xref: /titanic_41/usr/src/uts/common/fs/zfs/zfs_znode.c (revision 724365f7556fc4201fdb11766ebc6bd918523130)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/mntent.h>
35 #include <sys/mkdev.h>
36 #include <sys/vfs.h>
37 #include <sys/vnode.h>
38 #include <sys/file.h>
39 #include <sys/kmem.h>
40 #include <sys/cmn_err.h>
41 #include <sys/errno.h>
42 #include <sys/unistd.h>
43 #include <sys/stat.h>
44 #include <sys/mode.h>
45 #include <sys/atomic.h>
46 #include <vm/pvn.h>
47 #include "fs/fs_subr.h"
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/zfs_znode.h>
52 #include <sys/zfs_rlock.h>
53 #include <sys/zap.h>
54 #include <sys/dmu.h>
55 #include <sys/fs/zfs.h>
56 
57 struct kmem_cache *znode_cache = NULL;
58 
59 /*ARGSUSED*/
60 static void
61 znode_pageout_func(dmu_buf_t *dbuf, void *user_ptr)
62 {
63 	znode_t *zp = user_ptr;
64 	vnode_t *vp = ZTOV(zp);
65 
66 	mutex_enter(&zp->z_lock);
67 	if (vp->v_count == 0) {
68 		mutex_exit(&zp->z_lock);
69 		vn_invalid(vp);
70 		zfs_znode_free(zp);
71 	} else {
72 		/* signal force unmount that this znode can be freed */
73 		zp->z_dbuf = NULL;
74 		mutex_exit(&zp->z_lock);
75 	}
76 }
77 
78 /*ARGSUSED*/
79 static int
80 zfs_znode_cache_constructor(void *buf, void *cdrarg, int kmflags)
81 {
82 	znode_t *zp = buf;
83 
84 	zp->z_vnode = vn_alloc(KM_SLEEP);
85 	zp->z_vnode->v_data = (caddr_t)zp;
86 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
87 	rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL);
88 	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
89 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
90 
91 	mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
92 	avl_create(&zp->z_range_avl, zfs_range_compare,
93 	    sizeof (rl_t), offsetof(rl_t, r_node));
94 
95 	zp->z_dbuf_held = 0;
96 	zp->z_dirlocks = 0;
97 	return (0);
98 }
99 
100 /*ARGSUSED*/
101 static void
102 zfs_znode_cache_destructor(void *buf, void *cdarg)
103 {
104 	znode_t *zp = buf;
105 
106 	ASSERT(zp->z_dirlocks == 0);
107 	mutex_destroy(&zp->z_lock);
108 	rw_destroy(&zp->z_map_lock);
109 	rw_destroy(&zp->z_parent_lock);
110 	mutex_destroy(&zp->z_acl_lock);
111 	avl_destroy(&zp->z_range_avl);
112 
113 	ASSERT(zp->z_dbuf_held == 0);
114 	ASSERT(ZTOV(zp)->v_count == 0);
115 	vn_free(ZTOV(zp));
116 }
117 
118 void
119 zfs_znode_init(void)
120 {
121 	/*
122 	 * Initialize zcache
123 	 */
124 	ASSERT(znode_cache == NULL);
125 	znode_cache = kmem_cache_create("zfs_znode_cache",
126 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
127 	    zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
128 }
129 
130 void
131 zfs_znode_fini(void)
132 {
133 	/*
134 	 * Cleanup vfs & vnode ops
135 	 */
136 	zfs_remove_op_tables();
137 
138 	/*
139 	 * Cleanup zcache
140 	 */
141 	if (znode_cache)
142 		kmem_cache_destroy(znode_cache);
143 	znode_cache = NULL;
144 }
145 
146 struct vnodeops *zfs_dvnodeops;
147 struct vnodeops *zfs_fvnodeops;
148 struct vnodeops *zfs_symvnodeops;
149 struct vnodeops *zfs_xdvnodeops;
150 struct vnodeops *zfs_evnodeops;
151 
152 void
153 zfs_remove_op_tables()
154 {
155 	/*
156 	 * Remove vfs ops
157 	 */
158 	ASSERT(zfsfstype);
159 	(void) vfs_freevfsops_by_type(zfsfstype);
160 	zfsfstype = 0;
161 
162 	/*
163 	 * Remove vnode ops
164 	 */
165 	if (zfs_dvnodeops)
166 		vn_freevnodeops(zfs_dvnodeops);
167 	if (zfs_fvnodeops)
168 		vn_freevnodeops(zfs_fvnodeops);
169 	if (zfs_symvnodeops)
170 		vn_freevnodeops(zfs_symvnodeops);
171 	if (zfs_xdvnodeops)
172 		vn_freevnodeops(zfs_xdvnodeops);
173 	if (zfs_evnodeops)
174 		vn_freevnodeops(zfs_evnodeops);
175 
176 	zfs_dvnodeops = NULL;
177 	zfs_fvnodeops = NULL;
178 	zfs_symvnodeops = NULL;
179 	zfs_xdvnodeops = NULL;
180 	zfs_evnodeops = NULL;
181 }
182 
183 extern const fs_operation_def_t zfs_dvnodeops_template[];
184 extern const fs_operation_def_t zfs_fvnodeops_template[];
185 extern const fs_operation_def_t zfs_xdvnodeops_template[];
186 extern const fs_operation_def_t zfs_symvnodeops_template[];
187 extern const fs_operation_def_t zfs_evnodeops_template[];
188 
189 int
190 zfs_create_op_tables()
191 {
192 	int error;
193 
194 	/*
195 	 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
196 	 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
197 	 * In this case we just return as the ops vectors are already set up.
