1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2007 Jeremy Teo */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/time.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/resource.h> 33 #include <sys/vfs.h> 34 #include <sys/vfs_opreg.h> 35 #include <sys/vnode.h> 36 #include <sys/file.h> 37 #include <sys/stat.h> 38 #include <sys/kmem.h> 39 #include <sys/taskq.h> 40 #include <sys/uio.h> 41 #include <sys/vmsystm.h> 42 #include <sys/atomic.h> 43 #include <sys/vm.h> 44 #include <vm/seg_vn.h> 45 #include <vm/pvn.h> 46 #include <vm/as.h> 47 #include <vm/kpm.h> 48 #include <vm/seg_kpm.h> 49 #include <sys/mman.h> 50 #include <sys/pathname.h> 51 #include <sys/cmn_err.h> 52 #include <sys/errno.h> 53 #include <sys/unistd.h> 54 #include <sys/zfs_dir.h> 55 #include <sys/zfs_acl.h> 56 #include <sys/zfs_ioctl.h> 57 #include <sys/fs/zfs.h> 58 #include <sys/dmu.h> 59 #include <sys/spa.h> 60 #include <sys/txg.h> 61 #include <sys/dbuf.h> 62 #include <sys/zap.h> 63 #include <sys/sa.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include <sys/sid.h> 69 #include "fs/fs_subr.h" 70 #include <sys/zfs_ctldir.h> 71 #include <sys/zfs_fuid.h> 72 #include <sys/zfs_sa.h> 73 #include <sys/dnlc.h> 74 #include <sys/zfs_rlock.h> 75 #include <sys/extdirent.h> 76 #include <sys/kidmap.h> 77 #include <sys/cred.h> 78 #include <sys/attr.h> 79 80 /* 81 * Programming rules. 82 * 83 * Each vnode op performs some logical unit of work. To do this, the ZPL must 84 * properly lock its in-core state, create a DMU transaction, do the work, 85 * record this work in the intent log (ZIL), commit the DMU transaction, 86 * and wait for the intent log to commit if it is a synchronous operation. 87 * Moreover, the vnode ops must work in both normal and log replay context. 88 * The ordering of events is important to avoid deadlocks and references 89 * to freed memory. The example below illustrates the following Big Rules: 90 * 91 * (1) A check must be made in each zfs thread for a mounted file system. 92 * This is done avoiding races using ZFS_ENTER(zfsvfs). 93 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 94 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 95 * can return EIO from the calling function. 96 * 97 * (2) VN_RELE() should always be the last thing except for zil_commit() 98 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 99 * First, if it's the last reference, the vnode/znode 100 * can be freed, so the zp may point to freed memory. Second, the last 101 * reference will call zfs_zinactive(), which may induce a lot of work -- 102 * pushing cached pages (which acquires range locks) and syncing out 103 * cached atime changes. Third, zfs_zinactive() may require a new tx, 104 * which could deadlock the system if you were already holding one. 105 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 106 * 107 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 108 * as they can span dmu_tx_assign() calls. 109 * 110 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 111 * This is critical because we don't want to block while holding locks. 112 * Note, in particular, that if a lock is sometimes acquired before 113 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 114 * use a non-blocking assign can deadlock the system. The scenario: 115 * 116 * Thread A has grabbed a lock before calling dmu_tx_assign(). 117 * Thread B is in an already-assigned tx, and blocks for this lock. 118 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 119 * forever, because the previous txg can't quiesce until B's tx commits. 120 * 121 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 122 * then drop all locks, call dmu_tx_wait(), and try again. 123 * 124 * (5) If the operation succeeded, generate the intent log entry for it 125 * before dropping locks. This ensures that the ordering of events 126 * in the intent log matches the order in which they actually occurred. 127 * During ZIL replay the zfs_log_* functions will update the sequence 128 * number to indicate the zil transaction has replayed. 129 * 130 * (6) At the end of each vnode op, the DMU tx must always commit, 131 * regardless of whether there were any errors. 132 * 133 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 134 * to ensure that synchronous semantics are provided when necessary. 135 * 136 * In general, this is how things should be ordered in each vnode op: 137 * 138 * ZFS_ENTER(zfsvfs); // exit if unmounted 139 * top: 140 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 141 * rw_enter(...); // grab any other locks you need 142 * tx = dmu_tx_create(...); // get DMU tx 143 * dmu_tx_hold_*(); // hold each object you might modify 144 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 145 * if (error) { 146 * rw_exit(...); // drop locks 147 * zfs_dirent_unlock(dl); // unlock directory entry 148 * VN_RELE(...); // release held vnodes 149 * if (error == ERESTART) { 150 * dmu_tx_wait(tx); 151 * dmu_tx_abort(tx); 152 * goto top; 153 * } 154 * dmu_tx_abort(tx); // abort DMU tx 155 * ZFS_EXIT(zfsvfs); // finished in zfs 156 * return (error); // really out of space 157 * } 158 * error = do_real_work(); // do whatever this VOP does 159 * if (error == 0) 160 * zfs_log_*(...); // on success, make ZIL entry 161 * dmu_tx_commit(tx); // commit DMU tx -- error or not 162 * rw_exit(...); // drop locks 163 * zfs_dirent_unlock(dl); // unlock directory entry 164 * VN_RELE(...); // release held vnodes 165 * zil_commit(zilog, seq, foid); // synchronous when necessary 166 * ZFS_EXIT(zfsvfs); // finished in zfs 167 * return (error); // done, report error 168 */ 169 170 /* ARGSUSED */ 171 static int 172 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 173 { 174 znode_t *zp = VTOZ(*vpp); 175 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 176 177 ZFS_ENTER(zfsvfs); 178 ZFS_VERIFY_ZP(zp); 179 180 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 181 ((flag & FAPPEND) == 0)) { 182 ZFS_EXIT(zfsvfs); 183 return (EPERM); 184 } 185 186 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 187 ZTOV(zp)->v_type == VREG && 188 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 189 if (fs_vscan(*vpp, cr, 0) != 0) { 190 ZFS_EXIT(zfsvfs); 191 return (EACCES); 192 } 193 } 194 195 /* Keep a count of the synchronous opens in the znode */ 196 if (flag & (FSYNC | FDSYNC)) 197 atomic_inc_32(&zp->z_sync_cnt); 198 199 ZFS_EXIT(zfsvfs); 200 return (0); 201 } 202 203 /* ARGSUSED */ 204 static int 205 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 206 caller_context_t *ct) 207 { 208 znode_t *zp = VTOZ(vp); 209 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 210 211 /* 212 * Clean up any locks held by this process on the vp. 213 */ 214 cleanlocks(vp, ddi_get_pid(), 0); 215 cleanshares(vp, ddi_get_pid()); 216 217 ZFS_ENTER(zfsvfs); 218 ZFS_VERIFY_ZP(zp); 219 220 /* Decrement the synchronous opens in the znode */ 221 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 222 atomic_dec_32(&zp->z_sync_cnt); 223 224 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 225 ZTOV(zp)->v_type == VREG && 226 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 227 VERIFY(fs_vscan(vp, cr, 1) == 0); 228 229 ZFS_EXIT(zfsvfs); 230 return (0); 231 } 232 233 /* 234 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 235 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 236 */ 237 static int 238 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 239 { 240 znode_t *zp = VTOZ(vp); 241 uint64_t noff = (uint64_t)*off; /* new offset */ 242 uint64_t file_sz; 243 int error; 244 boolean_t hole; 245 246 file_sz = zp->z_size; 247 if (noff >= file_sz) { 248 return (ENXIO); 249 } 250 251 if (cmd == _FIO_SEEK_HOLE) 252 hole = B_TRUE; 253 else 254 hole = B_FALSE; 255 256 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 257 258 /* end of file? */ 259 if ((error == ESRCH) || (noff > file_sz)) { 260 /* 261 * Handle the virtual hole at the end of file. 262 */ 263 if (hole) { 264 *off = file_sz; 265 return (0); 266 } 267 return (ENXIO); 268 } 269 270 if (noff < *off) 271 return (error); 272 *off = noff; 273 return (error); 274 } 275 276 /* ARGSUSED */ 277 static int 278 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 279 int *rvalp, caller_context_t *ct) 280 { 281 offset_t off; 282 int error; 283 zfsvfs_t *zfsvfs; 284 znode_t *zp; 285 286 switch (com) { 287 case _FIOFFS: 288 return (zfs_sync(vp->v_vfsp, 0, cred)); 289 290 /* 291 * The following two ioctls are used by bfu. Faking out, 292 * necessary to avoid bfu errors. 293 */ 294 case _FIOGDIO: 295 case _FIOSDIO: 296 return (0); 297 298 case _FIO_SEEK_DATA: 299 case _FIO_SEEK_HOLE: 300 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 301 return (EFAULT); 302 303 zp = VTOZ(vp); 304 zfsvfs = zp->z_zfsvfs; 305 ZFS_ENTER(zfsvfs); 306 ZFS_VERIFY_ZP(zp); 307 308 /* offset parameter is in/out */ 309 error = zfs_holey(vp, com, &off); 310 ZFS_EXIT(zfsvfs); 311 if (error) 312 return (error); 313 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 314 return (EFAULT); 315 return (0); 316 } 317 return (ENOTTY); 318 } 319 320 /* 321 * Utility functions to map and unmap a single physical page. These 322 * are used to manage the mappable copies of ZFS file data, and therefore 323 * do not update ref/mod bits. 324 */ 325 caddr_t 326 zfs_map_page(page_t *pp, enum seg_rw rw) 327 { 328 if (kpm_enable) 329 return (hat_kpm_mapin(pp, 0)); 330 ASSERT(rw == S_READ || rw == S_WRITE); 331 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 332 (caddr_t)-1)); 333 } 334 335 void 336 zfs_unmap_page(page_t *pp, caddr_t addr) 337 { 338 if (kpm_enable) { 339 hat_kpm_mapout(pp, 0, addr); 340 } else { 341 ppmapout(addr); 342 } 343 } 344 345 /* 346 * When a file is memory mapped, we must keep the IO data synchronized 347 * between the DMU cache and the memory mapped pages. What this means: 348 * 349 * On Write: If we find a memory mapped page, we write to *both* 350 * the page and the dmu buffer. 351 */ 352 static void 353 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 354 { 355 int64_t off; 356 357 off = start & PAGEOFFSET; 358 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 359 page_t *pp; 360 uint64_t nbytes = MIN(PAGESIZE - off, len); 361 362 if (pp = page_lookup(vp, start, SE_SHARED)) { 363 caddr_t va; 364 365 va = zfs_map_page(pp, S_WRITE); 366 (void) dmu_read(os, oid, start+off, nbytes, va+off, 367 DMU_READ_PREFETCH); 368 zfs_unmap_page(pp, va); 369 page_unlock(pp); 370 } 371 len -= nbytes; 372 off = 0; 373 } 374 } 375 376 /* 377 * When a file is memory mapped, we must keep the IO data synchronized 378 * between the DMU cache and the memory mapped pages. What this means: 379 * 380 * On Read: We "read" preferentially from memory mapped pages, 381 * else we default from the dmu buffer. 382 * 383 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 384 * the file is memory mapped. 385 */ 386 static int 387 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 388 { 389 znode_t *zp = VTOZ(vp); 390 objset_t *os = zp->z_zfsvfs->z_os; 391 int64_t start, off; 392 int len = nbytes; 393 int error = 0; 394 395 start = uio->uio_loffset; 396 off = start & PAGEOFFSET; 397 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 398 page_t *pp; 399 uint64_t bytes = MIN(PAGESIZE - off, len); 400 401 if (pp = page_lookup(vp, start, SE_SHARED)) { 402 caddr_t va; 403 404 va = zfs_map_page(pp, S_READ); 405 error = uiomove(va + off, bytes, UIO_READ, uio); 406 zfs_unmap_page(pp, va); 407 page_unlock(pp); 408 } else { 409 error = dmu_read_uio(os, zp->z_id, uio, bytes); 410 } 411 len -= bytes; 412 off = 0; 413 if (error) 414 break; 415 } 416 return (error); 417 } 418 419 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 420 421 /* 422 * Read bytes from specified file into supplied buffer. 423 * 424 * IN: vp - vnode of file to be read from. 425 * uio - structure supplying read location, range info, 426 * and return buffer. 427 * ioflag - SYNC flags; used to provide FRSYNC semantics. 428 * cr - credentials of caller. 429 * ct - caller context 430 * 431 * OUT: uio - updated offset and range, buffer filled. 432 * 433 * RETURN: 0 if success 434 * error code if failure 435 * 436 * Side Effects: 437 * vp - atime updated if byte count > 0 438 */ 439 /* ARGSUSED */ 440 static int 441 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 442 { 443 znode_t *zp = VTOZ(vp); 444 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 445 objset_t *os; 446 ssize_t n, nbytes; 447 int error; 448 rl_t *rl; 449 xuio_t *xuio = NULL; 450 451 ZFS_ENTER(zfsvfs); 452 ZFS_VERIFY_ZP(zp); 453 os = zfsvfs->z_os; 454 455 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 456 ZFS_EXIT(zfsvfs); 457 return (EACCES); 458 } 459 460 /* 461 * Validate file offset 462 */ 463 if (uio->uio_loffset < (offset_t)0) { 464 ZFS_EXIT(zfsvfs); 465 return (EINVAL); 466 } 467 468 /* 469 * Fasttrack empty reads 470 */ 471 if (uio->uio_resid == 0) { 472 ZFS_EXIT(zfsvfs); 473 return (0); 474 } 475 476 /* 477 * Check for mandatory locks 478 */ 479 if (MANDMODE(zp->z_mode)) { 480 if (error = chklock(vp, FREAD, 481 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 482 ZFS_EXIT(zfsvfs); 483 return (error); 484 } 485 } 486 487 /* 488 * If we're in FRSYNC mode, sync out this znode before reading it. 489 */ 490 if (ioflag & FRSYNC) 491 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 492 493 /* 494 * Lock the range against changes. 495 */ 496 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 497 498 /* 499 * If we are reading past end-of-file we can skip 500 * to the end; but we might still need to set atime. 501 */ 502 if (uio->uio_loffset >= zp->z_size) { 503 error = 0; 504 goto out; 505 } 506 507 ASSERT(uio->uio_loffset < zp->z_size); 508 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 509 510 if ((uio->uio_extflg == UIO_XUIO) && 511 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 512 int nblk; 513 int blksz = zp->z_blksz; 514 uint64_t offset = uio->uio_loffset; 515 516 xuio = (xuio_t *)uio; 517 if ((ISP2(blksz))) { 518 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 519 blksz)) / blksz; 520 } else { 521 ASSERT(offset + n <= blksz); 522 nblk = 1; 523 } 524 (void) dmu_xuio_init(xuio, nblk); 525 526 if (vn_has_cached_data(vp)) { 527 /* 528 * For simplicity, we always allocate a full buffer 529 * even if we only expect to read a portion of a block. 530 */ 531 while (--nblk >= 0) { 532 (void) dmu_xuio_add(xuio, 533 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 534 blksz), 0, blksz); 535 } 536 } 537 } 538 539 while (n > 0) { 540 nbytes = MIN(n, zfs_read_chunk_size - 541 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 542 543 if (vn_has_cached_data(vp)) 544 error = mappedread(vp, nbytes, uio); 545 else 546 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 547 if (error) { 548 /* convert checksum errors into IO errors */ 549 if (error == ECKSUM) 550 error = EIO; 551 break; 552 } 553 554 n -= nbytes; 555 } 556 out: 557 zfs_range_unlock(rl); 558 559 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 560 ZFS_EXIT(zfsvfs); 561 return (error); 562 } 563 564 /* 565 * Write the bytes to a file. 566 * 567 * IN: vp - vnode of file to be written to. 568 * uio - structure supplying write location, range info, 569 * and data buffer. 570 * ioflag - FAPPEND flag set if in append mode. 571 * cr - credentials of caller. 572 * ct - caller context (NFS/CIFS fem monitor only) 573 * 574 * OUT: uio - updated offset and range. 575 * 576 * RETURN: 0 if success 577 * error code if failure 578 * 579 * Timestamps: 580 * vp - ctime|mtime updated if byte count > 0 581 */ 582 583 /* ARGSUSED */ 584 static int 585 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 586 { 587 znode_t *zp = VTOZ(vp); 588 rlim64_t limit = uio->uio_llimit; 589 ssize_t start_resid = uio->uio_resid; 590 ssize_t tx_bytes; 591 uint64_t end_size; 592 dmu_tx_t *tx; 593 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 594 zilog_t *zilog; 595 offset_t woff; 596 ssize_t n, nbytes; 597 rl_t *rl; 598 int max_blksz = zfsvfs->z_max_blksz; 599 int error; 600 arc_buf_t *abuf; 601 iovec_t *aiov; 602 xuio_t *xuio = NULL; 603 int i_iov = 0; 604 int iovcnt = uio->uio_iovcnt; 605 iovec_t *iovp = uio->uio_iov; 606 int write_eof; 607 int count = 0; 608 sa_bulk_attr_t bulk[4]; 609 uint64_t mtime[2], ctime[2]; 610 611 /* 612 * Fasttrack empty write 613 */ 614 n = start_resid; 615 if (n == 0) 616 return (0); 617 618 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 619 limit = MAXOFFSET_T; 620 621 ZFS_ENTER(zfsvfs); 622 ZFS_VERIFY_ZP(zp); 623 624 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 625 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 626 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 627 &zp->z_size, 8); 628 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 629 &zp->z_pflags, 8); 630 631 /* 632 * If immutable or not appending then return EPERM 633 */ 634 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 635 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 636 (uio->uio_loffset < zp->z_size))) { 637 ZFS_EXIT(zfsvfs); 638 return (EPERM); 639 } 640 641 zilog = zfsvfs->z_log; 642 643 /* 644 * Validate file offset 645 */ 646 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 647 if (woff < 0) { 648 ZFS_EXIT(zfsvfs); 649 return (EINVAL); 650 } 651 652 /* 653 * Check for mandatory locks before calling zfs_range_lock() 654 * in order to prevent a deadlock with locks set via fcntl(). 