1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2007 Jeremy Teo */ 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/vm.h> 45 #include <vm/seg_vn.h> 46 #include <vm/pvn.h> 47 #include <vm/as.h> 48 #include <vm/kpm.h> 49 #include <vm/seg_kpm.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/dmu_objset.h> 61 #include <sys/spa.h> 62 #include <sys/txg.h> 63 #include <sys/dbuf.h> 64 #include <sys/zap.h> 65 #include <sys/sa.h> 66 #include <sys/dirent.h> 67 #include <sys/policy.h> 68 #include <sys/sunddi.h> 69 #include <sys/filio.h> 70 #include <sys/sid.h> 71 #include "fs/fs_subr.h" 72 #include <sys/zfs_ctldir.h> 73 #include <sys/zfs_fuid.h> 74 #include <sys/zfs_sa.h> 75 #include <sys/dnlc.h> 76 #include <sys/zfs_rlock.h> 77 #include <sys/extdirent.h> 78 #include <sys/kidmap.h> 79 #include <sys/cred.h> 80 #include <sys/attr.h> 81 82 /* 83 * Programming rules. 84 * 85 * Each vnode op performs some logical unit of work. To do this, the ZPL must 86 * properly lock its in-core state, create a DMU transaction, do the work, 87 * record this work in the intent log (ZIL), commit the DMU transaction, 88 * and wait for the intent log to commit if it is a synchronous operation. 89 * Moreover, the vnode ops must work in both normal and log replay context. 90 * The ordering of events is important to avoid deadlocks and references 91 * to freed memory. The example below illustrates the following Big Rules: 92 * 93 * (1) A check must be made in each zfs thread for a mounted file system. 94 * This is done avoiding races using ZFS_ENTER(zfsvfs). 95 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 96 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 97 * can return EIO from the calling function. 98 * 99 * (2) VN_RELE() should always be the last thing except for zil_commit() 100 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 101 * First, if it's the last reference, the vnode/znode 102 * can be freed, so the zp may point to freed memory. Second, the last 103 * reference will call zfs_zinactive(), which may induce a lot of work -- 104 * pushing cached pages (which acquires range locks) and syncing out 105 * cached atime changes. Third, zfs_zinactive() may require a new tx, 106 * which could deadlock the system if you were already holding one. 107 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 108 * 109 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 110 * as they can span dmu_tx_assign() calls. 111 * 112 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 113 * This is critical because we don't want to block while holding locks. 114 * Note, in particular, that if a lock is sometimes acquired before 115 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 116 * use a non-blocking assign can deadlock the system. The scenario: 117 * 118 * Thread A has grabbed a lock before calling dmu_tx_assign(). 119 * Thread B is in an already-assigned tx, and blocks for this lock. 120 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 121 * forever, because the previous txg can't quiesce until B's tx commits. 122 * 123 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 124 * then drop all locks, call dmu_tx_wait(), and try again. 125 * 126 * (5) If the operation succeeded, generate the intent log entry for it 127 * before dropping locks. This ensures that the ordering of events 128 * in the intent log matches the order in which they actually occurred. 129 * During ZIL replay the zfs_log_* functions will update the sequence 130 * number to indicate the zil transaction has replayed. 131 * 132 * (6) At the end of each vnode op, the DMU tx must always commit, 133 * regardless of whether there were any errors. 134 * 135 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 136 * to ensure that synchronous semantics are provided when necessary. 137 * 138 * In general, this is how things should be ordered in each vnode op: 139 * 140 * ZFS_ENTER(zfsvfs); // exit if unmounted 141 * top: 142 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 143 * rw_enter(...); // grab any other locks you need 144 * tx = dmu_tx_create(...); // get DMU tx 145 * dmu_tx_hold_*(); // hold each object you might modify 146 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 147 * if (error) { 148 * rw_exit(...); // drop locks 149 * zfs_dirent_unlock(dl); // unlock directory entry 150 * VN_RELE(...); // release held vnodes 151 * if (error == ERESTART) { 152 * dmu_tx_wait(tx); 153 * dmu_tx_abort(tx); 154 * goto top; 155 * } 156 * dmu_tx_abort(tx); // abort DMU tx 157 * ZFS_EXIT(zfsvfs); // finished in zfs 158 * return (error); // really out of space 159 * } 160 * error = do_real_work(); // do whatever this VOP does 161 * if (error == 0) 162 * zfs_log_*(...); // on success, make ZIL entry 163 * dmu_tx_commit(tx); // commit DMU tx -- error or not 164 * rw_exit(...); // drop locks 165 * zfs_dirent_unlock(dl); // unlock directory entry 166 * VN_RELE(...); // release held vnodes 167 * zil_commit(zilog, foid); // synchronous when necessary 168 * ZFS_EXIT(zfsvfs); // finished in zfs 169 * return (error); // done, report error 170 */ 171 172 /* ARGSUSED */ 173 static int 174 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 175 { 176 znode_t *zp = VTOZ(*vpp); 177 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 178 179 ZFS_ENTER(zfsvfs); 180 ZFS_VERIFY_ZP(zp); 181 182 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 183 ((flag & FAPPEND) == 0)) { 184 ZFS_EXIT(zfsvfs); 185 return (EPERM); 186 } 187 188 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 189 ZTOV(zp)->v_type == VREG && 190 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 191 if (fs_vscan(*vpp, cr, 0) != 0) { 192 ZFS_EXIT(zfsvfs); 193 return (EACCES); 194 } 195 } 196 197 /* Keep a count of the synchronous opens in the znode */ 198 if (flag & (FSYNC | FDSYNC)) 199 atomic_inc_32(&zp->z_sync_cnt); 200 201 ZFS_EXIT(zfsvfs); 202 return (0); 203 } 204 205 /* ARGSUSED */ 206 static int 207 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 208 caller_context_t *ct) 209 { 210 znode_t *zp = VTOZ(vp); 211 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 212 213 /* 214 * Clean up any locks held by this process on the vp. 215 */ 216 cleanlocks(vp, ddi_get_pid(), 0); 217 cleanshares(vp, ddi_get_pid()); 218 219 ZFS_ENTER(zfsvfs); 220 ZFS_VERIFY_ZP(zp); 221 222 /* Decrement the synchronous opens in the znode */ 223 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 224 atomic_dec_32(&zp->z_sync_cnt); 225 226 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 227 ZTOV(zp)->v_type == VREG && 228 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 229 VERIFY(fs_vscan(vp, cr, 1) == 0); 230 231 ZFS_EXIT(zfsvfs); 232 return (0); 233 } 234 235 /* 236 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 237 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 238 */ 239 static int 240 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 241 { 242 znode_t *zp = VTOZ(vp); 243 uint64_t noff = (uint64_t)*off; /* new offset */ 244 uint64_t file_sz; 245 int error; 246 boolean_t hole; 247 248 file_sz = zp->z_size; 249 if (noff >= file_sz) { 250 return (ENXIO); 251 } 252 253 if (cmd == _FIO_SEEK_HOLE) 254 hole = B_TRUE; 255 else 256 hole = B_FALSE; 257 258 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 259 260 /* end of file? */ 261 if ((error == ESRCH) || (noff > file_sz)) { 262 /* 263 * Handle the virtual hole at the end of file. 264 */ 265 if (hole) { 266 *off = file_sz; 267 return (0); 268 } 269 return (ENXIO); 270 } 271 272 if (noff < *off) 273 return (error); 274 *off = noff; 275 return (error); 276 } 277 278 /* ARGSUSED */ 279 static int 280 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 281 int *rvalp, caller_context_t *ct) 282 { 283 offset_t off; 284 int error; 285 zfsvfs_t *zfsvfs; 286 znode_t *zp; 287 288 switch (com) { 289 case _FIOFFS: 290 return (zfs_sync(vp->v_vfsp, 0, cred)); 291 292 /* 293 * The following two ioctls are used by bfu. Faking out, 294 * necessary to avoid bfu errors. 295 */ 296 case _FIOGDIO: 297 case _FIOSDIO: 298 return (0); 299 300 case _FIO_SEEK_DATA: 301 case _FIO_SEEK_HOLE: 302 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 303 return (EFAULT); 304 305 zp = VTOZ(vp); 306 zfsvfs = zp->z_zfsvfs; 307 ZFS_ENTER(zfsvfs); 308 ZFS_VERIFY_ZP(zp); 309 310 /* offset parameter is in/out */ 311 error = zfs_holey(vp, com, &off); 312 ZFS_EXIT(zfsvfs); 313 if (error) 314 return (error); 315 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 316 return (EFAULT); 317 return (0); 318 } 319 return (ENOTTY); 320 } 321 322 /* 323 * Utility functions to map and unmap a single physical page. These 324 * are used to manage the mappable copies of ZFS file data, and therefore 325 * do not update ref/mod bits. 326 */ 327 caddr_t 328 zfs_map_page(page_t *pp, enum seg_rw rw) 329 { 330 if (kpm_enable) 331 return (hat_kpm_mapin(pp, 0)); 332 ASSERT(rw == S_READ || rw == S_WRITE); 333 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 334 (caddr_t)-1)); 335 } 336 337 void 338 zfs_unmap_page(page_t *pp, caddr_t addr) 339 { 340 if (kpm_enable) { 341 hat_kpm_mapout(pp, 0, addr); 342 } else { 343 ppmapout(addr); 344 } 345 } 346 347 /* 348 * When a file is memory mapped, we must keep the IO data synchronized 349 * between the DMU cache and the memory mapped pages. What this means: 350 * 351 * On Write: If we find a memory mapped page, we write to *both* 352 * the page and the dmu buffer. 353 */ 354 static void 355 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 356 { 357 int64_t off; 358 359 off = start & PAGEOFFSET; 360 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 361 page_t *pp; 362 uint64_t nbytes = MIN(PAGESIZE - off, len); 363 364 if (pp = page_lookup(vp, start, SE_SHARED)) { 365 caddr_t va; 366 367 va = zfs_map_page(pp, S_WRITE); 368 (void) dmu_read(os, oid, start+off, nbytes, va+off, 369 DMU_READ_PREFETCH); 370 zfs_unmap_page(pp, va); 371 page_unlock(pp); 372 } 373 len -= nbytes; 374 off = 0; 375 } 376 } 377 378 /* 379 * When a file is memory mapped, we must keep the IO data synchronized 380 * between the DMU cache and the memory mapped pages. What this means: 381 * 382 * On Read: We "read" preferentially from memory mapped pages, 383 * else we default from the dmu buffer. 384 * 385 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 386 * the file is memory mapped. 387 */ 388 static int 389 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 390 { 391 znode_t *zp = VTOZ(vp); 392 objset_t *os = zp->z_zfsvfs->z_os; 393 int64_t start, off; 394 int len = nbytes; 395 int error = 0; 396 397 start = uio->uio_loffset; 398 off = start & PAGEOFFSET; 399 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 400 page_t *pp; 401 uint64_t bytes = MIN(PAGESIZE - off, len); 402 403 if (pp = page_lookup(vp, start, SE_SHARED)) { 404 caddr_t va; 405 406 va = zfs_map_page(pp, S_READ); 407 error = uiomove(va + off, bytes, UIO_READ, uio); 408 zfs_unmap_page(pp, va); 409 page_unlock(pp); 410 } else { 411 error = dmu_read_uio(os, zp->z_id, uio, bytes); 412 } 413 len -= bytes; 414 off = 0; 415 if (error) 416 break; 417 } 418 return (error); 419 } 420 421 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 422 423 /* 424 * Read bytes from specified file into supplied buffer. 425 * 426 * IN: vp - vnode of file to be read from. 427 * uio - structure supplying read location, range info, 428 * and return buffer. 429 * ioflag - SYNC flags; used to provide FRSYNC semantics. 