1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2007 Jeremy Teo */ 26 27 #ifdef _KERNEL 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/mntent.h> 35 #include <sys/mkdev.h> 36 #include <sys/u8_textprep.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vfs.h> 39 #include <sys/vfs_opreg.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/kmem.h> 43 #include <sys/errno.h> 44 #include <sys/unistd.h> 45 #include <sys/mode.h> 46 #include <sys/atomic.h> 47 #include <vm/pvn.h> 48 #include "fs/fs_subr.h" 49 #include <sys/zfs_dir.h> 50 #include <sys/zfs_acl.h> 51 #include <sys/zfs_ioctl.h> 52 #include <sys/zfs_rlock.h> 53 #include <sys/zfs_fuid.h> 54 #include <sys/dnode.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/kidmap.h> 57 #endif /* _KERNEL */ 58 59 #include <sys/dmu.h> 60 #include <sys/refcount.h> 61 #include <sys/stat.h> 62 #include <sys/zap.h> 63 #include <sys/zfs_znode.h> 64 #include <sys/sa.h> 65 #include <sys/zfs_sa.h> 66 67 #include "zfs_prop.h" 68 #include "zfs_comutil.h" 69 70 /* 71 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 72 * turned on when DEBUG is also defined. 73 */ 74 #ifdef DEBUG 75 #define ZNODE_STATS 76 #endif /* DEBUG */ 77 78 #ifdef ZNODE_STATS 79 #define ZNODE_STAT_ADD(stat) ((stat)++) 80 #else 81 #define ZNODE_STAT_ADD(stat) /* nothing */ 82 #endif /* ZNODE_STATS */ 83 84 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3)) 85 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1)) 86 87 /* 88 * Functions needed for userland (ie: libzpool) are not put under 89 * #ifdef_KERNEL; the rest of the functions have dependencies 90 * (such as VFS logic) that will not compile easily in userland. 91 */ 92 #ifdef _KERNEL 93 /* 94 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 95 * be freed before it can be safely accessed. 96 */ 97 krwlock_t zfsvfs_lock; 98 99 static kmem_cache_t *znode_cache = NULL; 100 101 /*ARGSUSED*/ 102 static void 103 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 104 { 105 /* 106 * We should never drop all dbuf refs without first clearing 107 * the eviction callback. 108 */ 109 panic("evicting znode %p\n", user_ptr); 110 } 111 112 /*ARGSUSED*/ 113 static int 114 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 115 { 116 znode_t *zp = buf; 117 118 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 119 120 zp->z_vnode = vn_alloc(kmflags); 121 if (zp->z_vnode == NULL) { 122 return (-1); 123 } 124 ZTOV(zp)->v_data = zp; 125 126 list_link_init(&zp->z_link_node); 127 128 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 129 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 130 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 131 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 132 133 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 134 avl_create(&zp->z_range_avl, zfs_range_compare, 135 sizeof (rl_t), offsetof(rl_t, r_node)); 136 137 zp->z_dirlocks = NULL; 138 zp->z_acl_cached = NULL; 139 return (0); 140 } 141 142 /*ARGSUSED*/ 143 static void 144 zfs_znode_cache_destructor(void *buf, void *arg) 145 { 146 znode_t *zp = buf; 147 148 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 149 ASSERT(ZTOV(zp)->v_data == zp); 150 vn_free(ZTOV(zp)); 151 ASSERT(!list_link_active(&zp->z_link_node)); 152 mutex_destroy(&zp->z_lock); 153 rw_destroy(&zp->z_parent_lock); 154 rw_destroy(&zp->z_name_lock); 155 mutex_destroy(&zp->z_acl_lock); 156 avl_destroy(&zp->z_range_avl); 157 mutex_destroy(&zp->z_range_lock); 158 159 ASSERT(zp->z_dirlocks == NULL); 160 ASSERT(zp->z_acl_cached == NULL); 161 } 162 163 #ifdef ZNODE_STATS 164 static struct { 165 uint64_t zms_zfsvfs_invalid; 166 uint64_t zms_zfsvfs_recheck1; 167 uint64_t zms_zfsvfs_unmounted; 168 uint64_t zms_zfsvfs_recheck2; 169 uint64_t zms_obj_held; 170 uint64_t zms_vnode_locked; 171 uint64_t zms_not_only_dnlc; 172 } znode_move_stats; 173 #endif /* ZNODE_STATS */ 174 175 static void 176 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 177 { 178 vnode_t *vp; 179 180 /* Copy fields. */ 181 nzp->z_zfsvfs = ozp->z_zfsvfs; 182 183 /* Swap vnodes. */ 184 vp = nzp->z_vnode; 185 nzp->z_vnode = ozp->z_vnode; 186 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 187 ZTOV(ozp)->v_data = ozp; 188 ZTOV(nzp)->v_data = nzp; 189 190 nzp->z_id = ozp->z_id; 191 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 192 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 193 nzp->z_unlinked = ozp->z_unlinked; 194 nzp->z_atime_dirty = ozp->z_atime_dirty; 195 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 196 nzp->z_blksz = ozp->z_blksz; 197 nzp->z_seq = ozp->z_seq; 198 nzp->z_mapcnt = ozp->z_mapcnt; 199 nzp->z_last_itx = ozp->z_last_itx; 200 nzp->z_gen = ozp->z_gen; 201 nzp->z_sync_cnt = ozp->z_sync_cnt; 202 nzp->z_is_sa = ozp->z_is_sa; 203 nzp->z_sa_hdl = ozp->z_sa_hdl; 204 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2); 205 nzp->z_links = ozp->z_links; 206 nzp->z_size = ozp->z_size; 207 nzp->z_pflags = ozp->z_pflags; 208 nzp->z_uid = ozp->z_uid; 209 nzp->z_gid = ozp->z_gid; 210 nzp->z_mode = ozp->z_mode; 211 212 /* 213 * Since this is just an idle znode and kmem is already dealing with 214 * memory pressure, release any cached ACL. 215 */ 216 if (ozp->z_acl_cached) { 217 zfs_acl_free(ozp->z_acl_cached); 218 ozp->z_acl_cached = NULL; 219 } 220 221 sa_set_userp(nzp->z_sa_hdl, nzp); 222 223 /* 224 * Invalidate the original znode by clearing fields that provide a 225 * pointer back to the znode. Set the low bit of the vfs pointer to 226 * ensure that zfs_znode_move() recognizes the znode as invalid in any 227 * subsequent callback. 228 */ 229 ozp->z_sa_hdl = NULL; 230 POINTER_INVALIDATE(&ozp->z_zfsvfs); 231 } 232 233 /*ARGSUSED*/ 234 static kmem_cbrc_t 235 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 236 { 237 znode_t *ozp = buf, *nzp = newbuf; 238 zfsvfs_t *zfsvfs; 239 vnode_t *vp; 240 241 /* 242 * The znode is on the file system's list of known znodes if the vfs 243 * pointer is valid. We set the low bit of the vfs pointer when freeing 244 * the znode to invalidate it, and the memory patterns written by kmem 245 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 246 * created znode sets the vfs pointer last of all to indicate that the 247 * znode is known and in a valid state to be moved by this function. 248 */ 249 zfsvfs = ozp->z_zfsvfs; 250 if (!POINTER_IS_VALID(zfsvfs)) { 251 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 252 return (KMEM_CBRC_DONT_KNOW); 253 } 254 255 /* 256 * Close a small window in which it's possible that the filesystem could 257 * be unmounted and freed, and zfsvfs, though valid in the previous 258 * statement, could point to unrelated memory by the time we try to 259 * prevent the filesystem from being unmounted. 