1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/kidmap.h> 57 #endif /* _KERNEL */ 58 59 #include <sys/dmu.h> 60 #include <sys/refcount.h> 61 #include <sys/stat.h> 62 #include <sys/zap.h> 63 #include <sys/zfs_znode.h> 64 65 #include "zfs_prop.h" 66 67 /* 68 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 69 * turned on when DEBUG is also defined. 70 */ 71 #ifdef DEBUG 72 #define ZNODE_STATS 73 #endif /* DEBUG */ 74 75 #ifdef ZNODE_STATS 76 #define ZNODE_STAT_ADD(stat) ((stat)++) 77 #else 78 #define ZNODE_STAT_ADD(stat) /* nothing */ 79 #endif /* ZNODE_STATS */ 80 81 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3)) 82 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1)) 83 84 /* 85 * Functions needed for userland (ie: libzpool) are not put under 86 * #ifdef_KERNEL; the rest of the functions have dependencies 87 * (such as VFS logic) that will not compile easily in userland. 88 */ 89 #ifdef _KERNEL 90 static kmem_cache_t *znode_cache = NULL; 91 92 /*ARGSUSED*/ 93 static void 94 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 95 { 96 /* 97 * We should never drop all dbuf refs without first clearing 98 * the eviction callback. 99 */ 100 panic("evicting znode %p\n", user_ptr); 101 } 102 103 /*ARGSUSED*/ 104 static int 105 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 106 { 107 znode_t *zp = buf; 108 109 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 110 111 zp->z_vnode = vn_alloc(kmflags); 112 if (zp->z_vnode == NULL) { 113 return (-1); 114 } 115 ZTOV(zp)->v_data = zp; 116 117 list_link_init(&zp->z_link_node); 118 119 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 120 rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL); 121 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 122 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 123 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 124 125 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 126 avl_create(&zp->z_range_avl, zfs_range_compare, 127 sizeof (rl_t), offsetof(rl_t, r_node)); 128 129 zp->z_dbuf = NULL; 130 zp->z_dirlocks = NULL; 131 return (0); 132 } 133 134 /*ARGSUSED*/ 135 static void 136 zfs_znode_cache_destructor(void *buf, void *arg) 137 { 138 znode_t *zp = buf; 139 140 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 141 ASSERT(ZTOV(zp)->v_data == zp); 142 vn_free(ZTOV(zp)); 143 ASSERT(!list_link_active(&zp->z_link_node)); 144 mutex_destroy(&zp->z_lock); 145 rw_destroy(&zp->z_map_lock); 146 rw_destroy(&zp->z_parent_lock); 147 rw_destroy(&zp->z_name_lock); 148 mutex_destroy(&zp->z_acl_lock); 149 avl_destroy(&zp->z_range_avl); 150 mutex_destroy(&zp->z_range_lock); 151 152 ASSERT(zp->z_dbuf == NULL); 153 ASSERT(zp->z_dirlocks == NULL); 154 } 155 156 #ifdef ZNODE_STATS 157 static struct { 158 uint64_t zms_zfsvfs_invalid; 159 uint64_t zms_zfsvfs_unmounted; 160 uint64_t zms_zfsvfs_recheck_invalid; 161 uint64_t zms_obj_held; 162 uint64_t zms_vnode_locked; 163 uint64_t zms_not_only_dnlc; 164 } znode_move_stats; 165 #endif /* ZNODE_STATS */ 166 167 static void 168 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 169 { 170 vnode_t *vp; 171 172 /* Copy fields. */ 173 nzp->z_zfsvfs = ozp->z_zfsvfs; 174 175 /* Swap vnodes. */ 176 vp = nzp->z_vnode; 177 nzp->z_vnode = ozp->z_vnode; 178 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 179 ZTOV(ozp)->v_data = ozp; 180 ZTOV(nzp)->v_data = nzp; 181 182 nzp->z_id = ozp->z_id; 183 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 184 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 185 nzp->z_unlinked = ozp->z_unlinked; 186 nzp->z_atime_dirty = ozp->z_atime_dirty; 187 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 188 nzp->z_blksz = ozp->z_blksz; 189 nzp->z_seq = ozp->z_seq; 190 nzp->z_mapcnt = ozp->z_mapcnt; 191 nzp->z_last_itx = ozp->z_last_itx; 192 nzp->z_gen = ozp->z_gen; 193 nzp->z_sync_cnt = ozp->z_sync_cnt; 194 nzp->z_phys = ozp->z_phys; 195 nzp->z_dbuf = ozp->z_dbuf; 196 197 /* Update back pointers. */ 198 (void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys, 199 znode_evict_error); 200 201 /* 202 * Invalidate the original znode by clearing fields that provide a 203 * pointer back to the znode. Set the low bit of the vfs pointer to 204 * ensure that zfs_znode_move() recognizes the znode as invalid in any 205 * subsequent callback. 206 */ 207 ozp->z_dbuf = NULL; 208 POINTER_INVALIDATE(&ozp->z_zfsvfs); 209 } 210 211 /* 212 * Wrapper function for ZFS_ENTER that returns 0 if successful and otherwise 213 * returns a non-zero error code. 214 */ 215 static int 216 zfs_enter(zfsvfs_t *zfsvfs) 217 { 218 ZFS_ENTER(zfsvfs); 219 return (0); 220 } 221 222 /*ARGSUSED*/ 223 static kmem_cbrc_t 224 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 225 { 226 znode_t *ozp = buf, *nzp = newbuf; 227 zfsvfs_t *zfsvfs; 228 vnode_t *vp; 229 230 /* 231 * The znode is on the file system's list of known znodes if the vfs 232 * pointer is valid. We set the low bit of the vfs pointer when freeing 233 * the znode to invalidate it, and the memory patterns written by kmem 234 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 235 * created znode sets the vfs pointer last of all to indicate that the 236 * znode is known and in a valid state to be moved by this function. 