xref: /titanic_41/usr/src/uts/common/fs/zfs/zfs_znode.c (revision 3afe87ebb25691cb6d158edaa34a6fb9b703a691)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Portions Copyright 2007 Jeremy Teo */
27 
28 #ifdef _KERNEL
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #include <sys/resource.h>
35 #include <sys/mntent.h>
36 #include <sys/mkdev.h>
37 #include <sys/u8_textprep.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/kmem.h>
44 #include <sys/errno.h>
45 #include <sys/unistd.h>
46 #include <sys/mode.h>
47 #include <sys/atomic.h>
48 #include <vm/pvn.h>
49 #include "fs/fs_subr.h"
50 #include <sys/zfs_dir.h>
51 #include <sys/zfs_acl.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zfs_rlock.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/fs/zfs.h>
56 #include <sys/kidmap.h>
57 #endif /* _KERNEL */
58 
59 #include <sys/dmu.h>
60 #include <sys/refcount.h>
61 #include <sys/stat.h>
62 #include <sys/zap.h>
63 #include <sys/zfs_znode.h>
64 
65 #include "zfs_prop.h"
66 
67 /*
68  * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
69  * turned on when DEBUG is also defined.
70  */
71 #ifdef	DEBUG
72 #define	ZNODE_STATS
73 #endif	/* DEBUG */
74 
75 #ifdef	ZNODE_STATS
76 #define	ZNODE_STAT_ADD(stat)			((stat)++)
77 #else
78 #define	ZNODE_STAT_ADD(stat)			/* nothing */
79 #endif	/* ZNODE_STATS */
80 
81 #define	POINTER_IS_VALID(p)	(!((uintptr_t)(p) & 0x3))
82 #define	POINTER_INVALIDATE(pp)	(*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1))
83 
84 /*
85  * Functions needed for userland (ie: libzpool) are not put under
86  * #ifdef_KERNEL; the rest of the functions have dependencies
87  * (such as VFS logic) that will not compile easily in userland.
88  */
89 #ifdef _KERNEL
90 static kmem_cache_t *znode_cache = NULL;
91 
92 /*ARGSUSED*/
93 static void
94 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
95 {
96 	/*
97 	 * We should never drop all dbuf refs without first clearing
98 	 * the eviction callback.
99 	 */
100 	panic("evicting znode %p\n", user_ptr);
101 }
102 
103 /*ARGSUSED*/
104 static int
105 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
106 {
107 	znode_t *zp = buf;
108 
109 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
110 
111 	zp->z_vnode = vn_alloc(kmflags);
112 	if (zp->z_vnode == NULL) {
113 		return (-1);
114 	}
115 	ZTOV(zp)->v_data = zp;
116 
117 	list_link_init(&zp->z_link_node);
118 
119 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
120 	rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL);
121 	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
122 	rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
123 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
124 
125 	mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
126 	avl_create(&zp->z_range_avl, zfs_range_compare,
127 	    sizeof (rl_t), offsetof(rl_t, r_node));
128 
129 	zp->z_dbuf = NULL;
130 	zp->z_dirlocks = NULL;
131 	return (0);
132 }
133 
134 /*ARGSUSED*/
135 static void
136 zfs_znode_cache_destructor(void *buf, void *arg)
137 {
138 	znode_t *zp = buf;
139 
140 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
141 	ASSERT(ZTOV(zp)->v_data == zp);
142 	vn_free(ZTOV(zp));
143 	ASSERT(!list_link_active(&zp->z_link_node));
144 	mutex_destroy(&zp->z_lock);
145 	rw_destroy(&zp->z_map_lock);
146 	rw_destroy(&zp->z_parent_lock);
147 	rw_destroy(&zp->z_name_lock);
148 	mutex_destroy(&zp->z_acl_lock);
149 	avl_destroy(&zp->z_range_avl);
150 	mutex_destroy(&zp->z_range_lock);
151 
152 	ASSERT(zp->z_dbuf == NULL);
153 	ASSERT(zp->z_dirlocks == NULL);
154 }
155 
156 #ifdef	ZNODE_STATS
157 static struct {
158 	uint64_t zms_zfsvfs_invalid;
159 	uint64_t zms_zfsvfs_unmounted;
160 	uint64_t zms_zfsvfs_recheck_invalid;
161 	uint64_t zms_obj_held;
162 	uint64_t zms_vnode_locked;
163 	uint64_t zms_not_only_dnlc;
164 } znode_move_stats;
165 #endif	/* ZNODE_STATS */
166 
167 static void
168 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
169 {
170 	vnode_t *vp;
171 
172 	/* Copy fields. */
173 	nzp->z_zfsvfs = ozp->z_zfsvfs;
174 
175 	/* Swap vnodes. */
176 	vp = nzp->z_vnode;
177 	nzp->z_vnode = ozp->z_vnode;
178 	ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
179 	ZTOV(ozp)->v_data = ozp;
180 	ZTOV(nzp)->v_data = nzp;
181 
182 	nzp->z_id = ozp->z_id;
183 	ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
184 	ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
185 	nzp->z_unlinked = ozp->z_unlinked;
186 	nzp->z_atime_dirty = ozp->z_atime_dirty;
187 	nzp->z_zn_prefetch = ozp->z_zn_prefetch;
188 	nzp->z_blksz = ozp->z_blksz;
189 	nzp->z_seq = ozp->z_seq;
190 	nzp->z_mapcnt = ozp->z_mapcnt;
191 	nzp->z_last_itx = ozp->z_last_itx;
192 	nzp->z_gen = ozp->z_gen;
193 	nzp->z_sync_cnt = ozp->z_sync_cnt;
194 	nzp->z_phys = ozp->z_phys;
195 	nzp->z_dbuf = ozp->z_dbuf;
196 
197 	/* Update back pointers. */
198 	(void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys,
199 	    znode_evict_error);
200 
201 	/*
202 	 * Invalidate the original znode by clearing fields that provide a
203 	 * pointer back to the znode. Set the low bit of the vfs pointer to
204 	 * ensure that zfs_znode_move() recognizes the znode as invalid in any
205 	 * subsequent callback.
206 	 */
207 	ozp->z_dbuf = NULL;
208 	POINTER_INVALIDATE(&ozp->z_zfsvfs);
209 }
210 
211 /*
212  * Wrapper function for ZFS_ENTER that returns 0 if successful and otherwise
213  * returns a non-zero error code.