260 */ 261 rw_enter(&zfsvfs_lock, RW_WRITER); 262 if (zfsvfs != ozp->z_zfsvfs) { 263 rw_exit(&zfsvfs_lock); 264 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 265 return (KMEM_CBRC_DONT_KNOW); 266 } 267 268 /* 269 * If the znode is still valid, then so is the file system. We know that 270 * no valid file system can be freed while we hold zfsvfs_lock, so we 271 * can safely ensure that the filesystem is not and will not be 272 * unmounted. The next statement is equivalent to ZFS_ENTER(). 273 */ 274 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 275 if (zfsvfs->z_unmounted) { 276 ZFS_EXIT(zfsvfs); 277 rw_exit(&zfsvfs_lock); 278 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 279 return (KMEM_CBRC_DONT_KNOW); 280 } 281 rw_exit(&zfsvfs_lock); 282 283 mutex_enter(&zfsvfs->z_znodes_lock); 284 /* 285 * Recheck the vfs pointer in case the znode was removed just before 286 * acquiring the lock. 287 */ 288 if (zfsvfs != ozp->z_zfsvfs) { 289 mutex_exit(&zfsvfs->z_znodes_lock); 290 ZFS_EXIT(zfsvfs); 291 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 292 return (KMEM_CBRC_DONT_KNOW); 293 } 294 295 /* 296 * At this point we know that as long as we hold z_znodes_lock, the 297 * znode cannot be freed and fields within the znode can be safely 298 * accessed. Now, prevent a race with zfs_zget(). 299 */ 300 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 301 mutex_exit(&zfsvfs->z_znodes_lock); 302 ZFS_EXIT(zfsvfs); 303 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 304 return (KMEM_CBRC_LATER); 305 } 306 307 vp = ZTOV(ozp); 308 if (mutex_tryenter(&vp->v_lock) == 0) { 309 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 310 mutex_exit(&zfsvfs->z_znodes_lock); 311 ZFS_EXIT(zfsvfs); 312 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 313 return (KMEM_CBRC_LATER); 314 } 315 316 /* Only move znodes that are referenced _only_ by the DNLC. */ 317 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 318 mutex_exit(&vp->v_lock); 319 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 320 mutex_exit(&zfsvfs->z_znodes_lock); 321 ZFS_EXIT(zfsvfs); 322 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 323 return (KMEM_CBRC_LATER); 324 } 325 326 /* 327 * The znode is known and in a valid state to move. We're holding the 328 * locks needed to execute the critical section. 329 */ 330 zfs_znode_move_impl(ozp, nzp); 331 mutex_exit(&vp->v_lock); 332 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 333 334 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 335 mutex_exit(&zfsvfs->z_znodes_lock); 336 ZFS_EXIT(zfsvfs); 337 338 return (KMEM_CBRC_YES); 339 } 340 341 void 342 zfs_znode_init(void) 343 { 344 /* 345 * Initialize zcache 346 */ 347 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 348 ASSERT(znode_cache == NULL); 349 znode_cache = kmem_cache_create("zfs_znode_cache", 350 sizeof (znode_t), 0, zfs_znode_cache_constructor, 351 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 352 kmem_cache_set_move(znode_cache, zfs_znode_move); 353 } 354 355 void 356 zfs_znode_fini(void) 357 { 358 /* 359 * Cleanup vfs & vnode ops 360 */ 361 zfs_remove_op_tables(); 362 363 /* 364 * Cleanup zcache 365 */ 366 if (znode_cache) 367 kmem_cache_destroy(znode_cache); 368 znode_cache = NULL; 369 rw_destroy(&zfsvfs_lock); 370 } 371 372 struct vnodeops *zfs_dvnodeops; 373 struct vnodeops *zfs_fvnodeops; 374 struct vnodeops *zfs_symvnodeops; 375 struct vnodeops *zfs_xdvnodeops; 376 struct vnodeops *zfs_evnodeops; 377 struct vnodeops *zfs_sharevnodeops; 378 379 void 380 zfs_remove_op_tables() 381 { 382 /* 383 * Remove vfs ops 384 */ 385 ASSERT(zfsfstype); 386 (void) vfs_freevfsops_by_type(zfsfstype); 387 zfsfstype = 0; 388 389 /* 390 * Remove vnode ops 391 */ 392 if (zfs_dvnodeops) 393 vn_freevnodeops(zfs_dvnodeops); 394 if (zfs_fvnodeops) 395 vn_freevnodeops(zfs_fvnodeops); 396 if (zfs_symvnodeops) 397 vn_freevnodeops(zfs_symvnodeops); 398 if (zfs_xdvnodeops) 399 vn_freevnodeops(zfs_xdvnodeops); 400 if (zfs_evnodeops) 401 vn_freevnodeops(zfs_evnodeops); 402 if (zfs_sharevnodeops) 403 vn_freevnodeops(zfs_sharevnodeops); 404 405 zfs_dvnodeops = NULL; 406 zfs_fvnodeops = NULL; 407 zfs_symvnodeops = NULL; 408 zfs_xdvnodeops = NULL; 409 zfs_evnodeops = NULL; 410 zfs_sharevnodeops = NULL; 411 } 412 413 extern const fs_operation_def_t zfs_dvnodeops_template[]; 414 extern const fs_operation_def_t zfs_fvnodeops_template[]; 415 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 416 extern const fs_operation_def_t zfs_symvnodeops_template[]; 417 extern const fs_operation_def_t zfs_evnodeops_template[]; 418 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 419 420 int 421 zfs_create_op_tables() 422 { 423 int error; 424 425 /* 426 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 427 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 428 * In this case we just return as the ops vectors are already set up. 429 */ 430 if (zfs_dvnodeops) 431 return (0); 432 433 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 434 &zfs_dvnodeops); 435 if (error) 436 return (error); 437 438 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 439 &zfs_fvnodeops); 440 if (error) 441 return (error); 442 443 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 444 &zfs_symvnodeops); 445 if (error) 446 return (error); 447 448 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 449 &zfs_xdvnodeops); 450 if (error) 451 return (error); 452 453 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 454 &zfs_evnodeops); 455 if (error) 456 return (error); 457 458 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 459 &zfs_sharevnodeops); 460 461 return (error); 462 } 463 464 int 465 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 466 { 467 zfs_acl_ids_t acl_ids; 468 vattr_t vattr; 469 znode_t *sharezp; 470 vnode_t *vp; 471 znode_t *zp; 472 int error; 473 474 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 475 vattr.va_type = VDIR; 476 vattr.va_mode = S_IFDIR|0555; 477 vattr.va_uid = crgetuid(kcred); 478 vattr.va_gid = crgetgid(kcred); 479 480 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 481 sharezp->z_unlinked = 0; 482 sharezp->z_atime_dirty = 0; 483 sharezp->z_zfsvfs = zfsvfs; 484 sharezp->z_is_sa = zfsvfs->z_use_sa; 485 486 vp = ZTOV(sharezp); 487 vn_reinit(vp); 488 vp->v_type = VDIR; 489 490 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 491 kcred, NULL, &acl_ids)); 492 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); 493 ASSERT3P(zp, ==, sharezp); 494 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 495 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 496 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 497 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 498 zfsvfs->z_shares_dir = sharezp->z_id; 499 500 zfs_acl_ids_free(&acl_ids); 501 ZTOV(sharezp)->v_count = 0; 502 sa_handle_destroy(sharezp->z_sa_hdl); 503 kmem_cache_free(znode_cache, sharezp); 504 505 return (error); 506 } 507 508 /* 509 * define a couple of values we need available 510 * for both 64 and 32 bit environments. 