237 */ 238 zfsvfs = ozp->z_zfsvfs; 239 if (!POINTER_IS_VALID(zfsvfs)) { 240 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 241 return (KMEM_CBRC_DONT_KNOW); 242 } 243 244 /* 245 * Ensure that the filesystem is not unmounted during the move. 246 */ 247 if (zfs_enter(zfsvfs) != 0) { /* ZFS_ENTER */ 248 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 249 return (KMEM_CBRC_DONT_KNOW); 250 } 251 252 mutex_enter(&zfsvfs->z_znodes_lock); 253 /* 254 * Recheck the vfs pointer in case the znode was removed just before 255 * acquiring the lock. 256 */ 257 if (zfsvfs != ozp->z_zfsvfs) { 258 mutex_exit(&zfsvfs->z_znodes_lock); 259 ZFS_EXIT(zfsvfs); 260 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck_invalid); 261 return (KMEM_CBRC_DONT_KNOW); 262 } 263 264 /* 265 * At this point we know that as long as we hold z_znodes_lock, the 266 * znode cannot be freed and fields within the znode can be safely 267 * accessed. Now, prevent a race with zfs_zget(). 268 */ 269 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 270 mutex_exit(&zfsvfs->z_znodes_lock); 271 ZFS_EXIT(zfsvfs); 272 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 273 return (KMEM_CBRC_LATER); 274 } 275 276 vp = ZTOV(ozp); 277 if (mutex_tryenter(&vp->v_lock) == 0) { 278 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 279 mutex_exit(&zfsvfs->z_znodes_lock); 280 ZFS_EXIT(zfsvfs); 281 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 282 return (KMEM_CBRC_LATER); 283 } 284 285 /* Only move znodes that are referenced _only_ by the DNLC. */ 286 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 287 mutex_exit(&vp->v_lock); 288 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 289 mutex_exit(&zfsvfs->z_znodes_lock); 290 ZFS_EXIT(zfsvfs); 291 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 292 return (KMEM_CBRC_LATER); 293 } 294 295 /* 296 * The znode is known and in a valid state to move. We're holding the 297 * locks needed to execute the critical section. 298 */ 299 zfs_znode_move_impl(ozp, nzp); 300 mutex_exit(&vp->v_lock); 301 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 302 303 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 304 mutex_exit(&zfsvfs->z_znodes_lock); 305 ZFS_EXIT(zfsvfs); 306 307 return (KMEM_CBRC_YES); 308 } 309 310 void 311 zfs_znode_init(void) 312 { 313 /* 314 * Initialize zcache 315 */ 316 ASSERT(znode_cache == NULL); 317 znode_cache = kmem_cache_create("zfs_znode_cache", 318 sizeof (znode_t), 0, zfs_znode_cache_constructor, 319 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 320 kmem_cache_set_move(znode_cache, zfs_znode_move); 321 } 322 323 void 324 zfs_znode_fini(void) 325 { 326 /* 327 * Cleanup vfs & vnode ops 328 */ 329 zfs_remove_op_tables(); 330 331 /* 332 * Cleanup zcache 333 */ 334 if (znode_cache) 335 kmem_cache_destroy(znode_cache); 336 znode_cache = NULL; 337 } 338 339 struct vnodeops *zfs_dvnodeops; 340 struct vnodeops *zfs_fvnodeops; 341 struct vnodeops *zfs_symvnodeops; 342 struct vnodeops *zfs_xdvnodeops; 343 struct vnodeops *zfs_evnodeops; 344 345 void 346 zfs_remove_op_tables() 347 { 348 /* 349 * Remove vfs ops 350 */ 351 ASSERT(zfsfstype); 352 (void) vfs_freevfsops_by_type(zfsfstype); 353 zfsfstype = 0; 354 355 /* 356 * Remove vnode ops 357 */ 358 if (zfs_dvnodeops) 359 vn_freevnodeops(zfs_dvnodeops); 360 if (zfs_fvnodeops) 361 vn_freevnodeops(zfs_fvnodeops); 362 if (zfs_symvnodeops) 363 vn_freevnodeops(zfs_symvnodeops); 364 if (zfs_xdvnodeops) 365 vn_freevnodeops(zfs_xdvnodeops); 366 if (zfs_evnodeops) 367 vn_freevnodeops(zfs_evnodeops); 368 369 zfs_dvnodeops = NULL; 370 zfs_fvnodeops = NULL; 371 zfs_symvnodeops = NULL; 372 zfs_xdvnodeops = NULL; 373 zfs_evnodeops = NULL; 374 } 375 376 extern const fs_operation_def_t zfs_dvnodeops_template[]; 377 extern const fs_operation_def_t zfs_fvnodeops_template[]; 378 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 379 extern const fs_operation_def_t zfs_symvnodeops_template[]; 380 extern const fs_operation_def_t zfs_evnodeops_template[]; 381 382 int 383 zfs_create_op_tables() 384 { 385 int error; 386 387 /* 388 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 389 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 390 * In this case we just return as the ops vectors are already set up. 391 */ 392 if (zfs_dvnodeops) 393 return (0); 394 395 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 396 &zfs_dvnodeops); 397 if (error) 398 return (error); 399 400 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 401 &zfs_fvnodeops); 402 if (error) 403 return (error); 404 405 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 406 &zfs_symvnodeops); 407 if (error) 408 return (error); 409 410 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 411 &zfs_xdvnodeops); 412 if (error) 413 return (error); 414 415 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 416 &zfs_evnodeops); 417 418 return (error); 419 } 420 421 /* 422 * zfs_init_fs - Initialize the zfsvfs struct and the file system 423 * incore "master" object. Verify version compatibility. 424 */ 425 int 426 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp) 427 { 428 extern int zfsfstype; 429 430 objset_t *os = zfsvfs->z_os; 431 int i, error; 432 uint64_t fsid_guid; 433 uint64_t zval; 434 435 *zpp = NULL; 436 437 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 438 if (error) { 439 return (error); 440 } else if (zfsvfs->z_version > ZPL_VERSION) { 441 (void) printf("Mismatched versions: File system " 442 "is version %llu on-disk format, which is " 443 "incompatible with this software version %lld!", 444 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION); 445 return (ENOTSUP); 446 } 447 448 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 449 return (error); 450 zfsvfs->z_norm = (int)zval; 451 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 452 return (error); 453 zfsvfs->z_utf8 = (zval != 0); 454 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 455 return (error); 456 zfsvfs->z_case = (uint_t)zval; 457 /* 458 * Fold case on file systems that are always or sometimes case 459 * insensitive. 