214  */
215 static int
216 zfs_enter(zfsvfs_t *zfsvfs)
217 {
218 	ZFS_ENTER(zfsvfs);
219 	return (0);
220 }
221 
222 /*ARGSUSED*/
223 static kmem_cbrc_t
224 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
225 {
226 	znode_t *ozp = buf, *nzp = newbuf;
227 	zfsvfs_t *zfsvfs;
228 	vnode_t *vp;
229 
230 	/*
231 	 * The znode is on the file system's list of known znodes if the vfs
232 	 * pointer is valid. We set the low bit of the vfs pointer when freeing
233 	 * the znode to invalidate it, and the memory patterns written by kmem
234 	 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
235 	 * created znode sets the vfs pointer last of all to indicate that the
236 	 * znode is known and in a valid state to be moved by this function.
237 	 */
238 	zfsvfs = ozp->z_zfsvfs;
239 	if (!POINTER_IS_VALID(zfsvfs)) {
240 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
241 		return (KMEM_CBRC_DONT_KNOW);
242 	}
243 
244 	/*
245 	 * Ensure that the filesystem is not unmounted during the move.
246 	 */
247 	if (zfs_enter(zfsvfs) != 0) {		/* ZFS_ENTER */
248 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
249 		return (KMEM_CBRC_DONT_KNOW);
250 	}
251 
252 	mutex_enter(&zfsvfs->z_znodes_lock);
253 	/*
254 	 * Recheck the vfs pointer in case the znode was removed just before
255 	 * acquiring the lock.
256 	 */
257 	if (zfsvfs != ozp->z_zfsvfs) {
258 		mutex_exit(&zfsvfs->z_znodes_lock);
259 		ZFS_EXIT(zfsvfs);
260 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck_invalid);
261 		return (KMEM_CBRC_DONT_KNOW);
262 	}
263 
264 	/*
265 	 * At this point we know that as long as we hold z_znodes_lock, the
266 	 * znode cannot be freed and fields within the znode can be safely
267 	 * accessed. Now, prevent a race with zfs_zget().
268 	 */
269 	if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
270 		mutex_exit(&zfsvfs->z_znodes_lock);
271 		ZFS_EXIT(zfsvfs);
272 		ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
273 		return (KMEM_CBRC_LATER);
274 	}
275 
276 	vp = ZTOV(ozp);
277 	if (mutex_tryenter(&vp->v_lock) == 0) {
278 		ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
279 		mutex_exit(&zfsvfs->z_znodes_lock);
280 		ZFS_EXIT(zfsvfs);
281 		ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
282 		return (KMEM_CBRC_LATER);
283 	}
284 
285 	/* Only move znodes that are referenced _only_ by the DNLC. */
286 	if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
287 		mutex_exit(&vp->v_lock);
288 		ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
289 		mutex_exit(&zfsvfs->z_znodes_lock);
290 		ZFS_EXIT(zfsvfs);
291 		ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
292 		return (KMEM_CBRC_LATER);
293 	}
294 
295 	/*
296 	 * The znode is known and in a valid state to move. We're holding the
297 	 * locks needed to execute the critical section.
298 	 */
299 	zfs_znode_move_impl(ozp, nzp);
300 	mutex_exit(&vp->v_lock);
301 	ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
302 
303 	list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
304 	mutex_exit(&zfsvfs->z_znodes_lock);
305 	ZFS_EXIT(zfsvfs);
306 
307 	return (KMEM_CBRC_YES);
308 }
309 
310 void
311 zfs_znode_init(void)
312 {
313 	/*
314 	 * Initialize zcache
315 	 */
316 	ASSERT(znode_cache == NULL);
317 	znode_cache = kmem_cache_create("zfs_znode_cache",
318 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
319 	    zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
320 	kmem_cache_set_move(znode_cache, zfs_znode_move);
321 }
322 
323 void
324 zfs_znode_fini(void)
325 {
326 	/*
327 	 * Cleanup vfs & vnode ops
328 	 */
329 	zfs_remove_op_tables();
330 
331 	/*
332 	 * Cleanup zcache
333 	 */
334 	if (znode_cache)
335 		kmem_cache_destroy(znode_cache);
336 	znode_cache = NULL;
337 }
338 
339 struct vnodeops *zfs_dvnodeops;
340 struct vnodeops *zfs_fvnodeops;
341 struct vnodeops *zfs_symvnodeops;
342 struct vnodeops *zfs_xdvnodeops;
343 struct vnodeops *zfs_evnodeops;
344 
345 void
346 zfs_remove_op_tables()
347 {
348 	/*
349 	 * Remove vfs ops
350 	 */
351 	ASSERT(zfsfstype);
352 	(void) vfs_freevfsops_by_type(zfsfstype);
353 	zfsfstype = 0;
354 
355 	/*
356 	 * Remove vnode ops
357 	 */
358 	if (zfs_dvnodeops)
359 		vn_freevnodeops(zfs_dvnodeops);
360 	if (zfs_fvnodeops)
361 		vn_freevnodeops(zfs_fvnodeops);
362 	if (zfs_symvnodeops)
363 		vn_freevnodeops(zfs_symvnodeops);
364 	if (zfs_xdvnodeops)
365 		vn_freevnodeops(zfs_xdvnodeops);
366 	if (zfs_evnodeops)
367 		vn_freevnodeops(zfs_evnodeops);
368 
369 	zfs_dvnodeops = NULL;
370 	zfs_fvnodeops = NULL;
371 	zfs_symvnodeops = NULL;
372 	zfs_xdvnodeops = NULL;
373 	zfs_evnodeops = NULL;
374 }
375 
376 extern const fs_operation_def_t zfs_dvnodeops_template[];
377 extern const fs_operation_def_t zfs_fvnodeops_template[];
378 extern const fs_operation_def_t zfs_xdvnodeops_template[];
379 extern const fs_operation_def_t zfs_symvnodeops_template[];
380 extern const fs_operation_def_t zfs_evnodeops_template[];
381 
382 int
383 zfs_create_op_tables()
384 {
385 	int error;
386 
387 	/*
388 	 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
389 	 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
390 	 * In this case we just return as the ops vectors are already set up.