655 */ 656 if (MANDMODE((mode_t)zp->z_mode) && 657 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 658 ZFS_EXIT(zfsvfs); 659 return (error); 660 } 661 662 /* 663 * Pre-fault the pages to ensure slow (eg NFS) pages 664 * don't hold up txg. 665 * Skip this if uio contains loaned arc_buf. 666 */ 667 if ((uio->uio_extflg == UIO_XUIO) && 668 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 669 xuio = (xuio_t *)uio; 670 else 671 uio_prefaultpages(n, uio); 672 673 /* 674 * If in append mode, set the io offset pointer to eof. 675 */ 676 if (ioflag & FAPPEND) { 677 /* 678 * Obtain an appending range lock to guarantee file append 679 * semantics. We reset the write offset once we have the lock. 680 */ 681 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 682 woff = rl->r_off; 683 if (rl->r_len == UINT64_MAX) { 684 /* 685 * We overlocked the file because this write will cause 686 * the file block size to increase. 687 * Note that zp_size cannot change with this lock held. 688 */ 689 woff = zp->z_size; 690 } 691 uio->uio_loffset = woff; 692 } else { 693 /* 694 * Note that if the file block size will change as a result of 695 * this write, then this range lock will lock the entire file 696 * so that we can re-write the block safely. 697 */ 698 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 699 } 700 701 if (woff >= limit) { 702 zfs_range_unlock(rl); 703 ZFS_EXIT(zfsvfs); 704 return (EFBIG); 705 } 706 707 if ((woff + n) > limit || woff > (limit - n)) 708 n = limit - woff; 709 710 /* Will this write extend the file length? */ 711 write_eof = (woff + n > zp->z_size); 712 713 end_size = MAX(zp->z_size, woff + n); 714 715 /* 716 * Write the file in reasonable size chunks. Each chunk is written 717 * in a separate transaction; this keeps the intent log records small 718 * and allows us to do more fine-grained space accounting. 719 */ 720 while (n > 0) { 721 abuf = NULL; 722 woff = uio->uio_loffset; 723 again: 724 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 725 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 726 if (abuf != NULL) 727 dmu_return_arcbuf(abuf); 728 error = EDQUOT; 729 break; 730 } 731 732 if (xuio && abuf == NULL) { 733 ASSERT(i_iov < iovcnt); 734 aiov = &iovp[i_iov]; 735 abuf = dmu_xuio_arcbuf(xuio, i_iov); 736 dmu_xuio_clear(xuio, i_iov); 737 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 738 iovec_t *, aiov, arc_buf_t *, abuf); 739 ASSERT((aiov->iov_base == abuf->b_data) || 740 ((char *)aiov->iov_base - (char *)abuf->b_data + 741 aiov->iov_len == arc_buf_size(abuf))); 742 i_iov++; 743 } else if (abuf == NULL && n >= max_blksz && 744 woff >= zp->z_size && 745 P2PHASE(woff, max_blksz) == 0 && 746 zp->z_blksz == max_blksz) { 747 /* 748 * This write covers a full block. "Borrow" a buffer 749 * from the dmu so that we can fill it before we enter 750 * a transaction. This avoids the possibility of 751 * holding up the transaction if the data copy hangs 752 * up on a pagefault (e.g., from an NFS server mapping). 753 */ 754 size_t cbytes; 755 756 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 757 max_blksz); 758 ASSERT(abuf != NULL); 759 ASSERT(arc_buf_size(abuf) == max_blksz); 760 if (error = uiocopy(abuf->b_data, max_blksz, 761 UIO_WRITE, uio, &cbytes)) { 762 dmu_return_arcbuf(abuf); 763 break; 764 } 765 ASSERT(cbytes == max_blksz); 766 } 767 768 /* 769 * Start a transaction. 770 */ 771 tx = dmu_tx_create(zfsvfs->z_os); 772 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 773 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 774 zfs_sa_upgrade_txholds(tx, zp); 775 error = dmu_tx_assign(tx, TXG_NOWAIT); 776 if (error) { 777 if (error == ERESTART) { 778 dmu_tx_wait(tx); 779 dmu_tx_abort(tx); 780 goto again; 781 } 782 dmu_tx_abort(tx); 783 if (abuf != NULL) 784 dmu_return_arcbuf(abuf); 785 break; 786 } 787 788 /* 789 * If zfs_range_lock() over-locked we grow the blocksize 790 * and then reduce the lock range. This will only happen 791 * on the first iteration since zfs_range_reduce() will 792 * shrink down r_len to the appropriate size. 793 */ 794 if (rl->r_len == UINT64_MAX) { 795 uint64_t new_blksz; 796 797 if (zp->z_blksz > max_blksz) { 798 ASSERT(!ISP2(zp->z_blksz)); 799 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 800 } else { 801 new_blksz = MIN(end_size, max_blksz); 802 } 803 zfs_grow_blocksize(zp, new_blksz, tx); 804 zfs_range_reduce(rl, woff, n); 805 } 806 807 /* 808 * XXX - should we really limit each write to z_max_blksz? 809 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 810 */ 811 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 812 813 if (abuf == NULL) { 814 tx_bytes = uio->uio_resid; 815 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 816 uio, nbytes, tx); 817 tx_bytes -= uio->uio_resid; 818 } else { 819 tx_bytes = nbytes; 820 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 821 /* 822 * If this is not a full block write, but we are 823 * extending the file past EOF and this data starts 824 * block-aligned, use assign_arcbuf(). Otherwise, 825 * write via dmu_write(). 826 */ 827 if (tx_bytes < max_blksz && (!write_eof || 828 aiov->iov_base != abuf->b_data)) { 829 ASSERT(xuio); 830 dmu_write(zfsvfs->z_os, zp->z_id, woff, 831 aiov->iov_len, aiov->iov_base, tx); 832 dmu_return_arcbuf(abuf); 833 xuio_stat_wbuf_copied(); 834 } else { 835 ASSERT(xuio || tx_bytes == max_blksz); 836 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 837 woff, abuf, tx); 838 } 839 ASSERT(tx_bytes <= uio->uio_resid); 840 uioskip(uio, tx_bytes); 841 } 842 if (tx_bytes && vn_has_cached_data(vp)) { 843 update_pages(vp, woff, 844 tx_bytes, zfsvfs->z_os, zp->z_id); 845 } 846 847 /* 848 * If we made no progress, we're done. If we made even 849 * partial progress, update the znode and ZIL accordingly. 850 */ 851 if (tx_bytes == 0) { 852 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 853 (void *)&zp->z_size, sizeof (uint64_t), tx); 854 dmu_tx_commit(tx); 855 ASSERT(error != 0); 856 break; 857 } 858 859 /* 860 * Clear Set-UID/Set-GID bits on successful write if not 861 * privileged and at least one of the excute bits is set. 862 * 863 * It would be nice to to this after all writes have 864 * been done, but that would still expose the ISUID/ISGID 865 * to another app after the partial write is committed. 866 * 867 */ 868 mutex_enter(&zp->z_acl_lock); 869 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 870 (S_IXUSR >> 6))) != 0 && 871 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 872 secpolicy_vnode_setid_retain(cr, 873 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 874 uint64_t newmode; 875 zp->z_mode &= ~(S_ISUID | S_ISGID); 876 newmode = zp->z_mode; 877 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 878 (void *)&newmode, sizeof (uint64_t), tx); 879 } 880 mutex_exit(&zp->z_acl_lock); 881 882 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 883 B_TRUE); 884 885 /* 886 * Update the file size (zp_size) if it has changed; 887 * account for possible concurrent updates. 888 */ 889 while ((end_size = zp->z_size) < uio->uio_loffset) { 890 (void) atomic_cas_64(&zp->z_size, end_size, 891 uio->uio_loffset); 892 ASSERT(error == 0); 893 } 894 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 895 896 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 897 dmu_tx_commit(tx); 898 899 if (error != 0) 900 break; 901 ASSERT(tx_bytes == nbytes); 902 n -= nbytes; 903 } 904 905 zfs_range_unlock(rl); 906 907 /* 908 * If we're in replay mode, or we made no progress, return error. 909 * Otherwise, it's at least a partial write, so it's successful. 910 */ 911 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 912 ZFS_EXIT(zfsvfs); 913 return (error); 914 } 915 916 if (ioflag & (FSYNC | FDSYNC)) 917 zil_commit(zilog, zp->z_last_itx, zp->z_id); 918 919 ZFS_EXIT(zfsvfs); 920 return (0); 921 } 922 923 void 924 zfs_get_done(zgd_t *zgd, int error) 925 { 926 znode_t *zp = zgd->zgd_private; 927 objset_t *os = zp->z_zfsvfs->z_os; 928 929 if (zgd->zgd_db) 930 dmu_buf_rele(zgd->zgd_db, zgd); 931 932 zfs_range_unlock(zgd->zgd_rl); 933 934 /* 935 * Release the vnode asynchronously as we currently have the 936 * txg stopped from syncing. 937 */ 938 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 939 940 if (error == 0 && zgd->zgd_bp) 941 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 942 943 kmem_free(zgd, sizeof (zgd_t)); 944 } 945 946 #ifdef DEBUG 947 static int zil_fault_io = 0; 948 #endif 949 950 /* 951 * Get data to generate a TX_WRITE intent log record. 952 */ 953 int 954 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 955 { 956 zfsvfs_t *zfsvfs = arg; 957 objset_t *os = zfsvfs->z_os; 958 znode_t *zp; 959 uint64_t object = lr->lr_foid; 960 uint64_t offset = lr->lr_offset; 961 uint64_t size = lr->lr_length; 962 blkptr_t *bp = &lr->lr_blkptr; 963 dmu_buf_t *db; 964 zgd_t *zgd; 965 int error = 0; 966 967 ASSERT(zio != NULL); 968 ASSERT(size != 0); 969 970 /* 971 * Nothing to do if the file has been removed 972 */ 973 if (zfs_zget(zfsvfs, object, &zp) != 0) 974 return (ENOENT); 975 if (zp->z_unlinked) { 976 /* 977 * Release the vnode asynchronously as we currently have the 978 * txg stopped from syncing. 979 */ 980 VN_RELE_ASYNC(ZTOV(zp), 981 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 982 return (ENOENT); 983 } 984 985 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 986 zgd->zgd_zilog = zfsvfs->z_log; 987 zgd->zgd_private = zp; 988 989 /* 990 * Write records come in two flavors: immediate and indirect. 991 * For small writes it's cheaper to store the data with the 992 * log record (immediate); for large writes it's cheaper to 993 * sync the data and get a pointer to it (indirect) so that 994 * we don't have to write the data twice. 995 */ 996 if (buf != NULL) { /* immediate write */ 997 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 998 /* test for truncation needs to be done while range locked */ 999 if (offset >= zp->z_size) { 1000 error = ENOENT; 1001 } else { 1002 error = dmu_read(os, object, offset, size, buf, 1003 DMU_READ_NO_PREFETCH); 1004 } 1005 ASSERT(error == 0 || error == ENOENT); 1006 } else { /* indirect write */ 1007 /* 1008 * Have to lock the whole block to ensure when it's 1009 * written out and it's checksum is being calculated 1010 * that no one can change the data. We need to re-check 1011 * blocksize after we get the lock in case it's changed! 1012 */ 1013 for (;;) { 1014 uint64_t blkoff; 1015 size = zp->z_blksz; 1016 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1017 offset -= blkoff; 1018 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1019 RL_READER); 1020 if (zp->z_blksz == size) 1021 break; 1022 offset += blkoff; 1023 zfs_range_unlock(zgd->zgd_rl); 1024 } 1025 /* test for truncation needs to be done while range locked */ 1026 if (lr->lr_offset >= zp->z_size) 1027 error = ENOENT; 1028 #ifdef DEBUG 1029 if (zil_fault_io) { 1030 error = EIO; 1031 zil_fault_io = 0; 1032 } 1033 #endif 1034 if (error == 0) 1035 error = dmu_buf_hold(os, object, offset, zgd, &db); 1036 1037 if (error == 0) { 1038 zgd->zgd_db = db; 1039 zgd->zgd_bp = bp; 1040 1041 ASSERT(db->db_offset == offset); 1042 ASSERT(db->db_size == size); 1043 1044 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1045 zfs_get_done, zgd); 1046 ASSERT(error || lr->lr_length <= zp->z_blksz); 1047 1048 /* 1049 * On success, we need to wait for the write I/O 1050 * initiated by dmu_sync() to complete before we can 1051 * release this dbuf. We will finish everything up 1052 * in the zfs_get_done() callback. 1053 */ 1054 if (error == 0) 1055 return (0); 1056 1057 if (error == EALREADY) { 1058 lr->lr_common.lrc_txtype = TX_WRITE2; 1059 error = 0; 1060 } 1061 } 1062 } 1063 1064 zfs_get_done(zgd, error); 1065 1066 return (error); 1067 } 1068 1069 /*ARGSUSED*/ 1070 static int 1071 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1072 caller_context_t *ct) 1073 { 1074 znode_t *zp = VTOZ(vp); 1075 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1076 int error; 1077 1078 ZFS_ENTER(zfsvfs); 1079 ZFS_VERIFY_ZP(zp); 1080 1081 if (flag & V_ACE_MASK) 1082 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1083 else 1084 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1085 1086 ZFS_EXIT(zfsvfs); 1087 return (error); 1088 } 1089 1090 /* 1091 * If vnode is for a device return a specfs vnode instead. 1092 */ 1093 static int 1094 specvp_check(vnode_t **vpp, cred_t *cr) 1095 { 1096 int error = 0; 1097 1098 if (IS_DEVVP(*vpp)) { 1099 struct vnode *svp; 1100 1101 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1102 VN_RELE(*vpp); 1103 if (svp == NULL) 1104 error = ENOSYS; 1105 *vpp = svp; 1106 } 1107 return (error); 1108 } 1109 1110 1111 /* 1112 * Lookup an entry in a directory, or an extended attribute directory. 1113 * If it exists, return a held vnode reference for it. 1114 * 1115 * IN: dvp - vnode of directory to search. 1116 * nm - name of entry to lookup. 1117 * pnp - full pathname to lookup [UNUSED]. 1118 * flags - LOOKUP_XATTR set if looking for an attribute. 1119 * rdir - root directory vnode [UNUSED]. 1120 * cr - credentials of caller. 1121 * ct - caller context 1122 * direntflags - directory lookup flags 1123 * realpnp - returned pathname. 1124 * 1125 * OUT: vpp - vnode of located entry, NULL if not found. 1126 * 1127 * RETURN: 0 if success 1128 * error code if failure 1129 * 1130 * Timestamps: 1131 * NA 1132 */ 1133 /* ARGSUSED */ 1134 static int 1135 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1136 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1137 int *direntflags, pathname_t *realpnp) 1138 { 1139 znode_t *zdp = VTOZ(dvp); 1140 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1141 int error = 0; 1142 1143 /* fast path */ 1144 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1145 1146 if (dvp->v_type != VDIR) { 1147 return (ENOTDIR); 1148 } else if (zdp->z_sa_hdl == NULL) { 1149 return (EIO); 1150 } 1151 1152 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1153 error = zfs_fastaccesschk_execute(zdp, cr); 1154 if (!error) { 1155 *vpp = dvp; 1156 VN_HOLD(*vpp); 1157 return (0); 1158 } 1159 return (error); 1160 } else { 1161 vnode_t *tvp = dnlc_lookup(dvp, nm); 1162 1163 if (tvp) { 1164 error = zfs_fastaccesschk_execute(zdp, cr); 1165 if (error) { 1166 VN_RELE(tvp); 1167 return (error); 1168 } 1169 if (tvp == DNLC_NO_VNODE) { 1170 VN_RELE(tvp); 1171 return (ENOENT); 1172 } else { 1173 *vpp = tvp; 1174 return (specvp_check(vpp, cr)); 1175 } 1176 } 1177 } 1178 } 1179 1180 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1181 1182 ZFS_ENTER(zfsvfs); 1183 ZFS_VERIFY_ZP(zdp); 1184 1185 *vpp = NULL; 1186 1187 if (flags & LOOKUP_XATTR) { 1188 /* 1189 * If the xattr property is off, refuse the lookup request. 1190 */ 1191 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1192 ZFS_EXIT(zfsvfs); 1193 return (EINVAL); 1194 } 1195 1196 /* 1197 * We don't allow recursive attributes.. 1198 * Maybe someday we will. 1199 */ 1200 if (zdp->z_pflags & ZFS_XATTR) { 1201 ZFS_EXIT(zfsvfs); 1202 return (EINVAL); 1203 } 1204 1205 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1206 ZFS_EXIT(zfsvfs); 1207 return (error); 1208 } 1209 1210 /* 1211 * Do we have permission to get into attribute directory? 1212 */ 1213 1214 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1215 B_FALSE, cr)) { 1216 VN_RELE(*vpp); 1217 *vpp = NULL; 1218 } 1219 1220 ZFS_EXIT(zfsvfs); 1221 return (error); 1222 } 1223 1224 if (dvp->v_type != VDIR) { 1225 ZFS_EXIT(zfsvfs); 1226 return (ENOTDIR); 1227 } 1228 1229 /* 1230 * Check accessibility of directory. 1231 */ 1232 1233 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1234 ZFS_EXIT(zfsvfs); 1235 return (error); 1236 } 1237 1238 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1239 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1240 ZFS_EXIT(zfsvfs); 1241 return (EILSEQ); 1242 } 1243 1244 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1245 if (error == 0) 1246 error = specvp_check(vpp, cr); 1247 1248 ZFS_EXIT(zfsvfs); 1249 return (error); 1250 } 1251 1252 /* 1253 * Attempt to create a new entry in a directory. If the entry 1254 * already exists, truncate the file if permissible, else return 1255 * an error. Return the vp of the created or trunc'd file. 1256 * 1257 * IN: dvp - vnode of directory to put new file entry in. 1258 * name - name of new file entry. 1259 * vap - attributes of new file. 1260 * excl - flag indicating exclusive or non-exclusive mode. 1261 * mode - mode to open file with. 1262 * cr - credentials of caller. 1263 * flag - large file flag [UNUSED]. 1264 * ct - caller context 1265 * vsecp - ACL to be set 1266 * 1267 * OUT: vpp - vnode of created or trunc'd entry. 1268 * 1269 * RETURN: 0 if success 1270 * error code if failure 1271 * 1272 * Timestamps: 1273 * dvp - ctime|mtime updated if new entry created 1274 * vp - ctime|mtime always, atime if new 1275 */ 1276 1277 /* ARGSUSED */ 1278 static int 1279 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1280 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1281 vsecattr_t *vsecp) 1282 { 1283 znode_t *zp, *dzp = VTOZ(dvp); 1284 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1285 zilog_t *zilog; 1286 objset_t *os; 1287 zfs_dirlock_t *dl; 1288 dmu_tx_t *tx; 1289 int error; 1290 ksid_t *ksid; 1291 uid_t uid; 1292 gid_t gid = crgetgid(cr); 1293 zfs_acl_ids_t acl_ids; 1294 boolean_t fuid_dirtied; 1295 1296 /* 1297 * If we have an ephemeral id, ACL, or XVATTR then 1298 * make sure file system is at proper version 1299 */ 1300 1301 ksid = crgetsid(cr, KSID_OWNER); 1302 if (ksid) 1303 uid = ksid_getid(ksid); 1304 else 1305 uid = crgetuid(cr); 1306 1307 if (zfsvfs->z_use_fuids == B_FALSE && 1308 (vsecp || (vap->va_mask & AT_XVATTR) || 1309 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1310 return (EINVAL); 1311 1312 ZFS_ENTER(zfsvfs); 1313 ZFS_VERIFY_ZP(dzp); 1314 os = zfsvfs->z_os; 1315 zilog = zfsvfs->z_log; 1316 1317 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1318 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1319 ZFS_EXIT(zfsvfs); 1320 return (EILSEQ); 1321 } 1322 1323 if (vap->va_mask & AT_XVATTR) { 1324 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1325 crgetuid(cr), cr, vap->va_type)) != 0) { 1326 ZFS_EXIT(zfsvfs); 1327 return (error); 1328 } 1329 } 1330 top: 1331 *vpp = NULL; 1332 1333 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1334 vap->va_mode &= ~VSVTX; 1335 1336 if (*name == '\0') { 1337 /* 1338 * Null component name refers to the directory itself. 