1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2007 Jeremy Teo */ 26 27 #ifdef _KERNEL 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/mntent.h> 35 #include <sys/mkdev.h> 36 #include <sys/u8_textprep.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vfs.h> 39 #include <sys/vfs_opreg.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/kmem.h> 43 #include <sys/errno.h> 44 #include <sys/unistd.h> 45 #include <sys/mode.h> 46 #include <sys/atomic.h> 47 #include <vm/pvn.h> 48 #include "fs/fs_subr.h" 49 #include <sys/zfs_dir.h> 50 #include <sys/zfs_acl.h> 51 #include <sys/zfs_ioctl.h> 52 #include <sys/zfs_rlock.h> 53 #include <sys/zfs_fuid.h> 54 #include <sys/dnode.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/kidmap.h> 57 #endif /* _KERNEL */ 58 59 #include <sys/dmu.h> 60 #include <sys/refcount.h> 61 #include <sys/stat.h> 62 #include <sys/zap.h> 63 #include <sys/zfs_znode.h> 64 #include <sys/sa.h> 65 #include <sys/zfs_sa.h> 66 67 #include "zfs_prop.h" 68 #include "zfs_comutil.h" 69 70 /* 71 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 72 * turned on when DEBUG is also defined. 73 */ 74 #ifdef DEBUG 75 #define ZNODE_STATS 76 #endif /* DEBUG */ 77 78 #ifdef ZNODE_STATS 79 #define ZNODE_STAT_ADD(stat) ((stat)++) 80 #else 81 #define ZNODE_STAT_ADD(stat) /* nothing */ 82 #endif /* ZNODE_STATS */ 83 84 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3)) 85 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1)) 86 87 /* 88 * Functions needed for userland (ie: libzpool) are not put under 89 * #ifdef_KERNEL; the rest of the functions have dependencies 90 * (such as VFS logic) that will not compile easily in userland. 91 */ 92 #ifdef _KERNEL 93 /* 94 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 95 * be freed before it can be safely accessed. 96 */ 97 krwlock_t zfsvfs_lock; 98 99 static kmem_cache_t *znode_cache = NULL; 100 101 /*ARGSUSED*/ 102 static void 103 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 104 { 105 /* 106 * We should never drop all dbuf refs without first clearing 107 * the eviction callback. 108 */ 109 panic("evicting znode %p\n", user_ptr); 110 } 111 112 /*ARGSUSED*/ 113 static int 114 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 115 { 116 znode_t *zp = buf; 117 118 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 119 120 zp->z_vnode = vn_alloc(kmflags); 121 if (zp->z_vnode == NULL) { 122 return (-1); 123 } 124 ZTOV(zp)->v_data = zp; 125 126 list_link_init(&zp->z_link_node); 127 128 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 129 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 130 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 131 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 132 133 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 134 avl_create(&zp->z_range_avl, zfs_range_compare, 135 sizeof (rl_t), offsetof(rl_t, r_node)); 136 137 zp->z_dirlocks = NULL; 138 zp->z_acl_cached = NULL; 139 return (0); 140 } 141 142 /*ARGSUSED*/ 143 static void 144 zfs_znode_cache_destructor(void *buf, void *arg) 145 { 146 znode_t *zp = buf; 147 148 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 149 ASSERT(ZTOV(zp)->v_data == zp); 150 vn_free(ZTOV(zp)); 151 ASSERT(!list_link_active(&zp->z_link_node)); 152 mutex_destroy(&zp->z_lock); 153 rw_destroy(&zp->z_parent_lock); 154 rw_destroy(&zp->z_name_lock); 155 mutex_destroy(&zp->z_acl_lock); 156 avl_destroy(&zp->z_range_avl); 157 mutex_destroy(&zp->z_range_lock); 158 159 ASSERT(zp->z_dirlocks == NULL); 160 ASSERT(zp->z_acl_cached == NULL); 161 } 162 163 #ifdef ZNODE_STATS 164 static struct { 165 uint64_t zms_zfsvfs_invalid; 166 uint64_t zms_zfsvfs_recheck1; 167 uint64_t zms_zfsvfs_unmounted; 168 uint64_t zms_zfsvfs_recheck2; 169 uint64_t zms_obj_held; 170 uint64_t zms_vnode_locked; 171 uint64_t zms_not_only_dnlc; 172 } znode_move_stats; 173 #endif /* ZNODE_STATS */ 174 175 static void 176 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 177 { 178 vnode_t *vp; 179 180 /* Copy fields. */ 181 nzp->z_zfsvfs = ozp->z_zfsvfs; 182 183 /* Swap vnodes. */ 184 vp = nzp->z_vnode; 185 nzp->z_vnode = ozp->z_vnode; 186 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 187 ZTOV(ozp)->v_data = ozp; 188 ZTOV(nzp)->v_data = nzp; 189 190 nzp->z_id = ozp->z_id; 191 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 192 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 193 nzp->z_unlinked = ozp->z_unlinked; 194 nzp->z_atime_dirty = ozp->z_atime_dirty; 195 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 196 nzp->z_blksz = ozp->z_blksz; 197 nzp->z_seq = ozp->z_seq; 198 nzp->z_mapcnt = ozp->z_mapcnt; 199 nzp->z_last_itx = ozp->z_last_itx; 200 nzp->z_gen = ozp->z_gen; 201 nzp->z_sync_cnt = ozp->z_sync_cnt; 202 nzp->z_is_sa = ozp->z_is_sa; 203 nzp->z_sa_hdl = ozp->z_sa_hdl; 204 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2); 205 nzp->z_links = ozp->z_links; 206 nzp->z_size = ozp->z_size; 207 nzp->z_pflags = ozp->z_pflags; 208 nzp->z_uid = ozp->z_uid; 209 nzp->z_gid = ozp->z_gid; 210 nzp->z_mode = ozp->z_mode; 211 212 /* 213 * Since this is just an idle znode and kmem is already dealing with 214 * memory pressure, release any cached ACL. 215 */ 216 if (ozp->z_acl_cached) { 217 zfs_acl_free(ozp->z_acl_cached); 218 ozp->z_acl_cached = NULL; 219 } 220 221 sa_set_userp(nzp->z_sa_hdl, nzp); 222 223 /* 224 * Invalidate the original znode by clearing fields that provide a 225 * pointer back to the znode. Set the low bit of the vfs pointer to 226 * ensure that zfs_znode_move() recognizes the znode as invalid in any 227 * subsequent callback. 228 */ 229 ozp->z_sa_hdl = NULL; 230 POINTER_INVALIDATE(&ozp->z_zfsvfs); 231 } 232 233 /*ARGSUSED*/ 234 static kmem_cbrc_t 235 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 236 { 237 znode_t *ozp = buf, *nzp = newbuf; 238 zfsvfs_t *zfsvfs; 239 vnode_t *vp; 240 241 /* 242 * The znode is on the file system's list of known znodes if the vfs 243 * pointer is valid. We set the low bit of the vfs pointer when freeing 244 * the znode to invalidate it, and the memory patterns written by kmem 245 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 246 * created znode sets the vfs pointer last of all to indicate that the 247 * znode is known and in a valid state to be moved by this function. 248 */ 249 zfsvfs = ozp->z_zfsvfs; 250 if (!POINTER_IS_VALID(zfsvfs)) { 251 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 252 return (KMEM_CBRC_DONT_KNOW); 253 } 254 255 /* 256 * Close a small window in which it's possible that the filesystem could 257 * be unmounted and freed, and zfsvfs, though valid in the previous 258 * statement, could point to unrelated memory by the time we try to 259 * prevent the filesystem from being unmounted. 