391 	 */
392 	if (zfs_dvnodeops)
393 		return (0);
394 
395 	error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
396 	    &zfs_dvnodeops);
397 	if (error)
398 		return (error);
399 
400 	error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
401 	    &zfs_fvnodeops);
402 	if (error)
403 		return (error);
404 
405 	error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
406 	    &zfs_symvnodeops);
407 	if (error)
408 		return (error);
409 
410 	error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
411 	    &zfs_xdvnodeops);
412 	if (error)
413 		return (error);
414 
415 	error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
416 	    &zfs_evnodeops);
417 
418 	return (error);
419 }
420 
421 /*
422  * zfs_init_fs - Initialize the zfsvfs struct and the file system
423  *	incore "master" object.  Verify version compatibility.
424  */
425 int
426 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp)
427 {
428 	extern int zfsfstype;
429 
430 	objset_t	*os = zfsvfs->z_os;
431 	int		i, error;
432 	uint64_t fsid_guid;
433 	uint64_t zval;
434 
435 	*zpp = NULL;
436 
437 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
438 	if (error) {
439 		return (error);
440 	} else if (zfsvfs->z_version > ZPL_VERSION) {
441 		(void) printf("Mismatched versions:  File system "
442 		    "is version %llu on-disk format, which is "
443 		    "incompatible with this software version %lld!",
444 		    (u_longlong_t)zfsvfs->z_version, ZPL_VERSION);
445 		return (ENOTSUP);
446 	}
447 
448 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
449 		return (error);
450 	zfsvfs->z_norm = (int)zval;
451 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
452 		return (error);
453 	zfsvfs->z_utf8 = (zval != 0);
454 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
455 		return (error);
456 	zfsvfs->z_case = (uint_t)zval;
457 	/*
458 	 * Fold case on file systems that are always or sometimes case
459 	 * insensitive.
460 	 */
461 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
462 	    zfsvfs->z_case == ZFS_CASE_MIXED)
463 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
464 
465 	/*
466 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
467 	 * separates our fsid from any other filesystem types, and a
468 	 * 56-bit objset unique ID.  The objset unique ID is unique to
469 	 * all objsets open on this system, provided by unique_create().
470 	 * The 8-bit fs type must be put in the low bits of fsid[1]
471 	 * because that's where other Solaris filesystems put it.
472 	 */
473 	fsid_guid = dmu_objset_fsid_guid(os);
474 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
475 	zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid;
476 	zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
477 	    zfsfstype & 0xFF;
478 
479 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
480 	    &zfsvfs->z_root);
481 	if (error)
482 		return (error);
483 	ASSERT(zfsvfs->z_root != 0);
484 
485 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
486 	    &zfsvfs->z_unlinkedobj);
487 	if (error)
488 		return (error);
489 
490 	/*
491 	 * Initialize zget mutex's
492 	 */
493 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
494 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
495 
496 	error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp);
497 	if (error) {
498 		/*
499 		 * On error, we destroy the mutexes here since it's not
500 		 * possible for the caller to determine if the mutexes were
501 		 * initialized properly.
502 		 */
503 		for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
504 			mutex_destroy(&zfsvfs->z_hold_mtx[i]);
505 		return (error);
506 	}
507 	ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root);
508 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
509 	    &zfsvfs->z_fuid_obj);
510 	if (error == ENOENT)
511 		error = 0;
512 
513 	return (0);
514 }
515 
516 /*
517  * define a couple of values we need available
518  * for both 64 and 32 bit environments.
519  */
520 #ifndef NBITSMINOR64
521 #define	NBITSMINOR64	32
522 #endif
523 #ifndef MAXMAJ64
524 #define	MAXMAJ64	0xffffffffUL
525 #endif
526 #ifndef	MAXMIN64
527 #define	MAXMIN64	0xffffffffUL
528 #endif
529 
530 /*
531  * Create special expldev for ZFS private use.
532  * Can't use standard expldev since it doesn't do
533  * what we want.  The standard expldev() takes a
534  * dev32_t in LP64 and expands it to a long dev_t.
535  * We need an interface that takes a dev32_t in ILP32
536  * and expands it to a long dev_t.
537  */
538 static uint64_t
539 zfs_expldev(dev_t dev)
540 {
541 #ifndef _LP64
542 	major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
543 	return (((uint64_t)major << NBITSMINOR64) |
544 	    ((minor_t)dev & MAXMIN32));
545 #else
546 	return (dev);
547 #endif
548 }
549 
550 /*
551  * Special cmpldev for ZFS private use.
552  * Can't use standard cmpldev since it takes
553  * a long dev_t and compresses it to dev32_t in
554  * LP64.  We need to do a compaction of a long dev_t
555  * to a dev32_t in ILP32.
556  */
557 dev_t
558 zfs_cmpldev(uint64_t dev)
559 {
560 #ifndef _LP64
561 	minor_t minor = (minor_t)dev & MAXMIN64;
562 	major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
563 
564 	if (major > MAXMAJ32 || minor > MAXMIN32)
565 		return (NODEV32);
566 
567 	return (((dev32_t)major << NBITSMINOR32) | minor);
568 #else
569 	return (dev);
570 #endif
571 }
572 
573 static void
574 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db)
575 {
576 	znode_t		*nzp;
577 
578 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
579 	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
580 
581 	mutex_enter(&zp->z_lock);
582 
583 	ASSERT(zp->z_dbuf == NULL);
584 	zp->z_dbuf = db;
585 	nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error);
586 
587 	/*
588 	 * there should be no
589 	 * concurrent zgets on this object.
590 	 */
591 	if (nzp != NULL)
592 		panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db);
593 
594 	/*
595 	 * Slap on VROOT if we are the root znode
596 	 */
597 	if (zp->z_id == zfsvfs->z_root)
598 		ZTOV(zp)->v_flag |= VROOT;
599 
600 	mutex_exit(&zp->z_lock);
601 	vn_exists(ZTOV(zp));
602 }
603 
604 void
605 zfs_znode_dmu_fini(znode_t *zp)
606 {
607 	dmu_buf_t *db = zp->z_dbuf;
608 	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
609 	    zp->z_unlinked ||
610 	    RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
611 	ASSERT(zp->z_dbuf != NULL);
612 	zp->z_dbuf = NULL;
613 	VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL));
614 	dmu_buf_rele(db, NULL);
615 }
616 
617 /*
618  * Construct a new znode/vnode and intialize.