460 */ 461 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 462 zfsvfs->z_case == ZFS_CASE_MIXED) 463 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 464 465 /* 466 * The fsid is 64 bits, composed of an 8-bit fs type, which 467 * separates our fsid from any other filesystem types, and a 468 * 56-bit objset unique ID. The objset unique ID is unique to 469 * all objsets open on this system, provided by unique_create(). 470 * The 8-bit fs type must be put in the low bits of fsid[1] 471 * because that's where other Solaris filesystems put it. 472 */ 473 fsid_guid = dmu_objset_fsid_guid(os); 474 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 475 zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid; 476 zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 477 zfsfstype & 0xFF; 478 479 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 480 &zfsvfs->z_root); 481 if (error) 482 return (error); 483 ASSERT(zfsvfs->z_root != 0); 484 485 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 486 &zfsvfs->z_unlinkedobj); 487 if (error) 488 return (error); 489 490 /* 491 * Initialize zget mutex's 492 */ 493 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 494 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 495 496 error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp); 497 if (error) { 498 /* 499 * On error, we destroy the mutexes here since it's not 500 * possible for the caller to determine if the mutexes were 501 * initialized properly. 502 */ 503 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 504 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 505 return (error); 506 } 507 ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root); 508 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 509 &zfsvfs->z_fuid_obj); 510 if (error == ENOENT) 511 error = 0; 512 513 return (0); 514 } 515 516 /* 517 * define a couple of values we need available 518 * for both 64 and 32 bit environments. 519 */ 520 #ifndef NBITSMINOR64 521 #define NBITSMINOR64 32 522 #endif 523 #ifndef MAXMAJ64 524 #define MAXMAJ64 0xffffffffUL 525 #endif 526 #ifndef MAXMIN64 527 #define MAXMIN64 0xffffffffUL 528 #endif 529 530 /* 531 * Create special expldev for ZFS private use. 532 * Can't use standard expldev since it doesn't do 533 * what we want. The standard expldev() takes a 534 * dev32_t in LP64 and expands it to a long dev_t. 535 * We need an interface that takes a dev32_t in ILP32 536 * and expands it to a long dev_t. 537 */ 538 static uint64_t 539 zfs_expldev(dev_t dev) 540 { 541 #ifndef _LP64 542 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 543 return (((uint64_t)major << NBITSMINOR64) | 544 ((minor_t)dev & MAXMIN32)); 545 #else 546 return (dev); 547 #endif 548 } 549 550 /* 551 * Special cmpldev for ZFS private use. 552 * Can't use standard cmpldev since it takes 553 * a long dev_t and compresses it to dev32_t in 554 * LP64. We need to do a compaction of a long dev_t 555 * to a dev32_t in ILP32. 556 */ 557 dev_t 558 zfs_cmpldev(uint64_t dev) 559 { 560 #ifndef _LP64 561 minor_t minor = (minor_t)dev & MAXMIN64; 562 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 563 564 if (major > MAXMAJ32 || minor > MAXMIN32) 565 return (NODEV32); 566 567 return (((dev32_t)major << NBITSMINOR32) | minor); 568 #else 569 return (dev); 570 #endif 571 } 572 573 static void 574 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db) 575 { 576 znode_t *nzp; 577 578 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 579 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 580 581 mutex_enter(&zp->z_lock); 582 583 ASSERT(zp->z_dbuf == NULL); 584 zp->z_dbuf = db; 585 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error); 586 587 /* 588 * there should be no 589 * concurrent zgets on this object. 590 */ 591 if (nzp != NULL) 592 panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db); 593 594 /* 595 * Slap on VROOT if we are the root znode 596 */ 597 if (zp->z_id == zfsvfs->z_root) 598 ZTOV(zp)->v_flag |= VROOT; 599 600 mutex_exit(&zp->z_lock); 601 vn_exists(ZTOV(zp)); 602 } 603 604 void 605 zfs_znode_dmu_fini(znode_t *zp) 606 { 607 dmu_buf_t *db = zp->z_dbuf; 608 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 609 zp->z_unlinked || 610 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 611 ASSERT(zp->z_dbuf != NULL); 612 zp->z_dbuf = NULL; 613 VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL)); 614 dmu_buf_rele(db, NULL); 615 } 616 617 /* 618 * Construct a new znode/vnode and intialize. 619 * 620 * This does not do a call to dmu_set_user() that is 621 * up to the caller to do, in case you don't want to 622 * return the znode 623 */ 624 static znode_t * 625 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz) 626 { 627 znode_t *zp; 628 vnode_t *vp; 629 630 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 631 632 ASSERT(zp->z_dirlocks == NULL); 633 ASSERT(zp->z_dbuf == NULL); 634 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 635 636 /* 637 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 638 * the zfs_znode_move() callback. 