511 */ 512 #ifndef NBITSMINOR64 513 #define NBITSMINOR64 32 514 #endif 515 #ifndef MAXMAJ64 516 #define MAXMAJ64 0xffffffffUL 517 #endif 518 #ifndef MAXMIN64 519 #define MAXMIN64 0xffffffffUL 520 #endif 521 522 /* 523 * Create special expldev for ZFS private use. 524 * Can't use standard expldev since it doesn't do 525 * what we want. The standard expldev() takes a 526 * dev32_t in LP64 and expands it to a long dev_t. 527 * We need an interface that takes a dev32_t in ILP32 528 * and expands it to a long dev_t. 529 */ 530 static uint64_t 531 zfs_expldev(dev_t dev) 532 { 533 #ifndef _LP64 534 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 535 return (((uint64_t)major << NBITSMINOR64) | 536 ((minor_t)dev & MAXMIN32)); 537 #else 538 return (dev); 539 #endif 540 } 541 542 /* 543 * Special cmpldev for ZFS private use. 544 * Can't use standard cmpldev since it takes 545 * a long dev_t and compresses it to dev32_t in 546 * LP64. We need to do a compaction of a long dev_t 547 * to a dev32_t in ILP32. 548 */ 549 dev_t 550 zfs_cmpldev(uint64_t dev) 551 { 552 #ifndef _LP64 553 minor_t minor = (minor_t)dev & MAXMIN64; 554 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 555 556 if (major > MAXMAJ32 || minor > MAXMIN32) 557 return (NODEV32); 558 559 return (((dev32_t)major << NBITSMINOR32) | minor); 560 #else 561 return (dev); 562 #endif 563 } 564 565 static void 566 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, 567 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) 568 { 569 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 570 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 571 572 mutex_enter(&zp->z_lock); 573 574 ASSERT(zp->z_sa_hdl == NULL); 575 ASSERT(zp->z_acl_cached == NULL); 576 if (sa_hdl == NULL) { 577 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, 578 SA_HDL_SHARED, &zp->z_sa_hdl)); 579 } else { 580 zp->z_sa_hdl = sa_hdl; 581 sa_set_userp(sa_hdl, zp); 582 } 583 584 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; 585 586 /* 587 * Slap on VROOT if we are the root znode 588 */ 589 if (zp->z_id == zfsvfs->z_root) 590 ZTOV(zp)->v_flag |= VROOT; 591 592 mutex_exit(&zp->z_lock); 593 vn_exists(ZTOV(zp)); 594 } 595 596 void 597 zfs_znode_dmu_fini(znode_t *zp) 598 { 599 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 600 zp->z_unlinked || 601 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 602 603 sa_handle_destroy(zp->z_sa_hdl); 604 zp->z_sa_hdl = NULL; 605 } 606 607 /* 608 * Construct a new znode/vnode and intialize. 609 * 610 * This does not do a call to dmu_set_user() that is 611 * up to the caller to do, in case you don't want to 612 * return the znode 613 */ 614 static znode_t * 615 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, 616 dmu_object_type_t obj_type, sa_handle_t *hdl) 617 { 618 znode_t *zp; 619 vnode_t *vp; 620 uint64_t mode; 621 uint64_t parent; 622 uint64_t uid, gid; 623 sa_bulk_attr_t bulk[9]; 624 int count = 0; 625 626 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 627 628 ASSERT(zp->z_dirlocks == NULL); 629 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 630 631 /* 632 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 633 * the zfs_znode_move() callback. 634 */ 635 zp->z_sa_hdl = NULL; 636 zp->z_unlinked = 0; 637 zp->z_atime_dirty = 0; 638 zp->z_mapcnt = 0; 639 zp->z_last_itx = 0; 640 zp->z_id = db->db_object; 641 zp->z_blksz = blksz; 642 zp->z_seq = 0x7A4653; 643 zp->z_sync_cnt = 0; 644 645 vp = ZTOV(zp); 646 vn_reinit(vp); 647 648 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); 649 650 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); 651 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); 652 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 653 &zp->z_size, 8); 654 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 655 &zp->z_links, 8); 656 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 657 &zp->z_pflags, 8); 658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); 659 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 660 &zp->z_atime, 16); 661 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 662 &uid, 8); 663 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 664 &gid, 8); 665 666 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) { 667 if (hdl == NULL) 668 sa_handle_destroy(zp->z_sa_hdl); 669 kmem_cache_free(znode_cache, zp); 670 return (NULL); 671 } 672 673 zp->z_uid = zfs_fuid_map_id(zfsvfs, uid, CRED(), ZFS_OWNER); 674 zp->z_gid = zfs_fuid_map_id(zfsvfs, gid, CRED(), ZFS_GROUP); 675 zp->z_mode = mode; 676 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 677 678 vp->v_type = IFTOVT((mode_t)mode); 679 680 switch (vp->v_type) { 681 case VDIR: 682 if (zp->z_pflags & ZFS_XATTR) { 683 vn_setops(vp, zfs_xdvnodeops); 684 vp->v_flag |= V_XATTRDIR; 685 } else { 686 vn_setops(vp, zfs_dvnodeops); 687 } 688 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 689 break; 690 case VBLK: 691 case VCHR: 692 { 693 uint64_t rdev; 694 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), 695 &rdev, sizeof (rdev)) == 0); 696 697 vp->v_rdev = zfs_cmpldev(rdev); 698 } 699 /*FALLTHROUGH*/ 700 case VFIFO: 701 case VSOCK: 702 case VDOOR: 703 vn_setops(vp, zfs_fvnodeops); 704 break; 705 case VREG: 706 vp->v_flag |= VMODSORT; 707 if (parent == zfsvfs->z_shares_dir) { 708 ASSERT(uid == 0 && gid == 0); 709 vn_setops(vp, zfs_sharevnodeops); 710 } else { 711 vn_setops(vp, zfs_fvnodeops); 712 } 713 break; 714 case VLNK: 715 vn_setops(vp, zfs_symvnodeops); 716 break; 717 default: 718 vn_setops(vp, zfs_evnodeops); 719 break; 720 } 721 722 mutex_enter(&zfsvfs->z_znodes_lock); 723 list_insert_tail(&zfsvfs->z_all_znodes, zp); 724 membar_producer(); 725 /* 726 * Everything else must be valid before assigning z_zfsvfs makes the 727 * znode eligible for zfs_znode_move(). 728 */ 729 zp->z_zfsvfs = zfsvfs; 730 mutex_exit(&zfsvfs->z_znodes_lock); 731 732 VFS_HOLD(zfsvfs->z_vfs); 733 return (zp); 734 } 735 736 static uint64_t empty_xattr; 737 static uint64_t pad[4]; 738 static zfs_acl_phys_t acl_phys; 739 /* 740 * Create a new DMU object to hold a zfs znode. 741 * 742 * IN: dzp - parent directory for new znode 743 * vap - file attributes for new znode 744 * tx - dmu transaction id for zap operations 745 * cr - credentials of caller 746 * flag - flags: 747 * IS_ROOT_NODE - new object will be root 748 * IS_XATTR - new object is an attribute 749 * bonuslen - length of bonus buffer 750 * setaclp - File/Dir initial ACL 751 * fuidp - Tracks fuid allocation. 