260 */ 261 rw_enter(&zfsvfs_lock, RW_WRITER); 262 if (zfsvfs != ozp->z_zfsvfs) { 263 rw_exit(&zfsvfs_lock); 264 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 265 return (KMEM_CBRC_DONT_KNOW); 266 } 267 268 /* 269 * If the znode is still valid, then so is the file system. We know that 270 * no valid file system can be freed while we hold zfsvfs_lock, so we 271 * can safely ensure that the filesystem is not and will not be 272 * unmounted. The next statement is equivalent to ZFS_ENTER(). 273 */ 274 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 275 if (zfsvfs->z_unmounted) { 276 ZFS_EXIT(zfsvfs); 277 rw_exit(&zfsvfs_lock); 278 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 279 return (KMEM_CBRC_DONT_KNOW); 280 } 281 rw_exit(&zfsvfs_lock); 282 283 mutex_enter(&zfsvfs->z_znodes_lock); 284 /* 285 * Recheck the vfs pointer in case the znode was removed just before 286 * acquiring the lock. 287 */ 288 if (zfsvfs != ozp->z_zfsvfs) { 289 mutex_exit(&zfsvfs->z_znodes_lock); 290 ZFS_EXIT(zfsvfs); 291 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 292 return (KMEM_CBRC_DONT_KNOW); 293 } 294 295 /* 296 * At this point we know that as long as we hold z_znodes_lock, the 297 * znode cannot be freed and fields within the znode can be safely 298 * accessed. Now, prevent a race with zfs_zget(). 299 */ 300 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 301 mutex_exit(&zfsvfs->z_znodes_lock); 302 ZFS_EXIT(zfsvfs); 303 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 304 return (KMEM_CBRC_LATER); 305 } 306 307 vp = ZTOV(ozp); 308 if (mutex_tryenter(&vp->v_lock) == 0) { 309 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 310 mutex_exit(&zfsvfs->z_znodes_lock); 311 ZFS_EXIT(zfsvfs); 312 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 313 return (KMEM_CBRC_LATER); 314 } 315 316 /* Only move znodes that are referenced _only_ by the DNLC. */ 317 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 318 mutex_exit(&vp->v_lock); 319 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 320 mutex_exit(&zfsvfs->z_znodes_lock); 321 ZFS_EXIT(zfsvfs); 322 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 323 return (KMEM_CBRC_LATER); 324 } 325 326 /* 327 * The znode is known and in a valid state to move. We're holding the 328 * locks needed to execute the critical section. 329 */ 330 zfs_znode_move_impl(ozp, nzp); 331 mutex_exit(&vp->v_lock); 332 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 333 334 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 335 mutex_exit(&zfsvfs->z_znodes_lock); 336 ZFS_EXIT(zfsvfs); 337 338 return (KMEM_CBRC_YES); 339 } 340 341 void 342 zfs_znode_init(void) 343 { 344 /* 345 * Initialize zcache 346 */ 347 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 348 ASSERT(znode_cache == NULL); 349 znode_cache = kmem_cache_create("zfs_znode_cache", 350 sizeof (znode_t), 0, zfs_znode_cache_constructor, 351 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 352 kmem_cache_set_move(znode_cache, zfs_znode_move); 353 } 354 355 void 356 zfs_znode_fini(void) 357 { 358 /* 359 * Cleanup vfs & vnode ops 360 */ 361 zfs_remove_op_tables(); 362 363 /* 364 * Cleanup zcache 365 */ 366 if (znode_cache) 367 kmem_cache_destroy(znode_cache); 368 znode_cache = NULL; 369 rw_destroy(&zfsvfs_lock); 370 } 371 372 struct vnodeops *zfs_dvnodeops; 373 struct vnodeops *zfs_fvnodeops; 374 struct vnodeops *zfs_symvnodeops; 375 struct vnodeops *zfs_xdvnodeops; 376 struct vnodeops *zfs_evnodeops; 377 struct vnodeops *zfs_sharevnodeops; 378 379 void 380 zfs_remove_op_tables() 381 { 382 /* 383 * Remove vfs ops 384 */ 385 ASSERT(zfsfstype); 386 (void) vfs_freevfsops_by_type(zfsfstype); 387 zfsfstype = 0; 388 389 /* 390 * Remove vnode ops 391 */ 392 if (zfs_dvnodeops) 393 vn_freevnodeops(zfs_dvnodeops); 394 if (zfs_fvnodeops) 395 vn_freevnodeops(zfs_fvnodeops); 396 if (zfs_symvnodeops) 397 vn_freevnodeops(zfs_symvnodeops); 398 if (zfs_xdvnodeops) 399 vn_freevnodeops(zfs_xdvnodeops); 400 if (zfs_evnodeops) 401 vn_freevnodeops(zfs_evnodeops); 402 if (zfs_sharevnodeops) 403 vn_freevnodeops(zfs_sharevnodeops); 404 405 zfs_dvnodeops = NULL; 406 zfs_fvnodeops = NULL; 407 zfs_symvnodeops = NULL; 408 zfs_xdvnodeops = NULL; 409 zfs_evnodeops = NULL; 410 zfs_sharevnodeops = NULL; 411 } 412 413 extern const fs_operation_def_t zfs_dvnodeops_template[]; 414 extern const fs_operation_def_t zfs_fvnodeops_template[]; 415 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 416 extern const fs_operation_def_t zfs_symvnodeops_template[]; 417 extern const fs_operation_def_t zfs_evnodeops_template[]; 418 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 419 420 int 421 zfs_create_op_tables() 422 { 423 int error; 424 425 /* 426 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 427 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 428 * In this case we just return as the ops vectors are already set up. 429 */ 430 if (zfs_dvnodeops) 431 return (0); 432 433 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 434 &zfs_dvnodeops); 435 if (error) 436 return (error); 437 438 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 439 &zfs_fvnodeops); 440 if (error) 441 return (error); 442 443 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 444 &zfs_symvnodeops); 445 if (error) 446 return (error); 447 448 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 449 &zfs_xdvnodeops); 450 if (error) 451 return (error); 452 453 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 454 &zfs_evnodeops); 455 if (error) 456 return (error); 457 458 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 459 &zfs_sharevnodeops); 460 461 return (error); 462 } 463 464 int 465 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 466 { 467 zfs_acl_ids_t acl_ids; 468 vattr_t vattr; 469 znode_t *sharezp; 470 vnode_t *vp; 471 znode_t *zp; 472 int error; 473 474 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 475 vattr.va_type = VDIR; 476 vattr.va_mode = S_IFDIR|0555; 477 vattr.va_uid = crgetuid(kcred); 478 vattr.va_gid = crgetgid(kcred); 479 480 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 481 sharezp->z_unlinked = 0; 482 sharezp->z_atime_dirty = 0; 483 sharezp->z_zfsvfs = zfsvfs; 484 sharezp->z_is_sa = zfsvfs->z_use_sa; 485 486 vp = ZTOV(sharezp); 487 vn_reinit(vp); 488 vp->v_type = VDIR; 489 490 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 491 kcred, NULL, &acl_ids)); 492 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); 493 ASSERT3P(zp, ==, sharezp); 494 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 495 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 496 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 497 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 498 zfsvfs->z_shares_dir = sharezp->z_id; 499 500 zfs_acl_ids_free(&acl_ids); 501 ZTOV(sharezp)->v_count = 0; 502 sa_handle_destroy(sharezp->z_sa_hdl); 503 kmem_cache_free(znode_cache, sharezp); 504 505 return (error); 506 } 507 508 /* 509 * define a couple of values we need available 510 * for both 64 and 32 bit environments. 