639 */ 640 zp->z_phys = NULL; 641 zp->z_unlinked = 0; 642 zp->z_atime_dirty = 0; 643 zp->z_mapcnt = 0; 644 zp->z_last_itx = 0; 645 zp->z_id = db->db_object; 646 zp->z_blksz = blksz; 647 zp->z_seq = 0x7A4653; 648 zp->z_sync_cnt = 0; 649 650 vp = ZTOV(zp); 651 vn_reinit(vp); 652 653 zfs_znode_dmu_init(zfsvfs, zp, db); 654 655 zp->z_gen = zp->z_phys->zp_gen; 656 657 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 658 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 659 660 switch (vp->v_type) { 661 case VDIR: 662 if (zp->z_phys->zp_flags & ZFS_XATTR) { 663 vn_setops(vp, zfs_xdvnodeops); 664 vp->v_flag |= V_XATTRDIR; 665 } else { 666 vn_setops(vp, zfs_dvnodeops); 667 } 668 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 669 break; 670 case VBLK: 671 case VCHR: 672 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 673 /*FALLTHROUGH*/ 674 case VFIFO: 675 case VSOCK: 676 case VDOOR: 677 vn_setops(vp, zfs_fvnodeops); 678 break; 679 case VREG: 680 vp->v_flag |= VMODSORT; 681 vn_setops(vp, zfs_fvnodeops); 682 break; 683 case VLNK: 684 vn_setops(vp, zfs_symvnodeops); 685 break; 686 default: 687 vn_setops(vp, zfs_evnodeops); 688 break; 689 } 690 691 mutex_enter(&zfsvfs->z_znodes_lock); 692 list_insert_tail(&zfsvfs->z_all_znodes, zp); 693 membar_producer(); 694 /* 695 * Everything else must be valid before assigning z_zfsvfs makes the 696 * znode eligible for zfs_znode_move(). 697 */ 698 zp->z_zfsvfs = zfsvfs; 699 mutex_exit(&zfsvfs->z_znodes_lock); 700 701 VFS_HOLD(zfsvfs->z_vfs); 702 return (zp); 703 } 704 705 /* 706 * Create a new DMU object to hold a zfs znode. 707 * 708 * IN: dzp - parent directory for new znode 709 * vap - file attributes for new znode 710 * tx - dmu transaction id for zap operations 711 * cr - credentials of caller 712 * flag - flags: 713 * IS_ROOT_NODE - new object will be root 714 * IS_XATTR - new object is an attribute 715 * IS_REPLAY - intent log replay 716 * bonuslen - length of bonus buffer 717 * setaclp - File/Dir initial ACL 718 * fuidp - Tracks fuid allocation. 719 * 720 * OUT: zpp - allocated znode 721 * 722 */ 723 void 724 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 725 uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_t *setaclp, 726 zfs_fuid_info_t **fuidp) 727 { 728 dmu_buf_t *db; 729 znode_phys_t *pzp; 730 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 731 timestruc_t now; 732 uint64_t gen, obj; 733 int err; 734 735 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 736 737 if (zfsvfs->z_assign >= TXG_INITIAL) { /* ZIL replay */ 738 obj = vap->va_nodeid; 739 flag |= IS_REPLAY; 740 now = vap->va_ctime; /* see zfs_replay_create() */ 741 gen = vap->va_nblocks; /* ditto */ 742 } else { 743 obj = 0; 744 gethrestime(&now); 745 gen = dmu_tx_get_txg(tx); 746 } 747 748 /* 749 * Create a new DMU object. 750 */ 751 /* 752 * There's currently no mechanism for pre-reading the blocks that will 753 * be to needed allocate a new object, so we accept the small chance 754 * that there will be an i/o error and we will fail one of the 755 * assertions below. 756 */ 757 if (vap->va_type == VDIR) { 758 if (flag & IS_REPLAY) { 759 err = zap_create_claim_norm(zfsvfs->z_os, obj, 760 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 761 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 762 ASSERT3U(err, ==, 0); 763 } else { 764 obj = zap_create_norm(zfsvfs->z_os, 765 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 766 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 767 } 768 } else { 769 if (flag & IS_REPLAY) { 770 err = dmu_object_claim(zfsvfs->z_os, obj, 771 DMU_OT_PLAIN_FILE_CONTENTS, 0, 772 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 773 ASSERT3U(err, ==, 0); 774 } else { 775 obj = dmu_object_alloc(zfsvfs->z_os, 776 DMU_OT_PLAIN_FILE_CONTENTS, 0, 777 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 778 } 779 } 780 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db)); 781 dmu_buf_will_dirty(db, tx); 782 783 /* 784 * Initialize the znode physical data to zero. 785 */ 786 ASSERT(db->db_size >= sizeof (znode_phys_t)); 787 bzero(db->db_data, db->db_size); 788 pzp = db->db_data; 789 790 /* 791 * If this is the root, fix up the half-initialized parent pointer 792 * to reference the just-allocated physical data area. 793 */ 794 if (flag & IS_ROOT_NODE) { 795 dzp->z_dbuf = db; 796 dzp->z_phys = pzp; 797 dzp->z_id = obj; 798 } 799 800 /* 801 * If parent is an xattr, so am I. 802 */ 803 if (dzp->z_phys->zp_flags & ZFS_XATTR) 804 flag |= IS_XATTR; 805 806 if (vap->va_type == VBLK || vap->va_type == VCHR) { 807 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 808 } 809 810 if (zfsvfs->z_use_fuids) 811 pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 812 813 if (vap->va_type == VDIR) { 814 pzp->zp_size = 2; /* contents ("." and "..") */ 815 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 816 } 817 818 pzp->zp_parent = dzp->z_id; 819 if (flag & IS_XATTR) 820 pzp->zp_flags |= ZFS_XATTR; 821 822 pzp->zp_gen = gen; 823 824 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 825 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 826 827 if (vap->va_mask & AT_ATIME) { 828 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 829 } else { 830 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 831 } 832 833 if (vap->va_mask & AT_MTIME) { 834 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 835 } else { 836 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 837 } 838 839 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 840 if (!