198 	 */
199 	if (zfs_dvnodeops)
200 		return (0);
201 
202 	error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
203 	    &zfs_dvnodeops);
204 	if (error)
205 		return (error);
206 
207 	error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
208 	    &zfs_fvnodeops);
209 	if (error)
210 		return (error);
211 
212 	error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
213 	    &zfs_symvnodeops);
214 	if (error)
215 		return (error);
216 
217 	error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
218 	    &zfs_xdvnodeops);
219 	if (error)
220 		return (error);
221 
222 	error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
223 	    &zfs_evnodeops);
224 
225 	return (error);
226 }
227 
228 /*
229  * zfs_init_fs - Initialize the zfsvfs struct and the file system
230  *	incore "master" object.  Verify version compatibility.
231  */
232 int
233 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp, cred_t *cr)
234 {
235 	extern int zfsfstype;
236 
237 	objset_t	*os = zfsvfs->z_os;
238 	uint64_t	zoid;
239 	uint64_t	version = ZPL_VERSION;
240 	int		i, error;
241 	dmu_object_info_t doi;
242 	dmu_objset_stats_t *stats;
243 
244 	*zpp = NULL;
245 
246 	/*
247 	 * XXX - hack to auto-create the pool root filesystem at
248 	 * the first attempted mount.
249 	 */
250 	if (dmu_object_info(os, MASTER_NODE_OBJ, &doi) == ENOENT) {
251 		dmu_tx_t *tx = dmu_tx_create(os);
252 
253 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* master */
254 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* del queue */
255 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); /* root node */
256 		error = dmu_tx_assign(tx, TXG_WAIT);
257 		ASSERT3U(error, ==, 0);
258 		zfs_create_fs(os, cr, tx);
259 		dmu_tx_commit(tx);
260 	}
261 
262 	error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_OBJ, 8, 1,
263 	    &version);
264 	if (error) {
265 		return (error);
266 	} else if (version != ZPL_VERSION) {
267 		(void) printf("Mismatched versions:  File system "
268 		    "is version %lld on-disk format, which is "
269 		    "incompatible with this software version %lld!",
270 		    (u_longlong_t)version, ZPL_VERSION);
271 		return (ENOTSUP);
272 	}
273 
274 	/*
275 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
276 	 * separates our fsid from any other filesystem types, and a
277 	 * 56-bit objset unique ID.  The objset unique ID is unique to
278 	 * all objsets open on this system, provided by unique_create().
279 	 * The 8-bit fs type must be put in the low bits of fsid[1]
280 	 * because that's where other Solaris filesystems put it.
281 	 */
282 	stats = kmem_alloc(sizeof (dmu_objset_stats_t), KM_SLEEP);
283 	dmu_objset_stats(os, stats);
284 	ASSERT((stats->dds_fsid_guid & ~((1ULL<<56)-1)) == 0);
285 	zfsvfs->z_vfs->vfs_fsid.val[0] = stats->dds_fsid_guid;
286 	zfsvfs->z_vfs->vfs_fsid.val[1] = ((stats->dds_fsid_guid>>32) << 8) |
287 	    zfsfstype & 0xFF;
288 	kmem_free(stats, sizeof (dmu_objset_stats_t));
289 	stats = NULL;
290 
291 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &zoid);
292 	if (error)
293 		return (error);
294 	ASSERT(zoid != 0);
295 	zfsvfs->z_root = zoid;
296 
297 	/*
298 	 * Create the per mount vop tables.