1339 */ 1340 VN_HOLD(dvp); 1341 zp = dzp; 1342 dl = NULL; 1343 error = 0; 1344 } else { 1345 /* possible VN_HOLD(zp) */ 1346 int zflg = 0; 1347 1348 if (flag & FIGNORECASE) 1349 zflg |= ZCILOOK; 1350 1351 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1352 NULL, NULL); 1353 if (error) { 1354 if (strcmp(name, "..") == 0) 1355 error = EISDIR; 1356 ZFS_EXIT(zfsvfs); 1357 return (error); 1358 } 1359 } 1360 1361 if (zp == NULL) { 1362 uint64_t txtype; 1363 1364 /* 1365 * Create a new file object and update the directory 1366 * to reference it. 1367 */ 1368 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1369 goto out; 1370 } 1371 1372 /* 1373 * We only support the creation of regular files in 1374 * extended attribute directories. 1375 */ 1376 1377 if ((dzp->z_pflags & ZFS_XATTR) && 1378 (vap->va_type != VREG)) { 1379 error = EINVAL; 1380 goto out; 1381 } 1382 1383 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1384 &acl_ids)) != 0) 1385 goto out; 1386 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1387 zfs_acl_ids_free(&acl_ids); 1388 error = EDQUOT; 1389 goto out; 1390 } 1391 1392 tx = dmu_tx_create(os); 1393 1394 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1395 ZFS_SA_BASE_ATTR_SIZE); 1396 1397 fuid_dirtied = zfsvfs->z_fuid_dirty; 1398 if (fuid_dirtied) 1399 zfs_fuid_txhold(zfsvfs, tx); 1400 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1401 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1402 if (!zfsvfs->z_use_sa && 1403 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1404 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1405 0, acl_ids.z_aclp->z_acl_bytes); 1406 } 1407 error = dmu_tx_assign(tx, TXG_NOWAIT); 1408 if (error) { 1409 zfs_acl_ids_free(&acl_ids); 1410 zfs_dirent_unlock(dl); 1411 if (error == ERESTART) { 1412 dmu_tx_wait(tx); 1413 dmu_tx_abort(tx); 1414 goto top; 1415 } 1416 dmu_tx_abort(tx); 1417 ZFS_EXIT(zfsvfs); 1418 return (error); 1419 } 1420 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1421 1422 if (fuid_dirtied) 1423 zfs_fuid_sync(zfsvfs, tx); 1424 1425 (void) zfs_link_create(dl, zp, tx, ZNEW); 1426 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1427 if (flag & FIGNORECASE) 1428 txtype |= TX_CI; 1429 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1430 vsecp, acl_ids.z_fuidp, vap); 1431 zfs_acl_ids_free(&acl_ids); 1432 dmu_tx_commit(tx); 1433 } else { 1434 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1435 1436 /* 1437 * A directory entry already exists for this name. 1438 */ 1439 /* 1440 * Can't truncate an existing file if in exclusive mode. 1441 */ 1442 if (excl == EXCL) { 1443 error = EEXIST; 1444 goto out; 1445 } 1446 /* 1447 * Can't open a directory for writing. 1448 */ 1449 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1450 error = EISDIR; 1451 goto out; 1452 } 1453 /* 1454 * Verify requested access to file. 1455 */ 1456 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1457 goto out; 1458 } 1459 1460 mutex_enter(&dzp->z_lock); 1461 dzp->z_seq++; 1462 mutex_exit(&dzp->z_lock); 1463 1464 /* 1465 * Truncate regular files if requested. 1466 */ 1467 if ((ZTOV(zp)->v_type == VREG) && 1468 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1469 /* we can't hold any locks when calling zfs_freesp() */ 1470 zfs_dirent_unlock(dl); 1471 dl = NULL; 1472 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1473 if (error == 0) { 1474 vnevent_create(ZTOV(zp), ct); 1475 } 1476 } 1477 } 1478 out: 1479 1480 if (dl) 1481 zfs_dirent_unlock(dl); 1482 1483 if (error) { 1484 if (zp) 1485 VN_RELE(ZTOV(zp)); 1486 } else { 1487 *vpp = ZTOV(zp); 1488 error = specvp_check(vpp, cr); 1489 } 1490 1491 ZFS_EXIT(zfsvfs); 1492 return (error); 1493 } 1494 1495 /* 1496 * Remove an entry from a directory. 1497 * 1498 * IN: dvp - vnode of directory to remove entry from. 1499 * name - name of entry to remove. 1500 * cr - credentials of caller. 1501 * ct - caller context 1502 * flags - case flags 1503 * 1504 * RETURN: 0 if success 1505 * error code if failure 1506 * 1507 * Timestamps: 1508 * dvp - ctime|mtime 1509 * vp - ctime (if nlink > 0) 1510 */ 1511 1512 uint64_t null_xattr = 0; 1513 1514 /*ARGSUSED*/ 1515 static int 1516 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1517 int flags) 1518 { 1519 znode_t *zp, *dzp = VTOZ(dvp); 1520 znode_t *xzp = NULL; 1521 vnode_t *vp; 1522 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1523 zilog_t *zilog; 1524 uint64_t acl_obj, xattr_obj = 0; 1525 uint64_t xattr_obj_unlinked = 0; 1526 zfs_dirlock_t *dl; 1527 dmu_tx_t *tx; 1528 boolean_t may_delete_now, delete_now = FALSE; 1529 boolean_t unlinked, toobig = FALSE; 1530 uint64_t txtype; 1531 pathname_t *realnmp = NULL; 1532 pathname_t realnm; 1533 int error; 1534 int zflg = ZEXISTS; 1535 1536 ZFS_ENTER(zfsvfs); 1537 ZFS_VERIFY_ZP(dzp); 1538 zilog = zfsvfs->z_log; 1539 1540 if (flags & FIGNORECASE) { 1541 zflg |= ZCILOOK; 1542 pn_alloc(&realnm); 1543 realnmp = &realnm; 1544 } 1545 1546 top: 1547 /* 1548 * Attempt to lock directory; fail if entry doesn't exist. 1549 */ 1550 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1551 NULL, realnmp)) { 1552 if (realnmp) 1553 pn_free(realnmp); 1554 ZFS_EXIT(zfsvfs); 1555 return (error); 1556 } 1557 1558 vp = ZTOV(zp); 1559 1560 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1561 goto out; 1562 } 1563 1564 /* 1565 * Need to use rmdir for removing directories. 1566 */ 1567 if (vp->v_type == VDIR) { 1568 error = EPERM; 1569 goto out; 1570 } 1571 1572 vnevent_remove(vp, dvp, name, ct); 1573 1574 if (realnmp) 1575 dnlc_remove(dvp, realnmp->pn_buf); 1576 else 1577 dnlc_remove(dvp, name); 1578 1579 mutex_enter(&vp->v_lock); 1580 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1581 mutex_exit(&vp->v_lock); 1582 1583 /* 1584 * We may delete the znode now, or we may put it in the unlinked set; 1585 * it depends on whether we're the last link, and on whether there are 1586 * other holds on the vnode. So we dmu_tx_hold() the right things to 1587 * allow for either case. 1588 */ 1589 tx = dmu_tx_create(zfsvfs->z_os); 1590 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1591 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1592 zfs_sa_upgrade_txholds(tx, zp); 1593 zfs_sa_upgrade_txholds(tx, dzp); 1594 if (may_delete_now) { 1595 toobig = 1596 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1597 /* if the file is too big, only hold_free a token amount */ 1598 dmu_tx_hold_free(tx, zp->z_id, 0, 1599 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1600 } 1601 1602 /* are there any extended attributes? */ 1603 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1604 &xattr_obj, sizeof (xattr_obj)); 1605 if (xattr_obj) { 1606 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1607 ASSERT3U(error, ==, 0); 1608 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1609 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1610 } 1611 1612 /* are there any additional acls */ 1613 if ((acl_obj = ZFS_EXTERNAL_ACL(zp)) != 0 && may_delete_now) 1614 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1615 1616 /* charge as an update -- would be nice not to charge at all */ 1617 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1618 1619 error = dmu_tx_assign(tx, TXG_NOWAIT); 1620 if (error) { 1621 zfs_dirent_unlock(dl); 1622 VN_RELE(vp); 1623 if (error == ERESTART) { 1624 dmu_tx_wait(tx); 1625 dmu_tx_abort(tx); 1626 goto top; 1627 } 1628 if (realnmp) 1629 pn_free(realnmp); 1630 dmu_tx_abort(tx); 1631 ZFS_EXIT(zfsvfs); 1632 return (error); 1633 } 1634 1635 /* 1636 * Remove the directory entry. 1637 */ 1638 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1639 1640 if (error) { 1641 dmu_tx_commit(tx); 1642 goto out; 1643 } 1644 1645 if (unlinked) { 1646 1647 mutex_enter(&vp->v_lock); 1648 1649 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1650 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1651 delete_now = may_delete_now && !toobig && 1652 vp->v_count == 1 && !vn_has_cached_data(vp) && 1653 xattr_obj == xattr_obj_unlinked && ZFS_EXTERNAL_ACL(zp) == 1654 acl_obj; 1655 mutex_exit(&vp->v_lock); 1656 } 1657 1658 if (delete_now) { 1659 if (xattr_obj_unlinked) { 1660 ASSERT3U(xzp->z_links, ==, 2); 1661 mutex_enter(&xzp->z_lock); 1662 xzp->z_unlinked = 1; 1663 xzp->z_links = 0; 1664 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1665 &xzp->z_links, sizeof (xzp->z_links), tx); 1666 ASSERT3U(error, ==, 0); 1667 mutex_exit(&xzp->z_lock); 1668 zfs_unlinked_add(xzp, tx); 1669 if (zp->z_is_sa) 1670 error = sa_remove(zp->z_sa_hdl, 1671 SA_ZPL_XATTR(zfsvfs), tx); 1672 else 1673 error = sa_update(zp->z_sa_hdl, 1674 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1675 sizeof (uint64_t), tx); 1676 ASSERT3U(error, ==, 0); 1677 } 1678 mutex_enter(&zp->z_lock); 1679 mutex_enter(&vp->v_lock); 1680 vp->v_count--; 1681 ASSERT3U(vp->v_count, ==, 0); 1682 mutex_exit(&vp->v_lock); 1683 mutex_exit(&zp->z_lock); 1684 zfs_znode_delete(zp, tx); 1685 } else if (unlinked) { 1686 zfs_unlinked_add(zp, tx); 1687 } 1688 1689 txtype = TX_REMOVE; 1690 if (flags & FIGNORECASE) 1691 txtype |= TX_CI; 1692 zfs_log_remove(zilog, tx, txtype, dzp, name); 1693 1694 dmu_tx_commit(tx); 1695 out: 1696 if (realnmp) 1697 pn_free(realnmp); 1698 1699 zfs_dirent_unlock(dl); 1700 1701 if (!delete_now) 1702 VN_RELE(vp); 1703 if (xzp) 1704 VN_RELE(ZTOV(xzp)); 1705 1706 ZFS_EXIT(zfsvfs); 1707 return (error); 1708 } 1709 1710 /* 1711 * Create a new directory and insert it into dvp using the name 1712 * provided. Return a pointer to the inserted directory. 1713 * 1714 * IN: dvp - vnode of directory to add subdir to. 1715 * dirname - name of new directory. 1716 * vap - attributes of new directory. 1717 * cr - credentials of caller. 1718 * ct - caller context 1719 * vsecp - ACL to be set 1720 * 1721 * OUT: vpp - vnode of created directory. 1722 * 1723 * RETURN: 0 if success 1724 * error code if failure 1725 * 1726 * Timestamps: 1727 * dvp - ctime|mtime updated 1728 * vp - ctime|mtime|atime updated 1729 */ 1730 /*ARGSUSED*/ 1731 static int 1732 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1733 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1734 { 1735 znode_t *zp, *dzp = VTOZ(dvp); 1736 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1737 zilog_t *zilog; 1738 zfs_dirlock_t *dl; 1739 uint64_t txtype; 1740 dmu_tx_t *tx; 1741 int error; 1742 int zf = ZNEW; 1743 ksid_t *ksid; 1744 uid_t uid; 1745 gid_t gid = crgetgid(cr); 1746 zfs_acl_ids_t acl_ids; 1747 boolean_t fuid_dirtied; 1748 1749 ASSERT(vap->va_type == VDIR); 1750 1751 /* 1752 * If we have an ephemeral id, ACL, or XVATTR then 1753 * make sure file system is at proper version 1754 */ 1755 1756 ksid = crgetsid(cr, KSID_OWNER); 1757 if (ksid) 1758 uid = ksid_getid(ksid); 1759 else 1760 uid = crgetuid(cr); 1761 if (zfsvfs->z_use_fuids == B_FALSE && 1762 (vsecp || (vap->va_mask & AT_XVATTR) || 1763 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1764 return (EINVAL); 1765 1766 ZFS_ENTER(zfsvfs); 1767 ZFS_VERIFY_ZP(dzp); 1768 zilog = zfsvfs->z_log; 1769 1770 if (dzp->z_pflags & ZFS_XATTR) { 1771 ZFS_EXIT(zfsvfs); 1772 return (EINVAL); 1773 } 1774 1775 if (zfsvfs->z_utf8 && u8_validate(dirname, 1776 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1777 ZFS_EXIT(zfsvfs); 1778 return (EILSEQ); 1779 } 1780 if (flags & FIGNORECASE) 1781 zf |= ZCILOOK; 1782 1783 if (vap->va_mask & AT_XVATTR) 1784 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1785 crgetuid(cr), cr, vap->va_type)) != 0) { 1786 ZFS_EXIT(zfsvfs); 1787 return (error); 1788 } 1789 1790 /* 1791 * First make sure the new directory doesn't exist. 1792 */ 1793 top: 1794 *vpp = NULL; 1795 1796 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1797 NULL, NULL)) { 1798 ZFS_EXIT(zfsvfs); 1799 return (error); 1800 } 1801 1802 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1803 zfs_dirent_unlock(dl); 1804 ZFS_EXIT(zfsvfs); 1805 return (error); 1806 } 1807 1808 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1809 &acl_ids)) != 0) { 1810 zfs_dirent_unlock(dl); 1811 ZFS_EXIT(zfsvfs); 1812 return (error); 1813 } 1814 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1815 zfs_acl_ids_free(&acl_ids); 1816 zfs_dirent_unlock(dl); 1817 ZFS_EXIT(zfsvfs); 1818 return (EDQUOT); 1819 } 1820 1821 /* 1822 * Add a new entry to the directory. 1823 */ 1824 tx = dmu_tx_create(zfsvfs->z_os); 1825 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1826 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1827 fuid_dirtied = zfsvfs->z_fuid_dirty; 1828 if (fuid_dirtied) 1829 zfs_fuid_txhold(zfsvfs, tx); 1830 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1831 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1832 acl_ids.z_aclp->z_acl_bytes); 1833 } 1834 1835 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1836 ZFS_SA_BASE_ATTR_SIZE); 1837 1838 error = dmu_tx_assign(tx, TXG_NOWAIT); 1839 if (error) { 1840 zfs_acl_ids_free(&acl_ids); 1841 zfs_dirent_unlock(dl); 1842 if (error == ERESTART) { 1843 dmu_tx_wait(tx); 1844 dmu_tx_abort(tx); 1845 goto top; 1846 } 1847 dmu_tx_abort(tx); 1848 ZFS_EXIT(zfsvfs); 1849 return (error); 1850 } 1851 1852 /* 1853 * Create new node. 1854 */ 1855 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1856 1857 if (fuid_dirtied) 1858 zfs_fuid_sync(zfsvfs, tx); 1859 1860 /* 1861 * Now put new name in parent dir. 1862 */ 1863 (void) zfs_link_create(dl, zp, tx, ZNEW); 1864 1865 *vpp = ZTOV(zp); 1866 1867 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1868 if (flags & FIGNORECASE) 1869 txtype |= TX_CI; 1870 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1871 acl_ids.z_fuidp, vap); 1872 1873 zfs_acl_ids_free(&acl_ids); 1874 1875 dmu_tx_commit(tx); 1876 1877 zfs_dirent_unlock(dl); 1878 1879 ZFS_EXIT(zfsvfs); 1880 return (0); 1881 } 1882 1883 /* 1884 * Remove a directory subdir entry. If the current working 1885 * directory is the same as the subdir to be removed, the 1886 * remove will fail. 1887 * 1888 * IN: dvp - vnode of directory to remove from. 1889 * name - name of directory to be removed. 1890 * cwd - vnode of current working directory. 1891 * cr - credentials of caller. 1892 * ct - caller context 1893 * flags - case flags 1894 * 1895 * RETURN: 0 if success 1896 * error code if failure 1897 * 1898 * Timestamps: 1899 * dvp - ctime|mtime updated 1900 */ 1901 /*ARGSUSED*/ 1902 static int 1903 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1904 caller_context_t *ct, int flags) 1905 { 1906 znode_t *dzp = VTOZ(dvp); 1907 znode_t *zp; 1908 vnode_t *vp; 1909 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1910 zilog_t *zilog; 1911 zfs_dirlock_t *dl; 1912 dmu_tx_t *tx; 1913 int error; 1914 int zflg = ZEXISTS; 1915 1916 ZFS_ENTER(zfsvfs); 1917 ZFS_VERIFY_ZP(dzp); 1918 zilog = zfsvfs->z_log; 1919 1920 if (flags & FIGNORECASE) 1921 zflg |= ZCILOOK; 1922 top: 1923 zp = NULL; 1924 1925 /* 1926 * Attempt to lock directory; fail if entry doesn't exist. 1927 */ 1928 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1929 NULL, NULL)) { 1930 ZFS_EXIT(zfsvfs); 1931 return (error); 1932 } 1933 1934 vp = ZTOV(zp); 1935 1936 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1937 goto out; 1938 } 1939 1940 if (vp->v_type != VDIR) { 1941 error = ENOTDIR; 1942 goto out; 1943 } 1944 1945 if (vp == cwd) { 1946 error = EINVAL; 1947 goto out; 1948 } 1949 1950 vnevent_rmdir(vp, dvp, name, ct); 1951 1952 /* 1953 * Grab a lock on the directory to make sure that noone is 1954 * trying to add (or lookup) entries while we are removing it. 1955 */ 1956 rw_enter(&zp->z_name_lock, RW_WRITER); 1957 1958 /* 1959 * Grab a lock on the parent pointer to make sure we play well 1960 * with the treewalk and directory rename code. 1961 */ 1962 rw_enter(&zp->z_parent_lock, RW_WRITER); 1963 1964 tx = dmu_tx_create(zfsvfs->z_os); 1965 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1966 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1967 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1968 zfs_sa_upgrade_txholds(tx, zp); 1969 zfs_sa_upgrade_txholds(tx, dzp); 1970 error = dmu_tx_assign(tx, TXG_NOWAIT); 1971 if (error) { 1972 rw_exit(&zp->z_parent_lock); 1973 rw_exit(&zp->z_name_lock); 1974 zfs_dirent_unlock(dl); 1975 VN_RELE(vp); 1976 if (error == ERESTART) { 1977 dmu_tx_wait(tx); 1978 dmu_tx_abort(tx); 1979 goto top; 1980 } 1981 dmu_tx_abort(tx); 1982 ZFS_EXIT(zfsvfs); 1983 return (error); 1984 } 1985 1986 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1987 1988 if (error == 0) { 1989 uint64_t txtype = TX_RMDIR; 1990 if (flags & FIGNORECASE) 1991 txtype |= TX_CI; 1992 zfs_log_remove(zilog, tx, txtype, dzp, name); 1993 } 1994 1995 dmu_tx_commit(tx); 1996 1997 rw_exit(&zp->z_parent_lock); 1998 rw_exit(&zp->z_name_lock); 1999 out: 2000 zfs_dirent_unlock(dl); 2001 2002 VN_RELE(vp); 2003 2004 ZFS_EXIT(zfsvfs); 2005 return (error); 2006 } 2007 2008 /* 2009 * Read as many directory entries as will fit into the provided 2010 * buffer from the given directory cursor position (specified in 2011 * the uio structure. 