511 */ 512 #ifndef NBITSMINOR64 513 #define NBITSMINOR64 32 514 #endif 515 #ifndef MAXMAJ64 516 #define MAXMAJ64 0xffffffffUL 517 #endif 518 #ifndef MAXMIN64 519 #define MAXMIN64 0xffffffffUL 520 #endif 521 522 /* 523 * Create special expldev for ZFS private use. 524 * Can't use standard expldev since it doesn't do 525 * what we want. The standard expldev() takes a 526 * dev32_t in LP64 and expands it to a long dev_t. 527 * We need an interface that takes a dev32_t in ILP32 528 * and expands it to a long dev_t. 529 */ 530 static uint64_t 531 zfs_expldev(dev_t dev) 532 { 533 #ifndef _LP64 534 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 535 return (((uint64_t)major << NBITSMINOR64) | 536 ((minor_t)dev & MAXMIN32)); 537 #else 538 return (dev); 539 #endif 540 } 541 542 /* 543 * Special cmpldev for ZFS private use. 544 * Can't use standard cmpldev since it takes 545 * a long dev_t and compresses it to dev32_t in 546 * LP64. We need to do a compaction of a long dev_t 547 * to a dev32_t in ILP32. 548 */ 549 dev_t 550 zfs_cmpldev(uint64_t dev) 551 { 552 #ifndef _LP64 553 minor_t minor = (minor_t)dev & MAXMIN64; 554 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 555 556 if (major > MAXMAJ32 || minor > MAXMIN32) 557 return (NODEV32); 558 559 return (((dev32_t)major << NBITSMINOR32) | minor); 560 #else 561 return (dev); 562 #endif 563 } 564 565 static void 566 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, 567 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) 568 { 569 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 570 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 571 572 mutex_enter(&zp->z_lock); 573 574 ASSERT(zp->z_sa_hdl == NULL); 575 ASSERT(zp->z_acl_cached == NULL); 576 if (sa_hdl == NULL) { 577 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, 578 SA_HDL_SHARED, &zp->z_sa_hdl)); 579 } else { 580 zp->z_sa_hdl = sa_hdl; 581 sa_set_userp(sa_hdl, zp); 582 } 583 584 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; 585 586 /* 587 * Slap on VROOT if we are the root znode 588 */ 589 if (zp->z_id == zfsvfs->z_root) 590 ZTOV(zp)->v_flag |= VROOT; 591 592 mutex_exit(&zp->z_lock); 593 vn_exists(ZTOV(zp)); 594 } 595 596 void 597 zfs_znode_dmu_fini(znode_t *zp) 598 { 599 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 600 zp->z_unlinked || 601 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 602 603 sa_handle_destroy(zp->z_sa_hdl); 604 zp->z_sa_hdl = NULL; 605 } 606 607 /* 608 * Construct a new znode/vnode and intialize. 609 * 610 * This does not do a call to dmu_set_user() that is 611 * up to the caller to do, in case you don't want to 612 * return the znode 613 */ 614 static znode_t * 615 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, 616 dmu_object_type_t obj_type, sa_handle_t *hdl) 617 { 618 znode_t *zp; 619 vnode_t *vp; 620 uint64_t mode; 621 uint64_t parent; 622 uint64_t uid, gid; 623 sa_bulk_attr_t bulk[9]; 624 int count = 0; 625 626 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 627 628 ASSERT(zp->z_dirlocks == NULL); 629 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 630 631 /* 632 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 633 * the zfs_znode_move() callback. 634 */ 635 zp->z_sa_hdl = NULL; 636 zp->z_unlinked = 0; 637 zp->z_atime_dirty = 0; 638 zp->z_mapcnt = 0; 639 zp->z_last_itx = 0; 640 zp->z_id = db->db_object; 641 zp->z_blksz = blksz; 642 zp->z_seq = 0x7A4653; 643 zp->z_sync_cnt = 0; 644 645 vp = ZTOV(zp); 646 vn_reinit(vp); 647 648 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); 649 650 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); 651 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); 652 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 653 &zp->z_size, 8); 654 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 655 &zp->z_links, 8); 656 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 657 &zp->z_pflags, 8); 658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); 659 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 660 &zp->z_atime, 16); 661 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 662 &uid, 8); 663 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 664 &gid, 8); 665 666 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) { 667 if (hdl == NULL) 668 sa_handle_destroy(zp->z_sa_hdl); 669 kmem_cache_free(znode_cache, zp); 670 return (NULL); 671 } 672 673 zp->z_uid = zfs_fuid_map_id(zfsvfs, uid, CRED(), ZFS_OWNER); 674 zp->z_gid = zfs_fuid_map_id(zfsvfs, gid, CRED(), ZFS_GROUP); 675 zp->z_mode = mode; 676 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 677 678 vp->v_type = IFTOVT((mode_t)mode); 679 680 switch (vp->v_type) { 681 case VDIR: 682 if (zp->z_pflags & ZFS_XATTR) { 683 vn_setops(vp, zfs_xdvnodeops); 684 vp->v_flag |= V_XATTRDIR; 685 } else { 686 vn_setops(vp, zfs_dvnodeops); 687 } 688 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 689 break; 690 case VBLK: 691 case VCHR: 692 { 693 uint64_t rdev; 694 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), 695 &rdev, sizeof (rdev)) == 0); 696 697 vp->v_rdev = zfs_cmpldev(rdev); 698 } 699 /*FALLTHROUGH*/ 700 case VFIFO: 701 case VSOCK: 702 case VDOOR: 703 vn_setops(vp, zfs_fvnodeops); 704 break; 705 case VREG: 706 vp->v_flag |= VMODSORT; 707 if (parent == zfsvfs->z_shares_dir) { 708 ASSERT(uid == 0 && gid == 0); 709 vn_setops(vp, zfs_sharevnodeops); 710 } else { 711 vn_setops(vp, zfs_fvnodeops); 712 } 713 break; 714 case VLNK: 715 vn_setops(vp, zfs_symvnodeops); 716 break; 717 default: 718 vn_setops(vp, zfs_evnodeops); 719 break; 720 } 721 722 mutex_enter(&zfsvfs->z_znodes_lock); 723 list_insert_tail(&zfsvfs->z_all_znodes, zp); 724 membar_producer(); 725 /* 726 * Everything else must be valid before assigning z_zfsvfs makes the 727 * znode eligible for zfs_znode_move(). 728 */ 729 zp->z_zfsvfs = zfsvfs; 730 mutex_exit(&zfsvfs->z_znodes_lock); 731 732 VFS_HOLD(zfsvfs->z_vfs); 733 return (zp); 734 } 735 736 static uint64_t empty_xattr; 737 static uint64_t pad[4]; 738 static zfs_acl_phys_t acl_phys; 739 /* 740 * Create a new DMU object to hold a zfs znode. 741 * 742 * IN: dzp - parent directory for new znode 743 * vap - file attributes for new znode 744 * tx - dmu transaction id for zap operations 745 * cr - credentials of caller 746 * flag - flags: 747 * IS_ROOT_NODE - new object will be root 748 * IS_XATTR - new object is an attribute 749 * bonuslen - length of bonus buffer 750 * setaclp - File/Dir initial ACL 751 * fuidp - Tracks fuid allocation. 