430 * cr - credentials of caller. 431 * ct - caller context 432 * 433 * OUT: uio - updated offset and range, buffer filled. 434 * 435 * RETURN: 0 if success 436 * error code if failure 437 * 438 * Side Effects: 439 * vp - atime updated if byte count > 0 440 */ 441 /* ARGSUSED */ 442 static int 443 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 444 { 445 znode_t *zp = VTOZ(vp); 446 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 447 objset_t *os; 448 ssize_t n, nbytes; 449 int error; 450 rl_t *rl; 451 xuio_t *xuio = NULL; 452 453 ZFS_ENTER(zfsvfs); 454 ZFS_VERIFY_ZP(zp); 455 os = zfsvfs->z_os; 456 457 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 458 ZFS_EXIT(zfsvfs); 459 return (EACCES); 460 } 461 462 /* 463 * Validate file offset 464 */ 465 if (uio->uio_loffset < (offset_t)0) { 466 ZFS_EXIT(zfsvfs); 467 return (EINVAL); 468 } 469 470 /* 471 * Fasttrack empty reads 472 */ 473 if (uio->uio_resid == 0) { 474 ZFS_EXIT(zfsvfs); 475 return (0); 476 } 477 478 /* 479 * Check for mandatory locks 480 */ 481 if (MANDMODE(zp->z_mode)) { 482 if (error = chklock(vp, FREAD, 483 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 484 ZFS_EXIT(zfsvfs); 485 return (error); 486 } 487 } 488 489 /* 490 * If we're in FRSYNC mode, sync out this znode before reading it. 491 */ 492 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 493 zil_commit(zfsvfs->z_log, zp->z_id); 494 495 /* 496 * Lock the range against changes. 497 */ 498 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 499 500 /* 501 * If we are reading past end-of-file we can skip 502 * to the end; but we might still need to set atime. 503 */ 504 if (uio->uio_loffset >= zp->z_size) { 505 error = 0; 506 goto out; 507 } 508 509 ASSERT(uio->uio_loffset < zp->z_size); 510 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 511 512 if ((uio->uio_extflg == UIO_XUIO) && 513 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 514 int nblk; 515 int blksz = zp->z_blksz; 516 uint64_t offset = uio->uio_loffset; 517 518 xuio = (xuio_t *)uio; 519 if ((ISP2(blksz))) { 520 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 521 blksz)) / blksz; 522 } else { 523 ASSERT(offset + n <= blksz); 524 nblk = 1; 525 } 526 (void) dmu_xuio_init(xuio, nblk); 527 528 if (vn_has_cached_data(vp)) { 529 /* 530 * For simplicity, we always allocate a full buffer 531 * even if we only expect to read a portion of a block. 532 */ 533 while (--nblk >= 0) { 534 (void) dmu_xuio_add(xuio, 535 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 536 blksz), 0, blksz); 537 } 538 } 539 } 540 541 while (n > 0) { 542 nbytes = MIN(n, zfs_read_chunk_size - 543 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 544 545 if (vn_has_cached_data(vp)) 546 error = mappedread(vp, nbytes, uio); 547 else 548 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 549 if (error) { 550 /* convert checksum errors into IO errors */ 551 if (error == ECKSUM) 552 error = EIO; 553 break; 554 } 555 556 n -= nbytes; 557 } 558 out: 559 zfs_range_unlock(rl); 560 561 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 562 ZFS_EXIT(zfsvfs); 563 return (error); 564 } 565 566 /* 567 * Write the bytes to a file. 568 * 569 * IN: vp - vnode of file to be written to. 570 * uio - structure supplying write location, range info, 571 * and data buffer. 572 * ioflag - FAPPEND flag set if in append mode. 573 * cr - credentials of caller. 574 * ct - caller context (NFS/CIFS fem monitor only) 575 * 576 * OUT: uio - updated offset and range. 577 * 578 * RETURN: 0 if success 579 * error code if failure 580 * 581 * Timestamps: 582 * vp - ctime|mtime updated if byte count > 0 583 */ 584 585 /* ARGSUSED */ 586 static int 587 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 588 { 589 znode_t *zp = VTOZ(vp); 590 rlim64_t limit = uio->uio_llimit; 591 ssize_t start_resid = uio->uio_resid; 592 ssize_t tx_bytes; 593 uint64_t end_size; 594 dmu_tx_t *tx; 595 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 596 zilog_t *zilog; 597 offset_t woff; 598 ssize_t n, nbytes; 599 rl_t *rl; 600 int max_blksz = zfsvfs->z_max_blksz; 601 int error; 602 arc_buf_t *abuf; 603 iovec_t *aiov; 604 xuio_t *xuio = NULL; 605 int i_iov = 0; 606 int iovcnt = uio->uio_iovcnt; 607 iovec_t *iovp = uio->uio_iov; 608 int write_eof; 609 int count = 0; 610 sa_bulk_attr_t bulk[4]; 611 uint64_t mtime[2], ctime[2]; 612 613 /* 614 * Fasttrack empty write 615 */ 616 n = start_resid; 617 if (n == 0) 618 return (0); 619 620 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 621 limit = MAXOFFSET_T; 622 623 ZFS_ENTER(zfsvfs); 624 ZFS_VERIFY_ZP(zp); 625 626 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 627 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 628 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 629 &zp->z_size, 8); 630 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 631 &zp->z_pflags, 8); 632 633 /* 634 * If immutable or not appending then return EPERM 635 */ 636 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 637 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 638 (uio->uio_loffset < zp->z_size))) { 639 ZFS_EXIT(zfsvfs); 640 return (EPERM); 641 } 642 643 zilog = zfsvfs->z_log; 644 645 /* 646 * Validate file offset 647 */ 648 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 649 if (woff < 0) { 650 ZFS_EXIT(zfsvfs); 651 return (EINVAL); 652 } 653 654 /* 655 * Check for mandatory locks before calling zfs_range_lock() 656 * in order to prevent a deadlock with locks set via fcntl(). 657 */ 658 if (MANDMODE((mode_t)zp->z_mode) && 659 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 660 ZFS_EXIT(zfsvfs); 661 return (error); 662 } 663 664 /* 665 * Pre-fault the pages to ensure slow (eg NFS) pages 666 * don't hold up txg. 667 * Skip this if uio contains loaned arc_buf. 668 */ 669 if ((uio->uio_extflg == UIO_XUIO) && 670 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 671 xuio = (xuio_t *)uio; 672 else 673 uio_prefaultpages(n, uio); 674 675 /* 676 * If in append mode, set the io offset pointer to eof. 677 */ 678 if (ioflag & FAPPEND) { 679 /* 680 * Obtain an appending range lock to guarantee file append 681 * semantics. We reset the write offset once we have the lock. 682 */ 683 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 684 woff = rl->r_off; 685 if (rl->r_len == UINT64_MAX) { 686 /* 687 * We overlocked the file because this write will cause 688 * the file block size to increase. 689 * Note that zp_size cannot change with this lock held. 690 */ 691 woff = zp->z_size; 692 } 693 uio->uio_loffset = woff; 694 } else { 695 /* 696 * Note that if the file block size will change as a result of 697 * this write, then this range lock will lock the entire file 698 * so that we can re-write the block safely. 699 */ 700 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 701 } 702 703 if (woff >= limit) { 704 zfs_range_unlock(rl); 705 ZFS_EXIT(zfsvfs); 706 return (EFBIG); 707 } 708 709 if ((woff + n) > limit || woff > (limit - n)) 710 n = limit - woff; 711 712 /* Will this write extend the file length? */ 713 write_eof = (woff + n > zp->z_size); 714 715 end_size = MAX(zp->z_size, woff + n); 716 717 /* 718 * Write the file in reasonable size chunks. Each chunk is written 719 * in a separate transaction; this keeps the intent log records small 720 * and allows us to do more fine-grained space accounting. 721 */ 722 while (n > 0) { 723 abuf = NULL; 724 woff = uio->uio_loffset; 725 again: 726 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 727 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 728 if (abuf != NULL) 729 dmu_return_arcbuf(abuf); 730 error = EDQUOT; 731 break; 732 } 733 734 if (xuio && abuf == NULL) { 735 ASSERT(i_iov < iovcnt); 736 aiov = &iovp[i_iov]; 737 abuf = dmu_xuio_arcbuf(xuio, i_iov); 738 dmu_xuio_clear(xuio, i_iov); 739 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 740 iovec_t *, aiov, arc_buf_t *, abuf); 741 ASSERT((aiov->iov_base == abuf->b_data) || 742 ((char *)aiov->iov_base - (char *)abuf->b_data + 743 aiov->iov_len == arc_buf_size(abuf))); 744 i_iov++; 745 } else if (abuf == NULL && n >= max_blksz && 746 woff >= zp->z_size && 747 P2PHASE(woff, max_blksz) == 0 && 748 zp->z_blksz == max_blksz) { 749 /* 750 * This write covers a full block. "Borrow" a buffer 751 * from the dmu so that we can fill it before we enter 752 * a transaction. This avoids the possibility of 753 * holding up the transaction if the data copy hangs 754 * up on a pagefault (e.g., from an NFS server mapping). 755 */ 756 size_t cbytes; 757 758 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 759 max_blksz); 760 ASSERT(abuf != NULL); 761 ASSERT(arc_buf_size(abuf) == max_blksz); 762 if (error = uiocopy(abuf->b_data, max_blksz, 763 UIO_WRITE, uio, &cbytes)) { 764 dmu_return_arcbuf(abuf); 765 break; 766 } 767 ASSERT(cbytes == max_blksz); 768 } 769 770 /* 771 * Start a transaction. 772 */ 773 tx = dmu_tx_create(zfsvfs->z_os); 774 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 775 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 776 zfs_sa_upgrade_txholds(tx, zp); 777 error = dmu_tx_assign(tx, TXG_NOWAIT); 778 if (error) { 779 if (error == ERESTART) { 780 dmu_tx_wait(tx); 781 dmu_tx_abort(tx); 782 goto again; 783 } 784 dmu_tx_abort(tx); 785 if (abuf != NULL) 786 dmu_return_arcbuf(abuf); 787 break; 788 } 789 790 /* 791 * If zfs_range_lock() over-locked we grow the blocksize 792 * and then reduce the lock range. This will only happen 793 * on the first iteration since zfs_range_reduce() will 794 * shrink down r_len to the appropriate size. 795 */ 796 if (rl->r_len == UINT64_MAX) { 797 uint64_t new_blksz; 798 799 if (zp->z_blksz > max_blksz) { 800 ASSERT(!ISP2(zp->z_blksz)); 801 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 802 } else { 803 new_blksz = MIN(end_size, max_blksz); 804 } 805 zfs_grow_blocksize(zp, new_blksz, tx); 806 zfs_range_reduce(rl, woff, n); 807 } 808 809 /* 810 * XXX - should we really limit each write to z_max_blksz? 811 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 812 */ 813 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 814 815 if (abuf == NULL) { 816 tx_bytes = uio->uio_resid; 817 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 818 uio, nbytes, tx); 819 tx_bytes -= uio->uio_resid; 820 } else { 821 tx_bytes = nbytes; 822 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 823 /* 824 * If this is not a full block write, but we are 825 * extending the file past EOF and this data starts 826 * block-aligned, use assign_arcbuf(). Otherwise, 827 * write via dmu_write(). 828 */ 829 if (tx_bytes < max_blksz && (!write_eof || 830 aiov->iov_base != abuf->b_data)) { 831 ASSERT(xuio); 832 dmu_write(zfsvfs->z_os, zp->z_id, woff, 833 aiov->iov_len, aiov->iov_base, tx); 834 dmu_return_arcbuf(abuf); 835 xuio_stat_wbuf_copied(); 836 } else { 837 ASSERT(xuio || tx_bytes == max_blksz); 838 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 839 woff, abuf, tx); 840 } 841 ASSERT(tx_bytes <= uio->uio_resid); 842 uioskip(uio, tx_bytes); 843 } 844 if (tx_bytes && vn_has_cached_data(vp)) { 845 update_pages(vp, woff, 846 tx_bytes, zfsvfs->z_os, zp->z_id); 847 } 848 849 /* 850 * If we made no progress, we're done. If we made even 851 * partial progress, update the znode and ZIL accordingly. 