2012 * 2013 * IN: vp - vnode of directory to read. 2014 * uio - structure supplying read location, range info, 2015 * and return buffer. 2016 * cr - credentials of caller. 2017 * ct - caller context 2018 * flags - case flags 2019 * 2020 * OUT: uio - updated offset and range, buffer filled. 2021 * eofp - set to true if end-of-file detected. 2022 * 2023 * RETURN: 0 if success 2024 * error code if failure 2025 * 2026 * Timestamps: 2027 * vp - atime updated 2028 * 2029 * Note that the low 4 bits of the cookie returned by zap is always zero. 2030 * This allows us to use the low range for "special" directory entries: 2031 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2032 * we use the offset 2 for the '.zfs' directory. 2033 */ 2034 /* ARGSUSED */ 2035 static int 2036 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2037 caller_context_t *ct, int flags) 2038 { 2039 znode_t *zp = VTOZ(vp); 2040 iovec_t *iovp; 2041 edirent_t *eodp; 2042 dirent64_t *odp; 2043 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2044 objset_t *os; 2045 caddr_t outbuf; 2046 size_t bufsize; 2047 zap_cursor_t zc; 2048 zap_attribute_t zap; 2049 uint_t bytes_wanted; 2050 uint64_t offset; /* must be unsigned; checks for < 1 */ 2051 uint64_t parent; 2052 int local_eof; 2053 int outcount; 2054 int error; 2055 uint8_t prefetch; 2056 boolean_t check_sysattrs; 2057 2058 ZFS_ENTER(zfsvfs); 2059 ZFS_VERIFY_ZP(zp); 2060 2061 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2062 &parent, sizeof (parent))) != 0) { 2063 ZFS_EXIT(zfsvfs); 2064 return (error); 2065 } 2066 2067 /* 2068 * If we are not given an eof variable, 2069 * use a local one. 2070 */ 2071 if (eofp == NULL) 2072 eofp = &local_eof; 2073 2074 /* 2075 * Check for valid iov_len. 2076 */ 2077 if (uio->uio_iov->iov_len <= 0) { 2078 ZFS_EXIT(zfsvfs); 2079 return (EINVAL); 2080 } 2081 2082 /* 2083 * Quit if directory has been removed (posix) 2084 */ 2085 if ((*eofp = zp->z_unlinked) != 0) { 2086 ZFS_EXIT(zfsvfs); 2087 return (0); 2088 } 2089 2090 error = 0; 2091 os = zfsvfs->z_os; 2092 offset = uio->uio_loffset; 2093 prefetch = zp->z_zn_prefetch; 2094 2095 /* 2096 * Initialize the iterator cursor. 2097 */ 2098 if (offset <= 3) { 2099 /* 2100 * Start iteration from the beginning of the directory. 2101 */ 2102 zap_cursor_init(&zc, os, zp->z_id); 2103 } else { 2104 /* 2105 * The offset is a serialized cursor. 2106 */ 2107 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2108 } 2109 2110 /* 2111 * Get space to change directory entries into fs independent format. 2112 */ 2113 iovp = uio->uio_iov; 2114 bytes_wanted = iovp->iov_len; 2115 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2116 bufsize = bytes_wanted; 2117 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2118 odp = (struct dirent64 *)outbuf; 2119 } else { 2120 bufsize = bytes_wanted; 2121 odp = (struct dirent64 *)iovp->iov_base; 2122 } 2123 eodp = (struct edirent *)odp; 2124 2125 /* 2126 * If this VFS supports the system attribute view interface; and 2127 * we're looking at an extended attribute directory; and we care 2128 * about normalization conflicts on this vfs; then we must check 2129 * for normalization conflicts with the sysattr name space. 2130 */ 2131 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2132 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2133 (flags & V_RDDIR_ENTFLAGS); 2134 2135 /* 2136 * Transform to file-system independent format 2137 */ 2138 outcount = 0; 2139 while (outcount < bytes_wanted) { 2140 ino64_t objnum; 2141 ushort_t reclen; 2142 off64_t *next; 2143 2144 /* 2145 * Special case `.', `..', and `.zfs'. 2146 */ 2147 if (offset == 0) { 2148 (void) strcpy(zap.za_name, "."); 2149 zap.za_normalization_conflict = 0; 2150 objnum = zp->z_id; 2151 } else if (offset == 1) { 2152 (void) strcpy(zap.za_name, ".."); 2153 zap.za_normalization_conflict = 0; 2154 objnum = parent; 2155 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2156 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2157 zap.za_normalization_conflict = 0; 2158 objnum = ZFSCTL_INO_ROOT; 2159 } else { 2160 /* 2161 * Grab next entry. 2162 */ 2163 if (error = zap_cursor_retrieve(&zc, &zap)) { 2164 if ((*eofp = (error == ENOENT)) != 0) 2165 break; 2166 else 2167 goto update; 2168 } 2169 2170 if (zap.za_integer_length != 8 || 2171 zap.za_num_integers != 1) { 2172 cmn_err(CE_WARN, "zap_readdir: bad directory " 2173 "entry, obj = %lld, offset = %lld\n", 2174 (u_longlong_t)zp->z_id, 2175 (u_longlong_t)offset); 2176 error = ENXIO; 2177 goto update; 2178 } 2179 2180 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2181 /* 2182 * MacOS X can extract the object type here such as: 2183 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2184 */ 2185 2186 if (check_sysattrs && !zap.za_normalization_conflict) { 2187 zap.za_normalization_conflict = 2188 xattr_sysattr_casechk(zap.za_name); 2189 } 2190 } 2191 2192 if (flags & V_RDDIR_ACCFILTER) { 2193 /* 2194 * If we have no access at all, don't include 2195 * this entry in the returned information 2196 */ 2197 znode_t *ezp; 2198 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2199 goto skip_entry; 2200 if (!zfs_has_access(ezp, cr)) { 2201 VN_RELE(ZTOV(ezp)); 2202 goto skip_entry; 2203 } 2204 VN_RELE(ZTOV(ezp)); 2205 } 2206 2207 if (flags & V_RDDIR_ENTFLAGS) 2208 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2209 else 2210 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2211 2212 /* 2213 * Will this entry fit in the buffer? 2214 */ 2215 if (outcount + reclen > bufsize) { 2216 /* 2217 * Did we manage to fit anything in the buffer? 2218 */ 2219 if (!outcount) { 2220 error = EINVAL; 2221 goto update; 2222 } 2223 break; 2224 } 2225 if (flags & V_RDDIR_ENTFLAGS) { 2226 /* 2227 * Add extended flag entry: 2228 */ 2229 eodp->ed_ino = objnum; 2230 eodp->ed_reclen = reclen; 2231 /* NOTE: ed_off is the offset for the *next* entry */ 2232 next = &(eodp->ed_off); 2233 eodp->ed_eflags = zap.za_normalization_conflict ? 2234 ED_CASE_CONFLICT : 0; 2235 (void) strncpy(eodp->ed_name, zap.za_name, 2236 EDIRENT_NAMELEN(reclen)); 2237 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2238 } else { 2239 /* 2240 * Add normal entry: 2241 */ 2242 odp->d_ino = objnum; 2243 odp->d_reclen = reclen; 2244 /* NOTE: d_off is the offset for the *next* entry */ 2245 next = &(odp->d_off); 2246 (void) strncpy(odp->d_name, zap.za_name, 2247 DIRENT64_NAMELEN(reclen)); 2248 odp = (dirent64_t *)((intptr_t)odp + reclen); 2249 } 2250 outcount += reclen; 2251 2252 ASSERT(outcount <= bufsize); 2253 2254 /* Prefetch znode */ 2255 if (prefetch) 2256 dmu_prefetch(os, objnum, 0, 0); 2257 2258 skip_entry: 2259 /* 2260 * Move to the next entry, fill in the previous offset. 2261 */ 2262 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2263 zap_cursor_advance(&zc); 2264 offset = zap_cursor_serialize(&zc); 2265 } else { 2266 offset += 1; 2267 } 2268 *next = offset; 2269 } 2270 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2271 2272 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2273 iovp->iov_base += outcount; 2274 iovp->iov_len -= outcount; 2275 uio->uio_resid -= outcount; 2276 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2277 /* 2278 * Reset the pointer. 2279 */ 2280 offset = uio->uio_loffset; 2281 } 2282 2283 update: 2284 zap_cursor_fini(&zc); 2285 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2286 kmem_free(outbuf, bufsize); 2287 2288 if (error == ENOENT) 2289 error = 0; 2290 2291 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2292 2293 uio->uio_loffset = offset; 2294 ZFS_EXIT(zfsvfs); 2295 return (error); 2296 } 2297 2298 ulong_t zfs_fsync_sync_cnt = 4; 2299 2300 static int 2301 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2302 { 2303 znode_t *zp = VTOZ(vp); 2304 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2305 2306 /* 2307 * Regardless of whether this is required for standards conformance, 2308 * this is the logical behavior when fsync() is called on a file with 2309 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2310 * going to be pushed out as part of the zil_commit(). 2311 */ 2312 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2313 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2314 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2315 2316 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2317 2318 ZFS_ENTER(zfsvfs); 2319 ZFS_VERIFY_ZP(zp); 2320 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2321 ZFS_EXIT(zfsvfs); 2322 return (0); 2323 } 2324 2325 2326 /* 2327 * Get the requested file attributes and place them in the provided 2328 * vattr structure. 2329 * 2330 * IN: vp - vnode of file. 2331 * vap - va_mask identifies requested attributes. 2332 * If AT_XVATTR set, then optional attrs are requested 2333 * flags - ATTR_NOACLCHECK (CIFS server context) 2334 * cr - credentials of caller. 2335 * ct - caller context 2336 * 2337 * OUT: vap - attribute values. 2338 * 2339 * RETURN: 0 (always succeeds) 2340 */ 2341 /* ARGSUSED */ 2342 static int 2343 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2344 caller_context_t *ct) 2345 { 2346 znode_t *zp = VTOZ(vp); 2347 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2348 int error = 0; 2349 uint64_t links; 2350 uint64_t mtime[2], ctime[2]; 2351 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2352 xoptattr_t *xoap = NULL; 2353 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2354 sa_bulk_attr_t bulk[2]; 2355 int count = 0; 2356 2357 ZFS_ENTER(zfsvfs); 2358 ZFS_VERIFY_ZP(zp); 2359 2360 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2361 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2362 2363 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2364 ZFS_EXIT(zfsvfs); 2365 return (error); 2366 } 2367 2368 /* 2369 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2370 * Also, if we are the owner don't bother, since owner should 2371 * always be allowed to read basic attributes of file. 2372 */ 2373 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && (zp->z_uid != crgetuid(cr))) { 2374 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2375 skipaclchk, cr)) { 2376 ZFS_EXIT(zfsvfs); 2377 return (error); 2378 } 2379 } 2380 2381 /* 2382 * Return all attributes. It's cheaper to provide the answer 2383 * than to determine whether we were asked the question. 2384 */ 2385 2386 mutex_enter(&zp->z_lock); 2387 vap->va_type = vp->v_type; 2388 vap->va_mode = zp->z_mode & MODEMASK; 2389 vap->va_uid = zp->z_uid; 2390 vap->va_gid = zp->z_gid; 2391 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2392 vap->va_nodeid = zp->z_id; 2393 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2394 links = zp->z_links + 1; 2395 else 2396 links = zp->z_links; 2397 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2398 vap->va_size = zp->z_size; 2399 vap->va_rdev = vp->v_rdev; 2400 vap->va_seq = zp->z_seq; 2401 2402 /* 2403 * Add in any requested optional attributes and the create time. 2404 * Also set the corresponding bits in the returned attribute bitmap. 2405 */ 2406 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2407 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2408 xoap->xoa_archive = 2409 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2410 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2411 } 2412 2413 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2414 xoap->xoa_readonly = 2415 ((zp->z_pflags & ZFS_READONLY) != 0); 2416 XVA_SET_RTN(xvap, XAT_READONLY); 2417 } 2418 2419 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2420 xoap->xoa_system = 2421 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2422 XVA_SET_RTN(xvap, XAT_SYSTEM); 2423 } 2424 2425 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2426 xoap->xoa_hidden = 2427 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2428 XVA_SET_RTN(xvap, XAT_HIDDEN); 2429 } 2430 2431 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2432 xoap->xoa_nounlink = 2433 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2434 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2435 } 2436 2437 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2438 xoap->xoa_immutable = 2439 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2440 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2441 } 2442 2443 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2444 xoap->xoa_appendonly = 2445 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2446 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2447 } 2448 2449 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2450 xoap->xoa_nodump = 2451 ((zp->z_pflags & ZFS_NODUMP) != 0); 2452 XVA_SET_RTN(xvap, XAT_NODUMP); 2453 } 2454 2455 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2456 xoap->xoa_opaque = 2457 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2458 XVA_SET_RTN(xvap, XAT_OPAQUE); 2459 } 2460 2461 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2462 xoap->xoa_av_quarantined = 2463 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2464 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2465 } 2466 2467 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2468 xoap->xoa_av_modified = 2469 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2470 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2471 } 2472 2473 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2474 vp->v_type == VREG) { 2475 zfs_sa_get_scanstamp(zp, xvap); 2476 } 2477 2478 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2479 uint64_t times[2]; 2480 2481 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2482 times, sizeof (times)); 2483 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2484 XVA_SET_RTN(xvap, XAT_CREATETIME); 2485 } 2486 2487 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2488 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2489 XVA_SET_RTN(xvap, XAT_REPARSE); 2490 } 2491 } 2492 2493 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2494 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2495 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2496 2497 mutex_exit(&zp->z_lock); 2498 2499 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2500 2501 if (zp->z_blksz == 0) { 2502 /* 2503 * Block size hasn't been set; suggest maximal I/O transfers. 2504 */ 2505 vap->va_blksize = zfsvfs->z_max_blksz; 2506 } 2507 2508 ZFS_EXIT(zfsvfs); 2509 return (0); 2510 } 2511 2512 /* 2513 * Set the file attributes to the values contained in the 2514 * vattr structure. 2515 * 2516 * IN: vp - vnode of file to be modified. 2517 * vap - new attribute values. 2518 * If AT_XVATTR set, then optional attrs are being set 2519 * flags - ATTR_UTIME set if non-default time values provided. 2520 * - ATTR_NOACLCHECK (CIFS context only). 2521 * cr - credentials of caller. 2522 * ct - caller context 2523 * 2524 * RETURN: 0 if success 2525 * error code if failure 2526 * 2527 * Timestamps: 2528 * vp - ctime updated, mtime updated if size changed. 2529 */ 2530 /* ARGSUSED */ 2531 static int 2532 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2533 caller_context_t *ct) 2534 { 2535 znode_t *zp = VTOZ(vp); 2536 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2537 zilog_t *zilog; 2538 dmu_tx_t *tx; 2539 vattr_t oldva; 2540 xvattr_t tmpxvattr; 2541 uint_t mask = vap->va_mask; 2542 uint_t saved_mask; 2543 int trim_mask = 0; 2544 uint64_t new_mode; 2545 uint64_t new_uid, new_gid; 2546 uint64_t xattr_obj = 0; 2547 uint64_t mtime[2], ctime[2]; 2548 znode_t *attrzp; 2549 int need_policy = FALSE; 2550 int err, err2; 2551 zfs_fuid_info_t *fuidp = NULL; 2552 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2553 xoptattr_t *xoap; 2554 zfs_acl_t *aclp = NULL; 2555 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2556 boolean_t fuid_dirtied = B_FALSE; 2557 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2558 int count = 0, xattr_count = 0; 2559 2560 if (mask == 0) 2561 return (0); 2562 2563 if (mask & AT_NOSET) 2564 return (EINVAL); 2565 2566 ZFS_ENTER(zfsvfs); 2567 ZFS_VERIFY_ZP(zp); 2568 2569 zilog = zfsvfs->z_log; 2570 2571 /* 2572 * Make sure that if we have ephemeral uid/gid or xvattr specified 2573 * that file system is at proper version level 2574 */ 2575 2576 if (zfsvfs->z_use_fuids == B_FALSE && 2577 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2578 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2579 (mask & AT_XVATTR))) { 2580 ZFS_EXIT(zfsvfs); 2581 return (EINVAL); 2582 } 2583 2584 if (mask & AT_SIZE && vp->v_type == VDIR) { 2585 ZFS_EXIT(zfsvfs); 2586 return (EISDIR); 2587 } 2588 2589 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2590 ZFS_EXIT(zfsvfs); 2591 return (EINVAL); 2592 } 2593 2594 /* 2595 * If this is an xvattr_t, then get a pointer to the structure of 2596 * optional attributes. If this is NULL, then we have a vattr_t. 2597 */ 2598 xoap = xva_getxoptattr(xvap); 2599 2600 xva_init(&tmpxvattr); 2601 2602 /* 2603 * Immutable files can only alter immutable bit and atime 2604 */ 2605 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2606 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2607 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2608 ZFS_EXIT(zfsvfs); 2609 return (EPERM); 2610 } 2611 2612 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2613 ZFS_EXIT(zfsvfs); 2614 return (EPERM); 2615 } 2616 2617 /* 2618 * Verify timestamps doesn't overflow 32 bits. 2619 * ZFS can handle large timestamps, but 32bit syscalls can't 2620 * handle times greater than 2039. This check should be removed 2621 * once large timestamps are fully supported. 