(flag & IS_ROOT_NODE)) { 841 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 842 *zpp = zfs_znode_alloc(zfsvfs, db, 0); 843 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 844 } else { 845 /* 846 * If we are creating the root node, the "parent" we 847 * passed in is the znode for the root. 848 */ 849 *zpp = dzp; 850 } 851 zfs_perm_init(*zpp, dzp, flag, vap, tx, cr, setaclp, fuidp); 852 } 853 854 void 855 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap) 856 { 857 xoptattr_t *xoap; 858 859 xoap = xva_getxoptattr(xvap); 860 ASSERT(xoap); 861 862 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 863 ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime); 864 XVA_SET_RTN(xvap, XAT_CREATETIME); 865 } 866 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 867 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly); 868 XVA_SET_RTN(xvap, XAT_READONLY); 869 } 870 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 871 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden); 872 XVA_SET_RTN(xvap, XAT_HIDDEN); 873 } 874 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 875 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system); 876 XVA_SET_RTN(xvap, XAT_SYSTEM); 877 } 878 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 879 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive); 880 XVA_SET_RTN(xvap, XAT_ARCHIVE); 881 } 882 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 883 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable); 884 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 885 } 886 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 887 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink); 888 XVA_SET_RTN(xvap, XAT_NOUNLINK); 889 } 890 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 891 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly); 892 XVA_SET_RTN(xvap, XAT_APPENDONLY); 893 } 894 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 895 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump); 896 XVA_SET_RTN(xvap, XAT_NODUMP); 897 } 898 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 899 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque); 900 XVA_SET_RTN(xvap, XAT_OPAQUE); 901 } 902 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 903 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 904 xoap->xoa_av_quarantined); 905 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 906 } 907 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 908 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified); 909 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 910 } 911 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 912 (void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp, 913 sizeof (xoap->xoa_av_scanstamp)); 914 zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP; 915 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 916 } 917 } 918 919 int 920 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 921 { 922 dmu_object_info_t doi; 923 dmu_buf_t *db; 924 znode_t *zp; 925 int err; 926 927 *zpp = NULL; 928 929 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 930 931 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 932 if (err) { 933 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 934 return (err); 935 } 936 937 dmu_object_info_from_db(db, &doi); 938 if (doi.doi_bonus_type != DMU_OT_ZNODE || 939 doi.doi_bonus_size < sizeof (znode_phys_t)) { 940 dmu_buf_rele(db, NULL); 941 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 942 return (EINVAL); 943 } 944 945 zp = dmu_buf_get_user(db); 946 if (zp != NULL) { 947 mutex_enter(&zp->z_lock); 948 949 /* 950 * Since we do immediate eviction of the z_dbuf, we 951 * should never find a dbuf with a znode that doesn't 952 * know about the dbuf. 953 */ 954 ASSERT3P(zp->z_dbuf, ==, db); 955 ASSERT3U(zp->z_id, ==, obj_num); 956 if (zp->z_unlinked) { 957 err = ENOENT; 958 } else { 959 VN_HOLD(ZTOV(zp)); 960 *zpp = zp; 961 err = 0; 962 } 963 dmu_buf_rele(db, NULL); 964 mutex_exit(&zp->z_lock); 965 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 966 return (err); 967 } 968 969 /* 970 * Not found create new znode/vnode 971 */ 972 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size); 973 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 974 *zpp = zp; 975 return (0); 976 } 977 978 int 979 zfs_rezget(znode_t *zp) 980 { 981 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 982 dmu_object_info_t doi; 983 dmu_buf_t *db; 984 uint64_t obj_num = zp->z_id; 985 int err; 986 987 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 988 989 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 990 if (err) { 991 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 992 return (err); 993 } 994 995 dmu_object_info_from_db(db, &doi); 996 if (doi.doi_bonus_type != DMU_OT_ZNODE || 997 doi.doi_bonus_size < sizeof (znode_phys_t)) { 998 dmu_buf_rele(db, NULL); 999 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1000 return (EINVAL); 1001 } 1002 1003 if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) { 1004 dmu_buf_rele(db, NULL); 1005 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1006 return (EIO); 1007 } 1008 1009 zfs_znode_dmu_init(zfsvfs, zp, db); 1010 zp->z_unlinked = (zp->z_phys->zp_links == 0); 1011 zp->z_blksz = doi.doi_data_block_size; 1012 1013 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1014 1015 return (0); 1016 } 1017 1018 void 1019 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1020 { 1021 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1022 objset_t *os = zfsvfs->z_os; 1023 uint64_t obj = zp->z_id; 1024 uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj; 1025 1026 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1027 if (acl_obj) 1028 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1029 VERIFY(0 == dmu_object_free(os, obj, tx)); 1030 zfs_znode_dmu_fini(zp); 1031 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1032 zfs_znode_free(zp); 1033 } 1034 1035 void 1036 zfs_zinactive(znode_t *zp) 1037 { 1038 vnode_t *vp = ZTOV(zp); 1039 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1040 uint64_t z_id = zp->z_id; 1041 1042 ASSERT(zp->z_dbuf && zp->z_phys); 1043 1044 /* 1045 * Don't allow a zfs_zget() while were trying to release this znode 1046 */ 1047 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1048 1049 mutex_enter(&zp->z_lock); 1050 mutex_enter(&vp->v_lock); 1051 vp->v_count--; 1052 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1053 /* 1054 * If the hold count is greater than zero, somebody has 1055 * obtained a new reference on this znode while we were 1056 * processing it here, so we are done. If we still have 1057 * mapped pages then we are also done, since we don't 1058 * want to inactivate the znode until the pages get pushed. 