); 2024 if (error != 0) 2025 break; 2026 } 2027 2028 complen = strlen(component); 2029 path -= complen; 2030 ASSERT(path >= buf); 2031 bcopy(component, path, complen); 2032 obj = pobj; 2033 2034 if (sa_hdl != hdl) { 2035 prevhdl = sa_hdl; 2036 prevdb = sa_db; 2037 } 2038 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db); 2039 if (error != 0) { 2040 sa_hdl = prevhdl; 2041 sa_db = prevdb; 2042 break; 2043 } 2044 } 2045 2046 if (sa_hdl != NULL && sa_hdl != hdl) { 2047 ASSERT(sa_db != NULL); 2048 zfs_release_sa_handle(sa_hdl, sa_db); 2049 } 2050 2051 if (error == 0) 2052 (void) memmove(buf, path, buf + len - path); 2053 2054 return (error); 2055 } 2056 2057 int 2058 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 2059 { 2060 sa_attr_type_t *sa_table; 2061 sa_handle_t *hdl; 2062 dmu_buf_t *db; 2063 int error; 2064 2065 error = zfs_sa_setup(osp, &sa_table); 2066 if (error != 0) 2067 return (error); 2068 2069 error = zfs_grab_sa_handle(osp, obj, &hdl, &db); 2070 if (error != 0) 2071 return (error); 2072 2073 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2074 2075 zfs_release_sa_handle(hdl, db); 2076 return (error); 2077 } 2078 2079 int 2080 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb, 2081 char *buf, int len) 2082 { 2083 char *path = buf + len - 1; 2084 sa_attr_type_t *sa_table; 2085 sa_handle_t *hdl; 2086 dmu_buf_t *db; 2087 int error; 2088 2089 *path = '\0'; 2090 2091 error = zfs_sa_setup(osp, &sa_table); 2092 if (error != 0) 2093 return (error); 2094 2095 error = zfs_grab_sa_handle(osp, obj, &hdl, &db); 2096 if (error != 0) 2097 return (error); 2098 2099 error = zfs_obj_to_stats_impl(hdl, sa_table, sb); 2100 if (error != 0) { 2101 zfs_release_sa_handle(hdl, db); 2102 return (error); 2103 } 2104 2105 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2106 2107 zfs_release_sa_handle(hdl, db); 2108 return (error); 2109 } 2110