852 */ 853 if (tx_bytes == 0) { 854 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 855 (void *)&zp->z_size, sizeof (uint64_t), tx); 856 dmu_tx_commit(tx); 857 ASSERT(error != 0); 858 break; 859 } 860 861 /* 862 * Clear Set-UID/Set-GID bits on successful write if not 863 * privileged and at least one of the excute bits is set. 864 * 865 * It would be nice to to this after all writes have 866 * been done, but that would still expose the ISUID/ISGID 867 * to another app after the partial write is committed. 868 * 869 */ 870 mutex_enter(&zp->z_acl_lock); 871 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 872 (S_IXUSR >> 6))) != 0 && 873 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 874 secpolicy_vnode_setid_retain(cr, 875 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 876 uint64_t newmode; 877 zp->z_mode &= ~(S_ISUID | S_ISGID); 878 newmode = zp->z_mode; 879 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 880 (void *)&newmode, sizeof (uint64_t), tx); 881 } 882 mutex_exit(&zp->z_acl_lock); 883 884 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 885 B_TRUE); 886 887 /* 888 * Update the file size (zp_size) if it has changed; 889 * account for possible concurrent updates. 890 */ 891 while ((end_size = zp->z_size) < uio->uio_loffset) { 892 (void) atomic_cas_64(&zp->z_size, end_size, 893 uio->uio_loffset); 894 ASSERT(error == 0); 895 } 896 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 897 898 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 899 dmu_tx_commit(tx); 900 901 if (error != 0) 902 break; 903 ASSERT(tx_bytes == nbytes); 904 n -= nbytes; 905 } 906 907 zfs_range_unlock(rl); 908 909 /* 910 * If we're in replay mode, or we made no progress, return error. 911 * Otherwise, it's at least a partial write, so it's successful. 912 */ 913 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 914 ZFS_EXIT(zfsvfs); 915 return (error); 916 } 917 918 if (ioflag & (FSYNC | FDSYNC) || 919 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 920 zil_commit(zilog, zp->z_id); 921 922 ZFS_EXIT(zfsvfs); 923 return (0); 924 } 925 926 void 927 zfs_get_done(zgd_t *zgd, int error) 928 { 929 znode_t *zp = zgd->zgd_private; 930 objset_t *os = zp->z_zfsvfs->z_os; 931 932 if (zgd->zgd_db) 933 dmu_buf_rele(zgd->zgd_db, zgd); 934 935 zfs_range_unlock(zgd->zgd_rl); 936 937 /* 938 * Release the vnode asynchronously as we currently have the 939 * txg stopped from syncing. 940 */ 941 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 942 943 if (error == 0 && zgd->zgd_bp) 944 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 945 946 kmem_free(zgd, sizeof (zgd_t)); 947 } 948 949 #ifdef DEBUG 950 static int zil_fault_io = 0; 951 #endif 952 953 /* 954 * Get data to generate a TX_WRITE intent log record. 955 */ 956 int 957 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 958 { 959 zfsvfs_t *zfsvfs = arg; 960 objset_t *os = zfsvfs->z_os; 961 znode_t *zp; 962 uint64_t object = lr->lr_foid; 963 uint64_t offset = lr->lr_offset; 964 uint64_t size = lr->lr_length; 965 blkptr_t *bp = &lr->lr_blkptr; 966 dmu_buf_t *db; 967 zgd_t *zgd; 968 int error = 0; 969 970 ASSERT(zio != NULL); 971 ASSERT(size != 0); 972 973 /* 974 * Nothing to do if the file has been removed 975 */ 976 if (zfs_zget(zfsvfs, object, &zp) != 0) 977 return (ENOENT); 978 if (zp->z_unlinked) { 979 /* 980 * Release the vnode asynchronously as we currently have the 981 * txg stopped from syncing. 982 */ 983 VN_RELE_ASYNC(ZTOV(zp), 984 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 985 return (ENOENT); 986 } 987 988 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 989 zgd->zgd_zilog = zfsvfs->z_log; 990 zgd->zgd_private = zp; 991 992 /* 993 * Write records come in two flavors: immediate and indirect. 994 * For small writes it's cheaper to store the data with the 995 * log record (immediate); for large writes it's cheaper to 996 * sync the data and get a pointer to it (indirect) so that 997 * we don't have to write the data twice. 998 */ 999 if (buf != NULL) { /* immediate write */ 1000 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1001 /* test for truncation needs to be done while range locked */ 1002 if (offset >= zp->z_size) { 1003 error = ENOENT; 1004 } else { 1005 error = dmu_read(os, object, offset, size, buf, 1006 DMU_READ_NO_PREFETCH); 1007 } 1008 ASSERT(error == 0 || error == ENOENT); 1009 } else { /* indirect write */ 1010 /* 1011 * Have to lock the whole block to ensure when it's 1012 * written out and it's checksum is being calculated 1013 * that no one can change the data. We need to re-check 1014 * blocksize after we get the lock in case it's changed! 1015 */ 1016 for (;;) { 1017 uint64_t blkoff; 1018 size = zp->z_blksz; 1019 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1020 offset -= blkoff; 1021 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1022 RL_READER); 1023 if (zp->z_blksz == size) 1024 break; 1025 offset += blkoff; 1026 zfs_range_unlock(zgd->zgd_rl); 1027 } 1028 /* test for truncation needs to be done while range locked */ 1029 if (lr->lr_offset >= zp->z_size) 1030 error = ENOENT; 1031 #ifdef DEBUG 1032 if (zil_fault_io) { 1033 error = EIO; 1034 zil_fault_io = 0; 1035 } 1036 #endif 1037 if (error == 0) 1038 error = dmu_buf_hold(os, object, offset, zgd, &db, 1039 DMU_READ_NO_PREFETCH); 1040 1041 if (error == 0) { 1042 zgd->zgd_db = db; 1043 zgd->zgd_bp = bp; 1044 1045 ASSERT(db->db_offset == offset); 1046 ASSERT(db->db_size == size); 1047 1048 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1049 zfs_get_done, zgd); 1050 ASSERT(error || lr->lr_length <= zp->z_blksz); 1051 1052 /* 1053 * On success, we need to wait for the write I/O 1054 * initiated by dmu_sync() to complete before we can 1055 * release this dbuf. We will finish everything up 1056 * in the zfs_get_done() callback. 1057 */ 1058 if (error == 0) 1059 return (0); 1060 1061 if (error == EALREADY) { 1062 lr->lr_common.lrc_txtype = TX_WRITE2; 1063 error = 0; 1064 } 1065 } 1066 } 1067 1068 zfs_get_done(zgd, error); 1069 1070 return (error); 1071 } 1072 1073 /*ARGSUSED*/ 1074 static int 1075 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1076 caller_context_t *ct) 1077 { 1078 znode_t *zp = VTOZ(vp); 1079 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1080 int error; 1081 1082 ZFS_ENTER(zfsvfs); 1083 ZFS_VERIFY_ZP(zp); 1084 1085 if (flag & V_ACE_MASK) 1086 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1087 else 1088 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1089 1090 ZFS_EXIT(zfsvfs); 1091 return (error); 1092 } 1093 1094 /* 1095 * If vnode is for a device return a specfs vnode instead. 1096 */ 1097 static int 1098 specvp_check(vnode_t **vpp, cred_t *cr) 1099 { 1100 int error = 0; 1101 1102 if (IS_DEVVP(*vpp)) { 1103 struct vnode *svp; 1104 1105 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1106 VN_RELE(*vpp); 1107 if (svp == NULL) 1108 error = ENOSYS; 1109 *vpp = svp; 1110 } 1111 return (error); 1112 } 1113 1114 1115 /* 1116 * Lookup an entry in a directory, or an extended attribute directory. 1117 * If it exists, return a held vnode reference for it. 1118 * 1119 * IN: dvp - vnode of directory to search. 1120 * nm - name of entry to lookup. 1121 * pnp - full pathname to lookup [UNUSED]. 1122 * flags - LOOKUP_XATTR set if looking for an attribute. 1123 * rdir - root directory vnode [UNUSED]. 1124 * cr - credentials of caller. 1125 * ct - caller context 1126 * direntflags - directory lookup flags 1127 * realpnp - returned pathname. 1128 * 1129 * OUT: vpp - vnode of located entry, NULL if not found. 1130 * 1131 * RETURN: 0 if success 1132 * error code if failure 1133 * 1134 * Timestamps: 1135 * NA 1136 */ 1137 /* ARGSUSED */ 1138 static int 1139 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1140 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1141 int *direntflags, pathname_t *realpnp) 1142 { 1143 znode_t *zdp = VTOZ(dvp); 1144 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1145 int error = 0; 1146 1147 /* fast path */ 1148 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1149 1150 if (dvp->v_type != VDIR) { 1151 return (ENOTDIR); 1152 } else if (zdp->z_sa_hdl == NULL) { 1153 return (EIO); 1154 } 1155 1156 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1157 error = zfs_fastaccesschk_execute(zdp, cr); 1158 if (!error) { 1159 *vpp = dvp; 1160 VN_HOLD(*vpp); 1161 return (0); 1162 } 1163 return (error); 1164 } else { 1165 vnode_t *tvp = dnlc_lookup(dvp, nm); 1166 1167 if (tvp) { 1168 error = zfs_fastaccesschk_execute(zdp, cr); 1169 if (error) { 1170 VN_RELE(tvp); 1171 return (error); 1172 } 1173 if (tvp == DNLC_NO_VNODE) { 1174 VN_RELE(tvp); 1175 return (ENOENT); 1176 } else { 1177 *vpp = tvp; 1178 return (specvp_check(vpp, cr)); 1179 } 1180 } 1181 } 1182 } 1183 1184 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1185 1186 ZFS_ENTER(zfsvfs); 1187 ZFS_VERIFY_ZP(zdp); 1188 1189 *vpp = NULL; 1190 1191 if (flags & LOOKUP_XATTR) { 1192 /* 1193 * If the xattr property is off, refuse the lookup request. 1194 */ 1195 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1196 ZFS_EXIT(zfsvfs); 1197 return (EINVAL); 1198 } 1199 1200 /* 1201 * We don't allow recursive attributes.. 1202 * Maybe someday we will. 1203 */ 1204 if (zdp->z_pflags & ZFS_XATTR) { 1205 ZFS_EXIT(zfsvfs); 1206 return (EINVAL); 1207 } 1208 1209 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1210 ZFS_EXIT(zfsvfs); 1211 return (error); 1212 } 1213 1214 /* 1215 * Do we have permission to get into attribute directory? 1216 */ 1217 1218 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1219 B_FALSE, cr)) { 1220 VN_RELE(*vpp); 1221 *vpp = NULL; 1222 } 1223 1224 ZFS_EXIT(zfsvfs); 1225 return (error); 1226 } 1227 1228 if (dvp->v_type != VDIR) { 1229 ZFS_EXIT(zfsvfs); 1230 return (ENOTDIR); 1231 } 1232 1233 /* 1234 * Check accessibility of directory. 1235 */ 1236 1237 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1238 ZFS_EXIT(zfsvfs); 1239 return (error); 1240 } 1241 1242 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1243 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1244 ZFS_EXIT(zfsvfs); 1245 return (EILSEQ); 1246 } 1247 1248 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1249 if (error == 0) 1250 error = specvp_check(vpp, cr); 1251 1252 ZFS_EXIT(zfsvfs); 1253 return (error); 1254 } 1255 1256 /* 1257 * Attempt to create a new entry in a directory. If the entry 1258 * already exists, truncate the file if permissible, else return 1259 * an error. Return the vp of the created or trunc'd file. 1260 * 1261 * IN: dvp - vnode of directory to put new file entry in. 1262 * name - name of new file entry. 1263 * vap - attributes of new file. 1264 * excl - flag indicating exclusive or non-exclusive mode. 1265 * mode - mode to open file with. 1266 * cr - credentials of caller. 1267 * flag - large file flag [UNUSED]. 1268 * ct - caller context 1269 * vsecp - ACL to be set 1270 * 1271 * OUT: vpp - vnode of created or trunc'd entry. 