299 	 */
300 
301 	/*
302 	 * Initialize zget mutex's
303 	 */
304 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
305 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
306 
307 	error = zfs_zget(zfsvfs, zoid, zpp);
308 	if (error)
309 		return (error);
310 	ASSERT3U((*zpp)->z_id, ==, zoid);
311 
312 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_DELETE_QUEUE, 8, 1, &zoid);
313 	if (error)
314 		return (error);
315 
316 	zfsvfs->z_dqueue = zoid;
317 
318 	/*
319 	 * Initialize delete head structure
320 	 * Thread(s) will be started/stopped via
321 	 * readonly_changed_cb() depending
322 	 * on whether this is rw/ro mount.
323 	 */
324 	list_create(&zfsvfs->z_delete_head.z_znodes,
325 	    sizeof (znode_t), offsetof(znode_t, z_list_node));
326 
327 	return (0);
328 }
329 
330 /*
331  * define a couple of values we need available
332  * for both 64 and 32 bit environments.
333  */
334 #ifndef NBITSMINOR64
335 #define	NBITSMINOR64	32
336 #endif
337 #ifndef MAXMAJ64
338 #define	MAXMAJ64	0xffffffffUL
339 #endif
340 #ifndef	MAXMIN64
341 #define	MAXMIN64	0xffffffffUL
342 #endif
343 
344 /*
345  * Create special expldev for ZFS private use.
346  * Can't use standard expldev since it doesn't do
347  * what we want.  The standard expldev() takes a
348  * dev32_t in LP64 and expands it to a long dev_t.
349  * We need an interface that takes a dev32_t in ILP32
350  * and expands it to a long dev_t.
351  */
352 static uint64_t
353 zfs_expldev(dev_t dev)
354 {
355 #ifndef _LP64
356 	major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
357 	return (((uint64_t)major << NBITSMINOR64) |
358 	    ((minor_t)dev & MAXMIN32));
359 #else
360 	return (dev);
361 #endif
362 }
363 
364 /*
365  * Special cmpldev for ZFS private use.
366  * Can't use standard cmpldev since it takes
367  * a long dev_t and compresses it to dev32_t in
368  * LP64.  We need to do a compaction of a long dev_t
369  * to a dev32_t in ILP32.
370  */
371 dev_t
372 zfs_cmpldev(uint64_t dev)
373 {
374 #ifndef _LP64
375 	minor_t minor = (minor_t)dev & MAXMIN64;
376 	major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
377 
378 	if (major > MAXMAJ32 || minor > MAXMIN32)
379 		return (NODEV32);
380 
381 	return (((dev32_t)major << NBITSMINOR32) | minor);
382 #else
383 	return (dev);
384 #endif
385 }
386 
387 /*
388  * Construct a new znode/vnode and intialize.
389  *
390  * This does not do a call to dmu_set_user() that is
391  * up to the caller to do, in case you don't want to
392  * return the znode
393  */
394 static znode_t *
395 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, uint64_t obj_num, int blksz)
396 {
397 	znode_t	*zp;
398 	vnode_t *vp;
399 
400 	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
401 
402 	ASSERT(zp->z_dirlocks == NULL);
403 
404 	zp->z_phys = db->db_data;
405 	zp->z_zfsvfs = zfsvfs;
406 	zp->z_active = 1;
407 	zp->z_reap = 0;
408 	zp->z_atime_dirty = 0;
409 	zp->z_dbuf_held = 0;
410 	zp->z_mapcnt = 0;
411 	zp->z_last_itx = 0;
412 	zp->z_dbuf = db;
413 	zp->z_id = obj_num;
414 	zp->z_blksz = blksz;
415 	zp->z_seq = 0x7A4653;
416 
417 	mutex_enter(&zfsvfs->z_znodes_lock);
418 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
419 	mutex_exit(&zfsvfs->z_znodes_lock);
420 
421 	vp = ZTOV(zp);
422 	vn_reinit(vp);
423 
424 	vp->v_vfsp = zfsvfs->z_parent->z_vfs;
425 	vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
426 
427 	switch (vp->v_type) {
428 	case VDIR:
429 		if (zp->z_phys->zp_flags & ZFS_XATTR) {
430 			vn_setops(vp, zfs_xdvnodeops);
431 			vp->v_flag |= V_XATTRDIR;
432 		} else
433 			vn_setops(vp, zfs_dvnodeops);
434 		zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
435 		break;
436 	case VBLK:
437 	case VCHR:
438 		vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev);
439 		/*FALLTHROUGH*/
440 	case VFIFO:
441 	case VSOCK:
442 	case VDOOR:
443 		vn_setops(vp, zfs_fvnodeops);
444 		break;
445 	case VREG:
446 		vp->v_flag |= VMODSORT;
447 		vn_setops(vp, zfs_fvnodeops);
448 		break;
449 	case VLNK:
450 		vn_setops(vp, zfs_symvnodeops);
451 		break;
452 	default:
453 		vn_setops(vp, zfs_evnodeops);
454 		break;
455 	}
456 
457 	return (zp);
458 }
459 
460 static void
461 zfs_znode_dmu_init(znode_t *zp)
462 {
463 	znode_t		*nzp;
464 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
465 	dmu_buf_t	*db = zp->z_dbuf;
466 
467 	mutex_enter(&zp->z_lock);
468 
469 	nzp = dmu_buf_set_user(db, zp, &zp->z_phys, znode_pageout_func);
470 
471 	/*
472 	 * there should be no
473 	 * concurrent zgets on this object.