752 * 753 * OUT: zpp - allocated znode 754 * 755 */ 756 void 757 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 758 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) 759 { 760 uint64_t crtime[2], atime[2], mtime[2], ctime[2]; 761 uint64_t mode, size, links, parent, pflags; 762 uint64_t dzp_pflags = 0; 763 uint64_t rdev = 0; 764 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 765 dmu_buf_t *db; 766 timestruc_t now; 767 uint64_t gen, obj; 768 int err; 769 int bonuslen; 770 sa_handle_t *sa_hdl; 771 dmu_object_type_t obj_type; 772 sa_bulk_attr_t sa_attrs[ZPL_END]; 773 int cnt = 0; 774 zfs_acl_locator_cb_t locate = { 0 }; 775 776 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 777 778 if (zfsvfs->z_replay) { 779 obj = vap->va_nodeid; 780 now = vap->va_ctime; /* see zfs_replay_create() */ 781 gen = vap->va_nblocks; /* ditto */ 782 } else { 783 obj = 0; 784 gethrestime(&now); 785 gen = dmu_tx_get_txg(tx); 786 } 787 788 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; 789 bonuslen = (obj_type == DMU_OT_SA) ? 790 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE; 791 792 /* 793 * Create a new DMU object. 794 */ 795 /* 796 * There's currently no mechanism for pre-reading the blocks that will 797 * be to needed allocate a new object, so we accept the small chance 798 * that there will be an i/o error and we will fail one of the 799 * assertions below. 800 */ 801 if (vap->va_type == VDIR) { 802 if (zfsvfs->z_replay) { 803 err = zap_create_claim_norm(zfsvfs->z_os, obj, 804 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 805 obj_type, bonuslen, tx); 806 ASSERT3U(err, ==, 0); 807 } else { 808 obj = zap_create_norm(zfsvfs->z_os, 809 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 810 obj_type, bonuslen, tx); 811 } 812 } else { 813 if (zfsvfs->z_replay) { 814 err = dmu_object_claim(zfsvfs->z_os, obj, 815 DMU_OT_PLAIN_FILE_CONTENTS, 0, 816 obj_type, bonuslen, tx); 817 ASSERT3U(err, ==, 0); 818 } else { 819 obj = dmu_object_alloc(zfsvfs->z_os, 820 DMU_OT_PLAIN_FILE_CONTENTS, 0, 821 obj_type, bonuslen, tx); 822 } 823 } 824 825 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 826 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); 827 828 /* 829 * If this is the root, fix up the half-initialized parent pointer 830 * to reference the just-allocated physical data area. 831 */ 832 if (flag & IS_ROOT_NODE) { 833 dzp->z_id = obj; 834 } else { 835 dzp_pflags = dzp->z_pflags; 836 } 837 838 /* 839 * If parent is an xattr, so am I. 840 */ 841 if (dzp_pflags & ZFS_XATTR) { 842 flag |= IS_XATTR; 843 } 844 845 if (zfsvfs->z_use_fuids) 846 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 847 else 848 pflags = 0; 849 850 if (vap->va_type == VDIR) { 851 size = 2; /* contents ("." and "..") */ 852 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 853 } else { 854 size = links = 0; 855 } 856 857 if (vap->va_type == VBLK || vap->va_type == VCHR) { 858 rdev = zfs_expldev(vap->va_rdev); 859 } 860 861 parent = dzp->z_id; 862 mode = acl_ids->z_mode; 863 if (flag & IS_XATTR) 864 pflags |= ZFS_XATTR; 865 866 /* 867 * No execs denied will be deterimed when zfs_mode_compute() is called. 868 */ 869 pflags |= acl_ids->z_aclp->z_hints & 870 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| 871 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); 872 873 ZFS_TIME_ENCODE(&now, crtime); 874 ZFS_TIME_ENCODE(&now, ctime); 875 876 if (vap->va_mask & AT_ATIME) { 877 ZFS_TIME_ENCODE(&vap->va_atime, atime); 878 } else { 879 ZFS_TIME_ENCODE(&now, atime); 880 } 881 882 if (vap->va_mask & AT_MTIME) { 883 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 884 } else { 885 ZFS_TIME_ENCODE(&now, mtime); 886 } 887 888 /* Now add in all of the "SA" attributes */ 889 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, 890 &sa_hdl)); 891 892 /* 893 * Setup the array of attributes to be replaced/set on the new file 894 * 895 * order for DMU_OT_ZNODE is critical since it needs to be constructed 896 * in the old znode_phys_t format. Don't change this ordering 897 */ 898 899 if (obj_type == DMU_OT_ZNODE) { 900 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 901 NULL, &atime, 16); 902 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 903 NULL, &mtime, 16); 904 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 905 NULL, &ctime, 16); 906 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 907 NULL, &crtime, 16); 908 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 909 NULL, &gen, 8); 910 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 911 NULL, &mode, 8); 912 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 913 NULL, &size, 8); 914 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 915 NULL, &parent, 8); 916 } else { 917 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 918 NULL, &mode, 8); 919 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 920 NULL, &size, 8); 921 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 922 NULL, &gen, 8); 923 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 924 &acl_ids->z_fuid, 8); 925 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 926 &acl_ids->z_fgid, 8); 927 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 928 NULL, &parent, 8); 929 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 930 NULL, &pflags, 8); 931 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 932 NULL, &atime, 16); 933 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 934 NULL, &mtime, 16); 935 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 936 NULL, &ctime, 16); 937 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 938 NULL, &crtime, 16); 939 } 940 941 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); 942 943 if (obj_type == DMU_OT_ZNODE) { 944 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, 945 &empty_xattr, 8); 946 } 947 if (obj_type == DMU_OT_ZNODE || 948 (vap->va_type == VBLK || vap->va_type == VCHR)) { 949 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), 950 NULL, &rdev, 8); 951 952 } 953 if (obj_type == DMU_OT_ZNODE) { 954 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 955 NULL, &pflags, 8); 956 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 957 &acl_ids->z_fuid, 8); 958 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 959 &acl_ids->z_fgid, 8); 960 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, 961 sizeof (uint64_t) * 4); 962 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, 963 &acl_phys, sizeof (zfs_acl_phys_t)); 964 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { 965 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, 966 &acl_ids->z_aclp->z_acl_count, 8); 967 locate.cb_aclp = acl_ids->z_aclp; 968 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), 969 zfs_acl_data_locator, &locate, 970 acl_ids->z_aclp->z_acl_bytes); 971 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags, 972 acl_ids->z_fuid, acl_ids->z_fgid); 973 } 974 975 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); 976 977 if (!