752 * 753 * OUT: zpp - allocated znode 754 * 755 */ 756 void 757 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 758 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) 759 { 760 uint64_t crtime[2], atime[2], mtime[2], ctime[2]; 761 uint64_t mode, size, links, parent, pflags; 762 uint64_t dzp_pflags = 0; 763 uint64_t rdev = 0; 764 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 765 dmu_buf_t *db; 766 timestruc_t now; 767 uint64_t gen, obj; 768 int err; 769 int bonuslen; 770 sa_handle_t *sa_hdl; 771 dmu_object_type_t obj_type; 772 sa_bulk_attr_t sa_attrs[ZPL_END]; 773 int cnt = 0; 774 zfs_acl_locator_cb_t locate = { 0 }; 775 776 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 777 778 if (zfsvfs->z_replay) { 779 obj = vap->va_nodeid; 780 now = vap->va_ctime; /* see zfs_replay_create() */ 781 gen = vap->va_nblocks; /* ditto */ 782 } else { 783 obj = 0; 784 gethrestime(&now); 785 gen = dmu_tx_get_txg(tx); 786 } 787 788 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; 789 bonuslen = (obj_type == DMU_OT_SA) ? 790 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE; 791 792 /* 793 * Create a new DMU object. 794 */ 795 /* 796 * There's currently no mechanism for pre-reading the blocks that will 797 * be to needed allocate a new object, so we accept the small chance 798 * that there will be an i/o error and we will fail one of the 799 * assertions below. 800 */ 801 if (vap->va_type == VDIR) { 802 if (zfsvfs->z_replay) { 803 err = zap_create_claim_norm(zfsvfs->z_os, obj, 804 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 805 obj_type, bonuslen, tx); 806 ASSERT3U(err, ==, 0); 807 } else { 808 obj = zap_create_norm(zfsvfs->z_os, 809 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 810 obj_type, bonuslen, tx); 811 } 812 } else { 813 if (zfsvfs->z_replay) { 814 err = dmu_object_claim(zfsvfs->z_os, obj, 815 DMU_OT_PLAIN_FILE_CONTENTS, 0, 816 obj_type, bonuslen, tx); 817 ASSERT3U(err, ==, 0); 818 } else { 819 obj = dmu_object_alloc(zfsvfs->z_os, 820 DMU_OT_PLAIN_FILE_CONTENTS, 0, 821 obj_type, bonuslen, tx); 822 } 823 } 824 825 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 826 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); 827 828 /* 829 * If this is the root, fix up the half-initialized parent pointer 830 * to reference the just-allocated physical data area. 831 */ 832 if (flag & IS_ROOT_NODE) { 833 dzp->z_id = obj; 834 } else { 835 dzp_pflags = dzp->z_pflags; 836 } 837 838 /* 839 * If parent is an xattr, so am I. 840 */ 841 if (dzp_pflags & ZFS_XATTR) { 842 flag |= IS_XATTR; 843 } 844 845 if (zfsvfs->z_use_fuids) 846 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 847 else 848 pflags = 0; 849 850 if (vap->va_type == VDIR) { 851 size = 2; /* contents ("." and "..") */ 852 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 853 } else { 854 size = links = 0; 855 } 856 857 if (vap->va_type == VBLK || vap->va_type == VCHR) { 858 rdev = zfs_expldev(vap->va_rdev); 859 } 860 861 parent = dzp->z_id; 862 mode = acl_ids->z_mode; 863 if (flag & IS_XATTR) 864 pflags |= ZFS_XATTR; 865 866 /* 867 * No execs denied will be deterimed when zfs_mode_compute() is called. 868 */ 869 pflags |= acl_ids->z_aclp->z_hints & 870 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| 871 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); 872 873 ZFS_TIME_ENCODE(&now, crtime); 874 ZFS_TIME_ENCODE(&now, ctime); 875 876 if (vap->va_mask & AT_ATIME) { 877 ZFS_TIME_ENCODE(&vap->va_atime, atime); 878 } else { 879 ZFS_TIME_ENCODE(&now, atime); 880 } 881 882 if (vap->va_mask & AT_MTIME) { 883 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 884 } else { 885 ZFS_TIME_ENCODE(&now, mtime); 886 } 887 888 /* Now add in all of the "SA" attributes */ 889 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, 890 &sa_hdl)); 891 892 /* 893 * Setup the array of attributes to be replaced/set on the new file 894 * 895 * order for DMU_OT_ZNODE is critical since it needs to be constructed 896 * in the old znode_phys_t format. Don't change this ordering 897 */ 898 899 if (obj_type == DMU_OT_ZNODE) { 900 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 901 NULL, &atime, 16); 902 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 903 NULL, &mtime, 16); 904 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 905 NULL, &ctime, 16); 906 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 907 NULL, &crtime, 16); 908 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 909 NULL, &gen, 8); 910 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 911 NULL, &mode, 8); 912 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 913 NULL, &size, 8); 914 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 915 NULL, &parent, 8); 916 } else { 917 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 918 NULL, &mode, 8); 919 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 920 NULL, &size, 8); 921 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 922 NULL, &gen, 8); 923 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 924 &acl_ids->z_fuid, 8); 925 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 926 &acl_ids->z_fgid, 8); 927 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 928 NULL, &parent, 8); 929 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 930 NULL, &pflags, 8); 931 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 932 NULL, &atime, 16); 933 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 934 NULL, &mtime, 16); 935 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 936 NULL, &ctime, 16); 937 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 938 NULL, &crtime, 16); 939 } 940 941 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); 942 943 if (obj_type == DMU_OT_ZNODE) { 944 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, 945 &empty_xattr, 8); 946 } 947 if (obj_type == DMU_OT_ZNODE || 948 (vap->va_type == VBLK || vap->va_type == VCHR)) { 949 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), 950 NULL, &rdev, 8); 951 952 } 953 if (obj_type == DMU_OT_ZNODE) { 954 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 955 NULL, &pflags, 8); 956 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 957 &acl_ids->z_fuid, 8); 958 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 959 &acl_ids->z_fgid, 8); 960 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, 961 sizeof (uint64_t) * 4); 962 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, 963 &acl_phys, sizeof (zfs_acl_phys_t)); 964 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { 965 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, 966 &acl_ids->z_aclp->z_acl_count, 8); 967 locate.cb_aclp = acl_ids->z_aclp; 968 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), 969 zfs_acl_data_locator, &locate, 970 acl_ids->z_aclp->z_acl_bytes); 971 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags); 972 } 973 974 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); 975 976 if (!