1272 * 1273 * RETURN: 0 if success 1274 * error code if failure 1275 * 1276 * Timestamps: 1277 * dvp - ctime|mtime updated if new entry created 1278 * vp - ctime|mtime always, atime if new 1279 */ 1280 1281 /* ARGSUSED */ 1282 static int 1283 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1284 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1285 vsecattr_t *vsecp) 1286 { 1287 znode_t *zp, *dzp = VTOZ(dvp); 1288 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1289 zilog_t *zilog; 1290 objset_t *os; 1291 zfs_dirlock_t *dl; 1292 dmu_tx_t *tx; 1293 int error; 1294 ksid_t *ksid; 1295 uid_t uid; 1296 gid_t gid = crgetgid(cr); 1297 zfs_acl_ids_t acl_ids; 1298 boolean_t fuid_dirtied; 1299 boolean_t have_acl = B_FALSE; 1300 1301 /* 1302 * If we have an ephemeral id, ACL, or XVATTR then 1303 * make sure file system is at proper version 1304 */ 1305 1306 ksid = crgetsid(cr, KSID_OWNER); 1307 if (ksid) 1308 uid = ksid_getid(ksid); 1309 else 1310 uid = crgetuid(cr); 1311 1312 if (zfsvfs->z_use_fuids == B_FALSE && 1313 (vsecp || (vap->va_mask & AT_XVATTR) || 1314 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1315 return (EINVAL); 1316 1317 ZFS_ENTER(zfsvfs); 1318 ZFS_VERIFY_ZP(dzp); 1319 os = zfsvfs->z_os; 1320 zilog = zfsvfs->z_log; 1321 1322 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1323 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1324 ZFS_EXIT(zfsvfs); 1325 return (EILSEQ); 1326 } 1327 1328 if (vap->va_mask & AT_XVATTR) { 1329 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1330 crgetuid(cr), cr, vap->va_type)) != 0) { 1331 ZFS_EXIT(zfsvfs); 1332 return (error); 1333 } 1334 } 1335 top: 1336 *vpp = NULL; 1337 1338 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1339 vap->va_mode &= ~VSVTX; 1340 1341 if (*name == '\0') { 1342 /* 1343 * Null component name refers to the directory itself. 1344 */ 1345 VN_HOLD(dvp); 1346 zp = dzp; 1347 dl = NULL; 1348 error = 0; 1349 } else { 1350 /* possible VN_HOLD(zp) */ 1351 int zflg = 0; 1352 1353 if (flag & FIGNORECASE) 1354 zflg |= ZCILOOK; 1355 1356 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1357 NULL, NULL); 1358 if (error) { 1359 if (strcmp(name, "..") == 0) 1360 error = EISDIR; 1361 ZFS_EXIT(zfsvfs); 1362 return (error); 1363 } 1364 } 1365 1366 if (zp == NULL) { 1367 uint64_t txtype; 1368 1369 /* 1370 * Create a new file object and update the directory 1371 * to reference it. 1372 */ 1373 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1374 goto out; 1375 } 1376 1377 /* 1378 * We only support the creation of regular files in 1379 * extended attribute directories. 1380 */ 1381 1382 if ((dzp->z_pflags & ZFS_XATTR) && 1383 (vap->va_type != VREG)) { 1384 error = EINVAL; 1385 goto out; 1386 } 1387 1388 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1389 cr, vsecp, &acl_ids)) != 0) 1390 goto out; 1391 have_acl = B_TRUE; 1392 1393 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1394 zfs_acl_ids_free(&acl_ids); 1395 error = EDQUOT; 1396 goto out; 1397 } 1398 1399 tx = dmu_tx_create(os); 1400 1401 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1402 ZFS_SA_BASE_ATTR_SIZE); 1403 1404 fuid_dirtied = zfsvfs->z_fuid_dirty; 1405 if (fuid_dirtied) 1406 zfs_fuid_txhold(zfsvfs, tx); 1407 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1408 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1409 if (!zfsvfs->z_use_sa && 1410 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1411 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1412 0, acl_ids.z_aclp->z_acl_bytes); 1413 } 1414 error = dmu_tx_assign(tx, TXG_NOWAIT); 1415 if (error) { 1416 zfs_dirent_unlock(dl); 1417 if (error == ERESTART) { 1418 dmu_tx_wait(tx); 1419 dmu_tx_abort(tx); 1420 goto top; 1421 } 1422 zfs_acl_ids_free(&acl_ids); 1423 dmu_tx_abort(tx); 1424 ZFS_EXIT(zfsvfs); 1425 return (error); 1426 } 1427 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1428 1429 if (fuid_dirtied) 1430 zfs_fuid_sync(zfsvfs, tx); 1431 1432 (void) zfs_link_create(dl, zp, tx, ZNEW); 1433 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1434 if (flag & FIGNORECASE) 1435 txtype |= TX_CI; 1436 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1437 vsecp, acl_ids.z_fuidp, vap); 1438 zfs_acl_ids_free(&acl_ids); 1439 dmu_tx_commit(tx); 1440 } else { 1441 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1442 1443 /* 1444 * A directory entry already exists for this name. 1445 */ 1446 /* 1447 * Can't truncate an existing file if in exclusive mode. 1448 */ 1449 if (excl == EXCL) { 1450 error = EEXIST; 1451 goto out; 1452 } 1453 /* 1454 * Can't open a directory for writing. 1455 */ 1456 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1457 error = EISDIR; 1458 goto out; 1459 } 1460 /* 1461 * Verify requested access to file. 1462 */ 1463 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1464 goto out; 1465 } 1466 1467 mutex_enter(&dzp->z_lock); 1468 dzp->z_seq++; 1469 mutex_exit(&dzp->z_lock); 1470 1471 /* 1472 * Truncate regular files if requested. 1473 */ 1474 if ((ZTOV(zp)->v_type == VREG) && 1475 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1476 /* we can't hold any locks when calling zfs_freesp() */ 1477 zfs_dirent_unlock(dl); 1478 dl = NULL; 1479 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1480 if (error == 0) { 1481 vnevent_create(ZTOV(zp), ct); 1482 } 1483 } 1484 } 1485 out: 1486 1487 if (dl) 1488 zfs_dirent_unlock(dl); 1489 1490 if (error) { 1491 if (zp) 1492 VN_RELE(ZTOV(zp)); 1493 } else { 1494 *vpp = ZTOV(zp); 1495 error = specvp_check(vpp, cr); 1496 } 1497 1498 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1499 zil_commit(zilog, 0); 1500 1501 ZFS_EXIT(zfsvfs); 1502 return (error); 1503 } 1504 1505 /* 1506 * Remove an entry from a directory. 1507 * 1508 * IN: dvp - vnode of directory to remove entry from. 1509 * name - name of entry to remove. 1510 * cr - credentials of caller. 1511 * ct - caller context 1512 * flags - case flags 1513 * 1514 * RETURN: 0 if success 1515 * error code if failure 1516 * 1517 * Timestamps: 1518 * dvp - ctime|mtime 1519 * vp - ctime (if nlink > 0) 1520 */ 1521 1522 uint64_t null_xattr = 0; 1523 1524 /*ARGSUSED*/ 1525 static int 1526 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1527 int flags) 1528 { 1529 znode_t *zp, *dzp = VTOZ(dvp); 1530 znode_t *xzp = NULL; 1531 vnode_t *vp; 1532 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1533 zilog_t *zilog; 1534 uint64_t acl_obj, xattr_obj = 0; 1535 uint64_t xattr_obj_unlinked = 0; 1536 uint64_t obj = 0; 1537 zfs_dirlock_t *dl; 1538 dmu_tx_t *tx; 1539 boolean_t may_delete_now, delete_now = FALSE; 1540 boolean_t unlinked, toobig = FALSE; 1541 uint64_t txtype; 1542 pathname_t *realnmp = NULL; 1543 pathname_t realnm; 1544 int error; 1545 int zflg = ZEXISTS; 1546 1547 ZFS_ENTER(zfsvfs); 1548 ZFS_VERIFY_ZP(dzp); 1549 zilog = zfsvfs->z_log; 1550 1551 if (flags & FIGNORECASE) { 1552 zflg |= ZCILOOK; 1553 pn_alloc(&realnm); 1554 realnmp = &realnm; 1555 } 1556 1557 top: 1558 /* 1559 * Attempt to lock directory; fail if entry doesn't exist. 1560 */ 1561 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1562 NULL, realnmp)) { 1563 if (realnmp) 1564 pn_free(realnmp); 1565 ZFS_EXIT(zfsvfs); 1566 return (error); 1567 } 1568 1569 vp = ZTOV(zp); 1570 1571 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1572 goto out; 1573 } 1574 1575 /* 1576 * Need to use rmdir for removing directories. 1577 */ 1578 if (vp->v_type == VDIR) { 1579 error = EPERM; 1580 goto out; 1581 } 1582 1583 vnevent_remove(vp, dvp, name, ct); 1584 1585 if (realnmp) 1586 dnlc_remove(dvp, realnmp->pn_buf); 1587 else 1588 dnlc_remove(dvp, name); 1589 1590 mutex_enter(&vp->v_lock); 1591 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1592 mutex_exit(&vp->v_lock); 1593 1594 /* 1595 * We may delete the znode now, or we may put it in the unlinked set; 1596 * it depends on whether we're the last link, and on whether there are 1597 * other holds on the vnode. So we dmu_tx_hold() the right things to 1598 * allow for either case. 1599 */ 1600 obj = zp->z_id; 1601 tx = dmu_tx_create(zfsvfs->z_os); 1602 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1603 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1604 zfs_sa_upgrade_txholds(tx, zp); 1605 zfs_sa_upgrade_txholds(tx, dzp); 1606 if (may_delete_now) { 1607 toobig = 1608 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1609 /* if the file is too big, only hold_free a token amount */ 1610 dmu_tx_hold_free(tx, zp->z_id, 0, 1611 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1612 } 1613 1614 /* are there any extended attributes? */ 1615 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1616 &xattr_obj, sizeof (xattr_obj)); 1617 if (xattr_obj) { 1618 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1619 ASSERT3U(error, ==, 0); 1620 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1621 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1622 } 1623 1624 mutex_enter(&zp->z_lock); 1625 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1626 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1627 mutex_exit(&zp->z_lock); 1628 1629 /* charge as an update -- would be nice not to charge at all */ 1630 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1631 1632 error = dmu_tx_assign(tx, TXG_NOWAIT); 1633 if (error) { 1634 zfs_dirent_unlock(dl); 1635 VN_RELE(vp); 1636 if (error == ERESTART) { 1637 dmu_tx_wait(tx); 1638 dmu_tx_abort(tx); 1639 goto top; 1640 } 1641 if (realnmp) 1642 pn_free(realnmp); 1643 dmu_tx_abort(tx); 1644 ZFS_EXIT(zfsvfs); 1645 return (error); 1646 } 1647 1648 /* 1649 * Remove the directory entry. 1650 */ 1651 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1652 1653 if (error) { 1654 dmu_tx_commit(tx); 1655 goto out; 1656 } 1657 1658 if (unlinked) { 1659 1660 /* 1661 * Hold z_lock so that we can make sure that the ACL obj 1662 * hasn't changed. Could have been deleted due to 1663 * zfs_sa_upgrade(). 1664 */ 1665 mutex_enter(&zp->z_lock); 1666 mutex_enter(&vp->v_lock); 1667 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1668 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1669 delete_now = may_delete_now && !toobig && 1670 vp->v_count == 1 && !vn_has_cached_data(vp) && 1671 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1672 acl_obj; 1673 mutex_exit(&vp->v_lock); 1674 } 1675 1676 if (delete_now) { 1677 if (xattr_obj_unlinked) { 1678 ASSERT3U(xzp->z_links, ==, 2); 1679 mutex_enter(&xzp->z_lock); 1680 xzp->z_unlinked = 1; 1681 xzp->z_links = 0; 1682 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1683 &xzp->z_links, sizeof (xzp->z_links), tx); 1684 ASSERT3U(error, ==, 0); 1685 mutex_exit(&xzp->z_lock); 1686 zfs_unlinked_add(xzp, tx); 1687 1688 if (zp->z_is_sa) 1689 error = sa_remove(zp->z_sa_hdl, 1690 SA_ZPL_XATTR(zfsvfs), tx); 1691 else 1692 error = sa_update(zp->z_sa_hdl, 1693 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1694 sizeof (uint64_t), tx); 1695 ASSERT3U(error, ==, 0); 1696 } 1697 mutex_enter(&vp->v_lock); 1698 vp->v_count--; 1699 ASSERT3U(vp->v_count, ==, 0); 1700 mutex_exit(&vp->v_lock); 1701 mutex_exit(&zp->z_lock); 1702 zfs_znode_delete(zp, tx); 1703 } else if (unlinked) { 1704 mutex_exit(&zp->z_lock); 1705 zfs_unlinked_add(zp, tx); 1706 } 1707 1708 txtype = TX_REMOVE; 1709 if (flags & FIGNORECASE) 1710 txtype |= TX_CI; 1711 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1712 1713 dmu_tx_commit(tx); 1714 out: 1715 if (realnmp) 1716 pn_free(realnmp); 1717 1718 zfs_dirent_unlock(dl); 1719 1720 if (!delete_now) 1721 VN_RELE(vp); 1722 if (xzp) 1723 VN_RELE(ZTOV(xzp)); 1724 1725 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1726 zil_commit(zilog, 0); 1727 1728 ZFS_EXIT(zfsvfs); 1729 return (error); 1730 } 1731 1732 /* 1733 * Create a new directory and insert it into dvp using the name 1734 * provided. Return a pointer to the inserted directory. 1735 * 1736 * IN: dvp - vnode of directory to add subdir to. 1737 * dirname - name of new directory. 1738 * vap - attributes of new directory. 1739 * cr - credentials of caller. 1740 * ct - caller context 1741 * vsecp - ACL to be set 1742 * 1743 * OUT: vpp - vnode of created directory. 