(flag & IS_ROOT_NODE)) { 978 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); 979 ASSERT(*zpp != NULL); 980 } else { 981 /* 982 * If we are creating the root node, the "parent" we 983 * passed in is the znode for the root. 984 */ 985 *zpp = dzp; 986 987 (*zpp)->z_sa_hdl = sa_hdl; 988 } 989 990 (*zpp)->z_pflags = pflags; 991 (*zpp)->z_mode = mode; 992 993 if (vap->va_mask & AT_XVATTR) 994 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); 995 996 if (obj_type == DMU_OT_ZNODE || 997 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { 998 err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx); 999 ASSERT3P(err, ==, 0); 1000 } 1001 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1002 } 1003 1004 /* 1005 * zfs_xvattr_set only updates the in-core attributes 1006 * it is assumed the caller will be doing an sa_bulk_update 1007 * to push the changes out 1008 */ 1009 void 1010 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) 1011 { 1012 xoptattr_t *xoap; 1013 1014 xoap = xva_getxoptattr(xvap); 1015 ASSERT(xoap); 1016 1017 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 1018 uint64_t times[2]; 1019 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); 1020 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), 1021 ×, sizeof (times), tx); 1022 XVA_SET_RTN(xvap, XAT_CREATETIME); 1023 } 1024 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 1025 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, 1026 zp->z_pflags, tx); 1027 XVA_SET_RTN(xvap, XAT_READONLY); 1028 } 1029 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 1030 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, 1031 zp->z_pflags, tx); 1032 XVA_SET_RTN(xvap, XAT_HIDDEN); 1033 } 1034 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 1035 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, 1036 zp->z_pflags, tx); 1037 XVA_SET_RTN(xvap, XAT_SYSTEM); 1038 } 1039 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 1040 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, 1041 zp->z_pflags, tx); 1042 XVA_SET_RTN(xvap, XAT_ARCHIVE); 1043 } 1044 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 1045 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, 1046 zp->z_pflags, tx); 1047 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 1048 } 1049 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 1050 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, 1051 zp->z_pflags, tx); 1052 XVA_SET_RTN(xvap, XAT_NOUNLINK); 1053 } 1054 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 1055 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, 1056 zp->z_pflags, tx); 1057 XVA_SET_RTN(xvap, XAT_APPENDONLY); 1058 } 1059 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 1060 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, 1061 zp->z_pflags, tx); 1062 XVA_SET_RTN(xvap, XAT_NODUMP); 1063 } 1064 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 1065 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, 1066 zp->z_pflags, tx); 1067 XVA_SET_RTN(xvap, XAT_OPAQUE); 1068 } 1069 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 1070 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 1071 xoap->xoa_av_quarantined, zp->z_pflags, tx); 1072 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 1073 } 1074 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 1075 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, 1076 zp->z_pflags, tx); 1077 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 1078 } 1079 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 1080 zfs_sa_set_scanstamp(zp, xvap, tx); 1081 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 1082 } 1083 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 1084 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, 1085 zp->z_pflags, tx); 1086 XVA_SET_RTN(xvap, XAT_REPARSE); 1087 } 1088 } 1089 1090 int 1091 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 1092 { 1093 dmu_object_info_t doi; 1094 dmu_buf_t *db; 1095 znode_t *zp; 1096 int err; 1097 sa_handle_t *hdl; 1098 1099 *zpp = NULL; 1100 1101 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1102 1103 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1104 if (err) { 1105 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1106 return (err); 1107 } 1108 1109 dmu_object_info_from_db(db, &doi); 1110 if (doi.doi_bonus_type != DMU_OT_SA && 1111 (doi.doi_bonus_type != DMU_OT_ZNODE || 1112 (doi.doi_bonus_type == DMU_OT_ZNODE && 1113 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1114 sa_buf_rele(db, NULL); 1115 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1116 return (EINVAL); 1117 } 1118 1119 hdl = dmu_buf_get_user(db); 1120 if (hdl != NULL) { 1121 zp = sa_get_userdata(hdl); 1122 1123 1124 /* 1125 * Since "SA" does immediate eviction we 1126 * should never find a sa handle that doesn't 1127 * know about the znode. 1128 */ 1129 1130 ASSERT3P(zp, !=, NULL); 1131 1132 mutex_enter(&zp->z_lock); 1133 ASSERT3U(zp->z_id, ==, obj_num); 1134 if (zp->z_unlinked) { 1135 err = ENOENT; 1136 } else { 1137 VN_HOLD(ZTOV(zp)); 1138 *zpp = zp; 1139 err = 0; 1140 } 1141 sa_buf_rele(db, NULL); 1142 mutex_exit(&zp->z_lock); 1143 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1144 return (err); 1145 } 1146 1147 /* 1148 * Not found create new znode/vnode 1149 * but only if file exists. 1150 * 1151 * There is a small window where zfs_vget() could 1152 * find this object while a file create is still in 1153 * progress. This is checked for in zfs_znode_alloc() 1154 * 1155 * if zfs_znode_alloc() fails it will drop the hold on the 1156 * bonus buffer. 1157 */ 1158 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, 1159 doi.doi_bonus_type, NULL); 1160 if (zp == NULL) { 1161 err = ENOENT; 1162 } else { 1163 *zpp = zp; 1164 } 1165 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1166 return (err); 1167 } 1168 1169 int 1170 zfs_rezget(znode_t *zp) 1171 { 1172 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1173 dmu_object_info_t doi; 1174 dmu_buf_t *db; 1175 uint64_t obj_num = zp->z_id; 1176 uint64_t mode; 1177 uint64_t uid, gid; 1178 sa_bulk_attr_t bulk[8]; 1179 int err; 1180 int count = 0; 1181 uint64_t gen; 1182 1183 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1184 1185 mutex_enter(&zp->z_acl_lock); 1186 if (zp->z_acl_cached) { 1187 zfs_acl_free(zp->z_acl_cached); 1188 zp->z_acl_cached = NULL; 1189 } 1190 1191 mutex_exit(&zp->z_acl_lock); 1192 ASSERT(zp->z_sa_hdl == NULL); 1193 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1194 if (err) { 1195 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1196 return (err); 1197 } 1198 1199 dmu_object_info_from_db(db, &doi); 1200 if (doi.doi_bonus_type != DMU_OT_SA && 1201 (doi.doi_bonus_type != DMU_OT_ZNODE || 1202 (doi.doi_bonus_type == DMU_OT_ZNODE && 1203 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1204 sa_buf_rele(db, NULL); 1205 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1206 return (EINVAL); 1207 } 1208 1209 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); 1210 1211 /* reload cached values */ 1212 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, 