(flag & IS_ROOT_NODE)) { 977 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); 978 ASSERT(*zpp != NULL); 979 } else { 980 /* 981 * If we are creating the root node, the "parent" we 982 * passed in is the znode for the root. 983 */ 984 *zpp = dzp; 985 986 (*zpp)->z_sa_hdl = sa_hdl; 987 } 988 989 (*zpp)->z_pflags = pflags; 990 (*zpp)->z_mode = mode; 991 992 if (vap->va_mask & AT_XVATTR) 993 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); 994 995 if (obj_type == DMU_OT_ZNODE || 996 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { 997 err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx); 998 ASSERT3P(err, ==, 0); 999 } 1000 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1001 } 1002 1003 /* 1004 * zfs_xvattr_set only updates the in-core attributes 1005 * it is assumed the caller will be doing an sa_bulk_update 1006 * to push the changes out 1007 */ 1008 void 1009 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) 1010 { 1011 xoptattr_t *xoap; 1012 1013 xoap = xva_getxoptattr(xvap); 1014 ASSERT(xoap); 1015 1016 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 1017 uint64_t times[2]; 1018 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); 1019 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), 1020 ×, sizeof (times), tx); 1021 XVA_SET_RTN(xvap, XAT_CREATETIME); 1022 } 1023 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 1024 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, 1025 zp->z_pflags, tx); 1026 XVA_SET_RTN(xvap, XAT_READONLY); 1027 } 1028 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 1029 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, 1030 zp->z_pflags, tx); 1031 XVA_SET_RTN(xvap, XAT_HIDDEN); 1032 } 1033 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 1034 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, 1035 zp->z_pflags, tx); 1036 XVA_SET_RTN(xvap, XAT_SYSTEM); 1037 } 1038 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 1039 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, 1040 zp->z_pflags, tx); 1041 XVA_SET_RTN(xvap, XAT_ARCHIVE); 1042 } 1043 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 1044 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, 1045 zp->z_pflags, tx); 1046 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 1047 } 1048 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 1049 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, 1050 zp->z_pflags, tx); 1051 XVA_SET_RTN(xvap, XAT_NOUNLINK); 1052 } 1053 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 1054 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, 1055 zp->z_pflags, tx); 1056 XVA_SET_RTN(xvap, XAT_APPENDONLY); 1057 } 1058 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 1059 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, 1060 zp->z_pflags, tx); 1061 XVA_SET_RTN(xvap, XAT_NODUMP); 1062 } 1063 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 1064 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, 1065 zp->z_pflags, tx); 1066 XVA_SET_RTN(xvap, XAT_OPAQUE); 1067 } 1068 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 1069 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 1070 xoap->xoa_av_quarantined, zp->z_pflags, tx); 1071 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 1072 } 1073 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 1074 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, 1075 zp->z_pflags, tx); 1076 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 1077 } 1078 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 1079 zfs_sa_set_scanstamp(zp, xvap, tx); 1080 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 1081 } 1082 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 1083 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, 1084 zp->z_pflags, tx); 1085 XVA_SET_RTN(xvap, XAT_REPARSE); 1086 } 1087 } 1088 1089 int 1090 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 1091 { 1092 dmu_object_info_t doi; 1093 dmu_buf_t *db; 1094 znode_t *zp; 1095 int err; 1096 sa_handle_t *hdl; 1097 1098 *zpp = NULL; 1099 1100 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1101 1102 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1103 if (err) { 1104 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1105 return (err); 1106 } 1107 1108 dmu_object_info_from_db(db, &doi); 1109 if (doi.doi_bonus_type != DMU_OT_SA && 1110 (doi.doi_bonus_type != DMU_OT_ZNODE || 1111 (doi.doi_bonus_type == DMU_OT_ZNODE && 1112 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1113 sa_buf_rele(db, NULL); 1114 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1115 return (EINVAL); 1116 } 1117 1118 hdl = dmu_buf_get_user(db); 1119 if (hdl != NULL) { 1120 zp = sa_get_userdata(hdl); 1121 1122 1123 /* 1124 * Since "SA" does immediate eviction we 1125 * should never find a sa handle that doesn't 1126 * know about the znode. 1127 */ 1128 1129 ASSERT3P(zp, !=, NULL); 1130 1131 mutex_enter(&zp->z_lock); 1132 ASSERT3U(zp->z_id, ==, obj_num); 1133 if (zp->z_unlinked) { 1134 err = ENOENT; 1135 } else { 1136 VN_HOLD(ZTOV(zp)); 1137 *zpp = zp; 1138 err = 0; 1139 } 1140 sa_buf_rele(db, NULL); 1141 mutex_exit(&zp->z_lock); 1142 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1143 return (err); 1144 } 1145 1146 /* 1147 * Not found create new znode/vnode 1148 * but only if file exists. 1149 * 1150 * There is a small window where zfs_vget() could 1151 * find this object while a file create is still in 1152 * progress. This is checked for in zfs_znode_alloc() 1153 * 1154 * if zfs_znode_alloc() fails it will drop the hold on the 1155 * bonus buffer. 1156 */ 1157 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, 1158 doi.doi_bonus_type, NULL); 1159 if (zp == NULL) { 1160 err = ENOENT; 1161 } else { 1162 *zpp = zp; 1163 } 1164 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1165 return (err); 1166 } 1167 1168 int 1169 zfs_rezget(znode_t *zp) 1170 { 1171 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1172 dmu_object_info_t doi; 1173 dmu_buf_t *db; 1174 uint64_t obj_num = zp->z_id; 1175 uint64_t mode; 1176 uint64_t uid, gid; 1177 sa_bulk_attr_t bulk[8]; 1178 int err; 1179 int count = 0; 1180 uint64_t gen; 1181 1182 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1183 1184 mutex_enter(&zp->z_acl_lock); 1185 if (zp->z_acl_cached) { 1186 zfs_acl_free(zp->z_acl_cached); 1187 zp->z_acl_cached = NULL; 1188 } 1189 1190 mutex_exit(&zp->z_acl_lock); 1191 ASSERT(zp->z_sa_hdl == NULL); 1192 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1193 if (err) { 1194 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1195 return (err); 1196 } 1197 1198 dmu_object_info_from_db(db, &doi); 1199 if (doi.doi_bonus_type != DMU_OT_SA && 1200 (doi.doi_bonus_type != DMU_OT_ZNODE || 1201 (doi.doi_bonus_type == DMU_OT_ZNODE && 1202 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1203 sa_buf_rele(db, NULL); 1204 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1205 return (EINVAL); 1206 } 1207 1208 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); 1209 1210 /* reload