1744 * 1745 * RETURN: 0 if success 1746 * error code if failure 1747 * 1748 * Timestamps: 1749 * dvp - ctime|mtime updated 1750 * vp - ctime|mtime|atime updated 1751 */ 1752 /*ARGSUSED*/ 1753 static int 1754 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1755 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1756 { 1757 znode_t *zp, *dzp = VTOZ(dvp); 1758 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1759 zilog_t *zilog; 1760 zfs_dirlock_t *dl; 1761 uint64_t txtype; 1762 dmu_tx_t *tx; 1763 int error; 1764 int zf = ZNEW; 1765 ksid_t *ksid; 1766 uid_t uid; 1767 gid_t gid = crgetgid(cr); 1768 zfs_acl_ids_t acl_ids; 1769 boolean_t fuid_dirtied; 1770 1771 ASSERT(vap->va_type == VDIR); 1772 1773 /* 1774 * If we have an ephemeral id, ACL, or XVATTR then 1775 * make sure file system is at proper version 1776 */ 1777 1778 ksid = crgetsid(cr, KSID_OWNER); 1779 if (ksid) 1780 uid = ksid_getid(ksid); 1781 else 1782 uid = crgetuid(cr); 1783 if (zfsvfs->z_use_fuids == B_FALSE && 1784 (vsecp || (vap->va_mask & AT_XVATTR) || 1785 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1786 return (EINVAL); 1787 1788 ZFS_ENTER(zfsvfs); 1789 ZFS_VERIFY_ZP(dzp); 1790 zilog = zfsvfs->z_log; 1791 1792 if (dzp->z_pflags & ZFS_XATTR) { 1793 ZFS_EXIT(zfsvfs); 1794 return (EINVAL); 1795 } 1796 1797 if (zfsvfs->z_utf8 && u8_validate(dirname, 1798 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1799 ZFS_EXIT(zfsvfs); 1800 return (EILSEQ); 1801 } 1802 if (flags & FIGNORECASE) 1803 zf |= ZCILOOK; 1804 1805 if (vap->va_mask & AT_XVATTR) { 1806 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1807 crgetuid(cr), cr, vap->va_type)) != 0) { 1808 ZFS_EXIT(zfsvfs); 1809 return (error); 1810 } 1811 } 1812 1813 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1814 vsecp, &acl_ids)) != 0) { 1815 ZFS_EXIT(zfsvfs); 1816 return (error); 1817 } 1818 /* 1819 * First make sure the new directory doesn't exist. 1820 * 1821 * Existence is checked first to make sure we don't return 1822 * EACCES instead of EEXIST which can cause some applications 1823 * to fail. 1824 */ 1825 top: 1826 *vpp = NULL; 1827 1828 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1829 NULL, NULL)) { 1830 zfs_acl_ids_free(&acl_ids); 1831 ZFS_EXIT(zfsvfs); 1832 return (error); 1833 } 1834 1835 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1836 zfs_acl_ids_free(&acl_ids); 1837 zfs_dirent_unlock(dl); 1838 ZFS_EXIT(zfsvfs); 1839 return (error); 1840 } 1841 1842 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1843 zfs_acl_ids_free(&acl_ids); 1844 zfs_dirent_unlock(dl); 1845 ZFS_EXIT(zfsvfs); 1846 return (EDQUOT); 1847 } 1848 1849 /* 1850 * Add a new entry to the directory. 1851 */ 1852 tx = dmu_tx_create(zfsvfs->z_os); 1853 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1854 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1855 fuid_dirtied = zfsvfs->z_fuid_dirty; 1856 if (fuid_dirtied) 1857 zfs_fuid_txhold(zfsvfs, tx); 1858 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1859 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1860 acl_ids.z_aclp->z_acl_bytes); 1861 } 1862 1863 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1864 ZFS_SA_BASE_ATTR_SIZE); 1865 1866 error = dmu_tx_assign(tx, TXG_NOWAIT); 1867 if (error) { 1868 zfs_dirent_unlock(dl); 1869 if (error == ERESTART) { 1870 dmu_tx_wait(tx); 1871 dmu_tx_abort(tx); 1872 goto top; 1873 } 1874 zfs_acl_ids_free(&acl_ids); 1875 dmu_tx_abort(tx); 1876 ZFS_EXIT(zfsvfs); 1877 return (error); 1878 } 1879 1880 /* 1881 * Create new node. 1882 */ 1883 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1884 1885 if (fuid_dirtied) 1886 zfs_fuid_sync(zfsvfs, tx); 1887 1888 /* 1889 * Now put new name in parent dir. 1890 */ 1891 (void) zfs_link_create(dl, zp, tx, ZNEW); 1892 1893 *vpp = ZTOV(zp); 1894 1895 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1896 if (flags & FIGNORECASE) 1897 txtype |= TX_CI; 1898 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1899 acl_ids.z_fuidp, vap); 1900 1901 zfs_acl_ids_free(&acl_ids); 1902 1903 dmu_tx_commit(tx); 1904 1905 zfs_dirent_unlock(dl); 1906 1907 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1908 zil_commit(zilog, 0); 1909 1910 ZFS_EXIT(zfsvfs); 1911 return (0); 1912 } 1913 1914 /* 1915 * Remove a directory subdir entry. If the current working 1916 * directory is the same as the subdir to be removed, the 1917 * remove will fail. 1918 * 1919 * IN: dvp - vnode of directory to remove from. 1920 * name - name of directory to be removed. 1921 * cwd - vnode of current working directory. 1922 * cr - credentials of caller. 1923 * ct - caller context 1924 * flags - case flags 1925 * 1926 * RETURN: 0 if success 1927 * error code if failure 1928 * 1929 * Timestamps: 1930 * dvp - ctime|mtime updated 1931 */ 1932 /*ARGSUSED*/ 1933 static int 1934 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1935 caller_context_t *ct, int flags) 1936 { 1937 znode_t *dzp = VTOZ(dvp); 1938 znode_t *zp; 1939 vnode_t *vp; 1940 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1941 zilog_t *zilog; 1942 zfs_dirlock_t *dl; 1943 dmu_tx_t *tx; 1944 int error; 1945 int zflg = ZEXISTS; 1946 1947 ZFS_ENTER(zfsvfs); 1948 ZFS_VERIFY_ZP(dzp); 1949 zilog = zfsvfs->z_log; 1950 1951 if (flags & FIGNORECASE) 1952 zflg |= ZCILOOK; 1953 top: 1954 zp = NULL; 1955 1956 /* 1957 * Attempt to lock directory; fail if entry doesn't exist. 1958 */ 1959 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1960 NULL, NULL)) { 1961 ZFS_EXIT(zfsvfs); 1962 return (error); 1963 } 1964 1965 vp = ZTOV(zp); 1966 1967 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1968 goto out; 1969 } 1970 1971 if (vp->v_type != VDIR) { 1972 error = ENOTDIR; 1973 goto out; 1974 } 1975 1976 if (vp == cwd) { 1977 error = EINVAL; 1978 goto out; 1979 } 1980 1981 vnevent_rmdir(vp, dvp, name, ct); 1982 1983 /* 1984 * Grab a lock on the directory to make sure that noone is 1985 * trying to add (or lookup) entries while we are removing it. 1986 */ 1987 rw_enter(&zp->z_name_lock, RW_WRITER); 1988 1989 /* 1990 * Grab a lock on the parent pointer to make sure we play well 1991 * with the treewalk and directory rename code. 1992 */ 1993 rw_enter(&zp->z_parent_lock, RW_WRITER); 1994 1995 tx = dmu_tx_create(zfsvfs->z_os); 1996 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1997 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1998 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1999 zfs_sa_upgrade_txholds(tx, zp); 2000 zfs_sa_upgrade_txholds(tx, dzp); 2001 error = dmu_tx_assign(tx, TXG_NOWAIT); 2002 if (error) { 2003 rw_exit(&zp->z_parent_lock); 2004 rw_exit(&zp->z_name_lock); 2005 zfs_dirent_unlock(dl); 2006 VN_RELE(vp); 2007 if (error == ERESTART) { 2008 dmu_tx_wait(tx); 2009 dmu_tx_abort(tx); 2010 goto top; 2011 } 2012 dmu_tx_abort(tx); 2013 ZFS_EXIT(zfsvfs); 2014 return (error); 2015 } 2016 2017 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2018 2019 if (error == 0) { 2020 uint64_t txtype = TX_RMDIR; 2021 if (flags & FIGNORECASE) 2022 txtype |= TX_CI; 2023 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2024 } 2025 2026 dmu_tx_commit(tx); 2027 2028 rw_exit(&zp->z_parent_lock); 2029 rw_exit(&zp->z_name_lock); 2030 out: 2031 zfs_dirent_unlock(dl); 2032 2033 VN_RELE(vp); 2034 2035 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2036 zil_commit(zilog, 0); 2037 2038 ZFS_EXIT(zfsvfs); 2039 return (error); 2040 } 2041 2042 /* 2043 * Read as many directory entries as will fit into the provided 2044 * buffer from the given directory cursor position (specified in 2045 * the uio structure. 2046 * 2047 * IN: vp - vnode of directory to read. 2048 * uio - structure supplying read location, range info, 2049 * and return buffer. 2050 * cr - credentials of caller. 2051 * ct - caller context 2052 * flags - case flags 2053 * 2054 * OUT: uio - updated offset and range, buffer filled. 2055 * eofp - set to true if end-of-file detected. 2056 * 2057 * RETURN: 0 if success 2058 * error code if failure 2059 * 2060 * Timestamps: 2061 * vp - atime updated 2062 * 2063 * Note that the low 4 bits of the cookie returned by zap is always zero. 2064 * This allows us to use the low range for "special" directory entries: 2065 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2066 * we use the offset 2 for the '.zfs' directory. 2067 */ 2068 /* ARGSUSED */ 2069 static int 2070 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2071 caller_context_t *ct, int flags) 2072 { 2073 znode_t *zp = VTOZ(vp); 2074 iovec_t *iovp; 2075 edirent_t *eodp; 2076 dirent64_t *odp; 2077 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2078 objset_t *os; 2079 caddr_t outbuf; 2080 size_t bufsize; 2081 zap_cursor_t zc; 2082 zap_attribute_t zap; 2083 uint_t bytes_wanted; 2084 uint64_t offset; /* must be unsigned; checks for < 1 */ 2085 uint64_t parent; 2086 int local_eof; 2087 int outcount; 2088 int error; 2089 uint8_t prefetch; 2090 boolean_t check_sysattrs; 2091 2092 ZFS_ENTER(zfsvfs); 2093 ZFS_VERIFY_ZP(zp); 2094 2095 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2096 &parent, sizeof (parent))) != 0) { 2097 ZFS_EXIT(zfsvfs); 2098 return (error); 2099 } 2100 2101 /* 2102 * If we are not given an eof variable, 2103 * use a local one. 2104 */ 2105 if (eofp == NULL) 2106 eofp = &local_eof; 2107 2108 /* 2109 * Check for valid iov_len. 2110 */ 2111 if (uio->uio_iov->iov_len <= 0) { 2112 ZFS_EXIT(zfsvfs); 2113 return (EINVAL); 2114 } 2115 2116 /* 2117 * Quit if directory has been removed (posix) 2118 */ 2119 if ((*eofp = zp->z_unlinked) != 0) { 2120 ZFS_EXIT(zfsvfs); 2121 return (0); 2122 } 2123 2124 error = 0; 2125 os = zfsvfs->z_os; 2126 offset = uio->uio_loffset; 2127 prefetch = zp->z_zn_prefetch; 2128 2129 /* 2130 * Initialize the iterator cursor. 2131 */ 2132 if (offset <= 3) { 2133 /* 2134 * Start iteration from the beginning of the directory. 2135 */ 2136 zap_cursor_init(&zc, os, zp->z_id); 2137 } else { 2138 /* 2139 * The offset is a serialized cursor. 2140 */ 2141 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2142 } 2143 2144 /* 2145 * Get space to change directory entries into fs independent format. 2146 */ 2147 iovp = uio->uio_iov; 2148 bytes_wanted = iovp->iov_len; 2149 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2150 bufsize = bytes_wanted; 2151 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2152 odp = (struct dirent64 *)outbuf; 2153 } else { 2154 bufsize = bytes_wanted; 2155 odp = (struct dirent64 *)iovp->iov_base; 2156 } 2157 eodp = (struct edirent *)odp; 2158 2159 /* 2160 * If this VFS supports the system attribute view interface; and 2161 * we're looking at an extended attribute directory; and we care 2162 * about normalization conflicts on this vfs; then we must check 2163 * for normalization conflicts with the sysattr name space. 2164 */ 2165 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2166 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2167 (flags & V_RDDIR_ENTFLAGS); 2168 2169 /* 2170 * Transform to file-system independent format 2171 */ 2172 outcount = 0; 2173 while (outcount < bytes_wanted) { 2174 ino64_t objnum; 2175 ushort_t reclen; 2176 off64_t *next; 2177 2178 /* 2179 * Special case `.', `..', and `.zfs'. 2180 */ 2181 if (offset == 0) { 2182 (void) strcpy(zap.za_name, "."); 2183 zap.za_normalization_conflict = 0; 2184 objnum = zp->z_id; 2185 } else if (offset == 1) { 2186 (void) strcpy(zap.za_name, ".."); 2187 zap.za_normalization_conflict = 0; 2188 objnum = parent; 2189 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2190 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2191 zap.za_normalization_conflict = 0; 2192 objnum = ZFSCTL_INO_ROOT; 2193 } else { 2194 /* 2195 * Grab next entry. 