474 	 */
475 	ASSERT3P(nzp, ==, NULL);
476 
477 	/*
478 	 * Slap on VROOT if we are the root znode
479 	 */
480 	if (zp->z_id == zfsvfs->z_root) {
481 		ZTOV(zp)->v_flag |= VROOT;
482 	}
483 
484 	ASSERT(zp->z_dbuf_held == 0);
485 	zp->z_dbuf_held = 1;
486 	VFS_HOLD(zfsvfs->z_vfs);
487 	mutex_exit(&zp->z_lock);
488 	vn_exists(ZTOV(zp));
489 }
490 
491 /*
492  * Create a new DMU object to hold a zfs znode.
493  *
494  *	IN:	dzp	- parent directory for new znode
495  *		vap	- file attributes for new znode
496  *		tx	- dmu transaction id for zap operations
497  *		cr	- credentials of caller
498  *		flag	- flags:
499  *			  IS_ROOT_NODE	- new object will be root
500  *			  IS_XATTR	- new object is an attribute
501  *			  IS_REPLAY	- intent log replay
502  *
503  *	OUT:	oid	- ID of created object
504  *
505  */
506 void
507 zfs_mknode(znode_t *dzp, vattr_t *vap, uint64_t *oid, dmu_tx_t *tx, cred_t *cr,
508 	uint_t flag, znode_t **zpp, int bonuslen)
509 {
510 	dmu_buf_t	*dbp;
511 	znode_phys_t	*pzp;
512 	znode_t		*zp;
513 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
514 	timestruc_t	now;
515 	uint64_t	gen;
516 	int		err;
517 
518 	ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
519 
520 	if (zfsvfs->z_assign >= TXG_INITIAL) {		/* ZIL replay */
521 		*oid = vap->va_nodeid;
522 		flag |= IS_REPLAY;
523 		now = vap->va_ctime;		/* see zfs_replay_create() */
524 		gen = vap->va_nblocks;		/* ditto */
525 	} else {
526 		*oid = 0;
527 		gethrestime(&now);
528 		gen = dmu_tx_get_txg(tx);
529 	}
530 
531 	/*
532 	 * Create a new DMU object.
533 	 */
534 	/*
535 	 * There's currently no mechanism for pre-reading the blocks that will
536 	 * be to needed allocate a new object, so we accept the small chance
537 	 * that there will be an i/o error and we will fail one of the
538 	 * assertions below.
539 	 */
540 	if (vap->va_type == VDIR) {
541 		if (flag & IS_REPLAY) {
542 			err = zap_create_claim(zfsvfs->z_os, *oid,
543 			    DMU_OT_DIRECTORY_CONTENTS,
544 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
545 			ASSERT3U(err, ==, 0);
546 		} else {
547 			*oid = zap_create(zfsvfs->z_os,
548 			    DMU_OT_DIRECTORY_CONTENTS,
549 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
550 		}
551 	} else {
552 		if (flag & IS_REPLAY) {
553 			err = dmu_object_claim(zfsvfs->z_os, *oid,
554 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
555 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
556 			ASSERT3U(err, ==, 0);
557 		} else {
558 			*oid = dmu_object_alloc(zfsvfs->z_os,
559 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
560 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
561 		}
562 	}
563 	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, *oid, NULL, &dbp));
564 	dmu_buf_will_dirty(dbp, tx);
565 
566 	/*
567 	 * Initialize the znode physical data to zero.
568 	 */
569 	ASSERT(dbp->db_size >= sizeof (znode_phys_t));
570 	bzero(dbp->db_data, dbp->db_size);
571 	pzp = dbp->db_data;
572 
573 	/*
574 	 * If this is the root, fix up the half-initialized parent pointer
575 	 * to reference the just-allocated physical data area.