1213 &gen, sizeof (gen)); 1214 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1215 &zp->z_size, sizeof (zp->z_size)); 1216 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 1217 &zp->z_links, sizeof (zp->z_links)); 1218 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1219 &zp->z_pflags, sizeof (zp->z_pflags)); 1220 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 1221 &zp->z_atime, sizeof (zp->z_atime)); 1222 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 1223 &uid, sizeof (uid)); 1224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 1225 &gid, sizeof (gid)); 1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 1227 &mode, sizeof (mode)); 1228 1229 zp->z_mode = mode; 1230 1231 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { 1232 zfs_znode_dmu_fini(zp); 1233 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1234 return (EIO); 1235 } 1236 1237 if (gen != zp->z_gen) { 1238 zfs_znode_dmu_fini(zp); 1239 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1240 return (EIO); 1241 } 1242 1243 zp->z_uid = zfs_fuid_map_id(zfsvfs, uid, CRED(), ZFS_OWNER); 1244 zp->z_gid = zfs_fuid_map_id(zfsvfs, gid, CRED(), ZFS_GROUP); 1245 zp->z_unlinked = (zp->z_links == 0); 1246 zp->z_blksz = doi.doi_data_block_size; 1247 1248 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1249 1250 return (0); 1251 } 1252 1253 void 1254 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1255 { 1256 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1257 objset_t *os = zfsvfs->z_os; 1258 uint64_t obj = zp->z_id; 1259 uint64_t acl_obj = ZFS_EXTERNAL_ACL(zp); 1260 1261 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1262 if (acl_obj) 1263 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1264 VERIFY(0 == dmu_object_free(os, obj, tx)); 1265 zfs_znode_dmu_fini(zp); 1266 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1267 zfs_znode_free(zp); 1268 } 1269 1270 void 1271 zfs_zinactive(znode_t *zp) 1272 { 1273 vnode_t *vp = ZTOV(zp); 1274 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1275 uint64_t z_id = zp->z_id; 1276 1277 ASSERT(zp->z_sa_hdl); 1278 1279 /* 1280 * Don't allow a zfs_zget() while were trying to release this znode 1281 */ 1282 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1283 1284 mutex_enter(&zp->z_lock); 1285 mutex_enter(&vp->v_lock); 1286 vp->v_count--; 1287 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1288 /* 1289 * If the hold count is greater than zero, somebody has 1290 * obtained a new reference on this znode while we were 1291 * processing it here, so we are done. If we still have 1292 * mapped pages then we are also done, since we don't 1293 * want to inactivate the znode until the pages get pushed. 1294 * 1295 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1296 * this seems like it would leave the znode hanging with 1297 * no chance to go inactive... 1298 */ 1299 mutex_exit(&vp->v_lock); 1300 mutex_exit(&zp->z_lock); 1301 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1302 return; 1303 } 1304 mutex_exit(&vp->v_lock); 1305 1306 /* 1307 * If this was the last reference to a file with no links, 1308 * remove the file from the file system. 1309 */ 1310 if (zp->z_unlinked) { 1311 mutex_exit(&zp->z_lock); 1312 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1313 zfs_rmnode(zp); 1314 return; 1315 } 1316 1317 mutex_exit(&zp->z_lock); 1318 zfs_znode_dmu_fini(zp); 1319 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1320 zfs_znode_free(zp); 1321 } 1322 1323 void 1324 zfs_znode_free(znode_t *zp) 1325 { 1326 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1327 1328 vn_invalid(ZTOV(zp)); 1329 1330 ASSERT(ZTOV(zp)->v_count == 0); 1331 1332 mutex_enter(&zfsvfs->z_znodes_lock); 1333 POINTER_INVALIDATE(&zp->z_zfsvfs); 1334 list_remove(&zfsvfs->z_all_znodes, zp); 1335 mutex_exit(&zfsvfs->z_znodes_lock); 1336 1337 if (zp->z_acl_cached) { 1338 zfs_acl_free(zp->z_acl_cached); 1339 zp->z_acl_cached = NULL; 1340 } 1341 1342 kmem_cache_free(znode_cache, zp); 1343 1344 VFS_RELE(zfsvfs->z_vfs); 1345 } 1346 1347 void 1348 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], 1349 uint64_t ctime[2], boolean_t have_tx) 1350 { 1351 timestruc_t now; 1352 1353 gethrestime(&now); 1354 1355 if (have_tx) { /* will sa_bulk_update happen really soon? */ 1356 zp->z_atime_dirty = 0; 1357 zp->z_seq++; 1358 } else { 1359 zp->z_atime_dirty = 1; 1360 } 1361 1362 if (flag & AT_ATIME) { 1363 ZFS_TIME_ENCODE(&now, zp->z_atime); 1364 } 1365 1366 if (flag & AT_MTIME) { 1367 ZFS_TIME_ENCODE(&now, mtime); 1368 if (zp->z_zfsvfs->z_use_fuids) { 1369 zp->z_pflags |= (ZFS_ARCHIVE | 1370 ZFS_AV_MODIFIED); 1371 } 1372 } 1373 1374 if (flag & AT_CTIME) { 1375 ZFS_TIME_ENCODE(&now, ctime); 1376 if (zp->z_zfsvfs->z_use_fuids) 1377 zp->z_pflags |= ZFS_ARCHIVE; 1378 } 1379 } 1380 1381 /* 1382 * Grow the block size for a file. 1383 * 1384 * IN: zp - znode of file to free data in. 1385 * size - requested block size 1386 * tx - open transaction. 1387 * 1388 * NOTE: this function assumes that the znode is write locked. 1389 */ 1390 void 1391 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1392 { 1393 int error; 1394 u_longlong_t dummy; 1395 1396 if (size <= zp->z_blksz) 1397 return; 1398 /* 1399 * If the file size is already greater than the current blocksize, 1400 * we will not grow. If there is more than one block in a file, 1401 * the blocksize cannot change. 1402 */ 1403 if (zp->z_blksz && zp->z_size > zp->z_blksz) 1404 return; 1405 1406 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1407 size, 0, tx); 1408 1409 if (error == ENOTSUP) 1410 return; 1411 ASSERT3U(error, ==, 0); 1412 1413 /* What blocksize did we actually get? */ 1414 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); 1415 } 1416 1417 /* 1418 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1419 * be calling back into the fs for a putpage(). E.g.: when truncating 1420 * a file, the pages being "thrown away* don't need to be written out. 1421 */ 1422 /* ARGSUSED */ 1423 static int 1424 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1425 int flags, cred_t *cr) 1426 { 1427 ASSERT(0); 1428 return (0); 1429 } 1430 1431 /* 1432 * Increase the file length 1433 * 1434 * IN: zp - znode of file to free data in. 1435 * end - new end-of-file 1436 * 1437 * RETURN: 0 if success 1438 * error code if failure 1439 */ 1440 static int 1441 zfs_extend(znode_t *zp, uint64_t end) 1442 { 1443 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1444 dmu_tx_t *tx; 1445 rl_t *rl; 1446 uint64_t newblksz; 1447 int error; 1448 1449 /* 1450 * We will change zp_size, lock the whole file. 1451 */ 1452 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1453 1454 /* 1455 * Nothing to do if file already at desired length. 