619  *
620  * This does not do a call to dmu_set_user() that is
621  * up to the caller to do, in case you don't want to
622  * return the znode
623  */
624 static znode_t *
625 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz)
626 {
627 	znode_t	*zp;
628 	vnode_t *vp;
629 
630 	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
631 
632 	ASSERT(zp->z_dirlocks == NULL);
633 	ASSERT(zp->z_dbuf == NULL);
634 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
635 
636 	/*
637 	 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
638 	 * the zfs_znode_move() callback.
639 	 */
640 	zp->z_phys = NULL;
641 	zp->z_unlinked = 0;
642 	zp->z_atime_dirty = 0;
643 	zp->z_mapcnt = 0;
644 	zp->z_last_itx = 0;
645 	zp->z_id = db->db_object;
646 	zp->z_blksz = blksz;
647 	zp->z_seq = 0x7A4653;
648 	zp->z_sync_cnt = 0;
649 
650 	vp = ZTOV(zp);
651 	vn_reinit(vp);
652 
653 	zfs_znode_dmu_init(zfsvfs, zp, db);
654 
655 	zp->z_gen = zp->z_phys->zp_gen;
656 
657 	vp->v_vfsp = zfsvfs->z_parent->z_vfs;
658 	vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
659 
660 	switch (vp->v_type) {
661 	case VDIR:
662 		if (zp->z_phys->zp_flags & ZFS_XATTR) {
663 			vn_setops(vp, zfs_xdvnodeops);
664 			vp->v_flag |= V_XATTRDIR;
665 		} else {
666 			vn_setops(vp, zfs_dvnodeops);
667 		}
668 		zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
669 		break;
670 	case VBLK:
671 	case VCHR:
672 		vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev);
673 		/*FALLTHROUGH*/
674 	case VFIFO:
675 	case VSOCK:
676 	case VDOOR:
677 		vn_setops(vp, zfs_fvnodeops);
678 		break;
679 	case VREG:
680 		vp->v_flag |= VMODSORT;
681 		vn_setops(vp, zfs_fvnodeops);
682 		break;
683 	case VLNK:
684 		vn_setops(vp, zfs_symvnodeops);
685 		break;
686 	default:
687 		vn_setops(vp, zfs_evnodeops);
688 		break;
689 	}
690 
691 	mutex_enter(&zfsvfs->z_znodes_lock);
692 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
693 	membar_producer();
694 	/*
695 	 * Everything else must be valid before assigning z_zfsvfs makes the
696 	 * znode eligible for zfs_znode_move().
697 	 */
698 	zp->z_zfsvfs = zfsvfs;
699 	mutex_exit(&zfsvfs->z_znodes_lock);
700 
701 	VFS_HOLD(zfsvfs->z_vfs);
702 	return (zp);
703 }
704 
705 /*
706  * Create a new DMU object to hold a zfs znode.
707  *
708  *	IN:	dzp	- parent directory for new znode
709  *		vap	- file attributes for new znode
710  *		tx	- dmu transaction id for zap operations
711  *		cr	- credentials of caller
712  *		flag	- flags:
713  *			  IS_ROOT_NODE	- new object will be root
714  *			  IS_XATTR	- new object is an attribute
715  *			  IS_REPLAY	- intent log replay
716  *		bonuslen - length of bonus buffer
717  *		setaclp  - File/Dir initial ACL
718  *		fuidp	 - Tracks fuid allocation.
719  *
720  *	OUT:	zpp	- allocated znode
721  *
722  */
723 void
724 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
725     uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_t *setaclp,
726     zfs_fuid_info_t **fuidp)
727 {
728 	dmu_buf_t	*db;
729 	znode_phys_t	*pzp;
730 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
731 	timestruc_t	now;
732 	uint64_t	gen, obj;
733 	int		err;
734 
735 	ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
736 
737 	if (zfsvfs->z_replay) {
738 		obj = vap->va_nodeid;
739 		flag |= IS_REPLAY;
740 		now = vap->va_ctime;		/* see zfs_replay_create() */
741 		gen = vap->va_nblocks;		/* ditto */
742 	} else {
743 		obj = 0;
744 		gethrestime(&now);
745 		gen = dmu_tx_get_txg(tx);
746 	}
747 
748 	/*
749 	 * Create a new DMU object.
750 	 */
751 	/*
752 	 * There's currently no mechanism for pre-reading the blocks that will
753 	 * be to needed allocate a new object, so we accept the small chance
754 	 * that there will be an i/o error and we will fail one of the
755 	 * assertions below.
756 	 */
757 	if (vap->va_type == VDIR) {
758 		if (flag & IS_REPLAY) {
759 			err = zap_create_claim_norm(zfsvfs->z_os, obj,
760 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
761 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
762 			ASSERT3U(err, ==, 0);
763 		} else {
764 			obj = zap_create_norm(zfsvfs->z_os,
765 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
766 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
767 		}
768 	} else {
769 		if (flag & IS_REPLAY) {
770 			err = dmu_object_claim(zfsvfs->z_os, obj,
771 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
772 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
773 			ASSERT3U(err, ==, 0);
774 		} else {
775 			obj = dmu_object_alloc(zfsvfs->z_os,
776 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
777 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
778 		}
779 	}
780 	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db));
781 	dmu_buf_will_dirty(db, tx);
782 
783 	/*
784 	 * Initialize the znode physical data to zero.
785 	 */
786 	ASSERT(db->db_size >= sizeof (znode_phys_t));
787 	bzero(db->db_data, db->db_size);
788 	pzp = db->db_data;
789 
790 	/*
791 	 * If this is the root, fix up the half-initialized parent pointer
792 	 * to reference the just-allocated physical data area.
793 	 */
794 	if (flag & IS_ROOT_NODE) {
795 		dzp->z_dbuf = db;
796 		dzp->z_phys = pzp;
797 		dzp->z_id = obj;
798 	}
799 
800 	/*
801 	 * If parent is an xattr, so am I.