576 	 */
577 	if (flag & IS_ROOT_NODE) {
578 		dzp->z_phys = pzp;
579 		dzp->z_id = *oid;
580 	}
581 
582 	/*
583 	 * If parent is an xattr, so am I.
584 	 */
585 	if (dzp->z_phys->zp_flags & ZFS_XATTR)
586 		flag |= IS_XATTR;
587 
588 	if (vap->va_type == VBLK || vap->va_type == VCHR) {
589 		pzp->zp_rdev = zfs_expldev(vap->va_rdev);
590 	}
591 
592 	if (vap->va_type == VDIR) {
593 		pzp->zp_size = 2;		/* contents ("." and "..") */
594 		pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
595 	}
596 
597 	pzp->zp_parent = dzp->z_id;
598 	if (flag & IS_XATTR)
599 		pzp->zp_flags |= ZFS_XATTR;
600 
601 	pzp->zp_gen = gen;
602 
603 	ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
604 	ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
605 
606 	if (vap->va_mask & AT_ATIME) {
607 		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
608 	} else {
609 		ZFS_TIME_ENCODE(&now, pzp->zp_atime);
610 	}
611 
612 	if (vap->va_mask & AT_MTIME) {
613 		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
614 	} else {
615 		ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
616 	}
617 
618 	pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode);
619 	zp = zfs_znode_alloc(zfsvfs, dbp, *oid, 0);
620 
621 	zfs_perm_init(zp, dzp, flag, vap, tx, cr);
622 
623 	if (zpp) {
624 		kmutex_t *hash_mtx = ZFS_OBJ_MUTEX(zp);
625 
626 		mutex_enter(hash_mtx);
627 		zfs_znode_dmu_init(zp);
628 		mutex_exit(hash_mtx);
629 
630 		*zpp = zp;
631 	} else {
632 		ZTOV(zp)->v_count = 0;
633 		dmu_buf_rele(dbp, NULL);
634 		zfs_znode_free(zp);
635 	}
636 }
637 
638 int
639 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
640 {
641 	dmu_object_info_t doi;
642 	dmu_buf_t	*db;
643 	znode_t		*zp;
644 	int err;
645 
646 	*zpp = NULL;
647 
648 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
649 
650 	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
651 	if (err) {
652 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
653 		return (err);
654 	}
655 
656 	dmu_object_info_from_db(db, &doi);
657 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
658 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
659 		dmu_buf_rele(db, NULL);
660 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
661 		return (EINVAL);
662 	}
663 
664 	ASSERT(db->db_object == obj_num);
665 	ASSERT(db->db_offset == -1);
666 	ASSERT(db->db_data != NULL);
667 
668 	zp = dmu_buf_get_user(db);
669 
670 	if (zp != NULL) {
671 		mutex_enter(&zp->z_lock);
672 
673 		ASSERT3U(zp->z_id, ==, obj_num);
674 		if (zp->z_reap) {
675 			dmu_buf_rele(db, NULL);
676 			mutex_exit(&zp->z_lock);
677 			ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
678 			return (ENOENT);
679 		} else if (zp->z_dbuf_held) {
680 			dmu_buf_rele(db, NULL);
681 		} else {
682 			zp->z_dbuf_held = 1;
683 			VFS_HOLD(zfsvfs->z_vfs);
684 		}
685 
686 		if (zp->z_active == 0)
687 			zp->z_active = 1;
688 
689 		VN_HOLD(ZTOV(zp));
690 		mutex_exit(&zp->z_lock);
691 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
692 		*zpp = zp;
693 		return (0);
694 	}
695 
696 	/*
697 	 * Not found create new znode/vnode
698 	 */
699 	zp = zfs_znode_alloc(zfsvfs, db, obj_num, doi.doi_data_block_size);
700 	ASSERT3U(zp->z_id, ==, obj_num);
701 	zfs_znode_dmu_init(zp);
702 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
703 	*zpp = zp;
704 	return (0);
705 }
706 
707 void
708 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
709 {
710 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
711 	int error;
712 
713 	ZFS_OBJ_HOLD_ENTER(zfsvfs, zp->z_id);
714 	if (zp->z_phys->zp_acl.z_acl_extern_obj) {
715 		error = dmu_object_free(zfsvfs->z_os,
716 		    zp->z_phys->zp_acl.z_acl_extern_obj, tx);
717 		ASSERT3U(error, ==, 0);
718 	}
719 	error = dmu_object_free(zfsvfs->z_os, zp->z_id, tx);
720 	ASSERT3U(error, ==, 0);
721 	zp->z_dbuf_held = 0;
722 	ZFS_OBJ_HOLD_EXIT(zfsvfs, zp->z_id);
723 	dmu_buf_rele(zp->z_dbuf, NULL);
724 }
725 
726 void
727 zfs_zinactive(znode_t *zp)
728 {
729 	vnode_t	*vp = ZTOV(zp);
730 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
731 	uint64_t z_id = zp->z_id;
732 
733 	ASSERT(zp->z_dbuf_held && zp->z_phys);
734 
735 	/*
736 	 * Don't allow a zfs_zget() while were trying to release this znode
737 	 */
738 	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
739 
740 	mutex_enter(&zp->z_lock);
741 	mutex_enter(&vp->v_lock);
742 	vp->v_count--;
743 	if (vp->v_count > 0 || vn_has_cached_data(vp)) {
744 		/*
745 		 * If the hold count is greater than zero, somebody has
746 		 * obtained a new reference on this znode while we were
747 		 * processing it here, so we are done.  If we still have
748 		 * mapped pages then we are also done, since we don't
749 		 * want to inactivate the znode until the pages get pushed.