2196 */ 2197 if (error = zap_cursor_retrieve(&zc, &zap)) { 2198 if ((*eofp = (error == ENOENT)) != 0) 2199 break; 2200 else 2201 goto update; 2202 } 2203 2204 if (zap.za_integer_length != 8 || 2205 zap.za_num_integers != 1) { 2206 cmn_err(CE_WARN, "zap_readdir: bad directory " 2207 "entry, obj = %lld, offset = %lld\n", 2208 (u_longlong_t)zp->z_id, 2209 (u_longlong_t)offset); 2210 error = ENXIO; 2211 goto update; 2212 } 2213 2214 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2215 /* 2216 * MacOS X can extract the object type here such as: 2217 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2218 */ 2219 2220 if (check_sysattrs && !zap.za_normalization_conflict) { 2221 zap.za_normalization_conflict = 2222 xattr_sysattr_casechk(zap.za_name); 2223 } 2224 } 2225 2226 if (flags & V_RDDIR_ACCFILTER) { 2227 /* 2228 * If we have no access at all, don't include 2229 * this entry in the returned information 2230 */ 2231 znode_t *ezp; 2232 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2233 goto skip_entry; 2234 if (!zfs_has_access(ezp, cr)) { 2235 VN_RELE(ZTOV(ezp)); 2236 goto skip_entry; 2237 } 2238 VN_RELE(ZTOV(ezp)); 2239 } 2240 2241 if (flags & V_RDDIR_ENTFLAGS) 2242 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2243 else 2244 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2245 2246 /* 2247 * Will this entry fit in the buffer? 2248 */ 2249 if (outcount + reclen > bufsize) { 2250 /* 2251 * Did we manage to fit anything in the buffer? 2252 */ 2253 if (!outcount) { 2254 error = EINVAL; 2255 goto update; 2256 } 2257 break; 2258 } 2259 if (flags & V_RDDIR_ENTFLAGS) { 2260 /* 2261 * Add extended flag entry: 2262 */ 2263 eodp->ed_ino = objnum; 2264 eodp->ed_reclen = reclen; 2265 /* NOTE: ed_off is the offset for the *next* entry */ 2266 next = &(eodp->ed_off); 2267 eodp->ed_eflags = zap.za_normalization_conflict ? 2268 ED_CASE_CONFLICT : 0; 2269 (void) strncpy(eodp->ed_name, zap.za_name, 2270 EDIRENT_NAMELEN(reclen)); 2271 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2272 } else { 2273 /* 2274 * Add normal entry: 2275 */ 2276 odp->d_ino = objnum; 2277 odp->d_reclen = reclen; 2278 /* NOTE: d_off is the offset for the *next* entry */ 2279 next = &(odp->d_off); 2280 (void) strncpy(odp->d_name, zap.za_name, 2281 DIRENT64_NAMELEN(reclen)); 2282 odp = (dirent64_t *)((intptr_t)odp + reclen); 2283 } 2284 outcount += reclen; 2285 2286 ASSERT(outcount <= bufsize); 2287 2288 /* Prefetch znode */ 2289 if (prefetch) 2290 dmu_prefetch(os, objnum, 0, 0); 2291 2292 skip_entry: 2293 /* 2294 * Move to the next entry, fill in the previous offset. 2295 */ 2296 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2297 zap_cursor_advance(&zc); 2298 offset = zap_cursor_serialize(&zc); 2299 } else { 2300 offset += 1; 2301 } 2302 *next = offset; 2303 } 2304 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2305 2306 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2307 iovp->iov_base += outcount; 2308 iovp->iov_len -= outcount; 2309 uio->uio_resid -= outcount; 2310 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2311 /* 2312 * Reset the pointer. 2313 */ 2314 offset = uio->uio_loffset; 2315 } 2316 2317 update: 2318 zap_cursor_fini(&zc); 2319 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2320 kmem_free(outbuf, bufsize); 2321 2322 if (error == ENOENT) 2323 error = 0; 2324 2325 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2326 2327 uio->uio_loffset = offset; 2328 ZFS_EXIT(zfsvfs); 2329 return (error); 2330 } 2331 2332 ulong_t zfs_fsync_sync_cnt = 4; 2333 2334 static int 2335 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2336 { 2337 znode_t *zp = VTOZ(vp); 2338 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2339 2340 /* 2341 * Regardless of whether this is required for standards conformance, 2342 * this is the logical behavior when fsync() is called on a file with 2343 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2344 * going to be pushed out as part of the zil_commit(). 2345 */ 2346 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2347 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2348 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2349 2350 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2351 2352 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2353 ZFS_ENTER(zfsvfs); 2354 ZFS_VERIFY_ZP(zp); 2355 zil_commit(zfsvfs->z_log, zp->z_id); 2356 ZFS_EXIT(zfsvfs); 2357 } 2358 return (0); 2359 } 2360 2361 2362 /* 2363 * Get the requested file attributes and place them in the provided 2364 * vattr structure. 2365 * 2366 * IN: vp - vnode of file. 2367 * vap - va_mask identifies requested attributes. 2368 * If AT_XVATTR set, then optional attrs are requested 2369 * flags - ATTR_NOACLCHECK (CIFS server context) 2370 * cr - credentials of caller. 2371 * ct - caller context 2372 * 2373 * OUT: vap - attribute values. 2374 * 2375 * RETURN: 0 (always succeeds) 2376 */ 2377 /* ARGSUSED */ 2378 static int 2379 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2380 caller_context_t *ct) 2381 { 2382 znode_t *zp = VTOZ(vp); 2383 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2384 int error = 0; 2385 uint64_t links; 2386 uint64_t mtime[2], ctime[2]; 2387 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2388 xoptattr_t *xoap = NULL; 2389 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2390 sa_bulk_attr_t bulk[2]; 2391 int count = 0; 2392 2393 ZFS_ENTER(zfsvfs); 2394 ZFS_VERIFY_ZP(zp); 2395 2396 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2397 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2398 2399 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2400 ZFS_EXIT(zfsvfs); 2401 return (error); 2402 } 2403 2404 /* 2405 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2406 * Also, if we are the owner don't bother, since owner should 2407 * always be allowed to read basic attributes of file. 2408 */ 2409 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && (zp->z_uid != crgetuid(cr))) { 2410 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2411 skipaclchk, cr)) { 2412 ZFS_EXIT(zfsvfs); 2413 return (error); 2414 } 2415 } 2416 2417 /* 2418 * Return all attributes. It's cheaper to provide the answer 2419 * than to determine whether we were asked the question. 2420 */ 2421 2422 mutex_enter(&zp->z_lock); 2423 vap->va_type = vp->v_type; 2424 vap->va_mode = zp->z_mode & MODEMASK; 2425 vap->va_uid = zp->z_uid; 2426 vap->va_gid = zp->z_gid; 2427 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2428 vap->va_nodeid = zp->z_id; 2429 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2430 links = zp->z_links + 1; 2431 else 2432 links = zp->z_links; 2433 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2434 vap->va_size = zp->z_size; 2435 vap->va_rdev = vp->v_rdev; 2436 vap->va_seq = zp->z_seq; 2437 2438 /* 2439 * Add in any requested optional attributes and the create time. 2440 * Also set the corresponding bits in the returned attribute bitmap. 2441 */ 2442 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2443 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2444 xoap->xoa_archive = 2445 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2446 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2447 } 2448 2449 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2450 xoap->xoa_readonly = 2451 ((zp->z_pflags & ZFS_READONLY) != 0); 2452 XVA_SET_RTN(xvap, XAT_READONLY); 2453 } 2454 2455 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2456 xoap->xoa_system = 2457 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2458 XVA_SET_RTN(xvap, XAT_SYSTEM); 2459 } 2460 2461 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2462 xoap->xoa_hidden = 2463 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2464 XVA_SET_RTN(xvap, XAT_HIDDEN); 2465 } 2466 2467 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2468 xoap->xoa_nounlink = 2469 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2470 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2471 } 2472 2473 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2474 xoap->xoa_immutable = 2475 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2476 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2477 } 2478 2479 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2480 xoap->xoa_appendonly = 2481 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2482 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2483 } 2484 2485 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2486 xoap->xoa_nodump = 2487 ((zp->z_pflags & ZFS_NODUMP) != 0); 2488 XVA_SET_RTN(xvap, XAT_NODUMP); 2489 } 2490 2491 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2492 xoap->xoa_opaque = 2493 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2494 XVA_SET_RTN(xvap, XAT_OPAQUE); 2495 } 2496 2497 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2498 xoap->xoa_av_quarantined = 2499 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2500 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2501 } 2502 2503 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2504 xoap->xoa_av_modified = 2505 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2506 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2507 } 2508 2509 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2510 vp->v_type == VREG) { 2511 zfs_sa_get_scanstamp(zp, xvap); 2512 } 2513 2514 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2515 uint64_t times[2]; 2516 2517 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2518 times, sizeof (times)); 2519 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2520 XVA_SET_RTN(xvap, XAT_CREATETIME); 2521 } 2522 2523 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2524 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2525 XVA_SET_RTN(xvap, XAT_REPARSE); 2526 } 2527 } 2528 2529 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2530 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2531 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2532 2533 mutex_exit(&zp->z_lock); 2534 2535 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2536 2537 if (zp->z_blksz == 0) { 2538 /* 2539 * Block size hasn't been set; suggest maximal I/O transfers. 2540 */ 2541 vap->va_blksize = zfsvfs->z_max_blksz; 2542 } 2543 2544 ZFS_EXIT(zfsvfs); 2545 return (0); 2546 } 2547 2548 /* 2549 * Set the file attributes to the values contained in the 2550 * vattr structure. 2551 * 2552 * IN: vp - vnode of file to be modified. 2553 * vap - new attribute values. 2554 * If AT_XVATTR set, then optional attrs are being set 2555 * flags - ATTR_UTIME set if non-default time values provided. 2556 * - ATTR_NOACLCHECK (CIFS context only). 2557 * cr - credentials of caller. 2558 * ct - caller context 2559 * 2560 * RETURN: 0 if success 2561 * error code if failure 2562 * 2563 * Timestamps: 2564 * vp - ctime updated, mtime updated if size changed. 