802 	 */
803 	if (dzp->z_phys->zp_flags & ZFS_XATTR)
804 		flag |= IS_XATTR;
805 
806 	if (vap->va_type == VBLK || vap->va_type == VCHR) {
807 		pzp->zp_rdev = zfs_expldev(vap->va_rdev);
808 	}
809 
810 	if (zfsvfs->z_use_fuids)
811 		pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
812 
813 	if (vap->va_type == VDIR) {
814 		pzp->zp_size = 2;		/* contents ("." and "..") */
815 		pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
816 	}
817 
818 	pzp->zp_parent = dzp->z_id;
819 	if (flag & IS_XATTR)
820 		pzp->zp_flags |= ZFS_XATTR;
821 
822 	pzp->zp_gen = gen;
823 
824 	ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
825 	ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
826 
827 	if (vap->va_mask & AT_ATIME) {
828 		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
829 	} else {
830 		ZFS_TIME_ENCODE(&now, pzp->zp_atime);
831 	}
832 
833 	if (vap->va_mask & AT_MTIME) {
834 		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
835 	} else {
836 		ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
837 	}
838 
839 	pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode);
840 	if (!(flag & IS_ROOT_NODE)) {
841 		ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
842 		*zpp = zfs_znode_alloc(zfsvfs, db, 0);
843 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
844 	} else {
845 		/*
846 		 * If we are creating the root node, the "parent" we
847 		 * passed in is the znode for the root.
848 		 */
849 		*zpp = dzp;
850 	}
851 	zfs_perm_init(*zpp, dzp, flag, vap, tx, cr, setaclp, fuidp);
852 }
853 
854 void
855 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap)
856 {
857 	xoptattr_t *xoap;
858 
859 	xoap = xva_getxoptattr(xvap);
860 	ASSERT(xoap);
861 
862 	if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
863 		ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime);
864 		XVA_SET_RTN(xvap, XAT_CREATETIME);
865 	}
866 	if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
867 		ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly);
868 		XVA_SET_RTN(xvap, XAT_READONLY);
869 	}
870 	if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
871 		ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden);
872 		XVA_SET_RTN(xvap, XAT_HIDDEN);
873 	}
874 	if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
875 		ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system);
876 		XVA_SET_RTN(xvap, XAT_SYSTEM);
877 	}
878 	if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
879 		ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive);
880 		XVA_SET_RTN(xvap, XAT_ARCHIVE);
881 	}
882 	if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
883 		ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable);
884 		XVA_SET_RTN(xvap, XAT_IMMUTABLE);
885 	}
886 	if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
887 		ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink);
888 		XVA_SET_RTN(xvap, XAT_NOUNLINK);
889 	}
890 	if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
891 		ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly);
892 		XVA_SET_RTN(xvap, XAT_APPENDONLY);
893 	}
894 	if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
895 		ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump);
896 		XVA_SET_RTN(xvap, XAT_NODUMP);
897 	}
898 	if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
899 		ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque);
900 		XVA_SET_RTN(xvap, XAT_OPAQUE);
901 	}
902 	if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
903 		ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
904 		    xoap->xoa_av_quarantined);
905 		XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
906 	}
907 	if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
908 		ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified);
909 		XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
910 	}
911 	if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
912 		(void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp,
913 		    sizeof (xoap->xoa_av_scanstamp));
914 		zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP;
915 		XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
916 	}
917 }
918 
919 int
920 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
921 {
922 	dmu_object_info_t doi;
923 	dmu_buf_t	*db;
924 	znode_t		*zp;
925 	int err;
926 
927 	*zpp = NULL;
928 
929 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
930 
931 	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
932 	if (err) {
933 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
934 		return (err);
935 	}
936 
937 	dmu_object_info_from_db(db, &doi);
938 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
939 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
940 		dmu_buf_rele(db, NULL);
941 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
942 		return (EINVAL);
943 	}
944 
945 	zp = dmu_buf_get_user(db);
946 	if (zp != NULL) {
947 		mutex_enter(&zp->z_lock);
948 
949 		/*
950 		 * Since we do immediate eviction of the z_dbuf, we
951 		 * should never find a dbuf with a znode that doesn't
952 		 * know about the dbuf.
953 		 */
954 		ASSERT3P(zp->z_dbuf, ==, db);
955 		ASSERT3U(zp->z_id, ==, obj_num);
956 		if (zp->z_unlinked) {
957 			err = ENOENT;
958 		} else {
959 			VN_HOLD(ZTOV(zp));
960 			*zpp = zp;
961 			err = 0;
962 		}
963 		dmu_buf_rele(db, NULL);
964 		mutex_exit(&zp->z_lock);
965 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
966 		return (err);
967 	}
968 
969 	/*
970 	 * Not found create new znode/vnode
971 	 */
972 	zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size);
973 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
974 	*zpp = zp;
975 	return (0);
976 }
977 
978 int
979 zfs_rezget(znode_t *zp)
980 {
981 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
982 	dmu_object_info_t doi;
983 	dmu_buf_t *db;
984 	uint64_t obj_num = zp->z_id;
985 	int err;
986 
987 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
988 
989 	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
990 	if (err) {
991 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
992 		return (err);
993 	}
994 
995 	dmu_object_info_from_db(db, &doi);
996 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
997 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
998 		dmu_buf_rele(db, NULL);
999 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1000 		return (EINVAL);
1001 	}
1002 
1003 	if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) {
1004 		dmu_buf_rele(db, NULL);
1005 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1006 		return (EIO);
1007 	}
1008 
1009 	zfs_znode_dmu_init(zfsvfs, zp, db);
1010 	zp->z_unlinked = (zp->z_phys->zp_links == 0);
1011 	zp->z_blksz = doi.doi_data_block_size;
1012 
1013 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1014 
1015 	return (0);
1016 }
1017 
1018 void
1019 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1020 {
1021 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1022 	objset_t *os = zfsvfs->z_os;
1023 	uint64_t obj = zp->z_id;
1024 	uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj;
1025 
1026 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1027 	if (acl_obj)
1028 		VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1029 	VERIFY(0 == dmu_object_free(os, obj, tx));
1030 	zfs_znode_dmu_fini(zp);
1031 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1032 	zfs_znode_free(zp);
1033 }
1034 
1035 void
1036 zfs_zinactive(znode_t *zp)
1037 {
1038 	vnode_t	*vp = ZTOV(zp);
1039 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1040 	uint64_t z_id = zp->z_id;
1041 
1042 	ASSERT(zp->z_dbuf && zp->z_phys);
1043 
1044 	/*
1045 	 * Don't allow a zfs_zget() while were trying to release this znode
1046 	 */
1047 	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1048 
1049 	mutex_enter(&zp->z_lock);
1050 	mutex_enter(&vp->v_lock);
1051 	vp->v_count--;
1052 	if (vp->v_count > 0 || vn_has_cached_data(vp)) {
1053 		/*
1054 		 * If the hold count is greater than zero, somebody has
1055 		 * obtained a new reference on this znode while we were
1056 		 * processing it here, so we are done.  If we still have
1057 		 * mapped pages then we are also done, since we don't
1058 		 * want to inactivate the znode until the pages get pushed.