2622 */ 2623 if (mask & (AT_ATIME | AT_MTIME)) { 2624 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2625 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2626 ZFS_EXIT(zfsvfs); 2627 return (EOVERFLOW); 2628 } 2629 } 2630 2631 top: 2632 attrzp = NULL; 2633 2634 /* Can this be moved to before the top label? */ 2635 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2636 ZFS_EXIT(zfsvfs); 2637 return (EROFS); 2638 } 2639 2640 /* 2641 * First validate permissions 2642 */ 2643 2644 if (mask & AT_SIZE) { 2645 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2646 if (err) { 2647 ZFS_EXIT(zfsvfs); 2648 return (err); 2649 } 2650 /* 2651 * XXX - Note, we are not providing any open 2652 * mode flags here (like FNDELAY), so we may 2653 * block if there are locks present... this 2654 * should be addressed in openat(). 2655 */ 2656 /* XXX - would it be OK to generate a log record here? */ 2657 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2658 if (err) { 2659 ZFS_EXIT(zfsvfs); 2660 return (err); 2661 } 2662 } 2663 2664 if (mask & (AT_ATIME|AT_MTIME) || 2665 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2666 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2667 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2668 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2669 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2670 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2671 skipaclchk, cr); 2672 } 2673 2674 if (mask & (AT_UID|AT_GID)) { 2675 int idmask = (mask & (AT_UID|AT_GID)); 2676 int take_owner; 2677 int take_group; 2678 2679 /* 2680 * NOTE: even if a new mode is being set, 2681 * we may clear S_ISUID/S_ISGID bits. 2682 */ 2683 2684 if (!(mask & AT_MODE)) 2685 vap->va_mode = zp->z_mode; 2686 2687 /* 2688 * Take ownership or chgrp to group we are a member of 2689 */ 2690 2691 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2692 take_group = (mask & AT_GID) && 2693 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2694 2695 /* 2696 * If both AT_UID and AT_GID are set then take_owner and 2697 * take_group must both be set in order to allow taking 2698 * ownership. 2699 * 2700 * Otherwise, send the check through secpolicy_vnode_setattr() 2701 * 2702 */ 2703 2704 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2705 ((idmask == AT_UID) && take_owner) || 2706 ((idmask == AT_GID) && take_group)) { 2707 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2708 skipaclchk, cr) == 0) { 2709 /* 2710 * Remove setuid/setgid for non-privileged users 2711 */ 2712 secpolicy_setid_clear(vap, cr); 2713 trim_mask = (mask & (AT_UID|AT_GID)); 2714 } else { 2715 need_policy = TRUE; 2716 } 2717 } else { 2718 need_policy = TRUE; 2719 } 2720 } 2721 2722 mutex_enter(&zp->z_lock); 2723 oldva.va_mode = zp->z_mode; 2724 oldva.va_uid = zp->z_uid; 2725 oldva.va_gid = zp->z_gid; 2726 if (mask & AT_XVATTR) { 2727 /* 2728 * Update xvattr mask to include only those attributes 2729 * that are actually changing. 2730 * 2731 * the bits will be restored prior to actually setting 2732 * the attributes so the caller thinks they were set. 2733 */ 2734 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2735 if (xoap->xoa_appendonly != 2736 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2737 need_policy = TRUE; 2738 } else { 2739 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2740 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2741 } 2742 } 2743 2744 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2745 if (xoap->xoa_nounlink != 2746 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2747 need_policy = TRUE; 2748 } else { 2749 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2750 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2751 } 2752 } 2753 2754 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2755 if (xoap->xoa_immutable != 2756 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2757 need_policy = TRUE; 2758 } else { 2759 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2760 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2761 } 2762 } 2763 2764 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2765 if (xoap->xoa_nodump != 2766 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2767 need_policy = TRUE; 2768 } else { 2769 XVA_CLR_REQ(xvap, XAT_NODUMP); 2770 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2771 } 2772 } 2773 2774 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2775 if (xoap->xoa_av_modified != 2776 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2777 need_policy = TRUE; 2778 } else { 2779 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2780 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2781 } 2782 } 2783 2784 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2785 if ((vp->v_type != VREG && 2786 xoap->xoa_av_quarantined) || 2787 xoap->xoa_av_quarantined != 2788 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2789 need_policy = TRUE; 2790 } else { 2791 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2792 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2793 } 2794 } 2795 2796 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2797 mutex_exit(&zp->z_lock); 2798 ZFS_EXIT(zfsvfs); 2799 return (EPERM); 2800 } 2801 2802 if (need_policy == FALSE && 2803 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2804 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2805 need_policy = TRUE; 2806 } 2807 } 2808 2809 mutex_exit(&zp->z_lock); 2810 2811 if (mask & AT_MODE) { 2812 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2813 err = secpolicy_setid_setsticky_clear(vp, vap, 2814 &oldva, cr); 2815 if (err) { 2816 ZFS_EXIT(zfsvfs); 2817 return (err); 2818 } 2819 trim_mask |= AT_MODE; 2820 } else { 2821 need_policy = TRUE; 2822 } 2823 } 2824 2825 if (need_policy) { 2826 /* 2827 * If trim_mask is set then take ownership 2828 * has been granted or write_acl is present and user 2829 * has the ability to modify mode. In that case remove 2830 * UID|GID and or MODE from mask so that 2831 * secpolicy_vnode_setattr() doesn't revoke it. 2832 */ 2833 2834 if (trim_mask) { 2835 saved_mask = vap->va_mask; 2836 vap->va_mask &= ~trim_mask; 2837 } 2838 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2839 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2840 if (err) { 2841 ZFS_EXIT(zfsvfs); 2842 return (err); 2843 } 2844 2845 if (trim_mask) 2846 vap->va_mask |= saved_mask; 2847 } 2848 2849 /* 2850 * secpolicy_vnode_setattr, or take ownership may have 2851 * changed va_mask 2852 */ 2853 mask = vap->va_mask; 2854 2855 if ((mask & (AT_UID | AT_GID))) { 2856 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj, 2857 sizeof (xattr_obj)); 2858 2859 if (xattr_obj) { 2860 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 2861 if (err) 2862 goto out2; 2863 } 2864 if (mask & AT_UID) { 2865 new_uid = zfs_fuid_create(zfsvfs, 2866 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2867 if (vap->va_uid != zp->z_uid && 2868 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 2869 err = EDQUOT; 2870 goto out2; 2871 } 2872 } 2873 2874 if (mask & AT_GID) { 2875 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2876 cr, ZFS_GROUP, &fuidp); 2877 if (new_gid != zp->z_gid && 2878 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 2879 err = EDQUOT; 2880 goto out2; 2881 } 2882 } 2883 } 2884 tx = dmu_tx_create(zfsvfs->z_os); 2885 2886 if (mask & AT_MODE) { 2887 uint64_t pmode = zp->z_mode; 2888 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2889 2890 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 2891 goto out; 2892 2893 if (!zp->z_is_sa && ZFS_EXTERNAL_ACL(zp)) { 2894 /* 2895 * Are we upgrading ACL from old V0 format 2896 * to V1 format? 2897 */ 2898 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2899 ZNODE_ACL_VERSION(zp) == 2900 ZFS_ACL_VERSION_INITIAL) { 2901 dmu_tx_hold_free(tx, 2902 ZFS_EXTERNAL_ACL(zp), 0, 2903 DMU_OBJECT_END); 2904 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2905 0, aclp->z_acl_bytes); 2906 } else { 2907 dmu_tx_hold_write(tx, ZFS_EXTERNAL_ACL(zp), 0, 2908 aclp->z_acl_bytes); 2909 } 2910 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2911 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2912 0, aclp->z_acl_bytes); 2913 } 2914 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2915 } else { 2916 if ((mask & AT_XVATTR) && 2917 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 2918 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2919 else 2920 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2921 } 2922 2923 if (attrzp) { 2924 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 2925 } 2926 2927 fuid_dirtied = zfsvfs->z_fuid_dirty; 2928 if (fuid_dirtied) 2929 zfs_fuid_txhold(zfsvfs, tx); 2930 2931 zfs_sa_upgrade_txholds(tx, zp); 2932 2933 err = dmu_tx_assign(tx, TXG_NOWAIT); 2934 if (err) { 2935 if (err == ERESTART) 2936 dmu_tx_wait(tx); 2937 goto out; 2938 } 2939 2940 count = 0; 2941 /* 2942 * Set each attribute requested. 2943 * We group settings according to the locks they need to acquire. 2944 * 2945 * Note: you cannot set ctime directly, although it will be 2946 * updated as a side-effect of calling this function. 2947 */ 2948 2949 mutex_enter(&zp->z_lock); 2950 2951 if (attrzp) 2952 mutex_enter(&attrzp->z_lock); 2953 2954 if (mask & (AT_UID|AT_GID)) { 2955 2956 if (mask & AT_UID) { 2957 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 2958 &new_uid, sizeof (new_uid)); 2959 zp->z_uid = zfs_fuid_map_id(zfsvfs, new_uid, 2960 cr, ZFS_OWNER); 2961 if (attrzp) { 2962 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2963 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 2964 sizeof (new_uid)); 2965 attrzp->z_gid = zp->z_uid; 2966 } 2967 } 2968 2969 if (mask & AT_GID) { 2970 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 2971 NULL, &new_gid, sizeof (new_gid)); 2972 zp->z_gid = zfs_fuid_map_id(zfsvfs, new_gid, cr, 2973 ZFS_GROUP); 2974 if (attrzp) { 2975 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2976 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 2977 sizeof (new_gid)); 2978 attrzp->z_gid = zp->z_gid; 2979 } 2980 } 2981 if (!(mask & AT_MODE)) { 2982 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 2983 NULL, &new_mode, sizeof (new_mode)); 2984 new_mode = zp->z_mode; 2985 } 2986 err = zfs_acl_chown_setattr(zp); 2987 ASSERT(err == 0); 2988 if (attrzp) { 2989 err = zfs_acl_chown_setattr(attrzp); 2990 ASSERT(err == 0); 2991 } 2992 } 2993 2994 if (mask & AT_MODE) { 2995 mutex_enter(&zp->z_acl_lock); 2996 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 2997 &new_mode, sizeof (new_mode)); 2998 zp->z_mode = new_mode; 2999 ASSERT3U((uintptr_t)aclp, !=, NULL); 3000 err = zfs_aclset_common(zp, aclp, cr, tx); 3001 ASSERT3U(err, ==, 0); 3002 zp->z_acl_cached = aclp; 3003 aclp = NULL; 3004 mutex_exit(&zp->z_acl_lock); 3005 } 3006 3007 if (attrzp) 3008 mutex_exit(&attrzp->z_lock); 3009 3010 if (mask & AT_ATIME) { 3011 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3012 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3013 &zp->z_atime, sizeof (zp->z_atime)); 3014 } 3015 3016 if (mask & AT_MTIME) { 3017 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3018 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3019 mtime, sizeof (mtime)); 3020 } 3021 3022 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3023 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3024 if (!(mask & AT_MTIME)) 3025 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3026 NULL, mtime, sizeof (mtime)); 3027 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3028 &ctime, sizeof (ctime)); 3029 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3030 B_TRUE); 3031 } else if (mask != 0) { 3032 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3033 &ctime, sizeof (ctime)); 3034 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3035 B_TRUE); 3036 if (attrzp) { 3037 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3038 SA_ZPL_CTIME(zfsvfs), NULL, 3039 &ctime, sizeof (ctime)); 3040 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3041 mtime, ctime, B_TRUE); 3042 } 3043 } 3044 /* 3045 * Do this after setting timestamps to prevent timestamp 3046 * update from toggling bit 3047 */ 3048 3049 if (xoap && (mask & AT_XVATTR)) { 3050 3051 /* 3052 * restore trimmed off masks 3053 * so that return masks can be set for caller. 3054 */ 3055 3056 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3057 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3058 } 3059 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3060 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3061 } 3062 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3063 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3064 } 3065 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3066 XVA_SET_REQ(xvap, XAT_NODUMP); 3067 } 3068 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3069 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3070 } 3071 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3072 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3073 } 3074 3075 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3076 ASSERT(vp->v_type == VREG); 3077 3078 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3079 &zp->z_pflags, sizeof (zp->z_pflags)); 3080 zfs_xvattr_set(zp, xvap, tx); 3081 } 3082 3083 if (fuid_dirtied) 3084 zfs_fuid_sync(zfsvfs, tx); 3085 3086 if (mask != 0) 3087 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3088 3089 mutex_exit(&zp->z_lock); 3090 3091 out: 3092 if (err == 0 && attrzp) { 3093 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3094 xattr_count, tx); 3095 ASSERT(err2 == 0); 3096 } 3097 3098 if (attrzp) 3099 VN_RELE(ZTOV(attrzp)); 3100 if (aclp) 3101 zfs_acl_free(aclp); 3102 3103 if (fuidp) { 3104 zfs_fuid_info_free(fuidp); 3105 fuidp = NULL; 3106 } 3107 3108 if (err) { 3109 dmu_tx_abort(tx); 3110 if (err == ERESTART) 3111 goto top; 3112 } else { 3113 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3114 dmu_tx_commit(tx); 3115 } 3116 3117 3118 out2: 3119 ZFS_EXIT(zfsvfs); 3120 return (err); 3121 } 3122 3123 typedef struct zfs_zlock { 3124 krwlock_t *zl_rwlock; /* lock we acquired */ 3125 znode_t *zl_znode; /* znode we held */ 3126 struct zfs_zlock *zl_next; /* next in list */ 3127 } zfs_zlock_t; 3128 3129 /* 3130 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3131 */ 3132 static void 3133 zfs_rename_unlock(zfs_zlock_t **zlpp) 3134 { 3135 zfs_zlock_t *zl; 3136 3137 while ((zl = *zlpp) != NULL) { 3138 if (zl->zl_znode != NULL) 3139 VN_RELE(ZTOV(zl->zl_znode)); 3140 rw_exit(zl->zl_rwlock); 3141 *zlpp = zl->zl_next; 3142 kmem_free(zl, sizeof (*zl)); 3143 } 3144 } 3145 3146 /* 3147 * Search back through the directory tree, using the ".." entries. 3148 * Lock each directory in the chain to prevent concurrent renames. 3149 * Fail any attempt to move a directory into one of its own descendants. 3150 * XXX - z_parent_lock can overlap with map or grow locks 3151 */ 3152 static int 3153 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3154 { 3155 zfs_zlock_t *zl; 3156 znode_t *zp = tdzp; 3157 uint64_t rootid = zp->z_zfsvfs->z_root; 3158 uint64_t oidp = zp->z_id; 3159 krwlock_t *rwlp = &szp->z_parent_lock; 3160 krw_t rw = RW_WRITER; 3161 3162 /* 3163 * First pass write-locks szp and compares to zp->z_id. 3164 * Later passes read-lock zp and compare to zp->z_parent. 3165 */ 3166 do { 3167 if (!rw_tryenter(rwlp, rw)) { 3168 /* 3169 * Another thread is renaming in this path. 3170 * Note that if we are a WRITER, we don't have any 3171 * parent_locks held yet. 3172 */ 3173 if (rw == RW_READER && zp->z_id > szp->z_id) { 3174 /* 3175 * Drop our locks and restart 3176 */ 3177 zfs_rename_unlock(&zl); 3178 *zlpp = NULL; 3179 zp = tdzp; 3180 oidp = zp->z_id; 3181 rwlp = &szp->z_parent_lock; 3182 rw = RW_WRITER; 3183 continue; 3184 } else { 3185 /* 3186 * Wait for other thread to drop its locks 3187 */ 3188 rw_enter(rwlp, rw); 3189 } 3190 } 3191 3192 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3193 zl->zl_rwlock = rwlp; 3194 zl->zl_znode = NULL; 3195 zl->zl_next = *zlpp; 3196 *zlpp = zl; 3197 3198 if (oidp == szp->z_id) /* We're a descendant of szp */ 3199 return (EINVAL); 3200 3201 if (oidp == rootid) /* We've hit the top */ 3202 return (0); 3203 3204 if (rw == RW_READER) { /* i.e. not the first pass */ 3205 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3206 if (error) 3207 return (error); 3208 zl->zl_znode = zp; 3209 } 3210 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3211 &oidp, sizeof (oidp)); 3212 rwlp = &zp->z_parent_lock; 3213 rw = RW_READER; 3214 3215 } while (zp->z_id != sdzp->z_id); 3216 3217 return (0); 3218 } 3219 3220 /* 3221 * Move an entry from the provided source directory to the target 3222 * directory. Change the entry name as indicated. 3223 * 3224 * IN: sdvp - Source directory containing the "old entry". 3225 * snm - Old entry name. 3226 * tdvp - Target directory to contain the "new entry". 3227 * tnm - New entry name. 3228 * cr - credentials of caller. 