cached values */ 1211 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, 1212 &gen, sizeof (gen)); 1213 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1214 &zp->z_size, sizeof (zp->z_size)); 1215 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 1216 &zp->z_links, sizeof (zp->z_links)); 1217 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1218 &zp->z_pflags, sizeof (zp->z_pflags)); 1219 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 1220 &zp->z_atime, sizeof (zp->z_atime)); 1221 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 1222 &uid, sizeof (uid)); 1223 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 1224 &gid, sizeof (gid)); 1225 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 1226 &mode, sizeof (mode)); 1227 1228 zp->z_mode = mode; 1229 1230 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { 1231 zfs_znode_dmu_fini(zp); 1232 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1233 return (EIO); 1234 } 1235 1236 if (gen != zp->z_gen) { 1237 zfs_znode_dmu_fini(zp); 1238 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1239 return (EIO); 1240 } 1241 1242 zp->z_uid = zfs_fuid_map_id(zfsvfs, uid, CRED(), ZFS_OWNER); 1243 zp->z_gid = zfs_fuid_map_id(zfsvfs, gid, CRED(), ZFS_GROUP); 1244 zp->z_unlinked = (zp->z_links == 0); 1245 zp->z_blksz = doi.doi_data_block_size; 1246 1247 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1248 1249 return (0); 1250 } 1251 1252 void 1253 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1254 { 1255 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1256 objset_t *os = zfsvfs->z_os; 1257 uint64_t obj = zp->z_id; 1258 uint64_t acl_obj = ZFS_EXTERNAL_ACL(zp); 1259 1260 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1261 if (acl_obj) 1262 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1263 VERIFY(0 == dmu_object_free(os, obj, tx)); 1264 zfs_znode_dmu_fini(zp); 1265 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1266 zfs_znode_free(zp); 1267 } 1268 1269 void 1270 zfs_zinactive(znode_t *zp) 1271 { 1272 vnode_t *vp = ZTOV(zp); 1273 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1274 uint64_t z_id = zp->z_id; 1275 1276 ASSERT(zp->z_sa_hdl); 1277 1278 /* 1279 * Don't allow a zfs_zget() while were trying to release this znode 1280 */ 1281 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1282 1283 mutex_enter(&zp->z_lock); 1284 mutex_enter(&vp->v_lock); 1285 vp->v_count--; 1286 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1287 /* 1288 * If the hold count is greater than zero, somebody has 1289 * obtained a new reference on this znode while we were 1290 * processing it here, so we are done. If we still have 1291 * mapped pages then we are also done, since we don't 1292 * want to inactivate the znode until the pages get pushed. 1293 * 1294 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1295 * this seems like it would leave the znode hanging with 1296 * no chance to go inactive... 1297 */ 1298 mutex_exit(&vp->v_lock); 1299 mutex_exit(&zp->z_lock); 1300 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1301 return; 1302 } 1303 mutex_exit(&vp->v_lock); 1304 1305 /* 1306 * If this was the last reference to a file with no links, 1307 * remove the file from the file system. 1308 */ 1309 if (zp->z_unlinked) { 1310 mutex_exit(&zp->z_lock); 1311 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1312 zfs_rmnode(zp); 1313 return; 1314 } 1315 1316 mutex_exit(&zp->z_lock); 1317 zfs_znode_dmu_fini(zp); 1318 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1319 zfs_znode_free(zp); 1320 } 1321 1322 void 1323 zfs_znode_free(znode_t *zp) 1324 { 1325 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1326 1327 vn_invalid(ZTOV(zp)); 1328 1329 ASSERT(ZTOV(zp)->v_count == 0); 1330 1331 mutex_enter(&zfsvfs->z_znodes_lock); 1332 POINTER_INVALIDATE(&zp->z_zfsvfs); 1333 list_remove(&zfsvfs->z_all_znodes, zp); 1334 mutex_exit(&zfsvfs->z_znodes_lock); 1335 1336 if (zp->z_acl_cached) { 1337 zfs_acl_free(zp->z_acl_cached); 1338 zp->z_acl_cached = NULL; 1339 } 1340 1341 kmem_cache_free(znode_cache, zp); 1342 1343 VFS_RELE(zfsvfs->z_vfs); 1344 } 1345 1346 void 1347 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], 1348 uint64_t ctime[2], boolean_t have_tx) 1349 { 1350 timestruc_t now; 1351 1352 gethrestime(&now); 1353 1354 if (have_tx) { /* will sa_bulk_update happen really soon? */ 1355 zp->z_atime_dirty = 0; 1356 zp->z_seq++; 1357 } else { 1358 zp->z_atime_dirty = 1; 1359 } 1360 1361 if (flag & AT_ATIME) { 1362 ZFS_TIME_ENCODE(&now, zp->z_atime); 1363 } 1364 1365 if (flag & AT_MTIME) { 1366 ZFS_TIME_ENCODE(&now, mtime); 1367 if (zp->z_zfsvfs->z_use_fuids) { 1368 zp->z_pflags |= (ZFS_ARCHIVE | 1369 ZFS_AV_MODIFIED); 1370 } 1371 } 1372 1373 if (flag & AT_CTIME) { 1374 ZFS_TIME_ENCODE(&now, ctime); 1375 if (zp->z_zfsvfs->z_use_fuids) 1376 zp->z_pflags |= ZFS_ARCHIVE; 1377 } 1378 } 1379 1380 /* 1381 * Grow the block size for a file. 1382 * 1383 * IN: zp - znode of file to free data in. 1384 * size - requested block size 1385 * tx - open transaction. 1386 * 1387 * NOTE: this function assumes that the znode is write locked. 1388 */ 1389 void 1390 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1391 { 1392 int error; 1393 u_longlong_t dummy; 1394 1395 if (size <= zp->z_blksz) 1396 return; 1397 /* 1398 * If the file size is already greater than the current blocksize, 1399 * we will not grow. If there is more than one block in a file, 1400 * the blocksize cannot change. 1401 */ 1402 if (zp->z_blksz && zp->z_size > zp->z_blksz) 1403 return; 1404 1405 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1406 size, 0, tx); 1407 1408 if (error == ENOTSUP) 1409 return; 1410 ASSERT3U(error, ==, 0); 1411 1412 /* What blocksize did we actually get? */ 1413 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); 1414 } 1415 1416 /* 1417 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1418 * be calling back into the fs for a putpage(). E.g.: when truncating 1419 * a file, the pages being "thrown away* don't need to be written out. 1420 */ 1421 /* ARGSUSED */ 1422 static int 1423 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1424 int flags, cred_t *cr) 1425 { 1426 ASSERT(0); 1427 return (0); 1428 } 1429 1430 /* 1431 * Increase the file length 1432 * 1433 * IN: zp - znode of file to free data in. 1434 * end - new end-of-file 1435 * 1436 * RETURN: 0 if success 1437 * error code if failure 1438 */ 1439 static int 1440 zfs_extend(znode_t *zp, uint64_t end) 1441 { 1442 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1443 dmu_tx_t *tx; 1444 rl_t *rl; 1445 uint64_t newblksz; 1446 int error; 1447 1448 /* 1449 * We will change zp_size, lock the whole file. 1450 */ 1451 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1452 1453 /* 1454 * Nothing to do if file already at desired length. 