1059 		 *
1060 		 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
1061 		 * this seems like it would leave the znode hanging with
1062 		 * no chance to go inactive...
1063 		 */
1064 		mutex_exit(&vp->v_lock);
1065 		mutex_exit(&zp->z_lock);
1066 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1067 		return;
1068 	}
1069 	mutex_exit(&vp->v_lock);
1070 
1071 	/*
1072 	 * If this was the last reference to a file with no links,
1073 	 * remove the file from the file system.
1074 	 */
1075 	if (zp->z_unlinked) {
1076 		mutex_exit(&zp->z_lock);
1077 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1078 		zfs_rmnode(zp);
1079 		return;
1080 	}
1081 	mutex_exit(&zp->z_lock);
1082 	zfs_znode_dmu_fini(zp);
1083 	ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1084 	zfs_znode_free(zp);
1085 }
1086 
1087 void
1088 zfs_znode_free(znode_t *zp)
1089 {
1090 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1091 
1092 	vn_invalid(ZTOV(zp));
1093 
1094 	ASSERT(ZTOV(zp)->v_count == 0);
1095 
1096 	mutex_enter(&zfsvfs->z_znodes_lock);
1097 	POINTER_INVALIDATE(&zp->z_zfsvfs);
1098 	list_remove(&zfsvfs->z_all_znodes, zp);
1099 	mutex_exit(&zfsvfs->z_znodes_lock);
1100 
1101 	kmem_cache_free(znode_cache, zp);
1102 
1103 	VFS_RELE(zfsvfs->z_vfs);
1104 }
1105 
1106 void
1107 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1108 {
1109 	timestruc_t	now;
1110 
1111 	ASSERT(MUTEX_HELD(&zp->z_lock));
1112 
1113 	gethrestime(&now);
1114 
1115 	if (tx) {
1116 		dmu_buf_will_dirty(zp->z_dbuf, tx);
1117 		zp->z_atime_dirty = 0;
1118 		zp->z_seq++;
1119 	} else {
1120 		zp->z_atime_dirty = 1;
1121 	}
1122 
1123 	if (flag & AT_ATIME)
1124 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);
1125 
1126 	if (flag & AT_MTIME) {
1127 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);
1128 		if (zp->z_zfsvfs->z_use_fuids)
1129 			zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED);
1130 	}
1131 
1132 	if (flag & AT_CTIME) {
1133 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
1134 		if (zp->z_zfsvfs->z_use_fuids)
1135 			zp->z_phys->zp_flags |= ZFS_ARCHIVE;
1136 	}
1137 }
1138 
1139 /*
1140  * Update the requested znode timestamps with the current time.
1141  * If we are in a transaction, then go ahead and mark the znode
1142  * dirty in the transaction so the timestamps will go to disk.
1143  * Otherwise, we will get pushed next time the znode is updated
1144  * in a transaction, or when this znode eventually goes inactive.
1145  *
1146  * Why is this OK?
1147  *  1 - Only the ACCESS time is ever updated outside of a transaction.
1148  *  2 - Multiple consecutive updates will be collapsed into a single
1149  *	znode update by the transaction grouping semantics of the DMU.
1150  */
1151 void
1152 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1153 {
1154 	mutex_enter(&zp->z_lock);
1155 	zfs_time_stamper_locked(zp, flag, tx);
1156 	mutex_exit(&zp->z_lock);
1157 }
1158 
1159 /*
1160  * Grow the block size for a file.
1161  *
1162  *	IN:	zp	- znode of file to free data in.
1163  *		size	- requested block size
1164  *		tx	- open transaction.
1165  *
1166  * NOTE: this function assumes that the znode is write locked.
1167  */
1168 void
1169 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1170 {
1171 	int		error;
1172 	u_longlong_t	dummy;
1173 
1174 	if (size <= zp->z_blksz)
1175 		return;
1176 	/*
1177 	 * If the file size is already greater than the current blocksize,
1178 	 * we will not grow.  If there is more than one block in a file,
1179 	 * the blocksize cannot change.
1180 	 */
1181 	if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
1182 		return;
1183 
1184 	error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1185 	    size, 0, tx);
1186 	if (error == ENOTSUP)
1187 		return;
1188 	ASSERT3U(error, ==, 0);
1189 
1190 	/* What blocksize did we actually get? */
1191 	dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);
1192 }
1193 
1194 /*
1195  * This is a dummy interface used when pvn_vplist_dirty() should *not*
1196  * be calling back into the fs for a putpage().  E.g.: when truncating
1197  * a file, the pages being "thrown away* don't need to be written out.
1198  */
1199 /* ARGSUSED */
1200 static int
1201 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1202     int flags, cred_t *cr)
1203 {
1204 	ASSERT(0);
1205 	return (0);
1206 }
1207 
1208 /*
1209  * Increase the file length
1210  *
1211  *	IN:	zp	- znode of file to free data in.
1212  *		end	- new end-of-file
1213  *
1214  * 	RETURN:	0 if success
1215  *		error code if failure
1216  */
1217 static int
1218 zfs_extend(znode_t *zp, uint64_t end)
1219 {
1220 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1221 	dmu_tx_t *tx;
1222 	rl_t *rl;
1223 	uint64_t newblksz;
1224 	int error;
1225 
1226 	/*
1227 	 * We will change zp_size, lock the whole file.
1228 	 */
1229 	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1230 
1231 	/*
1232 	 * Nothing to do if file already at desired length.
1233 	 */
1234 	if (end <= zp->z_phys->zp_size) {
1235 		zfs_range_unlock(rl);
1236 		return (0);
1237 	}
1238 top:
1239 	tx = dmu_tx_create(zfsvfs->z_os);
1240 	dmu_tx_hold_bonus(tx, zp->z_id);
1241 	if (end > zp->z_blksz &&
1242 	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1243 		/*
1244 		 * We are growing the file past the current block size.