3229 * ct - caller context 3230 * flags - case flags 3231 * 3232 * RETURN: 0 if success 3233 * error code if failure 3234 * 3235 * Timestamps: 3236 * sdvp,tdvp - ctime|mtime updated 3237 */ 3238 /*ARGSUSED*/ 3239 static int 3240 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3241 caller_context_t *ct, int flags) 3242 { 3243 znode_t *tdzp, *szp, *tzp; 3244 znode_t *sdzp = VTOZ(sdvp); 3245 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3246 zilog_t *zilog; 3247 vnode_t *realvp; 3248 zfs_dirlock_t *sdl, *tdl; 3249 dmu_tx_t *tx; 3250 zfs_zlock_t *zl; 3251 int cmp, serr, terr; 3252 int error = 0; 3253 int zflg = 0; 3254 3255 ZFS_ENTER(zfsvfs); 3256 ZFS_VERIFY_ZP(sdzp); 3257 zilog = zfsvfs->z_log; 3258 3259 /* 3260 * Make sure we have the real vp for the target directory. 3261 */ 3262 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3263 tdvp = realvp; 3264 3265 if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) { 3266 ZFS_EXIT(zfsvfs); 3267 return (EXDEV); 3268 } 3269 3270 tdzp = VTOZ(tdvp); 3271 ZFS_VERIFY_ZP(tdzp); 3272 if (zfsvfs->z_utf8 && u8_validate(tnm, 3273 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3274 ZFS_EXIT(zfsvfs); 3275 return (EILSEQ); 3276 } 3277 3278 if (flags & FIGNORECASE) 3279 zflg |= ZCILOOK; 3280 3281 top: 3282 szp = NULL; 3283 tzp = NULL; 3284 zl = NULL; 3285 3286 /* 3287 * This is to prevent the creation of links into attribute space 3288 * by renaming a linked file into/outof an attribute directory. 3289 * See the comment in zfs_link() for why this is considered bad. 3290 */ 3291 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3292 ZFS_EXIT(zfsvfs); 3293 return (EINVAL); 3294 } 3295 3296 /* 3297 * Lock source and target directory entries. To prevent deadlock, 3298 * a lock ordering must be defined. We lock the directory with 3299 * the smallest object id first, or if it's a tie, the one with 3300 * the lexically first name. 3301 */ 3302 if (sdzp->z_id < tdzp->z_id) { 3303 cmp = -1; 3304 } else if (sdzp->z_id > tdzp->z_id) { 3305 cmp = 1; 3306 } else { 3307 /* 3308 * First compare the two name arguments without 3309 * considering any case folding. 3310 */ 3311 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3312 3313 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3314 ASSERT(error == 0 || !zfsvfs->z_utf8); 3315 if (cmp == 0) { 3316 /* 3317 * POSIX: "If the old argument and the new argument 3318 * both refer to links to the same existing file, 3319 * the rename() function shall return successfully 3320 * and perform no other action." 3321 */ 3322 ZFS_EXIT(zfsvfs); 3323 return (0); 3324 } 3325 /* 3326 * If the file system is case-folding, then we may 3327 * have some more checking to do. A case-folding file 3328 * system is either supporting mixed case sensitivity 3329 * access or is completely case-insensitive. Note 3330 * that the file system is always case preserving. 3331 * 3332 * In mixed sensitivity mode case sensitive behavior 3333 * is the default. FIGNORECASE must be used to 3334 * explicitly request case insensitive behavior. 3335 * 3336 * If the source and target names provided differ only 3337 * by case (e.g., a request to rename 'tim' to 'Tim'), 3338 * we will treat this as a special case in the 3339 * case-insensitive mode: as long as the source name 3340 * is an exact match, we will allow this to proceed as 3341 * a name-change request. 3342 */ 3343 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3344 (zfsvfs->z_case == ZFS_CASE_MIXED && 3345 flags & FIGNORECASE)) && 3346 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3347 &error) == 0) { 3348 /* 3349 * case preserving rename request, require exact 3350 * name matches 3351 */ 3352 zflg |= ZCIEXACT; 3353 zflg &= ~ZCILOOK; 3354 } 3355 } 3356 3357 /* 3358 * If the source and destination directories are the same, we should 3359 * grab the z_name_lock of that directory only once. 3360 */ 3361 if (sdzp == tdzp) { 3362 zflg |= ZHAVELOCK; 3363 rw_enter(&sdzp->z_name_lock, RW_READER); 3364 } 3365 3366 if (cmp < 0) { 3367 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3368 ZEXISTS | zflg, NULL, NULL); 3369 terr = zfs_dirent_lock(&tdl, 3370 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3371 } else { 3372 terr = zfs_dirent_lock(&tdl, 3373 tdzp, tnm, &tzp, zflg, NULL, NULL); 3374 serr = zfs_dirent_lock(&sdl, 3375 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3376 NULL, NULL); 3377 } 3378 3379 if (serr) { 3380 /* 3381 * Source entry invalid or not there. 3382 */ 3383 if (!terr) { 3384 zfs_dirent_unlock(tdl); 3385 if (tzp) 3386 VN_RELE(ZTOV(tzp)); 3387 } 3388 3389 if (sdzp == tdzp) 3390 rw_exit(&sdzp->z_name_lock); 3391 3392 if (strcmp(snm, "..") == 0) 3393 serr = EINVAL; 3394 ZFS_EXIT(zfsvfs); 3395 return (serr); 3396 } 3397 if (terr) { 3398 zfs_dirent_unlock(sdl); 3399 VN_RELE(ZTOV(szp)); 3400 3401 if (sdzp == tdzp) 3402 rw_exit(&sdzp->z_name_lock); 3403 3404 if (strcmp(tnm, "..") == 0) 3405 terr = EINVAL; 3406 ZFS_EXIT(zfsvfs); 3407 return (terr); 3408 } 3409 3410 /* 3411 * Must have write access at the source to remove the old entry 3412 * and write access at the target to create the new entry. 3413 * Note that if target and source are the same, this can be 3414 * done in a single check. 3415 */ 3416 3417 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3418 goto out; 3419 3420 if (ZTOV(szp)->v_type == VDIR) { 3421 /* 3422 * Check to make sure rename is valid. 3423 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3424 */ 3425 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3426 goto out; 3427 } 3428 3429 /* 3430 * Does target exist? 3431 */ 3432 if (tzp) { 3433 /* 3434 * Source and target must be the same type. 3435 */ 3436 if (ZTOV(szp)->v_type == VDIR) { 3437 if (ZTOV(tzp)->v_type != VDIR) { 3438 error = ENOTDIR; 3439 goto out; 3440 } 3441 } else { 3442 if (ZTOV(tzp)->v_type == VDIR) { 3443 error = EISDIR; 3444 goto out; 3445 } 3446 } 3447 /* 3448 * POSIX dictates that when the source and target 3449 * entries refer to the same file object, rename 3450 * must do nothing and exit without error. 3451 */ 3452 if (szp->z_id == tzp->z_id) { 3453 error = 0; 3454 goto out; 3455 } 3456 } 3457 3458 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3459 if (tzp) 3460 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3461 3462 /* 3463 * notify the target directory if it is not the same 3464 * as source directory. 3465 */ 3466 if (tdvp != sdvp) { 3467 vnevent_rename_dest_dir(tdvp, ct); 3468 } 3469 3470 tx = dmu_tx_create(zfsvfs->z_os); 3471 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3472 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3473 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3474 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3475 if (sdzp != tdzp) { 3476 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3477 zfs_sa_upgrade_txholds(tx, tdzp); 3478 } 3479 if (tzp) { 3480 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3481 zfs_sa_upgrade_txholds(tx, tzp); 3482 } 3483 3484 zfs_sa_upgrade_txholds(tx, szp); 3485 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3486 error = dmu_tx_assign(tx, TXG_NOWAIT); 3487 if (error) { 3488 if (zl != NULL) 3489 zfs_rename_unlock(&zl); 3490 zfs_dirent_unlock(sdl); 3491 zfs_dirent_unlock(tdl); 3492 3493 if (sdzp == tdzp) 3494 rw_exit(&sdzp->z_name_lock); 3495 3496 VN_RELE(ZTOV(szp)); 3497 if (tzp) 3498 VN_RELE(ZTOV(tzp)); 3499 if (error == ERESTART) { 3500 dmu_tx_wait(tx); 3501 dmu_tx_abort(tx); 3502 goto top; 3503 } 3504 dmu_tx_abort(tx); 3505 ZFS_EXIT(zfsvfs); 3506 return (error); 3507 } 3508 3509 if (tzp) /* Attempt to remove the existing target */ 3510 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3511 3512 if (error == 0) { 3513 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3514 if (error == 0) { 3515 szp->z_pflags |= ZFS_AV_MODIFIED; 3516 3517 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3518 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3519 ASSERT3U(error, ==, 0); 3520 3521 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3522 ASSERT3U(error, ==, 0); 3523 3524 zfs_log_rename(zilog, tx, 3525 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3526 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3527 3528 /* Update path information for the target vnode */ 3529 vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm)); 3530 } 3531 } 3532 3533 dmu_tx_commit(tx); 3534 out: 3535 if (zl != NULL) 3536 zfs_rename_unlock(&zl); 3537 3538 zfs_dirent_unlock(sdl); 3539 zfs_dirent_unlock(tdl); 3540 3541 if (sdzp == tdzp) 3542 rw_exit(&sdzp->z_name_lock); 3543 3544 3545 VN_RELE(ZTOV(szp)); 3546 if (tzp) 3547 VN_RELE(ZTOV(tzp)); 3548 3549 ZFS_EXIT(zfsvfs); 3550 return (error); 3551 } 3552 3553 /* 3554 * Insert the indicated symbolic reference entry into the directory. 3555 * 3556 * IN: dvp - Directory to contain new symbolic link. 3557 * link - Name for new symlink entry. 3558 * vap - Attributes of new entry. 3559 * target - Target path of new symlink. 3560 * cr - credentials of caller. 3561 * ct - caller context 3562 * flags - case flags 3563 * 3564 * RETURN: 0 if success 3565 * error code if failure 3566 * 3567 * Timestamps: 3568 * dvp - ctime|mtime updated 3569 */ 3570 /*ARGSUSED*/ 3571 static int 3572 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3573 caller_context_t *ct, int flags) 3574 { 3575 znode_t *zp, *dzp = VTOZ(dvp); 3576 zfs_dirlock_t *dl; 3577 dmu_tx_t *tx; 3578 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3579 zilog_t *zilog; 3580 uint64_t len = strlen(link); 3581 int error; 3582 int zflg = ZNEW; 3583 zfs_acl_ids_t acl_ids; 3584 boolean_t fuid_dirtied; 3585 uint64_t txtype = TX_SYMLINK; 3586 3587 ASSERT(vap->va_type == VLNK); 3588 3589 ZFS_ENTER(zfsvfs); 3590 ZFS_VERIFY_ZP(dzp); 3591 zilog = zfsvfs->z_log; 3592 3593 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3594 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3595 ZFS_EXIT(zfsvfs); 3596 return (EILSEQ); 3597 } 3598 if (flags & FIGNORECASE) 3599 zflg |= ZCILOOK; 3600 top: 3601 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3602 ZFS_EXIT(zfsvfs); 3603 return (error); 3604 } 3605 3606 if (len > MAXPATHLEN) { 3607 ZFS_EXIT(zfsvfs); 3608 return (ENAMETOOLONG); 3609 } 3610 3611 /* 3612 * Attempt to lock directory; fail if entry already exists. 3613 */ 3614 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3615 if (error) { 3616 ZFS_EXIT(zfsvfs); 3617 return (error); 3618 } 3619 3620 VERIFY(0 == zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids)); 3621 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3622 zfs_acl_ids_free(&acl_ids); 3623 zfs_dirent_unlock(dl); 3624 ZFS_EXIT(zfsvfs); 3625 return (EDQUOT); 3626 } 3627 tx = dmu_tx_create(zfsvfs->z_os); 3628 fuid_dirtied = zfsvfs->z_fuid_dirty; 3629 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3630 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3631 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3632 ZFS_SA_BASE_ATTR_SIZE + len); 3633 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3634 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3635 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3636 acl_ids.z_aclp->z_acl_bytes); 3637 } 3638 if (fuid_dirtied) 3639 zfs_fuid_txhold(zfsvfs, tx); 3640 error = dmu_tx_assign(tx, TXG_NOWAIT); 3641 if (error) { 3642 zfs_acl_ids_free(&acl_ids); 3643 zfs_dirent_unlock(dl); 3644 if (error == ERESTART) { 3645 dmu_tx_wait(tx); 3646 dmu_tx_abort(tx); 3647 goto top; 3648 } 3649 dmu_tx_abort(tx); 3650 ZFS_EXIT(zfsvfs); 3651 return (error); 3652 } 3653 3654 /* 3655 * Create a new object for the symlink. 3656 * for version 4 ZPL datsets the symlink will be an SA attribute 3657 */ 3658 3659 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3660 3661 if (fuid_dirtied) 3662 zfs_fuid_sync(zfsvfs, tx); 3663 3664 if (zp->z_is_sa) 3665 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3666 link, len, tx); 3667 else 3668 zfs_sa_symlink(zp, link, len, tx); 3669 3670 zp->z_size = len; 3671 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3672 &zp->z_size, sizeof (zp->z_size), tx); 3673 /* 3674 * Insert the new object into the directory. 3675 */ 3676 (void) zfs_link_create(dl, zp, tx, ZNEW); 3677 3678 if (flags & FIGNORECASE) 3679 txtype |= TX_CI; 3680 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3681 3682 zfs_acl_ids_free(&acl_ids); 3683 3684 dmu_tx_commit(tx); 3685 3686 zfs_dirent_unlock(dl); 3687 3688 VN_RELE(ZTOV(zp)); 3689 3690 ZFS_EXIT(zfsvfs); 3691 return (error); 3692 } 3693 3694 /* 3695 * Return, in the buffer contained in the provided uio structure, 3696 * the symbolic path referred to by vp. 3697 * 3698 * IN: vp - vnode of symbolic link. 3699 * uoip - structure to contain the link path. 3700 * cr - credentials of caller. 3701 * ct - caller context 3702 * 3703 * OUT: uio - structure to contain the link path. 3704 * 3705 * RETURN: 0 if success 3706 * error code if failure 3707 * 3708 * Timestamps: 3709 * vp - atime updated 3710 */ 3711 /* ARGSUSED */ 3712 static int 3713 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3714 { 3715 znode_t *zp = VTOZ(vp); 3716 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3717 int error; 3718 3719 ZFS_ENTER(zfsvfs); 3720 ZFS_VERIFY_ZP(zp); 3721 3722 if (zp->z_is_sa) 3723 error = sa_lookup_uio(zp->z_sa_hdl, 3724 SA_ZPL_SYMLINK(zfsvfs), uio); 3725 else 3726 error = zfs_sa_readlink(zp, uio); 3727 3728 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3729 3730 ZFS_EXIT(zfsvfs); 3731 return (error); 3732 } 3733 3734 /* 3735 * Insert a new entry into directory tdvp referencing svp. 3736 * 3737 * IN: tdvp - Directory to contain new entry. 3738 * svp - vnode of new entry. 3739 * name - name of new entry. 3740 * cr - credentials of caller. 3741 * ct - caller context 3742 * 3743 * RETURN: 0 if success 3744 * error code if failure 3745 * 3746 * Timestamps: 3747 * tdvp - ctime|mtime updated 3748 * svp - ctime updated 3749 */ 3750 /* ARGSUSED */ 3751 static int 3752 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3753 caller_context_t *ct, int flags) 3754 { 3755 znode_t *dzp = VTOZ(tdvp); 3756 znode_t *tzp, *szp; 3757 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3758 zilog_t *zilog; 3759 zfs_dirlock_t *dl; 3760 dmu_tx_t *tx; 3761 vnode_t *realvp; 3762 int error; 3763 int zf = ZNEW; 3764 uint64_t parent; 3765 3766 ASSERT(tdvp->v_type == VDIR); 3767 3768 ZFS_ENTER(zfsvfs); 3769 ZFS_VERIFY_ZP(dzp); 3770 zilog = zfsvfs->z_log; 3771 3772 if (VOP_REALVP(svp, &realvp, ct) == 0) 3773 svp = realvp; 3774 3775 /* 3776 * POSIX dictates that we return EPERM here. 3777 * Better choices include ENOTSUP or EISDIR. 3778 */ 3779 if (svp->v_type == VDIR) { 3780 ZFS_EXIT(zfsvfs); 3781 return (EPERM); 3782 } 3783 3784 if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) { 3785 ZFS_EXIT(zfsvfs); 3786 return (EXDEV); 3787 } 3788 3789 szp = VTOZ(svp); 3790 ZFS_VERIFY_ZP(szp); 3791 3792 /* Prevent links to .zfs/shares files */ 3793 3794 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 3795 &parent, sizeof (uint64_t))) != 0) { 3796 ZFS_EXIT(zfsvfs); 3797 return (error); 3798 } 3799 if (parent == zfsvfs->z_shares_dir) { 3800 ZFS_EXIT(zfsvfs); 3801 return (EPERM); 3802 } 3803 3804 if (zfsvfs->z_utf8 && u8_validate(name, 3805 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3806 ZFS_EXIT(zfsvfs); 3807 return (EILSEQ); 3808 } 3809 if (flags & FIGNORECASE) 3810 zf |= ZCILOOK; 3811 3812 /* 3813 * We do not support links between attributes and non-attributes 3814 * because of the potential security risk of creating links 3815 * into "normal" file space in order to circumvent restrictions 3816 * imposed in attribute space. 3817 */ 3818 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 3819 ZFS_EXIT(zfsvfs); 3820 return (EINVAL); 3821 } 3822 3823 3824 if (szp->z_uid != crgetuid(cr) && 3825 secpolicy_basic_link(cr) != 0) { 3826 ZFS_EXIT(zfsvfs); 3827 return (EPERM); 3828 } 3829 3830 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3831 ZFS_EXIT(zfsvfs); 3832 return (error); 3833 } 3834 3835 top: 3836 /* 3837 * Attempt to lock directory; fail if entry already exists. 3838 */ 3839 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3840 if (error) { 3841 ZFS_EXIT(zfsvfs); 3842 return (error); 3843 } 3844 3845 tx = dmu_tx_create(zfsvfs->z_os); 3846 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3847 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3848 zfs_sa_upgrade_txholds(tx, szp); 3849 zfs_sa_upgrade_txholds(tx, dzp); 3850 error = dmu_tx_assign(tx, TXG_NOWAIT); 3851 if (error) { 3852 zfs_dirent_unlock(dl); 3853 if (error == ERESTART) { 3854 dmu_tx_wait(tx); 3855 dmu_tx_abort(tx); 3856 goto top; 3857 } 3858 dmu_tx_abort(tx); 3859 ZFS_EXIT(zfsvfs); 3860 return (error); 3861 } 3862 3863 error = zfs_link_create(dl, szp, tx, 0); 3864 3865 if (error == 0) { 3866 uint64_t txtype = TX_LINK; 3867 if (flags & FIGNORECASE) 3868 txtype |= TX_CI; 3869 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3870 } 3871 3872 dmu_tx_commit(tx); 3873 3874 zfs_dirent_unlock(dl); 3875 3876 if (error == 0) { 3877 vnevent_link(svp, ct); 3878 } 3879 3880 ZFS_EXIT(zfsvfs); 3881 return (error); 3882 } 3883 3884 /* 3885 * zfs_null_putapage() is used when the file system has been force 3886 * unmounted. It just drops the pages. 3887 */ 3888 /* ARGSUSED */ 3889 static int 3890 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3891 size_t *lenp, int flags, cred_t *cr) 3892 { 3893 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3894 return (0); 3895 } 3896 3897 /* 3898 * Push a page out to disk, klustering if possible. 3899 * 3900 * IN: vp - file to push page to. 3901 * pp - page to push. 3902 * flags - additional flags. 