750 		 *
751 		 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
752 		 * this seems like it would leave the znode hanging with
753 		 * no chance to go inactive...
754 		 */
755 		mutex_exit(&vp->v_lock);
756 		mutex_exit(&zp->z_lock);
757 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
758 		return;
759 	}
760 	mutex_exit(&vp->v_lock);
761 	zp->z_active = 0;
762 
763 	/*
764 	 * If this was the last reference to a file with no links,
765 	 * remove the file from the file system.
766 	 */
767 	if (zp->z_reap) {
768 		mutex_exit(&zp->z_lock);
769 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
770 		/* XATTR files are not put on the delete queue */
771 		if (zp->z_phys->zp_flags & ZFS_XATTR) {
772 			zfs_rmnode(zp);
773 		} else {
774 			mutex_enter(&zfsvfs->z_delete_head.z_mutex);
775 			list_insert_tail(&zfsvfs->z_delete_head.z_znodes, zp);
776 			zfsvfs->z_delete_head.z_znode_count++;
777 			cv_broadcast(&zfsvfs->z_delete_head.z_cv);
778 			mutex_exit(&zfsvfs->z_delete_head.z_mutex);
779 		}
780 		VFS_RELE(zfsvfs->z_vfs);
781 		return;
782 	}
783 	ASSERT(zp->z_phys);
784 	ASSERT(zp->z_dbuf_held);
785 
786 	zp->z_dbuf_held = 0;
787 	mutex_exit(&zp->z_lock);
788 	dmu_buf_rele(zp->z_dbuf, NULL);
789 	ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
790 	VFS_RELE(zfsvfs->z_vfs);
791 }
792 
793 void
794 zfs_znode_free(znode_t *zp)
795 {
796 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
797 
798 	mutex_enter(&zfsvfs->z_znodes_lock);
799 	list_remove(&zfsvfs->z_all_znodes, zp);
800 	mutex_exit(&zfsvfs->z_znodes_lock);
801 
802 	kmem_cache_free(znode_cache, zp);
803 }
804 
805 void
806 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
807 {
808 	timestruc_t	now;
809 
810 	ASSERT(MUTEX_HELD(&zp->z_lock));
811 
812 	gethrestime(&now);
813 
814 	if (tx) {
815 		dmu_buf_will_dirty(zp->z_dbuf, tx);
816 		zp->z_atime_dirty = 0;
817 		zp->z_seq++;
818 	} else {
819 		zp->z_atime_dirty = 1;
820 	}
821 
822 	if (flag & AT_ATIME)
823 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);
824 
825 	if (flag & AT_MTIME)
826 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);
827 
828 	if (flag & AT_CTIME)
829 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
830 }
831 
832 /*
833  * Update the requested znode timestamps with the current time.
834  * If we are in a transaction, then go ahead and mark the znode
835  * dirty in the transaction so the timestamps will go to disk.
836  * Otherwise, we will get pushed next time the znode is updated
837  * in a transaction, or when this znode eventually goes inactive.
838  *
839  * Why is this OK?
840  *  1 - Only the ACCESS time is ever updated outside of a transaction.
841  *  2 - Multiple consecutive updates will be collapsed into a single
842  *	znode update by the transaction grouping semantics of the DMU.
843  */
844 void
845 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
846 {
847 	mutex_enter(&zp->z_lock);
848 	zfs_time_stamper_locked(zp, flag, tx);
849 	mutex_exit(&zp->z_lock);
850 }
851 
852 /*
853  * Grow the block size for a file.
854  *
855  *	IN:	zp	- znode of file to free data in.
856  *		size	- requested block size
857  *		tx	- open transaction.