2565 */ 2566 /* ARGSUSED */ 2567 static int 2568 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2569 caller_context_t *ct) 2570 { 2571 znode_t *zp = VTOZ(vp); 2572 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2573 zilog_t *zilog; 2574 dmu_tx_t *tx; 2575 vattr_t oldva; 2576 xvattr_t tmpxvattr; 2577 uint_t mask = vap->va_mask; 2578 uint_t saved_mask; 2579 int trim_mask = 0; 2580 uint64_t new_mode; 2581 uint64_t new_uid, new_gid; 2582 uint64_t xattr_obj = 0; 2583 uint64_t mtime[2], ctime[2]; 2584 znode_t *attrzp; 2585 int need_policy = FALSE; 2586 int err, err2; 2587 zfs_fuid_info_t *fuidp = NULL; 2588 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2589 xoptattr_t *xoap; 2590 zfs_acl_t *aclp = NULL; 2591 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2592 boolean_t fuid_dirtied = B_FALSE; 2593 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2594 int count = 0, xattr_count = 0; 2595 2596 if (mask == 0) 2597 return (0); 2598 2599 if (mask & AT_NOSET) 2600 return (EINVAL); 2601 2602 ZFS_ENTER(zfsvfs); 2603 ZFS_VERIFY_ZP(zp); 2604 2605 zilog = zfsvfs->z_log; 2606 2607 /* 2608 * Make sure that if we have ephemeral uid/gid or xvattr specified 2609 * that file system is at proper version level 2610 */ 2611 2612 if (zfsvfs->z_use_fuids == B_FALSE && 2613 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2614 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2615 (mask & AT_XVATTR))) { 2616 ZFS_EXIT(zfsvfs); 2617 return (EINVAL); 2618 } 2619 2620 if (mask & AT_SIZE && vp->v_type == VDIR) { 2621 ZFS_EXIT(zfsvfs); 2622 return (EISDIR); 2623 } 2624 2625 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2626 ZFS_EXIT(zfsvfs); 2627 return (EINVAL); 2628 } 2629 2630 /* 2631 * If this is an xvattr_t, then get a pointer to the structure of 2632 * optional attributes. If this is NULL, then we have a vattr_t. 2633 */ 2634 xoap = xva_getxoptattr(xvap); 2635 2636 xva_init(&tmpxvattr); 2637 2638 /* 2639 * Immutable files can only alter immutable bit and atime 2640 */ 2641 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2642 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2643 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2644 ZFS_EXIT(zfsvfs); 2645 return (EPERM); 2646 } 2647 2648 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2649 ZFS_EXIT(zfsvfs); 2650 return (EPERM); 2651 } 2652 2653 /* 2654 * Verify timestamps doesn't overflow 32 bits. 2655 * ZFS can handle large timestamps, but 32bit syscalls can't 2656 * handle times greater than 2039. This check should be removed 2657 * once large timestamps are fully supported. 2658 */ 2659 if (mask & (AT_ATIME | AT_MTIME)) { 2660 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2661 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2662 ZFS_EXIT(zfsvfs); 2663 return (EOVERFLOW); 2664 } 2665 } 2666 2667 top: 2668 attrzp = NULL; 2669 2670 /* Can this be moved to before the top label? */ 2671 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2672 ZFS_EXIT(zfsvfs); 2673 return (EROFS); 2674 } 2675 2676 /* 2677 * First validate permissions 2678 */ 2679 2680 if (mask & AT_SIZE) { 2681 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2682 if (err) { 2683 ZFS_EXIT(zfsvfs); 2684 return (err); 2685 } 2686 /* 2687 * XXX - Note, we are not providing any open 2688 * mode flags here (like FNDELAY), so we may 2689 * block if there are locks present... this 2690 * should be addressed in openat(). 2691 */ 2692 /* XXX - would it be OK to generate a log record here? */ 2693 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2694 if (err) { 2695 ZFS_EXIT(zfsvfs); 2696 return (err); 2697 } 2698 } 2699 2700 if (mask & (AT_ATIME|AT_MTIME) || 2701 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2702 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2703 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2704 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2705 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2706 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2707 skipaclchk, cr); 2708 } 2709 2710 if (mask & (AT_UID|AT_GID)) { 2711 int idmask = (mask & (AT_UID|AT_GID)); 2712 int take_owner; 2713 int take_group; 2714 2715 /* 2716 * NOTE: even if a new mode is being set, 2717 * we may clear S_ISUID/S_ISGID bits. 2718 */ 2719 2720 if (!(mask & AT_MODE)) 2721 vap->va_mode = zp->z_mode; 2722 2723 /* 2724 * Take ownership or chgrp to group we are a member of 2725 */ 2726 2727 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2728 take_group = (mask & AT_GID) && 2729 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2730 2731 /* 2732 * If both AT_UID and AT_GID are set then take_owner and 2733 * take_group must both be set in order to allow taking 2734 * ownership. 2735 * 2736 * Otherwise, send the check through secpolicy_vnode_setattr() 2737 * 2738 */ 2739 2740 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2741 ((idmask == AT_UID) && take_owner) || 2742 ((idmask == AT_GID) && take_group)) { 2743 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2744 skipaclchk, cr) == 0) { 2745 /* 2746 * Remove setuid/setgid for non-privileged users 2747 */ 2748 secpolicy_setid_clear(vap, cr); 2749 trim_mask = (mask & (AT_UID|AT_GID)); 2750 } else { 2751 need_policy = TRUE; 2752 } 2753 } else { 2754 need_policy = TRUE; 2755 } 2756 } 2757 2758 mutex_enter(&zp->z_lock); 2759 oldva.va_mode = zp->z_mode; 2760 oldva.va_uid = zp->z_uid; 2761 oldva.va_gid = zp->z_gid; 2762 if (mask & AT_XVATTR) { 2763 /* 2764 * Update xvattr mask to include only those attributes 2765 * that are actually changing. 2766 * 2767 * the bits will be restored prior to actually setting 2768 * the attributes so the caller thinks they were set. 2769 */ 2770 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2771 if (xoap->xoa_appendonly != 2772 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2773 need_policy = TRUE; 2774 } else { 2775 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2776 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2777 } 2778 } 2779 2780 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2781 if (xoap->xoa_nounlink != 2782 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2783 need_policy = TRUE; 2784 } else { 2785 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2786 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2787 } 2788 } 2789 2790 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2791 if (xoap->xoa_immutable != 2792 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2793 need_policy = TRUE; 2794 } else { 2795 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2796 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2797 } 2798 } 2799 2800 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2801 if (xoap->xoa_nodump != 2802 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2803 need_policy = TRUE; 2804 } else { 2805 XVA_CLR_REQ(xvap, XAT_NODUMP); 2806 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2807 } 2808 } 2809 2810 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2811 if (xoap->xoa_av_modified != 2812 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2813 need_policy = TRUE; 2814 } else { 2815 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2816 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2817 } 2818 } 2819 2820 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2821 if ((vp->v_type != VREG && 2822 xoap->xoa_av_quarantined) || 2823 xoap->xoa_av_quarantined != 2824 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2825 need_policy = TRUE; 2826 } else { 2827 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2828 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2829 } 2830 } 2831 2832 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2833 mutex_exit(&zp->z_lock); 2834 ZFS_EXIT(zfsvfs); 2835 return (EPERM); 2836 } 2837 2838 if (need_policy == FALSE && 2839 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2840 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2841 need_policy = TRUE; 2842 } 2843 } 2844 2845 mutex_exit(&zp->z_lock); 2846 2847 if (mask & AT_MODE) { 2848 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2849 err = secpolicy_setid_setsticky_clear(vp, vap, 2850 &oldva, cr); 2851 if (err) { 2852 ZFS_EXIT(zfsvfs); 2853 return (err); 2854 } 2855 trim_mask |= AT_MODE; 2856 } else { 2857 need_policy = TRUE; 2858 } 2859 } 2860 2861 if (need_policy) { 2862 /* 2863 * If trim_mask is set then take ownership 2864 * has been granted or write_acl is present and user 2865 * has the ability to modify mode. In that case remove 2866 * UID|GID and or MODE from mask so that 2867 * secpolicy_vnode_setattr() doesn't revoke it. 2868 */ 2869 2870 if (trim_mask) { 2871 saved_mask = vap->va_mask; 2872 vap->va_mask &= ~trim_mask; 2873 } 2874 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2875 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2876 if (err) { 2877 ZFS_EXIT(zfsvfs); 2878 return (err); 2879 } 2880 2881 if (trim_mask) 2882 vap->va_mask |= saved_mask; 2883 } 2884 2885 /* 2886 * secpolicy_vnode_setattr, or take ownership may have 2887 * changed va_mask 2888 */ 2889 mask = vap->va_mask; 2890 2891 if ((mask & (AT_UID | AT_GID))) { 2892 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj, 2893 sizeof (xattr_obj)); 2894 2895 if (xattr_obj) { 2896 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 2897 if (err) 2898 goto out2; 2899 } 2900 if (mask & AT_UID) { 2901 new_uid = zfs_fuid_create(zfsvfs, 2902 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2903 if (vap->va_uid != zp->z_uid && 2904 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 2905 err = EDQUOT; 2906 goto out2; 2907 } 2908 } 2909 2910 if (mask & AT_GID) { 2911 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2912 cr, ZFS_GROUP, &fuidp); 2913 if (new_gid != zp->z_gid && 2914 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 2915 err = EDQUOT; 2916 goto out2; 2917 } 2918 } 2919 } 2920 tx = dmu_tx_create(zfsvfs->z_os); 2921 2922 if (mask & AT_MODE) { 2923 uint64_t pmode = zp->z_mode; 2924 uint64_t acl_obj; 2925 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2926 2927 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 2928 goto out; 2929 2930 mutex_enter(&zp->z_lock); 2931 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 2932 /* 2933 * Are we upgrading ACL from old V0 format 2934 * to V1 format? 2935 */ 2936 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2937 zfs_znode_acl_version(zp) == 2938 ZFS_ACL_VERSION_INITIAL) { 2939 dmu_tx_hold_free(tx, acl_obj, 0, 2940 DMU_OBJECT_END); 2941 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2942 0, aclp->z_acl_bytes); 2943 } else { 2944 dmu_tx_hold_write(tx, acl_obj, 0, 2945 aclp->z_acl_bytes); 2946 } 2947 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2948 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2949 0, aclp->z_acl_bytes); 2950 } 2951 mutex_exit(&zp->z_lock); 2952 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2953 } else { 2954 if ((mask & AT_XVATTR) && 2955 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 2956 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2957 else 2958 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2959 } 2960 2961 if (attrzp) { 2962 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 2963 } 2964 2965 fuid_dirtied = zfsvfs->z_fuid_dirty; 2966 if (fuid_dirtied) 2967 zfs_fuid_txhold(zfsvfs, tx); 2968 2969 zfs_sa_upgrade_txholds(tx, zp); 2970 2971 err = dmu_tx_assign(tx, TXG_NOWAIT); 2972 if (err) { 2973 if (err == ERESTART) 2974 dmu_tx_wait(tx); 2975 goto out; 2976 } 2977 2978 count = 0; 2979 /* 2980 * Set each attribute requested. 2981 * We group settings according to the locks they need to acquire. 2982 * 2983 * Note: you cannot set ctime directly, although it will be 2984 * updated as a side-effect of calling this function. 