1059 * 1060 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1061 * this seems like it would leave the znode hanging with 1062 * no chance to go inactive... 1063 */ 1064 mutex_exit(&vp->v_lock); 1065 mutex_exit(&zp->z_lock); 1066 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1067 return; 1068 } 1069 mutex_exit(&vp->v_lock); 1070 1071 /* 1072 * If this was the last reference to a file with no links, 1073 * remove the file from the file system. 1074 */ 1075 if (zp->z_unlinked) { 1076 mutex_exit(&zp->z_lock); 1077 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1078 zfs_rmnode(zp); 1079 return; 1080 } 1081 mutex_exit(&zp->z_lock); 1082 zfs_znode_dmu_fini(zp); 1083 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1084 zfs_znode_free(zp); 1085 } 1086 1087 void 1088 zfs_znode_free(znode_t *zp) 1089 { 1090 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1091 1092 vn_invalid(ZTOV(zp)); 1093 1094 ASSERT(ZTOV(zp)->v_count == 0); 1095 1096 mutex_enter(&zfsvfs->z_znodes_lock); 1097 POINTER_INVALIDATE(&zp->z_zfsvfs); 1098 list_remove(&zfsvfs->z_all_znodes, zp); 1099 mutex_exit(&zfsvfs->z_znodes_lock); 1100 1101 kmem_cache_free(znode_cache, zp); 1102 1103 VFS_RELE(zfsvfs->z_vfs); 1104 } 1105 1106 void 1107 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1108 { 1109 timestruc_t now; 1110 1111 ASSERT(MUTEX_HELD(&zp->z_lock)); 1112 1113 gethrestime(&now); 1114 1115 if (tx) { 1116 dmu_buf_will_dirty(zp->z_dbuf, tx); 1117 zp->z_atime_dirty = 0; 1118 zp->z_seq++; 1119 } else { 1120 zp->z_atime_dirty = 1; 1121 } 1122 1123 if (flag & AT_ATIME) 1124 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 1125 1126 if (flag & AT_MTIME) { 1127 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 1128 if (zp->z_zfsvfs->z_use_fuids) 1129 zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); 1130 } 1131 1132 if (flag & AT_CTIME) { 1133 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 1134 if (zp->z_zfsvfs->z_use_fuids) 1135 zp->z_phys->zp_flags |= ZFS_ARCHIVE; 1136 } 1137 } 1138 1139 /* 1140 * Update the requested znode timestamps with the current time. 1141 * If we are in a transaction, then go ahead and mark the znode 1142 * dirty in the transaction so the timestamps will go to disk. 1143 * Otherwise, we will get pushed next time the znode is updated 1144 * in a transaction, or when this znode eventually goes inactive. 1145 * 1146 * Why is this OK? 1147 * 1 - Only the ACCESS time is ever updated outside of a transaction. 1148 * 2 - Multiple consecutive updates will be collapsed into a single 1149 * znode update by the transaction grouping semantics of the DMU. 1150 */ 1151 void 1152 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1153 { 1154 mutex_enter(&zp->z_lock); 1155 zfs_time_stamper_locked(zp, flag, tx); 1156 mutex_exit(&zp->z_lock); 1157 } 1158 1159 /* 1160 * Grow the block size for a file. 1161 * 1162 * IN: zp - znode of file to free data in. 1163 * size - requested block size 1164 * tx - open transaction. 1165 * 1166 * NOTE: this function assumes that the znode is write locked. 1167 */ 1168 void 1169 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1170 { 1171 int error; 1172 u_longlong_t dummy; 1173 1174 if (size <= zp->z_blksz) 1175 return; 1176 /* 1177 * If the file size is already greater than the current blocksize, 1178 * we will not grow. If there is more than one block in a file, 1179 * the blocksize cannot change. 1180 */ 1181 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 1182 return; 1183 1184 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1185 size, 0, tx); 1186 if (error == ENOTSUP) 1187 return; 1188 ASSERT3U(error, ==, 0); 1189 1190 /* What blocksize did we actually get? */ 1191 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 1192 } 1193 1194 /* 1195 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1196 * be calling back into the fs for a putpage(). E.g.: when truncating 1197 * a file, the pages being "thrown away* don't need to be written out. 1198 */ 1199 /* ARGSUSED */ 1200 static int 1201 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1202 int flags, cred_t *cr) 1203 { 1204 ASSERT(0); 1205 return (0); 1206 } 1207 1208 /* 1209 * Increase the file length 1210 * 1211 * IN: zp - znode of file to free data in. 1212 * end - new end-of-file 1213 * 1214 * RETURN: 0 if success 1215 * error code if failure 1216 */ 1217 static int 1218 zfs_extend(znode_t *zp, uint64_t end) 1219 { 1220 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1221 dmu_tx_t *tx; 1222 rl_t *rl; 1223 uint64_t newblksz; 1224 int error; 1225 1226 /* 1227 * We will change zp_size, lock the whole file. 1228 */ 1229 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1230 1231 /* 1232 * Nothing to do if file already at desired length. 