858  *
859  * NOTE: this function assumes that the znode is write locked.
860  */
861 void
862 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
863 {
864 	int		error;
865 	u_longlong_t	dummy;
866 
867 	if (size <= zp->z_blksz)
868 		return;
869 	/*
870 	 * If the file size is already greater than the current blocksize,
871 	 * we will not grow.  If there is more than one block in a file,
872 	 * the blocksize cannot change.
873 	 */
874 	if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
875 		return;
876 
877 	error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
878 	    size, 0, tx);
879 	if (error == ENOTSUP)
880 		return;
881 	ASSERT3U(error, ==, 0);
882 
883 	/* What blocksize did we actually get? */
884 	dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);
885 }
886 
887 /*
888  * This is a dummy interface used when pvn_vplist_dirty() should *not*
889  * be calling back into the fs for a putpage().  E.g.: when truncating
890  * a file, the pages being "thrown away* don't need to be written out.
891  */
892 /* ARGSUSED */
893 static int
894 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
895     int flags, cred_t *cr)
896 {
897 	ASSERT(0);
898 	return (0);
899 }
900 
901 /*
902  * Free space in a file.
903  *
904  *	IN:	zp	- znode of file to free data in.
905  *		off	- start of section to free.
906  *		len	- length of section to free (0 => to EOF).
907  *		flag	- current file open mode flags.
908  *
909  * 	RETURN:	0 if success
910  *		error code if failure
911  */
912 int
913 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
914 {
915 	vnode_t *vp = ZTOV(zp);
916 	dmu_tx_t *tx;
917 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
918 	zilog_t *zilog = zfsvfs->z_log;
919 	rl_t *rl;
920 	uint64_t seq = 0;
921 	uint64_t end = off + len;
922 	uint64_t size, new_blksz;
923 	int error;
924 
925 	if (ZTOV(zp)->v_type == VFIFO)
926 		return (0);
927 
928 	/*
929 	 * If we will change zp_size then lock the whole file,
930 	 * otherwise just lock the range being freed.
931 	 */
932 	if (len == 0 || off + len > zp->z_phys->zp_size) {
933 		rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
934 	} else {
935 		rl = zfs_range_lock(zp, off, len, RL_WRITER);
936 		/* recheck, in case zp_size changed */
937 		if (off + len > zp->z_phys->zp_size) {
938 			/* lost race: file size changed, lock whole file */
939 			zfs_range_unlock(zp, rl);
940 			rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
941 		}
942 	}
943 
944 	/*
945 	 * Nothing to do if file already at desired length.
946 	 */
947 	size = zp->z_phys->zp_size;
948 	if (len == 0 && size == off) {
949 		zfs_range_unlock(zp, rl);
950 		return (0);
951 	}
952 
953 	/*
954 	 * Check for any locks in the region to be freed.
955 	 */
956 	if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) {
957 		uint64_t start = off;
958 		uint64_t extent = len;
959 
960 		if (off > size) {
961 			start = size;
962 			extent += off - size;
963 		} else if (len == 0) {
964 			extent = size - off;
965 		}
966 		if (error = chklock(vp, FWRITE, start, extent, flag, NULL)) {
967 			zfs_range_unlock(zp, rl);
968 			return (error);
969 		}
970 	}
971 
972 	tx = dmu_tx_create(zfsvfs->z_os);
973 	dmu_tx_hold_bonus(tx, zp->z_id);
974 	new_blksz = 0;
975 	if (end > size &&
976 	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
977 		/*
978 		 * We are growing the file past the current block size.
979 		 */
980 		if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
981 			ASSERT(!ISP2(zp->z_blksz));
982 			new_blksz = MIN(end, SPA_MAXBLOCKSIZE);
983 		} else {
984 			new_blksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
985 		}
986 		dmu_tx_hold_write(tx, zp->z_id, 0, MIN(end, new_blksz));
987 	} else if (off < size) {
988 		/*
989 		 * If len == 0, we are truncating the file.