1456 */ 1457 if (end <= zp->z_size) { 1458 zfs_range_unlock(rl); 1459 return (0); 1460 } 1461 top: 1462 tx = dmu_tx_create(zfsvfs->z_os); 1463 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1464 zfs_sa_upgrade_txholds(tx, zp); 1465 if (end > zp->z_blksz && 1466 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1467 /* 1468 * We are growing the file past the current block size. 1469 */ 1470 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1471 ASSERT(!ISP2(zp->z_blksz)); 1472 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1473 } else { 1474 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1475 } 1476 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1477 } else { 1478 newblksz = 0; 1479 } 1480 1481 error = dmu_tx_assign(tx, TXG_NOWAIT); 1482 if (error) { 1483 if (error == ERESTART) { 1484 dmu_tx_wait(tx); 1485 dmu_tx_abort(tx); 1486 goto top; 1487 } 1488 dmu_tx_abort(tx); 1489 zfs_range_unlock(rl); 1490 return (error); 1491 } 1492 1493 if (newblksz) 1494 zfs_grow_blocksize(zp, newblksz, tx); 1495 1496 zp->z_size = end; 1497 1498 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1499 &zp->z_size, sizeof (zp->z_size), tx)); 1500 1501 zfs_range_unlock(rl); 1502 1503 dmu_tx_commit(tx); 1504 1505 return (0); 1506 } 1507 1508 /* 1509 * Free space in a file. 1510 * 1511 * IN: zp - znode of file to free data in. 1512 * off - start of section to free. 1513 * len - length of section to free. 1514 * 1515 * RETURN: 0 if success 1516 * error code if failure 1517 */ 1518 static int 1519 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1520 { 1521 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1522 rl_t *rl; 1523 int error; 1524 1525 /* 1526 * Lock the range being freed. 1527 */ 1528 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1529 1530 /* 1531 * Nothing to do if file already at desired length. 1532 */ 1533 if (off >= zp->z_size) { 1534 zfs_range_unlock(rl); 1535 return (0); 1536 } 1537 1538 if (off + len > zp->z_size) 1539 len = zp->z_size - off; 1540 1541 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1542 1543 zfs_range_unlock(rl); 1544 1545 return (error); 1546 } 1547 1548 /* 1549 * Truncate a file 1550 * 1551 * IN: zp - znode of file to free data in. 1552 * end - new end-of-file. 1553 * 1554 * RETURN: 0 if success 1555 * error code if failure 1556 */ 1557 static int 1558 zfs_trunc(znode_t *zp, uint64_t end) 1559 { 1560 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1561 vnode_t *vp = ZTOV(zp); 1562 dmu_tx_t *tx; 1563 rl_t *rl; 1564 int error; 1565 1566 /* 1567 * We will change zp_size, lock the whole file. 1568 */ 1569 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1570 1571 /* 1572 * Nothing to do if file already at desired length. 1573 */ 1574 if (end >= zp->z_size) { 1575 zfs_range_unlock(rl); 1576 return (0); 1577 } 1578 1579 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1580 if (error) { 1581 zfs_range_unlock(rl); 1582 return (error); 1583 } 1584 top: 1585 tx = dmu_tx_create(zfsvfs->z_os); 1586 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1587 zfs_sa_upgrade_txholds(tx, zp); 1588 error = dmu_tx_assign(tx, TXG_NOWAIT); 1589 if (error) { 1590 if (error == ERESTART) { 1591 dmu_tx_wait(tx); 1592 dmu_tx_abort(tx); 1593 goto top; 1594 } 1595 dmu_tx_abort(tx); 1596 zfs_range_unlock(rl); 1597 return (error); 1598 } 1599 1600 zp->z_size = end; 1601 1602 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1603 &zp->z_size, sizeof (zp->z_size), tx)); 1604 1605 dmu_tx_commit(tx); 1606 1607 /* 1608 * Clear any mapped pages in the truncated region. This has to 1609 * happen outside of the transaction to avoid the possibility of 1610 * a deadlock with someone trying to push a page that we are 1611 * about to invalidate. 1612 */ 1613 if (vn_has_cached_data(vp)) { 1614 page_t *pp; 1615 uint64_t start = end & PAGEMASK; 1616 int poff = end & PAGEOFFSET; 1617 1618 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1619 /* 1620 * We need to zero a partial page. 1621 */ 1622 pagezero(pp, poff, PAGESIZE - poff); 1623 start += PAGESIZE; 1624 page_unlock(pp); 1625 } 1626 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1627 B_INVAL | B_TRUNC, NULL); 1628 ASSERT(error == 0); 1629 } 1630 1631 zfs_range_unlock(rl); 1632 1633 return (0); 1634 } 1635 1636 /* 1637 * Free space in a file 1638 * 1639 * IN: zp - znode of file to free data in. 1640 * off - start of range 1641 * len - end of range (0 => EOF) 1642 * flag - current file open mode flags. 1643 * log - TRUE if this action should be logged 1644 * 1645 * RETURN: 0 if success 1646 * error code if failure 1647 */ 1648 int 1649 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1650 { 1651 vnode_t *vp = ZTOV(zp); 1652 dmu_tx_t *tx; 1653 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1654 zilog_t *zilog = zfsvfs->z_log; 1655 uint64_t mode; 1656 uint64_t mtime[2], ctime[2]; 1657 sa_bulk_attr_t bulk[3]; 1658 int count = 0; 1659 int error; 1660 1661 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, 1662 sizeof (mode))) != 0) 1663 return (error); 1664 1665 if (off > zp->z_size) { 1666 error = zfs_extend(zp, off+len); 1667 if (error == 0 && log) 1668 goto log; 1669 else 1670 return (error); 1671 } 1672 1673 /* 1674 * Check for any locks in the region to be freed. 1675 */ 1676 1677 if (MANDLOCK(vp, (mode_t)mode)) { 1678 uint64_t length = (len ? len : zp->z_size - off); 1679 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1680 return (error); 1681 } 1682 1683 if (len == 0) { 1684 error = zfs_trunc(zp, off); 1685 } else { 1686 if ((error = zfs_free_range(zp, off, len)) == 0 && 1687 off + len > zp->z_size) 1688 error = zfs_extend(zp, off+len); 1689 } 1690 if (error || !log) 1691 return (error); 1692 log: 1693 tx = dmu_tx_create(zfsvfs->z_os); 1694 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1695 zfs_sa_upgrade_txholds(tx, zp); 1696 error = dmu_tx_assign(tx, TXG_NOWAIT); 1697 if (error) { 1698 if (error == ERESTART) { 1699 dmu_tx_wait(tx); 1700 dmu_tx_abort(tx); 1701 goto log; 1702 } 1703 dmu_tx_abort(tx); 1704 return (error); 1705 } 1706 1707 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); 1708 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); 1709 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1710 NULL, &zp->z_pflags, 8); 1711 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); 1712 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1713 ASSERT(error == 0); 1714 1715 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1716 1717 dmu_tx_commit(tx); 1718 return (0); 1719 } 1720 1721 void 1722 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1723 { 1724 zfsvfs_t zfsvfs; 1725 uint64_t moid, obj, sa_obj, version; 1726 uint64_t sense = ZFS_CASE_SENSITIVE; 1727 uint64_t norm = 0; 1728 nvpair_t *elem; 1729 int error; 1730 int i; 1731 znode_t *rootzp = NULL; 1732 vnode_t *vp; 1733 vattr_t vattr; 1734 znode_t *zp; 1735 zfs_acl_ids_t acl_ids; 1736 1737 /* 1738 * First attempt to create master node. 1739 */ 1740 /* 1741 * In an empty objset, there are no blocks to read and thus 1742 * there can be no i/o errors (which we assert below). 