1233 */ 1234 if (end <= zp->z_phys->zp_size) { 1235 zfs_range_unlock(rl); 1236 return (0); 1237 } 1238 top: 1239 tx = dmu_tx_create(zfsvfs->z_os); 1240 dmu_tx_hold_bonus(tx, zp->z_id); 1241 if (end > zp->z_blksz && 1242 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1243 /* 1244 * We are growing the file past the current block size. 1245 */ 1246 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1247 ASSERT(!ISP2(zp->z_blksz)); 1248 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1249 } else { 1250 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1251 } 1252 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1253 } else { 1254 newblksz = 0; 1255 } 1256 1257 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1258 if (error) { 1259 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1260 dmu_tx_wait(tx); 1261 dmu_tx_abort(tx); 1262 goto top; 1263 } 1264 dmu_tx_abort(tx); 1265 zfs_range_unlock(rl); 1266 return (error); 1267 } 1268 dmu_buf_will_dirty(zp->z_dbuf, tx); 1269 1270 if (newblksz) 1271 zfs_grow_blocksize(zp, newblksz, tx); 1272 1273 zp->z_phys->zp_size = end; 1274 1275 zfs_range_unlock(rl); 1276 1277 dmu_tx_commit(tx); 1278 1279 return (0); 1280 } 1281 1282 /* 1283 * Free space in a file. 1284 * 1285 * IN: zp - znode of file to free data in. 1286 * off - start of section to free. 1287 * len - length of section to free. 1288 * 1289 * RETURN: 0 if success 1290 * error code if failure 1291 */ 1292 static int 1293 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1294 { 1295 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1296 rl_t *rl; 1297 int error; 1298 1299 /* 1300 * Lock the range being freed. 1301 */ 1302 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1303 1304 /* 1305 * Nothing to do if file already at desired length. 1306 */ 1307 if (off >= zp->z_phys->zp_size) { 1308 zfs_range_unlock(rl); 1309 return (0); 1310 } 1311 1312 if (off + len > zp->z_phys->zp_size) 1313 len = zp->z_phys->zp_size - off; 1314 1315 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1316 1317 zfs_range_unlock(rl); 1318 1319 return (error); 1320 } 1321 1322 /* 1323 * Truncate a file 1324 * 1325 * IN: zp - znode of file to free data in. 1326 * end - new end-of-file. 1327 * 1328 * RETURN: 0 if success 1329 * error code if failure 1330 */ 1331 static int 1332 zfs_trunc(znode_t *zp, uint64_t end) 1333 { 1334 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1335 vnode_t *vp = ZTOV(zp); 1336 dmu_tx_t *tx; 1337 rl_t *rl; 1338 int error; 1339 1340 /* 1341 * We will change zp_size, lock the whole file. 1342 */ 1343 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1344 1345 /* 1346 * Nothing to do if file already at desired length. 1347 */ 1348 if (end >= zp->z_phys->zp_size) { 1349 zfs_range_unlock(rl); 1350 return (0); 1351 } 1352 1353 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1354 if (error) { 1355 zfs_range_unlock(rl); 1356 return (error); 1357 } 1358 top: 1359 tx = dmu_tx_create(zfsvfs->z_os); 1360 dmu_tx_hold_bonus(tx, zp->z_id); 1361 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1362 if (error) { 1363 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1364 dmu_tx_wait(tx); 1365 dmu_tx_abort(tx); 1366 goto top; 1367 } 1368 dmu_tx_abort(tx); 1369 zfs_range_unlock(rl); 1370 return (error); 1371 } 1372 dmu_buf_will_dirty(zp->z_dbuf, tx); 1373 1374 zp->z_phys->zp_size = end; 1375 1376 dmu_tx_commit(tx); 1377 1378 zfs_range_unlock(rl); 1379 1380 /* 1381 * Clear any mapped pages in the truncated region. This has to 1382 * happen outside of the transaction to avoid the possibility of 1383 * a deadlock with someone trying to push a page that we are 1384 * about to invalidate. 1385 */ 1386 rw_enter(&zp->z_map_lock, RW_WRITER); 1387 if (vn_has_cached_data(vp)) { 1388 page_t *pp; 1389 uint64_t start = end & PAGEMASK; 1390 int poff = end & PAGEOFFSET; 1391 1392 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1393 /* 1394 * We need to zero a partial page. 1395 */ 1396 pagezero(pp, poff, PAGESIZE - poff); 1397 start += PAGESIZE; 1398 page_unlock(pp); 1399 } 1400 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1401 B_INVAL | B_TRUNC, NULL); 1402 ASSERT(error == 0); 1403 } 1404 rw_exit(&zp->z_map_lock); 1405 1406 return (0); 1407 } 1408 1409 /* 1410 * Free space in a file 1411 * 1412 * IN: zp - znode of file to free data in. 1413 * off - start of range 1414 * len - end of range (0 => EOF) 1415 * flag - current file open mode flags. 1416 * log - TRUE if this action should be logged 1417 * 1418 * RETURN: 0 if success 1419 * error code if failure 1420 */ 1421 int 1422 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1423 { 1424 vnode_t *vp = ZTOV(zp); 1425 dmu_tx_t *tx; 1426 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1427 zilog_t *zilog = zfsvfs->z_log; 1428 int error; 1429 1430 if (off > zp->z_phys->zp_size) { 1431 error = zfs_extend(zp, off+len); 1432 if (error == 0 && log) 1433 goto log; 1434 else 1435 return (error); 1436 } 1437 1438 /* 1439 * Check for any locks in the region to be freed. 1440 */ 1441 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 1442 uint64_t length = (len ? len : zp->z_phys->zp_size - off); 1443 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1444 return (error); 1445 } 1446 1447 if (len == 0) { 1448 error = zfs_trunc(zp, off); 1449 } else { 1450 if ((error = zfs_free_range(zp, off, len)) == 0 && 1451 off + len > zp->z_phys->zp_size) 1452 error = zfs_extend(zp, off+len); 1453 } 1454 if (error || !log) 1455 return (error); 1456 log: 1457 tx = dmu_tx_create(zfsvfs->z_os); 1458 dmu_tx_hold_bonus(tx, zp->z_id); 1459 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1460 if (error) { 1461 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1462 dmu_tx_wait(tx); 1463 dmu_tx_abort(tx); 1464 goto log; 1465 } 1466 dmu_tx_abort(tx); 1467 return (error); 1468 } 1469 1470 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1471 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1472 1473 dmu_tx_commit(tx); 1474 return (0); 1475 } 1476 1477 void 1478 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1479 { 1480 zfsvfs_t zfsvfs; 1481 uint64_t moid, doid, version; 1482 uint64_t sense = ZFS_CASE_SENSITIVE; 1483 uint64_t norm = 0; 1484 nvpair_t *elem; 1485 int error; 1486 znode_t *rootzp = NULL; 1487 vnode_t *vp; 1488 vattr_t vattr; 1489 znode_t *zp; 1490 1491 /* 1492 * First attempt to create master node. 1493 */ 1494 /* 1495 * In an empty objset, there are no blocks to read and thus 1496 * there can be no i/o errors (which we assert below). 