1245 		 */
1246 		if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1247 			ASSERT(!ISP2(zp->z_blksz));
1248 			newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1249 		} else {
1250 			newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1251 		}
1252 		dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1253 	} else {
1254 		newblksz = 0;
1255 	}
1256 
1257 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1258 	if (error) {
1259 		if (error == ERESTART) {
1260 			dmu_tx_wait(tx);
1261 			dmu_tx_abort(tx);
1262 			goto top;
1263 		}
1264 		dmu_tx_abort(tx);
1265 		zfs_range_unlock(rl);
1266 		return (error);
1267 	}
1268 	dmu_buf_will_dirty(zp->z_dbuf, tx);
1269 
1270 	if (newblksz)
1271 		zfs_grow_blocksize(zp, newblksz, tx);
1272 
1273 	zp->z_phys->zp_size = end;
1274 
1275 	zfs_range_unlock(rl);
1276 
1277 	dmu_tx_commit(tx);
1278 
1279 	return (0);
1280 }
1281 
1282 /*
1283  * Free space in a file.
1284  *
1285  *	IN:	zp	- znode of file to free data in.
1286  *		off	- start of section to free.
1287  *		len	- length of section to free.
1288  *
1289  * 	RETURN:	0 if success
1290  *		error code if failure
1291  */
1292 static int
1293 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1294 {
1295 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1296 	rl_t *rl;
1297 	int error;
1298 
1299 	/*
1300 	 * Lock the range being freed.
1301 	 */
1302 	rl = zfs_range_lock(zp, off, len, RL_WRITER);
1303 
1304 	/*
1305 	 * Nothing to do if file already at desired length.
1306 	 */
1307 	if (off >= zp->z_phys->zp_size) {
1308 		zfs_range_unlock(rl);
1309 		return (0);
1310 	}
1311 
1312 	if (off + len > zp->z_phys->zp_size)
1313 		len = zp->z_phys->zp_size - off;
1314 
1315 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1316 
1317 	zfs_range_unlock(rl);
1318 
1319 	return (error);
1320 }
1321 
1322 /*
1323  * Truncate a file
1324  *
1325  *	IN:	zp	- znode of file to free data in.
1326  *		end	- new end-of-file.
1327  *
1328  * 	RETURN:	0 if success
1329  *		error code if failure
1330  */
1331 static int
1332 zfs_trunc(znode_t *zp, uint64_t end)
1333 {
1334 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1335 	vnode_t *vp = ZTOV(zp);
1336 	dmu_tx_t *tx;
1337 	rl_t *rl;
1338 	int error;
1339 
1340 	/*
1341 	 * We will change zp_size, lock the whole file.
1342 	 */
1343 	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1344 
1345 	/*
1346 	 * Nothing to do if file already at desired length.
1347 	 */
1348 	if (end >= zp->z_phys->zp_size) {
1349 		zfs_range_unlock(rl);
1350 		return (0);
1351 	}
1352 
1353 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,  -1);
1354 	if (error) {
1355 		zfs_range_unlock(rl);
1356 		return (error);
1357 	}
1358 top:
1359 	tx = dmu_tx_create(zfsvfs->z_os);
1360 	dmu_tx_hold_bonus(tx, zp->z_id);
1361 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1362 	if (error) {
1363 		if (error == ERESTART) {
1364 			dmu_tx_wait(tx);
1365 			dmu_tx_abort(tx);
1366 			goto top;
1367 		}
1368 		dmu_tx_abort(tx);
1369 		zfs_range_unlock(rl);
1370 		return (error);
1371 	}
1372 	dmu_buf_will_dirty(zp->z_dbuf, tx);
1373 
1374 	zp->z_phys->zp_size = end;
1375 
1376 	dmu_tx_commit(tx);
1377 
1378 	zfs_range_unlock(rl);
1379 
1380 	/*
1381 	 * Clear any mapped pages in the truncated region.  This has to
1382 	 * happen outside of the transaction to avoid the possibility of
1383 	 * a deadlock with someone trying to push a page that we are
1384 	 * about to invalidate.
1385 	 */
1386 	rw_enter(&zp->z_map_lock, RW_WRITER);
1387 	if (vn_has_cached_data(vp)) {
1388 		page_t *pp;
1389 		uint64_t start = end & PAGEMASK;
1390 		int poff = end & PAGEOFFSET;
1391 
1392 		if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1393 			/*
1394 			 * We need to zero a partial page.
1395 			 */
1396 			pagezero(pp, poff, PAGESIZE - poff);
1397 			start += PAGESIZE;
1398 			page_unlock(pp);
1399 		}
1400 		error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1401 		    B_INVAL | B_TRUNC, NULL);
1402 		ASSERT(error == 0);
1403 	}
1404 	rw_exit(&zp->z_map_lock);
1405 
1406 	return (0);
1407 }
1408 
1409 /*
1410  * Free space in a file
1411  *
1412  *	IN:	zp	- znode of file to free data in.
1413  *		off	- start of range
1414  *		len	- end of range (0 => EOF)
1415  *		flag	- current file open mode flags.
1416  *		log	- TRUE if this action should be logged
1417  *
1418  * 	RETURN:	0 if success
1419  *		error code if failure
1420  */
1421 int
1422 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1423 {
1424 	vnode_t *vp = ZTOV(zp);
1425 	dmu_tx_t *tx;
1426 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1427 	zilog_t *zilog = zfsvfs->z_log;
1428 	int error;
1429 
1430 	if (off > zp->z_phys->zp_size) {
1431 		error =  zfs_extend(zp, off+len);
1432 		if (error == 0 && log)
1433 			goto log;
1434 		else
1435 			return (error);
1436 	}
1437 
1438 	/*
1439 	 * Check for any locks in the region to be freed.
1440 	 */
1441 	if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) {
1442 		uint64_t length = (len ? len : zp->z_phys->zp_size - off);
1443 		if (error = chklock(vp, FWRITE, off, length, flag, NULL))
1444 			return (error);
1445 	}
1446 
1447 	if (len == 0) {
1448 		error = zfs_trunc(zp, off);
1449 	} else {
1450 		if ((error = zfs_free_range(zp, off, len)) == 0 &&
1451 		    off + len > zp->z_phys->zp_size)
1452 			error = zfs_extend(zp, off+len);
1453 	}
1454 	if (error || !log)
1455 		return (error);
1456 log:
1457 	tx = dmu_tx_create(zfsvfs->z_os);
1458 	dmu_tx_hold_bonus(tx, zp->z_id);
1459 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1460 	if (error) {
1461 		if (error == ERESTART) {
1462 			dmu_tx_wait(tx);
1463 			dmu_tx_abort(tx);
1464 			goto log;
1465 		}
1466 		dmu_tx_abort(tx);
1467 		return (error);
1468 	}
1469 
1470 	zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
1471 	zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1472 
1473 	dmu_tx_commit(tx);
1474 	return (0);
1475 }
1476 
1477 void
1478 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1479 {
1480 	zfsvfs_t	zfsvfs;
1481 	uint64_t	moid, doid, version;
1482 	uint64_t	sense = ZFS_CASE_SENSITIVE;
1483 	uint64_t	norm = 0;
1484 	nvpair_t	*elem;
1485 	int		error;
1486 	znode_t		*rootzp = NULL;
1487 	vnode_t		*vp;
1488 	vattr_t		vattr;
1489 	znode_t		*zp;
1490 
1491 	/*
1492 	 * First attempt to create master node.