1455 */ 1456 if (end <= zp->z_size) { 1457 zfs_range_unlock(rl); 1458 return (0); 1459 } 1460 top: 1461 tx = dmu_tx_create(zfsvfs->z_os); 1462 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1463 zfs_sa_upgrade_txholds(tx, zp); 1464 if (end > zp->z_blksz && 1465 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1466 /* 1467 * We are growing the file past the current block size. 1468 */ 1469 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1470 ASSERT(!ISP2(zp->z_blksz)); 1471 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1472 } else { 1473 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1474 } 1475 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1476 } else { 1477 newblksz = 0; 1478 } 1479 1480 error = dmu_tx_assign(tx, TXG_NOWAIT); 1481 if (error) { 1482 if (error == ERESTART) { 1483 dmu_tx_wait(tx); 1484 dmu_tx_abort(tx); 1485 goto top; 1486 } 1487 dmu_tx_abort(tx); 1488 zfs_range_unlock(rl); 1489 return (error); 1490 } 1491 1492 if (newblksz) 1493 zfs_grow_blocksize(zp, newblksz, tx); 1494 1495 zp->z_size = end; 1496 1497 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1498 &zp->z_size, sizeof (zp->z_size), tx)); 1499 1500 zfs_range_unlock(rl); 1501 1502 dmu_tx_commit(tx); 1503 1504 return (0); 1505 } 1506 1507 /* 1508 * Free space in a file. 1509 * 1510 * IN: zp - znode of file to free data in. 1511 * off - start of section to free. 1512 * len - length of section to free. 1513 * 1514 * RETURN: 0 if success 1515 * error code if failure 1516 */ 1517 static int 1518 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1519 { 1520 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1521 rl_t *rl; 1522 int error; 1523 1524 /* 1525 * Lock the range being freed. 1526 */ 1527 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1528 1529 /* 1530 * Nothing to do if file already at desired length. 1531 */ 1532 if (off >= zp->z_size) { 1533 zfs_range_unlock(rl); 1534 return (0); 1535 } 1536 1537 if (off + len > zp->z_size) 1538 len = zp->z_size - off; 1539 1540 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1541 1542 zfs_range_unlock(rl); 1543 1544 return (error); 1545 } 1546 1547 /* 1548 * Truncate a file 1549 * 1550 * IN: zp - znode of file to free data in. 1551 * end - new end-of-file. 1552 * 1553 * RETURN: 0 if success 1554 * error code if failure 1555 */ 1556 static int 1557 zfs_trunc(znode_t *zp, uint64_t end) 1558 { 1559 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1560 vnode_t *vp = ZTOV(zp); 1561 dmu_tx_t *tx; 1562 rl_t *rl; 1563 int error; 1564 1565 /* 1566 * We will change zp_size, lock the whole file. 1567 */ 1568 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1569 1570 /* 1571 * Nothing to do if file already at desired length. 1572 */ 1573 if (end >= zp->z_size) { 1574 zfs_range_unlock(rl); 1575 return (0); 1576 } 1577 1578 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1579 if (error) { 1580 zfs_range_unlock(rl); 1581 return (error); 1582 } 1583 top: 1584 tx = dmu_tx_create(zfsvfs->z_os); 1585 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1586 zfs_sa_upgrade_txholds(tx, zp); 1587 error = dmu_tx_assign(tx, TXG_NOWAIT); 1588 if (error) { 1589 if (error == ERESTART) { 1590 dmu_tx_wait(tx); 1591 dmu_tx_abort(tx); 1592 goto top; 1593 } 1594 dmu_tx_abort(tx); 1595 zfs_range_unlock(rl); 1596 return (error); 1597 } 1598 1599 zp->z_size = end; 1600 1601 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1602 &zp->z_size, sizeof (zp->z_size), tx)); 1603 1604 dmu_tx_commit(tx); 1605 1606 /* 1607 * Clear any mapped pages in the truncated region. This has to 1608 * happen outside of the transaction to avoid the possibility of 1609 * a deadlock with someone trying to push a page that we are 1610 * about to invalidate. 1611 */ 1612 if (vn_has_cached_data(vp)) { 1613 page_t *pp; 1614 uint64_t start = end & PAGEMASK; 1615 int poff = end & PAGEOFFSET; 1616 1617 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1618 /* 1619 * We need to zero a partial page. 1620 */ 1621 pagezero(pp, poff, PAGESIZE - poff); 1622 start += PAGESIZE; 1623 page_unlock(pp); 1624 } 1625 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1626 B_INVAL | B_TRUNC, NULL); 1627 ASSERT(error == 0); 1628 } 1629 1630 zfs_range_unlock(rl); 1631 1632 return (0); 1633 } 1634 1635 /* 1636 * Free space in a file 1637 * 1638 * IN: zp - znode of file to free data in. 1639 * off - start of range 1640 * len - end of range (0 => EOF) 1641 * flag - current file open mode flags. 1642 * log - TRUE if this action should be logged 1643 * 1644 * RETURN: 0 if success 1645 * error code if failure 1646 */ 1647 int 1648 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1649 { 1650 vnode_t *vp = ZTOV(zp); 1651 dmu_tx_t *tx; 1652 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1653 zilog_t *zilog = zfsvfs->z_log; 1654 uint64_t mode; 1655 uint64_t mtime[2], ctime[2]; 1656 sa_bulk_attr_t bulk[2]; 1657 int count = 0; 1658 int error; 1659 1660 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, 1661 sizeof (mode))) != 0) 1662 return (error); 1663 1664 if (off > zp->z_size) { 1665 error = zfs_extend(zp, off+len); 1666 if (error == 0 && log) 1667 goto log; 1668 else 1669 return (error); 1670 } 1671 1672 /* 1673 * Check for any locks in the region to be freed. 1674 */ 1675 1676 if (MANDLOCK(vp, (mode_t)mode)) { 1677 uint64_t length = (len ? len : zp->z_size - off); 1678 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1679 return (error); 1680 } 1681 1682 if (len == 0) { 1683 error = zfs_trunc(zp, off); 1684 } else { 1685 if ((error = zfs_free_range(zp, off, len)) == 0 && 1686 off + len > zp->z_size) 1687 error = zfs_extend(zp, off+len); 1688 } 1689 if (error || !log) 1690 return (error); 1691 log: 1692 tx = dmu_tx_create(zfsvfs->z_os); 1693 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1694 zfs_sa_upgrade_txholds(tx, zp); 1695 error = dmu_tx_assign(tx, TXG_NOWAIT); 1696 if (error) { 1697 if (error == ERESTART) { 1698 dmu_tx_wait(tx); 1699 dmu_tx_abort(tx); 1700 goto log; 1701 } 1702 dmu_tx_abort(tx); 1703 return (error); 1704 } 1705 1706 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); 1707 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); 1708 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); 1709 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1710 ASSERT(error == 0); 1711 1712 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1713 1714 dmu_tx_commit(tx); 1715 return (0); 1716 } 1717 1718 void 1719 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1720 { 1721 zfsvfs_t zfsvfs; 1722 uint64_t moid, obj, sa_obj, version; 1723 uint64_t sense = ZFS_CASE_SENSITIVE; 1724 uint64_t norm = 0; 1725 nvpair_t *elem; 1726 int error; 1727 int i; 1728 znode_t *rootzp = NULL; 1729 vnode_t *vp; 1730 vattr_t vattr; 1731 znode_t *zp; 1732 zfs_acl_ids_t acl_ids; 1733 1734 /* 1735 * First attempt to create master node. 1736 */ 1737 /* 1738 * In an empty objset, there are no blocks to read and thus 1739 * there can be no i/o errors (which we assert below). 