1497 */ 1498 moid = MASTER_NODE_OBJ; 1499 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1500 DMU_OT_NONE, 0, tx); 1501 ASSERT(error == 0); 1502 1503 /* 1504 * Set starting attributes. 1505 */ 1506 if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) 1507 version = ZPL_VERSION; 1508 else 1509 version = ZPL_VERSION_FUID - 1; 1510 error = zap_update(os, moid, ZPL_VERSION_STR, 1511 8, 1, &version, tx); 1512 elem = NULL; 1513 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1514 /* For the moment we expect all zpl props to be uint64_ts */ 1515 uint64_t val; 1516 char *name; 1517 1518 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1519 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1520 name = nvpair_name(elem); 1521 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1522 version = val; 1523 error = zap_update(os, moid, ZPL_VERSION_STR, 1524 8, 1, &version, tx); 1525 } else { 1526 error = zap_update(os, moid, name, 8, 1, &val, tx); 1527 } 1528 ASSERT(error == 0); 1529 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1530 norm = val; 1531 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1532 sense = val; 1533 } 1534 ASSERT(version != 0); 1535 1536 /* 1537 * Create a delete queue. 1538 */ 1539 doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1540 1541 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx); 1542 ASSERT(error == 0); 1543 1544 /* 1545 * Create root znode. Create minimal znode/vnode/zfsvfs 1546 * to allow zfs_mknode to work. 1547 */ 1548 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1549 vattr.va_type = VDIR; 1550 vattr.va_mode = S_IFDIR|0755; 1551 vattr.va_uid = crgetuid(cr); 1552 vattr.va_gid = crgetgid(cr); 1553 1554 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1555 rootzp->z_unlinked = 0; 1556 rootzp->z_atime_dirty = 0; 1557 1558 vp = ZTOV(rootzp); 1559 vn_reinit(vp); 1560 vp->v_type = VDIR; 1561 1562 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1563 1564 zfsvfs.z_os = os; 1565 zfsvfs.z_assign = TXG_NOWAIT; 1566 zfsvfs.z_parent = &zfsvfs; 1567 zfsvfs.z_version = version; 1568 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1569 zfsvfs.z_norm = norm; 1570 /* 1571 * Fold case on file systems that are always or sometimes case 1572 * insensitive. 1573 */ 1574 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1575 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1576 1577 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1578 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1579 offsetof(znode_t, z_link_node)); 1580 1581 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1582 rootzp->z_zfsvfs = &zfsvfs; 1583 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, NULL, NULL); 1584 ASSERT3P(zp, ==, rootzp); 1585 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1586 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1587 ASSERT(error == 0); 1588 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1589 1590 ZTOV(rootzp)->v_count = 0; 1591 dmu_buf_rele(rootzp->z_dbuf, NULL); 1592 rootzp->z_dbuf = NULL; 1593 kmem_cache_free(znode_cache, rootzp); 1594 } 1595 1596 #endif /* _KERNEL */ 1597 /* 1598 * Given an object number, return its parent object number and whether 1599 * or not the object is an extended attribute directory. 1600 */ 1601 static int 1602 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1603 { 1604 dmu_buf_t *db; 1605 dmu_object_info_t doi; 1606 znode_phys_t *zp; 1607 int error; 1608 1609 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1610 return (error); 1611 1612 dmu_object_info_from_db(db, &doi); 1613 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1614 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1615 dmu_buf_rele(db, FTAG); 1616 return (EINVAL); 1617 } 1618 1619 zp = db->db_data; 1620 *pobjp = zp->zp_parent; 1621 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1622 S_ISDIR(zp->zp_mode); 1623 dmu_buf_rele(db, FTAG); 1624 1625 return (0); 1626 } 1627 1628 int 1629 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1630 { 1631 char *path = buf + len - 1; 1632 int error; 1633 1634 *path = '\0'; 1635 1636 for (;;) { 1637 uint64_t pobj; 1638 char component[MAXNAMELEN + 2]; 1639 size_t complen; 1640 int is_xattrdir; 1641 1642 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1643 &is_xattrdir)) != 0) 1644 break; 1645 1646 if (pobj == obj) { 1647 if (path[0] != '/') 1648 *--path = '/'; 1649 break; 1650 } 1651 1652 component[0] = '/'; 1653 if (is_xattrdir) { 1654 (void) sprintf(component + 1, "<xattrdir>"); 1655 } else { 1656 error = zap_value_search(osp, pobj, obj, 1657 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1658 if (error != 0) 1659 break; 1660 } 1661 1662 complen = strlen(component); 1663 path -= complen; 1664 ASSERT(path >= buf); 1665 bcopy(component, path, complen); 1666 obj = pobj; 1667 } 1668 1669 if (error == 0) 1670 (void) memmove(buf, path, buf + len - path); 1671 return (error); 1672 } 1673