1493 	 */
1494 	/*
1495 	 * In an empty objset, there are no blocks to read and thus
1496 	 * there can be no i/o errors (which we assert below).
1497 	 */
1498 	moid = MASTER_NODE_OBJ;
1499 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1500 	    DMU_OT_NONE, 0, tx);
1501 	ASSERT(error == 0);
1502 
1503 	/*
1504 	 * Set starting attributes.
1505 	 */
1506 	if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID)
1507 		version = ZPL_VERSION;
1508 	else
1509 		version = ZPL_VERSION_FUID - 1;
1510 	error = zap_update(os, moid, ZPL_VERSION_STR,
1511 	    8, 1, &version, tx);
1512 	elem = NULL;
1513 	while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1514 		/* For the moment we expect all zpl props to be uint64_ts */
1515 		uint64_t val;
1516 		char *name;
1517 
1518 		ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1519 		VERIFY(nvpair_value_uint64(elem, &val) == 0);
1520 		name = nvpair_name(elem);
1521 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1522 			version = val;
1523 			error = zap_update(os, moid, ZPL_VERSION_STR,
1524 			    8, 1, &version, tx);
1525 		} else {
1526 			error = zap_update(os, moid, name, 8, 1, &val, tx);
1527 		}
1528 		ASSERT(error == 0);
1529 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1530 			norm = val;
1531 		else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1532 			sense = val;
1533 	}
1534 	ASSERT(version != 0);
1535 
1536 	/*
1537 	 * Create a delete queue.
1538 	 */
1539 	doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1540 
1541 	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx);
1542 	ASSERT(error == 0);
1543 
1544 	/*
1545 	 * Create root znode.  Create minimal znode/vnode/zfsvfs
1546 	 * to allow zfs_mknode to work.
1547 	 */
1548 	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1549 	vattr.va_type = VDIR;
1550 	vattr.va_mode = S_IFDIR|0755;
1551 	vattr.va_uid = crgetuid(cr);
1552 	vattr.va_gid = crgetgid(cr);
1553 
1554 	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1555 	rootzp->z_unlinked = 0;
1556 	rootzp->z_atime_dirty = 0;
1557 
1558 	vp = ZTOV(rootzp);
1559 	vn_reinit(vp);
1560 	vp->v_type = VDIR;
1561 
1562 	bzero(&zfsvfs, sizeof (zfsvfs_t));
1563 
1564 	zfsvfs.z_os = os;
1565 	zfsvfs.z_parent = &zfsvfs;
1566 	zfsvfs.z_version = version;
1567 	zfsvfs.z_use_fuids = USE_FUIDS(version, os);
1568 	zfsvfs.z_norm = norm;
1569 	/*
1570 	 * Fold case on file systems that are always or sometimes case
1571 	 * insensitive.
1572 	 */
1573 	if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1574 		zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
1575 
1576 	mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1577 	list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1578 	    offsetof(znode_t, z_link_node));
1579 
1580 	ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1581 	rootzp->z_zfsvfs = &zfsvfs;
1582 	zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, NULL, NULL);
1583 	ASSERT3P(zp, ==, rootzp);
1584 	ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */
1585 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1586 	ASSERT(error == 0);
1587 	POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1588 
1589 	ZTOV(rootzp)->v_count = 0;
1590 	dmu_buf_rele(rootzp->z_dbuf, NULL);
1591 	rootzp->z_dbuf = NULL;
1592 	kmem_cache_free(znode_cache, rootzp);
1593 }
1594 
1595 #endif /* _KERNEL */
1596 /*
1597  * Given an object number, return its parent object number and whether
1598  * or not the object is an extended attribute directory.
1599  */
1600 static int
1601 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir)
1602 {
1603 	dmu_buf_t *db;
1604 	dmu_object_info_t doi;
1605 	znode_phys_t *zp;
1606 	int error;
1607 
1608 	if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0)
1609 		return (error);
1610 
1611 	dmu_object_info_from_db(db, &doi);
1612 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
1613 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
1614 		dmu_buf_rele(db, FTAG);
1615 		return (EINVAL);
1616 	}
1617 
1618 	zp = db->db_data;
1619 	*pobjp = zp->zp_parent;
1620 	*is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) &&
1621 	    S_ISDIR(zp->zp_mode);
1622 	dmu_buf_rele(db, FTAG);
1623 
1624 	return (0);
1625 }
1626 
1627 int
1628 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
1629 {
1630 	char *path = buf + len - 1;
1631 	int error;
1632 
1633 	*path = '\0';
1634 
1635 	for (;;) {
1636 		uint64_t pobj;
1637 		char component[MAXNAMELEN + 2];
1638 		size_t complen;
1639 		int is_xattrdir;
1640 
1641 		if ((error = zfs_obj_to_pobj(osp, obj, &pobj,
1642 		    &is_xattrdir)) != 0)
1643 			break;
1644 
1645 		if (pobj == obj) {
1646 			if (path[0] != '/')
1647 				*--path = '/';
1648 			break;
1649 		}
1650 
1651 		component[0] = '/';
1652 		if (is_xattrdir) {
1653 			(void) sprintf(component + 1, "<xattrdir>");
1654 		} else {
1655 			error = zap_value_search(osp, pobj, obj,
1656 			    ZFS_DIRENT_OBJ(-1ULL), component + 1);
1657 			if (error != 0)
1658 				break;
1659 		}
1660 
1661 		complen = strlen(component);
1662 		path -= complen;
1663 		ASSERT(path >= buf);
1664 		bcopy(component, path, complen);
1665 		obj = pobj;
1666 	}
1667 
1668 	if (error == 0)
1669 		(void) memmove(buf, path, buf + len - path);
1670 	return (error);
1671 }
1672