3903 * cr - credentials of caller. 3904 * 3905 * OUT: offp - start of range pushed. 3906 * lenp - len of range pushed. 3907 * 3908 * RETURN: 0 if success 3909 * error code if failure 3910 * 3911 * NOTE: callers must have locked the page to be pushed. On 3912 * exit, the page (and all other pages in the kluster) must be 3913 * unlocked. 3914 */ 3915 /* ARGSUSED */ 3916 static int 3917 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3918 size_t *lenp, int flags, cred_t *cr) 3919 { 3920 znode_t *zp = VTOZ(vp); 3921 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3922 dmu_tx_t *tx; 3923 u_offset_t off, koff; 3924 size_t len, klen; 3925 int err; 3926 3927 off = pp->p_offset; 3928 len = PAGESIZE; 3929 /* 3930 * If our blocksize is bigger than the page size, try to kluster 3931 * multiple pages so that we write a full block (thus avoiding 3932 * a read-modify-write). 3933 */ 3934 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 3935 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3936 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 3937 ASSERT(koff <= zp->z_size); 3938 if (koff + klen > zp->z_size) 3939 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 3940 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3941 } 3942 ASSERT3U(btop(len), ==, btopr(len)); 3943 3944 /* 3945 * Can't push pages past end-of-file. 3946 */ 3947 if (off >= zp->z_size) { 3948 /* ignore all pages */ 3949 err = 0; 3950 goto out; 3951 } else if (off + len > zp->z_size) { 3952 int npages = btopr(zp->z_size - off); 3953 page_t *trunc; 3954 3955 page_list_break(&pp, &trunc, npages); 3956 /* ignore pages past end of file */ 3957 if (trunc) 3958 pvn_write_done(trunc, flags); 3959 len = zp->z_size - off; 3960 } 3961 3962 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 3963 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 3964 err = EDQUOT; 3965 goto out; 3966 } 3967 top: 3968 tx = dmu_tx_create(zfsvfs->z_os); 3969 dmu_tx_hold_write(tx, zp->z_id, off, len); 3970 3971 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3972 zfs_sa_upgrade_txholds(tx, zp); 3973 err = dmu_tx_assign(tx, TXG_NOWAIT); 3974 if (err != 0) { 3975 if (err == ERESTART) { 3976 dmu_tx_wait(tx); 3977 dmu_tx_abort(tx); 3978 goto top; 3979 } 3980 dmu_tx_abort(tx); 3981 goto out; 3982 } 3983 3984 if (zp->z_blksz <= PAGESIZE) { 3985 caddr_t va = zfs_map_page(pp, S_READ); 3986 ASSERT3U(len, <=, PAGESIZE); 3987 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3988 zfs_unmap_page(pp, va); 3989 } else { 3990 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3991 } 3992 3993 if (err == 0) { 3994 uint64_t mtime[2], ctime[2]; 3995 sa_bulk_attr_t bulk[2]; 3996 int count = 0; 3997 3998 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3999 &mtime, 16); 4000 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4001 &ctime, 16); 4002 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4003 B_TRUE); 4004 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4005 } 4006 dmu_tx_commit(tx); 4007 4008 out: 4009 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4010 if (offp) 4011 *offp = off; 4012 if (lenp) 4013 *lenp = len; 4014 4015 return (err); 4016 } 4017 4018 /* 4019 * Copy the portion of the file indicated from pages into the file. 4020 * The pages are stored in a page list attached to the files vnode. 4021 * 4022 * IN: vp - vnode of file to push page data to. 4023 * off - position in file to put data. 4024 * len - amount of data to write. 4025 * flags - flags to control the operation. 4026 * cr - credentials of caller. 4027 * ct - caller context. 4028 * 4029 * RETURN: 0 if success 4030 * error code if failure 4031 * 4032 * Timestamps: 4033 * vp - ctime|mtime updated 4034 */ 4035 /*ARGSUSED*/ 4036 static int 4037 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4038 caller_context_t *ct) 4039 { 4040 znode_t *zp = VTOZ(vp); 4041 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4042 page_t *pp; 4043 size_t io_len; 4044 u_offset_t io_off; 4045 uint_t blksz; 4046 rl_t *rl; 4047 int error = 0; 4048 4049 ZFS_ENTER(zfsvfs); 4050 ZFS_VERIFY_ZP(zp); 4051 4052 /* 4053 * Align this request to the file block size in case we kluster. 4054 * XXX - this can result in pretty aggresive locking, which can 4055 * impact simultanious read/write access. One option might be 4056 * to break up long requests (len == 0) into block-by-block 4057 * operations to get narrower locking. 4058 */ 4059 blksz = zp->z_blksz; 4060 if (ISP2(blksz)) 4061 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4062 else 4063 io_off = 0; 4064 if (len > 0 && ISP2(blksz)) 4065 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4066 else 4067 io_len = 0; 4068 4069 if (io_len == 0) { 4070 /* 4071 * Search the entire vp list for pages >= io_off. 4072 */ 4073 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4074 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4075 goto out; 4076 } 4077 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4078 4079 if (off > zp->z_size) { 4080 /* past end of file */ 4081 zfs_range_unlock(rl); 4082 ZFS_EXIT(zfsvfs); 4083 return (0); 4084 } 4085 4086 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4087 4088 for (off = io_off; io_off < off + len; io_off += io_len) { 4089 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4090 pp = page_lookup(vp, io_off, 4091 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4092 } else { 4093 pp = page_lookup_nowait(vp, io_off, 4094 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4095 } 4096 4097 if (pp != NULL && pvn_getdirty(pp, flags)) { 4098 int err; 4099 4100 /* 4101 * Found a dirty page to push 4102 */ 4103 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4104 if (err) 4105 error = err; 4106 } else { 4107 io_len = PAGESIZE; 4108 } 4109 } 4110 out: 4111 zfs_range_unlock(rl); 4112 if ((flags & B_ASYNC) == 0) 4113 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 4114 ZFS_EXIT(zfsvfs); 4115 return (error); 4116 } 4117 4118 /*ARGSUSED*/ 4119 void 4120 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4121 { 4122 znode_t *zp = VTOZ(vp); 4123 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4124 int error; 4125 4126 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4127 if (zp->z_sa_hdl == NULL) { 4128 /* 4129 * The fs has been unmounted, or we did a 4130 * suspend/resume and this file no longer exists. 4131 */ 4132 if (vn_has_cached_data(vp)) { 4133 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4134 B_INVAL, cr); 4135 } 4136 4137 mutex_enter(&zp->z_lock); 4138 mutex_enter(&vp->v_lock); 4139 ASSERT(vp->v_count == 1); 4140 vp->v_count = 0; 4141 mutex_exit(&vp->v_lock); 4142 mutex_exit(&zp->z_lock); 4143 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4144 zfs_znode_free(zp); 4145 return; 4146 } 4147 4148 /* 4149 * Attempt to push any data in the page cache. If this fails 4150 * we will get kicked out later in zfs_zinactive(). 4151 */ 4152 if (vn_has_cached_data(vp)) { 4153 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4154 cr); 4155 } 4156 4157 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4158 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4159 4160 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4161 zfs_sa_upgrade_txholds(tx, zp); 4162 error = dmu_tx_assign(tx, TXG_WAIT); 4163 if (error) { 4164 dmu_tx_abort(tx); 4165 } else { 4166 mutex_enter(&zp->z_lock); 4167 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4168 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4169 zp->z_atime_dirty = 0; 4170 mutex_exit(&zp->z_lock); 4171 dmu_tx_commit(tx); 4172 } 4173 } 4174 4175 zfs_zinactive(zp); 4176 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4177 } 4178 4179 /* 4180 * Bounds-check the seek operation. 4181 * 4182 * IN: vp - vnode seeking within 4183 * ooff - old file offset 4184 * noffp - pointer to new file offset 4185 * ct - caller context 4186 * 4187 * RETURN: 0 if success 4188 * EINVAL if new offset invalid 4189 */ 4190 /* ARGSUSED */ 4191 static int 4192 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4193 caller_context_t *ct) 4194 { 4195 if (vp->v_type == VDIR) 4196 return (0); 4197 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4198 } 4199 4200 /* 4201 * Pre-filter the generic locking function to trap attempts to place 4202 * a mandatory lock on a memory mapped file. 4203 */ 4204 static int 4205 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4206 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4207 { 4208 znode_t *zp = VTOZ(vp); 4209 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4210 4211 ZFS_ENTER(zfsvfs); 4212 ZFS_VERIFY_ZP(zp); 4213 4214 /* 4215 * We are following the UFS semantics with respect to mapcnt 4216 * here: If we see that the file is mapped already, then we will 4217 * return an error, but we don't worry about races between this 4218 * function and zfs_map(). 4219 */ 4220 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4221 ZFS_EXIT(zfsvfs); 4222 return (EAGAIN); 4223 } 4224 ZFS_EXIT(zfsvfs); 4225 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4226 } 4227 4228 /* 4229 * If we can't find a page in the cache, we will create a new page 4230 * and fill it with file data. For efficiency, we may try to fill 4231 * multiple pages at once (klustering) to fill up the supplied page 4232 * list. Note that the pages to be filled are held with an exclusive 4233 * lock to prevent access by other threads while they are being filled. 4234 */ 4235 static int 4236 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4237 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4238 { 4239 znode_t *zp = VTOZ(vp); 4240 page_t *pp, *cur_pp; 4241 objset_t *os = zp->z_zfsvfs->z_os; 4242 u_offset_t io_off, total; 4243 size_t io_len; 4244 int err; 4245 4246 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4247 /* 4248 * We only have a single page, don't bother klustering 4249 */ 4250 io_off = off; 4251 io_len = PAGESIZE; 4252 pp = page_create_va(vp, io_off, io_len, 4253 PG_EXCL | PG_WAIT, seg, addr); 4254 } else { 4255 /* 4256 * Try to find enough pages to fill the page list 4257 */ 4258 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4259 &io_len, off, plsz, 0); 4260 } 4261 if (pp == NULL) { 4262 /* 4263 * The page already exists, nothing to do here. 4264 */ 4265 *pl = NULL; 4266 return (0); 4267 } 4268 4269 /* 4270 * Fill the pages in the kluster. 4271 */ 4272 cur_pp = pp; 4273 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4274 caddr_t va; 4275 4276 ASSERT3U(io_off, ==, cur_pp->p_offset); 4277 va = zfs_map_page(cur_pp, S_WRITE); 4278 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4279 DMU_READ_PREFETCH); 4280 zfs_unmap_page(cur_pp, va); 4281 if (err) { 4282 /* On error, toss the entire kluster */ 4283 pvn_read_done(pp, B_ERROR); 4284 /* convert checksum errors into IO errors */ 4285 if (err == ECKSUM) 4286 err = EIO; 4287 return (err); 4288 } 4289 cur_pp = cur_pp->p_next; 4290 } 4291 4292 /* 4293 * Fill in the page list array from the kluster starting 4294 * from the desired offset `off'. 4295 * NOTE: the page list will always be null terminated. 4296 */ 4297 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4298 ASSERT(pl == NULL || (*pl)->p_offset == off); 4299 4300 return (0); 4301 } 4302 4303 /* 4304 * Return pointers to the pages for the file region [off, off + len] 4305 * in the pl array. If plsz is greater than len, this function may 4306 * also return page pointers from after the specified region 4307 * (i.e. the region [off, off + plsz]). These additional pages are 4308 * only returned if they are already in the cache, or were created as 4309 * part of a klustered read. 4310 * 4311 * IN: vp - vnode of file to get data from. 4312 * off - position in file to get data from. 4313 * len - amount of data to retrieve. 4314 * plsz - length of provided page list. 4315 * seg - segment to obtain pages for. 4316 * addr - virtual address of fault. 4317 * rw - mode of created pages. 4318 * cr - credentials of caller. 4319 * ct - caller context. 4320 * 4321 * OUT: protp - protection mode of created pages. 4322 * pl - list of pages created. 4323 * 4324 * RETURN: 0 if success 4325 * error code if failure 4326 * 4327 * Timestamps: 4328 * vp - atime updated 4329 */ 4330 /* ARGSUSED */ 4331 static int 4332 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4333 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4334 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4335 { 4336 znode_t *zp = VTOZ(vp); 4337 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4338 page_t **pl0 = pl; 4339 int err = 0; 4340 4341 /* we do our own caching, faultahead is unnecessary */ 4342 if (pl == NULL) 4343 return (0); 4344 else if (len > plsz) 4345 len = plsz; 4346 else 4347 len = P2ROUNDUP(len, PAGESIZE); 4348 ASSERT(plsz >= len); 4349 4350 ZFS_ENTER(zfsvfs); 4351 ZFS_VERIFY_ZP(zp); 4352 4353 if (protp) 4354 *protp = PROT_ALL; 4355 4356 /* 4357 * Loop through the requested range [off, off + len) looking 4358 * for pages. If we don't find a page, we will need to create 4359 * a new page and fill it with data from the file. 4360 */ 4361 while (len > 0) { 4362 if (*pl = page_lookup(vp, off, SE_SHARED)) 4363 *(pl+1) = NULL; 4364 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4365 goto out; 4366 while (*pl) { 4367 ASSERT3U((*pl)->p_offset, ==, off); 4368 off += PAGESIZE; 4369 addr += PAGESIZE; 4370 if (len > 0) { 4371 ASSERT3U(len, >=, PAGESIZE); 4372 len -= PAGESIZE; 4373 } 4374 ASSERT3U(plsz, >=, PAGESIZE); 4375 plsz -= PAGESIZE; 4376 pl++; 4377 } 4378 } 4379 4380 /* 4381 * Fill out the page array with any pages already in the cache. 4382 */ 4383 while (plsz > 0 && 4384 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4385 off += PAGESIZE; 4386 plsz -= PAGESIZE; 4387 } 4388 out: 4389 if (err) { 4390 /* 4391 * Release any pages we have previously locked. 4392 */ 4393 while (pl > pl0) 4394 page_unlock(*--pl); 4395 } else { 4396 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4397 } 4398 4399 *pl = NULL; 4400 4401 ZFS_EXIT(zfsvfs); 4402 return (err); 4403 } 4404 4405 /* 4406 * Request a memory map for a section of a file. This code interacts 4407 * with common code and the VM system as follows: 4408 * 4409 * common code calls mmap(), which ends up in smmap_common() 4410 * 4411 * this calls VOP_MAP(), which takes you into (say) zfs 4412 * 4413 * zfs_map() calls as_map(), passing segvn_create() as the callback 4414 * 4415 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4416 * 4417 * zfs_addmap() updates z_mapcnt 4418 */ 4419 /*ARGSUSED*/ 4420 static int 4421 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4422 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4423 caller_context_t *ct) 4424 { 4425 znode_t *zp = VTOZ(vp); 4426 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4427 segvn_crargs_t vn_a; 4428 int error; 4429 4430 ZFS_ENTER(zfsvfs); 4431 ZFS_VERIFY_ZP(zp); 4432 4433 if ((prot & PROT_WRITE) && (zp->z_pflags & 4434 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4435 ZFS_EXIT(zfsvfs); 4436 return (EPERM); 4437 } 4438 4439 if ((prot & (PROT_READ | PROT_EXEC)) && 4440 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4441 ZFS_EXIT(zfsvfs); 4442 return (EACCES); 4443 } 4444 4445 if (vp->v_flag & VNOMAP) { 4446 ZFS_EXIT(zfsvfs); 4447 return (ENOSYS); 4448 } 4449 4450 if (off < 0 || len > MAXOFFSET_T - off) { 4451 ZFS_EXIT(zfsvfs); 4452 return (ENXIO); 4453 } 4454 4455 if (vp->v_type != VREG) { 4456 ZFS_EXIT(zfsvfs); 4457 return (ENODEV); 4458 } 4459 4460 /* 4461 * If file is locked, disallow mapping. 4462 */ 4463 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4464 ZFS_EXIT(zfsvfs); 4465 return (EAGAIN); 4466 } 4467 4468 as_rangelock(as); 4469 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4470 if (error != 0) { 4471 as_rangeunlock(as); 4472 ZFS_EXIT(zfsvfs); 4473 return (error); 4474 } 4475 4476 vn_a.vp = vp; 4477 vn_a.offset = (u_offset_t)off; 4478 vn_a.type = flags & MAP_TYPE; 4479 vn_a.prot = prot; 4480 vn_a.maxprot = maxprot; 4481 vn_a.cred = cr; 4482 vn_a.amp = NULL; 4483 vn_a.flags = flags & ~MAP_TYPE; 4484 vn_a.szc = 0; 4485 vn_a.lgrp_mem_policy_flags = 0; 4486 4487 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4488 4489 as_rangeunlock(as); 4490 ZFS_EXIT(zfsvfs); 4491 return (error); 4492 } 4493 4494 /* ARGSUSED */ 4495 static int 4496 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4497 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4498 caller_context_t *ct) 4499 { 4500 uint64_t pages = btopr(len); 4501 4502 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4503 return (0); 4504 } 4505 4506 /* 4507 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4508 * more accurate mtime for the associated file. Since we don't have a way of 4509 * detecting when the data was actually modified, we have to resort to 4510 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4511 * last page is pushed. The problem occurs when the msync() call is omitted, 4512 * which by far the most common case: 4513 * 4514 * open() 4515 * mmap() 4516 * <modify memory> 4517 * munmap() 4518 * close() 4519 * <time lapse> 4520 * putpage() via fsflush 4521 * 4522 * If we wait until fsflush to come along, we can have a modification time that 4523 * is some arbitrary point in the future. In order to prevent this in the 4524 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4525 * torn down. 4526 */ 4527 /* ARGSUSED */ 4528 static int 4529 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4530 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4531 caller_context_t *ct) 4532 { 4533 uint64_t pages = btopr(len); 4534 4535 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4536 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4537 4538 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4539 vn_has_cached_data(vp)) 4540 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4541 4542 return (0); 4543 } 4544 4545 /* 4546 * Free or allocate space in a file. Currently, this function only 4547 * supports the `F_FREESP' command. However, this command is somewhat 4548 * misnamed, as its functionality includes the ability to allocate as 4549 * well as free space. 