1743 */ 1744 moid = MASTER_NODE_OBJ; 1745 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1746 DMU_OT_NONE, 0, tx); 1747 ASSERT(error == 0); 1748 1749 /* 1750 * Set starting attributes. 1751 */ 1752 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); 1753 elem = NULL; 1754 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1755 /* For the moment we expect all zpl props to be uint64_ts */ 1756 uint64_t val; 1757 char *name; 1758 1759 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1760 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1761 name = nvpair_name(elem); 1762 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1763 if (val < version) 1764 version = val; 1765 } else { 1766 error = zap_update(os, moid, name, 8, 1, &val, tx); 1767 } 1768 ASSERT(error == 0); 1769 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1770 norm = val; 1771 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1772 sense = val; 1773 } 1774 ASSERT(version != 0); 1775 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1776 1777 /* 1778 * Create zap object used for SA attribute registration 1779 */ 1780 1781 if (version >= ZPL_VERSION_SA) { 1782 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 1783 DMU_OT_NONE, 0, tx); 1784 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 1785 ASSERT(error == 0); 1786 } else { 1787 sa_obj = 0; 1788 } 1789 /* 1790 * Create a delete queue. 1791 */ 1792 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1793 1794 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1795 ASSERT(error == 0); 1796 1797 /* 1798 * Create root znode. Create minimal znode/vnode/zfsvfs 1799 * to allow zfs_mknode to work. 1800 */ 1801 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1802 vattr.va_type = VDIR; 1803 vattr.va_mode = S_IFDIR|0755; 1804 vattr.va_uid = crgetuid(cr); 1805 vattr.va_gid = crgetgid(cr); 1806 1807 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1808 rootzp->z_unlinked = 0; 1809 rootzp->z_atime_dirty = 0; 1810 rootzp->z_is_sa = USE_SA(version, os); 1811 1812 vp = ZTOV(rootzp); 1813 vn_reinit(vp); 1814 vp->v_type = VDIR; 1815 1816 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1817 1818 zfsvfs.z_os = os; 1819 zfsvfs.z_parent = &zfsvfs; 1820 zfsvfs.z_version = version; 1821 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1822 zfsvfs.z_use_sa = USE_SA(version, os); 1823 zfsvfs.z_norm = norm; 1824 1825 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 1826 &zfsvfs.z_attr_table); 1827 1828 ASSERT(error == 0); 1829 1830 /* 1831 * Fold case on file systems that are always or sometimes case 1832 * insensitive. 1833 */ 1834 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1835 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1836 1837 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1838 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1839 offsetof(znode_t, z_link_node)); 1840 1841 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1842 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1843 1844 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1845 rootzp->z_zfsvfs = &zfsvfs; 1846 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1847 cr, NULL, &acl_ids)); 1848 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); 1849 ASSERT3P(zp, ==, rootzp); 1850 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1851 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1852 ASSERT(error == 0); 1853 zfs_acl_ids_free(&acl_ids); 1854 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1855 1856 ZTOV(rootzp)->v_count = 0; 1857 sa_handle_destroy(rootzp->z_sa_hdl); 1858 kmem_cache_free(znode_cache, rootzp); 1859 1860 /* 1861 * Create shares directory 1862 */ 1863 1864 error = zfs_create_share_dir(&zfsvfs, tx); 1865 1866 ASSERT(error == 0); 1867 1868 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1869 mutex_destroy(&zfsvfs.z_hold_mtx[i]); 1870 } 1871 1872 #endif /* _KERNEL */ 1873 1874 /* 1875 * Given an object number, return its parent object number and whether 1876 * or not the object is an extended attribute directory. 1877 */ 1878 static int 1879 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir, 1880 sa_attr_type_t *sa_table) 1881 { 1882 dmu_buf_t *db; 1883 dmu_object_info_t doi; 1884 int error; 1885 uint64_t parent; 1886 uint64_t pflags; 1887 uint64_t mode; 1888 sa_bulk_attr_t bulk[3]; 1889 sa_handle_t *hdl; 1890 int count = 0; 1891 1892 if ((error = sa_buf_hold(osp, obj, FTAG, &db)) != 0) 1893 return (error); 1894 1895 dmu_object_info_from_db(db, &doi); 1896 if ((doi.doi_bonus_type != DMU_OT_SA && 1897 doi.doi_bonus_type != DMU_OT_ZNODE) || 1898 doi.doi_bonus_type == DMU_OT_ZNODE && 1899 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1900 sa_buf_rele(db, FTAG); 1901 return (EINVAL); 1902 } 1903 1904 if ((error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, 1905 &hdl)) != 0) { 1906 sa_buf_rele(db, FTAG); 1907 return (error); 1908 } 1909 1910 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], 1911 NULL, &parent, 8); 1912 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, 1913 &pflags, 8); 1914 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1915 &mode, 8); 1916 1917 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) { 1918 sa_buf_rele(db, FTAG); 1919 sa_handle_destroy(hdl); 1920 return (error); 1921 } 1922 *pobjp = parent; 1923 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); 1924 sa_handle_destroy(hdl); 1925 sa_buf_rele(db, FTAG); 1926 1927 return (0); 1928 } 1929 1930 int 1931 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1932 { 1933 char *path = buf + len - 1; 1934 sa_attr_type_t *sa_table; 1935 int error; 1936 uint64_t sa_obj = 0; 1937 1938 *path = '\0'; 1939 1940 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); 1941 1942 if (error != 0 && error != ENOENT) 1943 return (error); 1944 1945 if ((error = sa_setup(osp, sa_obj, zfs_attr_table, 1946 ZPL_END, &sa_table)) != 0) 1947 return (error); 1948 1949 for (;;) { 1950 uint64_t pobj; 1951 char component[MAXNAMELEN + 2]; 1952 size_t complen; 1953 int is_xattrdir; 1954 1955 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1956 &is_xattrdir, sa_table)) != 0) 1957 break; 1958 1959 if (pobj == obj) { 1960 if (path[0] != '/') 1961 *--path = '/'; 1962 break; 1963 } 1964 1965 component[0] = '/'; 1966 if (is_xattrdir) { 1967 (void) sprintf(component + 1, "<xattrdir>"); 1968 } else { 1969 error = zap_value_search(osp, pobj, obj, 1970 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1971 if (error != 0) 1972 break; 1973 } 1974 1975 complen = strlen(component); 1976 path -= complen; 1977 ASSERT(path >= buf); 1978 bcopy(component, path, complen); 1979 obj = pobj; 1980 } 1981 1982 if (error == 0) 1983 (void) memmove(buf, path, buf + len - path); 1984 1985 return (error); 1986 } 1987