1740 */ 1741 moid = MASTER_NODE_OBJ; 1742 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1743 DMU_OT_NONE, 0, tx); 1744 ASSERT(error == 0); 1745 1746 /* 1747 * Set starting attributes. 1748 */ 1749 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); 1750 elem = NULL; 1751 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1752 /* For the moment we expect all zpl props to be uint64_ts */ 1753 uint64_t val; 1754 char *name; 1755 1756 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1757 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1758 name = nvpair_name(elem); 1759 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1760 if (val < version) 1761 version = val; 1762 } else { 1763 error = zap_update(os, moid, name, 8, 1, &val, tx); 1764 } 1765 ASSERT(error == 0); 1766 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1767 norm = val; 1768 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1769 sense = val; 1770 } 1771 ASSERT(version != 0); 1772 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1773 1774 /* 1775 * Create zap object used for SA attribute registration 1776 */ 1777 1778 if (version >= ZPL_VERSION_SA) { 1779 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 1780 DMU_OT_NONE, 0, tx); 1781 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 1782 ASSERT(error == 0); 1783 } else { 1784 sa_obj = 0; 1785 } 1786 /* 1787 * Create a delete queue. 1788 */ 1789 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1790 1791 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1792 ASSERT(error == 0); 1793 1794 /* 1795 * Create root znode. Create minimal znode/vnode/zfsvfs 1796 * to allow zfs_mknode to work. 1797 */ 1798 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1799 vattr.va_type = VDIR; 1800 vattr.va_mode = S_IFDIR|0755; 1801 vattr.va_uid = crgetuid(cr); 1802 vattr.va_gid = crgetgid(cr); 1803 1804 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1805 rootzp->z_unlinked = 0; 1806 rootzp->z_atime_dirty = 0; 1807 rootzp->z_is_sa = USE_SA(version, os); 1808 1809 vp = ZTOV(rootzp); 1810 vn_reinit(vp); 1811 vp->v_type = VDIR; 1812 1813 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1814 1815 zfsvfs.z_os = os; 1816 zfsvfs.z_parent = &zfsvfs; 1817 zfsvfs.z_version = version; 1818 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1819 zfsvfs.z_use_sa = USE_SA(version, os); 1820 zfsvfs.z_norm = norm; 1821 1822 zfsvfs.z_attr_table = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END); 1823 1824 /* 1825 * Fold case on file systems that are always or sometimes case 1826 * insensitive. 1827 */ 1828 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1829 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1830 1831 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1832 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1833 offsetof(znode_t, z_link_node)); 1834 1835 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1836 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1837 1838 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1839 rootzp->z_zfsvfs = &zfsvfs; 1840 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1841 cr, NULL, &acl_ids)); 1842 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); 1843 ASSERT3P(zp, ==, rootzp); 1844 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1845 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1846 ASSERT(error == 0); 1847 zfs_acl_ids_free(&acl_ids); 1848 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1849 1850 ZTOV(rootzp)->v_count = 0; 1851 sa_handle_destroy(rootzp->z_sa_hdl); 1852 kmem_cache_free(znode_cache, rootzp); 1853 1854 /* 1855 * Create shares directory 1856 */ 1857 1858 error = zfs_create_share_dir(&zfsvfs, tx); 1859 1860 ASSERT(error == 0); 1861 1862 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1863 mutex_destroy(&zfsvfs.z_hold_mtx[i]); 1864 } 1865 1866 #endif /* _KERNEL */ 1867 1868 /* 1869 * Given an object number, return its parent object number and whether 1870 * or not the object is an extended attribute directory. 1871 */ 1872 static int 1873 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir, 1874 sa_attr_type_t *sa_table) 1875 { 1876 dmu_buf_t *db; 1877 dmu_object_info_t doi; 1878 int error; 1879 uint64_t parent; 1880 uint64_t pflags; 1881 uint64_t mode; 1882 sa_bulk_attr_t bulk[3]; 1883 sa_handle_t *hdl; 1884 int count = 0; 1885 1886 if ((error = sa_buf_hold(osp, obj, FTAG, &db)) != 0) 1887 return (error); 1888 1889 dmu_object_info_from_db(db, &doi); 1890 if ((doi.doi_bonus_type != DMU_OT_SA && 1891 doi.doi_bonus_type != DMU_OT_ZNODE) || 1892 doi.doi_bonus_type == DMU_OT_ZNODE && 1893 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1894 sa_buf_rele(db, FTAG); 1895 return (EINVAL); 1896 } 1897 1898 if ((error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, 1899 &hdl)) != 0) { 1900 sa_buf_rele(db, FTAG); 1901 return (error); 1902 } 1903 1904 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], 1905 NULL, &parent, 8); 1906 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, 1907 &pflags, 8); 1908 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1909 &mode, 8); 1910 1911 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) { 1912 sa_buf_rele(db, FTAG); 1913 sa_handle_destroy(hdl); 1914 return (error); 1915 } 1916 *pobjp = parent; 1917 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); 1918 sa_handle_destroy(hdl); 1919 sa_buf_rele(db, FTAG); 1920 1921 return (0); 1922 } 1923 1924 int 1925 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1926 { 1927 char *path = buf + len - 1; 1928 sa_attr_type_t *sa_table; 1929 int error; 1930 uint64_t sa_obj = 0; 1931 1932 *path = '\0'; 1933 1934 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); 1935 1936 if (error != 0 && error != ENOENT) 1937 return (error); 1938 1939 sa_table = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END); 1940 1941 for (;;) { 1942 uint64_t pobj; 1943 char component[MAXNAMELEN + 2]; 1944 size_t complen; 1945 int is_xattrdir; 1946 1947 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1948 &is_xattrdir, sa_table)) != 0) 1949 break; 1950 1951 if (pobj == obj) { 1952 if (path[0] != '/') 1953 *--path = '/'; 1954 break; 1955 } 1956 1957 component[0] = '/'; 1958 if (is_xattrdir) { 1959 (void) sprintf(component + 1, "<xattrdir>"); 1960 } else { 1961 error = zap_value_search(osp, pobj, obj, 1962 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1963 if (error != 0) 1964 break; 1965 } 1966 1967 complen = strlen(component); 1968 path -= complen; 1969 ASSERT(path >= buf); 1970 bcopy(component, path, complen); 1971 obj = pobj; 1972 } 1973 1974 if (error == 0) 1975 (void) memmove(buf, path, buf + len - path); 1976 1977 return (error); 1978 } 1979