4550 * 4551 * IN: vp - vnode of file to free data in. 4552 * cmd - action to take (only F_FREESP supported). 4553 * bfp - section of file to free/alloc. 4554 * flag - current file open mode flags. 4555 * offset - current file offset. 4556 * cr - credentials of caller [UNUSED]. 4557 * ct - caller context. 4558 * 4559 * RETURN: 0 if success 4560 * error code if failure 4561 * 4562 * Timestamps: 4563 * vp - ctime|mtime updated 4564 */ 4565 /* ARGSUSED */ 4566 static int 4567 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4568 offset_t offset, cred_t *cr, caller_context_t *ct) 4569 { 4570 znode_t *zp = VTOZ(vp); 4571 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4572 uint64_t off, len; 4573 int error; 4574 4575 ZFS_ENTER(zfsvfs); 4576 ZFS_VERIFY_ZP(zp); 4577 4578 if (cmd != F_FREESP) { 4579 ZFS_EXIT(zfsvfs); 4580 return (EINVAL); 4581 } 4582 4583 if (error = convoff(vp, bfp, 0, offset)) { 4584 ZFS_EXIT(zfsvfs); 4585 return (error); 4586 } 4587 4588 if (bfp->l_len < 0) { 4589 ZFS_EXIT(zfsvfs); 4590 return (EINVAL); 4591 } 4592 4593 off = bfp->l_start; 4594 len = bfp->l_len; /* 0 means from off to end of file */ 4595 4596 error = zfs_freesp(zp, off, len, flag, TRUE); 4597 4598 ZFS_EXIT(zfsvfs); 4599 return (error); 4600 } 4601 4602 /*ARGSUSED*/ 4603 static int 4604 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4605 { 4606 znode_t *zp = VTOZ(vp); 4607 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4608 uint32_t gen; 4609 uint64_t gen64; 4610 uint64_t object = zp->z_id; 4611 zfid_short_t *zfid; 4612 int size, i, error; 4613 4614 ZFS_ENTER(zfsvfs); 4615 ZFS_VERIFY_ZP(zp); 4616 4617 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4618 &gen64, sizeof (uint64_t))) != 0) { 4619 ZFS_EXIT(zfsvfs); 4620 return (error); 4621 } 4622 4623 gen = (uint32_t)gen64; 4624 4625 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4626 if (fidp->fid_len < size) { 4627 fidp->fid_len = size; 4628 ZFS_EXIT(zfsvfs); 4629 return (ENOSPC); 4630 } 4631 4632 zfid = (zfid_short_t *)fidp; 4633 4634 zfid->zf_len = size; 4635 4636 for (i = 0; i < sizeof (zfid->zf_object); i++) 4637 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4638 4639 /* Must have a non-zero generation number to distinguish from .zfs */ 4640 if (gen == 0) 4641 gen = 1; 4642 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4643 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4644 4645 if (size == LONG_FID_LEN) { 4646 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4647 zfid_long_t *zlfid; 4648 4649 zlfid = (zfid_long_t *)fidp; 4650 4651 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4652 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4653 4654 /* XXX - this should be the generation number for the objset */ 4655 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4656 zlfid->zf_setgen[i] = 0; 4657 } 4658 4659 ZFS_EXIT(zfsvfs); 4660 return (0); 4661 } 4662 4663 static int 4664 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4665 caller_context_t *ct) 4666 { 4667 znode_t *zp, *xzp; 4668 zfsvfs_t *zfsvfs; 4669 zfs_dirlock_t *dl; 4670 int error; 4671 4672 switch (cmd) { 4673 case _PC_LINK_MAX: 4674 *valp = ULONG_MAX; 4675 return (0); 4676 4677 case _PC_FILESIZEBITS: 4678 *valp = 64; 4679 return (0); 4680 4681 case _PC_XATTR_EXISTS: 4682 zp = VTOZ(vp); 4683 zfsvfs = zp->z_zfsvfs; 4684 ZFS_ENTER(zfsvfs); 4685 ZFS_VERIFY_ZP(zp); 4686 *valp = 0; 4687 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4688 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4689 if (error == 0) { 4690 zfs_dirent_unlock(dl); 4691 if (!zfs_dirempty(xzp)) 4692 *valp = 1; 4693 VN_RELE(ZTOV(xzp)); 4694 } else if (error == ENOENT) { 4695 /* 4696 * If there aren't extended attributes, it's the 4697 * same as having zero of them. 4698 */ 4699 error = 0; 4700 } 4701 ZFS_EXIT(zfsvfs); 4702 return (error); 4703 4704 case _PC_SATTR_ENABLED: 4705 case _PC_SATTR_EXISTS: 4706 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4707 (vp->v_type == VREG || vp->v_type == VDIR); 4708 return (0); 4709 4710 case _PC_ACCESS_FILTERING: 4711 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4712 vp->v_type == VDIR; 4713 return (0); 4714 4715 case _PC_ACL_ENABLED: 4716 *valp = _ACL_ACE_ENABLED; 4717 return (0); 4718 4719 case _PC_MIN_HOLE_SIZE: 4720 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4721 return (0); 4722 4723 case _PC_TIMESTAMP_RESOLUTION: 4724 /* nanosecond timestamp resolution */ 4725 *valp = 1L; 4726 return (0); 4727 4728 default: 4729 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4730 } 4731 } 4732 4733 /*ARGSUSED*/ 4734 static int 4735 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4736 caller_context_t *ct) 4737 { 4738 znode_t *zp = VTOZ(vp); 4739 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4740 int error; 4741 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4742 4743 ZFS_ENTER(zfsvfs); 4744 ZFS_VERIFY_ZP(zp); 4745 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4746 ZFS_EXIT(zfsvfs); 4747 4748 return (error); 4749 } 4750 4751 /*ARGSUSED*/ 4752 static int 4753 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4754 caller_context_t *ct) 4755 { 4756 znode_t *zp = VTOZ(vp); 4757 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4758 int error; 4759 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4760 4761 ZFS_ENTER(zfsvfs); 4762 ZFS_VERIFY_ZP(zp); 4763 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4764 ZFS_EXIT(zfsvfs); 4765 return (error); 4766 } 4767 4768 /* 4769 * Tunable, both must be a power of 2. 4770 * 4771 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf 4772 * zcr_blksz_max: if set to less than the file block size, allow loaning out of 4773 * an arcbuf for a partial block read 4774 */ 4775 int zcr_blksz_min = (1 << 10); /* 1K */ 4776 int zcr_blksz_max = (1 << 17); /* 128K */ 4777 4778 /*ARGSUSED*/ 4779 static int 4780 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 4781 caller_context_t *ct) 4782 { 4783 znode_t *zp = VTOZ(vp); 4784 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4785 int max_blksz = zfsvfs->z_max_blksz; 4786 uio_t *uio = &xuio->xu_uio; 4787 ssize_t size = uio->uio_resid; 4788 offset_t offset = uio->uio_loffset; 4789 int blksz; 4790 int fullblk, i; 4791 arc_buf_t *abuf; 4792 ssize_t maxsize; 4793 int preamble, postamble; 4794 4795 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 4796 return (EINVAL); 4797 4798 ZFS_ENTER(zfsvfs); 4799 ZFS_VERIFY_ZP(zp); 4800 switch (ioflag) { 4801 case UIO_WRITE: 4802 /* 4803 * Loan out an arc_buf for write if write size is bigger than 4804 * max_blksz, and the file's block size is also max_blksz. 4805 */ 4806 blksz = max_blksz; 4807 if (size < blksz || zp->z_blksz != blksz) { 4808 ZFS_EXIT(zfsvfs); 4809 return (EINVAL); 4810 } 4811 /* 4812 * Caller requests buffers for write before knowing where the 4813 * write offset might be (e.g. NFS TCP write). 4814 */ 4815 if (offset == -1) { 4816 preamble = 0; 4817 } else { 4818 preamble = P2PHASE(offset, blksz); 4819 if (preamble) { 4820 preamble = blksz - preamble; 4821 size -= preamble; 4822 } 4823 } 4824 4825 postamble = P2PHASE(size, blksz); 4826 size -= postamble; 4827 4828 fullblk = size / blksz; 4829 (void) dmu_xuio_init(xuio, 4830 (preamble != 0) + fullblk + (postamble != 0)); 4831 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 4832 int, postamble, int, 4833 (preamble != 0) + fullblk + (postamble != 0)); 4834 4835 /* 4836 * Have to fix iov base/len for partial buffers. They 4837 * currently represent full arc_buf's. 4838 */ 4839 if (preamble) { 4840 /* data begins in the middle of the arc_buf */ 4841 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4842 blksz); 4843 ASSERT(abuf); 4844 (void) dmu_xuio_add(xuio, abuf, 4845 blksz - preamble, preamble); 4846 } 4847 4848 for (i = 0; i < fullblk; i++) { 4849 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4850 blksz); 4851 ASSERT(abuf); 4852 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 4853 } 4854 4855 if (postamble) { 4856 /* data ends in the middle of the arc_buf */ 4857 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4858 blksz); 4859 ASSERT(abuf); 4860 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 4861 } 4862 break; 4863 case UIO_READ: 4864 /* 4865 * Loan out an arc_buf for read if the read size is larger than 4866 * the current file block size. Block alignment is not 4867 * considered. Partial arc_buf will be loaned out for read. 4868 */ 4869 blksz = zp->z_blksz; 4870 if (blksz < zcr_blksz_min) 4871 blksz = zcr_blksz_min; 4872 if (blksz > zcr_blksz_max) 4873 blksz = zcr_blksz_max; 4874 /* avoid potential complexity of dealing with it */ 4875 if (blksz > max_blksz) { 4876 ZFS_EXIT(zfsvfs); 4877 return (EINVAL); 4878 } 4879 4880 maxsize = zp->z_size - uio->uio_loffset; 4881 if (size > maxsize) 4882 size = maxsize; 4883 4884 if (size < blksz || vn_has_cached_data(vp)) { 4885 ZFS_EXIT(zfsvfs); 4886 return (EINVAL); 4887 } 4888 break; 4889 default: 4890 ZFS_EXIT(zfsvfs); 4891 return (EINVAL); 4892 } 4893 4894 uio->uio_extflg = UIO_XUIO; 4895 XUIO_XUZC_RW(xuio) = ioflag; 4896 ZFS_EXIT(zfsvfs); 4897 return (0); 4898 } 4899 4900 /*ARGSUSED*/ 4901 static int 4902 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 4903 { 4904 int i; 4905 arc_buf_t *abuf; 4906 int ioflag = XUIO_XUZC_RW(xuio); 4907 4908 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 4909 4910 i = dmu_xuio_cnt(xuio); 4911 while (i-- > 0) { 4912 abuf = dmu_xuio_arcbuf(xuio, i); 4913 /* 4914 * if abuf == NULL, it must be a write buffer 4915 * that has been returned in zfs_write(). 4916 */ 4917 if (abuf) 4918 dmu_return_arcbuf(abuf); 4919 ASSERT(abuf || ioflag == UIO_WRITE); 4920 } 4921 4922 dmu_xuio_fini(xuio); 4923 return (0); 4924 } 4925 4926 /* 4927 * Predeclare these here so that the compiler assumes that 4928 * this is an "old style" function declaration that does 4929 * not include arguments => we won't get type mismatch errors 4930 * in the initializations that follow. 4931 */ 4932 static int zfs_inval(); 4933 static int zfs_isdir(); 4934 4935 static int 4936 zfs_inval() 4937 { 4938 return (EINVAL); 4939 } 4940 4941 static int 4942 zfs_isdir() 4943 { 4944 return (EISDIR); 4945 } 4946 /* 4947 * Directory vnode operations template 4948 */ 4949 vnodeops_t *zfs_dvnodeops; 4950 const fs_operation_def_t zfs_dvnodeops_template[] = { 4951 VOPNAME_OPEN, { .vop_open = zfs_open }, 4952 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4953 VOPNAME_READ, { .error = zfs_isdir }, 4954 VOPNAME_WRITE, { .error = zfs_isdir }, 4955 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4956 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4957 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4958 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4959 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4960 VOPNAME_CREATE, { .vop_create = zfs_create }, 4961 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4962 VOPNAME_LINK, { .vop_link = zfs_link }, 4963 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4964 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4965 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4966 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4967 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4968 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4969 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4970 VOPNAME_FID, { .vop_fid = zfs_fid }, 4971 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4972 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4973 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4974 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4975 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4976 NULL, NULL 4977 }; 4978 4979 /* 4980 * Regular file vnode operations template 4981 */ 4982 vnodeops_t *zfs_fvnodeops; 4983 const fs_operation_def_t zfs_fvnodeops_template[] = { 4984 VOPNAME_OPEN, { .vop_open = zfs_open }, 4985 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4986 VOPNAME_READ, { .vop_read = zfs_read }, 4987 VOPNAME_WRITE, { .vop_write = zfs_write }, 4988 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4989 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4990 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4991 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4992 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4993 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4994 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4995 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4996 VOPNAME_FID, { .vop_fid = zfs_fid }, 4997 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4998 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4999 VOPNAME_SPACE, { .vop_space = zfs_space }, 5000 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5001 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5002 VOPNAME_MAP, { .vop_map = zfs_map }, 5003 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5004 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5005 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5006 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5007 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5008 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5009 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5010 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5011 NULL, NULL 5012 }; 5013 5014 /* 5015 * Symbolic link vnode operations template 5016 */ 5017 vnodeops_t *zfs_symvnodeops; 5018 const fs_operation_def_t zfs_symvnodeops_template[] = { 5019 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5020 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5021 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5022 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5023 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5024 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5025 VOPNAME_FID, { .vop_fid = zfs_fid }, 5026 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5027 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5028 NULL, NULL 5029 }; 5030 5031 /* 5032 * special share hidden files vnode operations template 5033 */ 5034 vnodeops_t *zfs_sharevnodeops; 5035 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5036 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5037 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5038 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5039 VOPNAME_FID, { .vop_fid = zfs_fid }, 5040 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5041 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5042 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5043 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5044 NULL, NULL 5045 }; 5046 5047 /* 5048 * Extended attribute directory vnode operations template 5049 * This template is identical to the directory vnodes 5050 * operation template except for restricted operations: 5051 * VOP_MKDIR() 5052 * VOP_SYMLINK() 5053 * Note that there are other restrictions embedded in: 5054 * zfs_create() - restrict type to VREG 5055 * zfs_link() - no links into/out of attribute space 5056 * zfs_rename() - no moves into/out of attribute space 5057 */ 5058 vnodeops_t *zfs_xdvnodeops; 5059 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5060 VOPNAME_OPEN, { .vop_open = zfs_open }, 5061 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5062 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5063 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5064 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5065 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5066 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5067 VOPNAME_CREATE, { .vop_create = zfs_create }, 5068 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5069 VOPNAME_LINK, { .vop_link = zfs_link }, 5070 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5071 VOPNAME_MKDIR, { .error = zfs_inval }, 5072 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5073 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5074 VOPNAME_SYMLINK, { .error = zfs_inval }, 5075 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5076 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5077 VOPNAME_FID, { .vop_fid = zfs_fid }, 5078 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5079 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5080 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5081 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5082 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5083 NULL, NULL 5084 }; 5085 5086 /* 5087 * Error vnode operations template 5088 */ 5089 vnodeops_t *zfs_evnodeops; 5090 const fs_operation_def_t zfs_evnodeops_template[] = { 5091 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5092 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5093 NULL, NULL 5094 }; 5095