990 		 */
991 		dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END);
992 	}
993 
994 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
995 	if (error) {
996 		dmu_tx_abort(tx);
997 		zfs_range_unlock(zp, rl);
998 		return (error);
999 	}
1000 
1001 	if (new_blksz)
1002 		zfs_grow_blocksize(zp, new_blksz, tx);
1003 
1004 	if (end > size || len == 0)
1005 		zp->z_phys->zp_size = end;
1006 
1007 	if (off < size) {
1008 		objset_t *os = zfsvfs->z_os;
1009 		uint64_t rlen = len;
1010 
1011 		if (len == 0)
1012 			rlen = -1;
1013 		else if (end > size)
1014 			rlen = size - off;
1015 		VERIFY(0 == dmu_free_range(os, zp->z_id, off, rlen, tx));
1016 	}
1017 
1018 	if (log) {
1019 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
1020 		seq = zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1021 	}
1022 
1023 	zfs_range_unlock(zp, rl);
1024 
1025 	dmu_tx_commit(tx);
1026 
1027 	if (log)
1028 		zil_commit(zilog, seq, 0);
1029 
1030 	/*
1031 	 * Clear any mapped pages in the truncated region.  This has to
1032 	 * happen outside of the transaction to avoid the possibility of
1033 	 * a deadlock with someone trying to push a page that we are
1034 	 * about to invalidate.
1035 	 */
1036 	rw_enter(&zp->z_map_lock, RW_WRITER);
1037 	if (off < size && vn_has_cached_data(vp)) {
1038 		page_t *pp;
1039 		uint64_t start = off & PAGEMASK;
1040 		int poff = off & PAGEOFFSET;
1041 
1042 		if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1043 			/*
1044 			 * We need to zero a partial page.
1045 			 */
1046 			pagezero(pp, poff, PAGESIZE - poff);
1047 			start += PAGESIZE;
1048 			page_unlock(pp);
1049 		}
1050 		error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1051 		    B_INVAL | B_TRUNC, NULL);
1052 		ASSERT(error == 0);
1053 	}
1054 	rw_exit(&zp->z_map_lock);
1055 
1056 	return (0);
1057 }
1058 
1059 void
1060 zfs_create_fs(objset_t *os, cred_t *cr, dmu_tx_t *tx)
1061 {
1062 	zfsvfs_t	zfsvfs;
1063 	uint64_t	moid, doid, roid = 0;
1064 	uint64_t	version = ZPL_VERSION;
1065 	int		error;
1066 	znode_t		*rootzp = NULL;
1067 	vnode_t		*vp;
1068 	vattr_t		vattr;
1069 
1070 	/*
1071 	 * First attempt to create master node.
1072 	 */
1073 	/*
1074 	 * In an empty objset, there are no blocks to read and thus
1075 	 * there can be no i/o errors (which we assert below).
1076 	 */
1077 	moid = MASTER_NODE_OBJ;
1078 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1079 	    DMU_OT_NONE, 0, tx);
1080 	ASSERT(error == 0);
1081 
1082 	/*
1083 	 * Set starting attributes.
1084 	 */
1085 
1086 	error = zap_update(os, moid, ZPL_VERSION_OBJ, 8, 1, &version, tx);
1087 	ASSERT(error == 0);
1088 
1089 	/*
1090 	 * Create a delete queue.
1091 	 */
1092 	doid = zap_create(os, DMU_OT_DELETE_QUEUE, DMU_OT_NONE, 0, tx);
1093 
1094 	error = zap_add(os, moid, ZFS_DELETE_QUEUE, 8, 1, &doid, tx);
1095 	ASSERT(error == 0);
1096 
1097 	/*
1098 	 * Create root znode.  Create minimal znode/vnode/zfsvfs
1099 	 * to allow zfs_mknode to work.
1100 	 */
1101 	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1102 	vattr.va_type = VDIR;
1103 	vattr.va_mode = S_IFDIR|0755;
1104 	vattr.va_uid = 0;
1105 	vattr.va_gid = 3;
1106 
1107 	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1108 	rootzp->z_zfsvfs = &zfsvfs;
1109 	rootzp->z_active = 1;
1110 	rootzp->z_reap = 0;
1111 	rootzp->z_atime_dirty = 0;
1112 	rootzp->z_dbuf_held = 0;
1113 
1114 	vp = ZTOV(rootzp);
1115 	vn_reinit(vp);
1116 	vp->v_type = VDIR;
1117 
1118 	bzero(&zfsvfs, sizeof (zfsvfs_t));
1119 
1120 	zfsvfs.z_os = os;
1121 	zfsvfs.z_assign = TXG_NOWAIT;
1122 	zfsvfs.z_parent = &zfsvfs;
1123 
1124 	mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1125 	list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1126 	    offsetof(znode_t, z_link_node));
1127 
1128 	zfs_mknode(rootzp, &vattr, &roid, tx, cr, IS_ROOT_NODE, NULL, 0);
1129 	ASSERT3U(rootzp->z_id, ==, roid);
1130 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &roid, tx);
1131 	ASSERT(error == 0);
1132 
1133 	ZTOV(rootzp)->v_count = 0;
1134 	kmem_cache_free(znode_cache, rootzp);
1135 }
1136