2985 */ 2986 2987 2988 if (mask & (AT_UID|AT_GID|AT_MODE)) 2989 mutex_enter(&zp->z_acl_lock); 2990 mutex_enter(&zp->z_lock); 2991 2992 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 2993 &zp->z_pflags, sizeof (zp->z_pflags)); 2994 2995 if (attrzp) { 2996 if (mask & (AT_UID|AT_GID|AT_MODE)) 2997 mutex_enter(&attrzp->z_acl_lock); 2998 mutex_enter(&attrzp->z_lock); 2999 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3000 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3001 sizeof (attrzp->z_pflags)); 3002 } 3003 3004 if (mask & (AT_UID|AT_GID)) { 3005 3006 if (mask & AT_UID) { 3007 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3008 &new_uid, sizeof (new_uid)); 3009 zp->z_uid = zfs_fuid_map_id(zfsvfs, new_uid, 3010 cr, ZFS_OWNER); 3011 if (attrzp) { 3012 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3013 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3014 sizeof (new_uid)); 3015 attrzp->z_uid = zp->z_uid; 3016 } 3017 } 3018 3019 if (mask & AT_GID) { 3020 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3021 NULL, &new_gid, sizeof (new_gid)); 3022 zp->z_gid = zfs_fuid_map_id(zfsvfs, new_gid, cr, 3023 ZFS_GROUP); 3024 if (attrzp) { 3025 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3026 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3027 sizeof (new_gid)); 3028 attrzp->z_gid = zp->z_gid; 3029 } 3030 } 3031 if (!(mask & AT_MODE)) { 3032 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3033 NULL, &new_mode, sizeof (new_mode)); 3034 new_mode = zp->z_mode; 3035 } 3036 err = zfs_acl_chown_setattr(zp); 3037 ASSERT(err == 0); 3038 if (attrzp) { 3039 err = zfs_acl_chown_setattr(attrzp); 3040 ASSERT(err == 0); 3041 } 3042 } 3043 3044 if (mask & AT_MODE) { 3045 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3046 &new_mode, sizeof (new_mode)); 3047 zp->z_mode = new_mode; 3048 ASSERT3U((uintptr_t)aclp, !=, NULL); 3049 err = zfs_aclset_common(zp, aclp, cr, tx); 3050 ASSERT3U(err, ==, 0); 3051 zp->z_acl_cached = aclp; 3052 aclp = NULL; 3053 } 3054 3055 3056 if (mask & AT_ATIME) { 3057 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3058 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3059 &zp->z_atime, sizeof (zp->z_atime)); 3060 } 3061 3062 if (mask & AT_MTIME) { 3063 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3064 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3065 mtime, sizeof (mtime)); 3066 } 3067 3068 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3069 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3070 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3071 NULL, mtime, sizeof (mtime)); 3072 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3073 &ctime, sizeof (ctime)); 3074 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3075 B_TRUE); 3076 } else if (mask != 0) { 3077 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3078 &ctime, sizeof (ctime)); 3079 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3080 B_TRUE); 3081 if (attrzp) { 3082 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3083 SA_ZPL_CTIME(zfsvfs), NULL, 3084 &ctime, sizeof (ctime)); 3085 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3086 mtime, ctime, B_TRUE); 3087 } 3088 } 3089 /* 3090 * Do this after setting timestamps to prevent timestamp 3091 * update from toggling bit 3092 */ 3093 3094 if (xoap && (mask & AT_XVATTR)) { 3095 3096 /* 3097 * restore trimmed off masks 3098 * so that return masks can be set for caller. 3099 */ 3100 3101 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3102 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3103 } 3104 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3105 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3106 } 3107 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3108 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3109 } 3110 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3111 XVA_SET_REQ(xvap, XAT_NODUMP); 3112 } 3113 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3114 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3115 } 3116 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3117 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3118 } 3119 3120 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3121 ASSERT(vp->v_type == VREG); 3122 3123 zfs_xvattr_set(zp, xvap, tx); 3124 } 3125 3126 if (fuid_dirtied) 3127 zfs_fuid_sync(zfsvfs, tx); 3128 3129 if (mask != 0) 3130 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3131 3132 mutex_exit(&zp->z_lock); 3133 if (mask & (AT_UID|AT_GID|AT_MODE)) 3134 mutex_exit(&zp->z_acl_lock); 3135 3136 if (attrzp) { 3137 if (mask & (AT_UID|AT_GID|AT_MODE)) 3138 mutex_exit(&attrzp->z_acl_lock); 3139 mutex_exit(&attrzp->z_lock); 3140 } 3141 out: 3142 if (err == 0 && attrzp) { 3143 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3144 xattr_count, tx); 3145 ASSERT(err2 == 0); 3146 } 3147 3148 if (attrzp) 3149 VN_RELE(ZTOV(attrzp)); 3150 if (aclp) 3151 zfs_acl_free(aclp); 3152 3153 if (fuidp) { 3154 zfs_fuid_info_free(fuidp); 3155 fuidp = NULL; 3156 } 3157 3158 if (err) { 3159 dmu_tx_abort(tx); 3160 if (err == ERESTART) 3161 goto top; 3162 } else { 3163 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3164 dmu_tx_commit(tx); 3165 } 3166 3167 3168 out2: 3169 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3170 zil_commit(zilog, 0); 3171 3172 ZFS_EXIT(zfsvfs); 3173 return (err); 3174 } 3175 3176 typedef struct zfs_zlock { 3177 krwlock_t *zl_rwlock; /* lock we acquired */ 3178 znode_t *zl_znode; /* znode we held */ 3179 struct zfs_zlock *zl_next; /* next in list */ 3180 } zfs_zlock_t; 3181 3182 /* 3183 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3184 */ 3185 static void 3186 zfs_rename_unlock(zfs_zlock_t **zlpp) 3187 { 3188 zfs_zlock_t *zl; 3189 3190 while ((zl = *zlpp) != NULL) { 3191 if (zl->zl_znode != NULL) 3192 VN_RELE(ZTOV(zl->zl_znode)); 3193 rw_exit(zl->zl_rwlock); 3194 *zlpp = zl->zl_next; 3195 kmem_free(zl, sizeof (*zl)); 3196 } 3197 } 3198 3199 /* 3200 * Search back through the directory tree, using the ".." entries. 3201 * Lock each directory in the chain to prevent concurrent renames. 3202 * Fail any attempt to move a directory into one of its own descendants. 3203 * XXX - z_parent_lock can overlap with map or grow locks 3204 */ 3205 static int 3206 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3207 { 3208 zfs_zlock_t *zl; 3209 znode_t *zp = tdzp; 3210 uint64_t rootid = zp->z_zfsvfs->z_root; 3211 uint64_t oidp = zp->z_id; 3212 krwlock_t *rwlp = &szp->z_parent_lock; 3213 krw_t rw = RW_WRITER; 3214 3215 /* 3216 * First pass write-locks szp and compares to zp->z_id. 3217 * Later passes read-lock zp and compare to zp->z_parent. 3218 */ 3219 do { 3220 if (!rw_tryenter(rwlp, rw)) { 3221 /* 3222 * Another thread is renaming in this path. 3223 * Note that if we are a WRITER, we don't have any 3224 * parent_locks held yet. 3225 */ 3226 if (rw == RW_READER && zp->z_id > szp->z_id) { 3227 /* 3228 * Drop our locks and restart 3229 */ 3230 zfs_rename_unlock(&zl); 3231 *zlpp = NULL; 3232 zp = tdzp; 3233 oidp = zp->z_id; 3234 rwlp = &szp->z_parent_lock; 3235 rw = RW_WRITER; 3236 continue; 3237 } else { 3238 /* 3239 * Wait for other thread to drop its locks 3240 */ 3241 rw_enter(rwlp, rw); 3242 } 3243 } 3244 3245 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3246 zl->zl_rwlock = rwlp; 3247 zl->zl_znode = NULL; 3248 zl->zl_next = *zlpp; 3249 *zlpp = zl; 3250 3251 if (oidp == szp->z_id) /* We're a descendant of szp */ 3252 return (EINVAL); 3253 3254 if (oidp == rootid) /* We've hit the top */ 3255 return (0); 3256 3257 if (rw == RW_READER) { /* i.e. not the first pass */ 3258 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3259 if (error) 3260 return (error); 3261 zl->zl_znode = zp; 3262 } 3263 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3264 &oidp, sizeof (oidp)); 3265 rwlp = &zp->z_parent_lock; 3266 rw = RW_READER; 3267 3268 } while (zp->z_id != sdzp->z_id); 3269 3270 return (0); 3271 } 3272 3273 /* 3274 * Move an entry from the provided source directory to the target 3275 * directory. Change the entry name as indicated. 3276 * 3277 * IN: sdvp - Source directory containing the "old entry". 3278 * snm - Old entry name. 3279 * tdvp - Target directory to contain the "new entry". 3280 * tnm - New entry name. 3281 * cr - credentials of caller. 3282 * ct - caller context 3283 * flags - case flags 3284 * 3285 * RETURN: 0 if success 3286 * error code if failure 3287 * 3288 * Timestamps: 3289 * sdvp,tdvp - ctime|mtime updated 3290 */ 3291 /*ARGSUSED*/ 3292 static int 3293 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3294 caller_context_t *ct, int flags) 3295 { 3296 znode_t *tdzp, *szp, *tzp; 3297 znode_t *sdzp = VTOZ(sdvp); 3298 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3299 zilog_t *zilog; 3300 vnode_t *realvp; 3301 zfs_dirlock_t *sdl, *tdl; 3302 dmu_tx_t *tx; 3303 zfs_zlock_t *zl; 3304 int cmp, serr, terr; 3305 int error = 0; 3306 int zflg = 0; 3307 3308 ZFS_ENTER(zfsvfs); 3309 ZFS_VERIFY_ZP(sdzp); 3310 zilog = zfsvfs->z_log; 3311 3312 /* 3313 * Make sure we have the real vp for the target directory. 3314 */ 3315 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3316 tdvp = realvp; 3317 3318 if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) { 3319 ZFS_EXIT(zfsvfs); 3320 return (EXDEV); 3321 } 3322 3323 tdzp = VTOZ(tdvp); 3324 ZFS_VERIFY_ZP(tdzp); 3325 if (zfsvfs->z_utf8 && u8_validate(tnm, 3326 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3327 ZFS_EXIT(zfsvfs); 3328 return (EILSEQ); 3329 } 3330 3331 if (flags & FIGNORECASE) 3332 zflg |= ZCILOOK; 3333 3334 top: 3335 szp = NULL; 3336 tzp = NULL; 3337 zl = NULL; 3338 3339 /* 3340 * This is to prevent the creation of links into attribute space 3341 * by renaming a linked file into/outof an attribute directory. 3342 * See the comment in zfs_link() for why this is considered bad. 3343 */ 3344 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3345 ZFS_EXIT(zfsvfs); 3346 return (EINVAL); 3347 } 3348 3349 /* 3350 * Lock source and target directory entries. To prevent deadlock, 3351 * a lock ordering must be defined. We lock the directory with 3352 * the smallest object id first, or if it's a tie, the one with 3353 * the lexically first name. 3354 */ 3355 if (sdzp->z_id < tdzp->z_id) { 3356 cmp = -1; 3357 } else if (sdzp->z_id > tdzp->z_id) { 3358 cmp = 1; 3359 } else { 3360 /* 3361 * First compare the two name arguments without 3362 * considering any case folding. 3363 */ 3364 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3365 3366 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3367 ASSERT(error == 0 || !zfsvfs->z_utf8); 3368 if (cmp == 0) { 3369 /* 3370 * POSIX: "If the old argument and the new argument 3371 * both refer to links to the same existing file, 3372 * the rename() function shall return successfully 3373 * and perform no other action." 3374 */ 3375 ZFS_EXIT(zfsvfs); 3376 return (0); 3377 } 3378 /* 3379 * If the file system is case-folding, then we may 3380 * have some more checking to do. A case-folding file 3381 * system is either supporting mixed case sensitivity 3382 * access or is completely case-insensitive. Note 3383 * that the file system is always case preserving. 3384 * 3385 * In mixed sensitivity mode case sensitive behavior 3386 * is the default. FIGNORECASE must be used to 3387 * explicitly request case insensitive behavior. 3388 * 3389 * If the source and target names provided differ only 3390 * by case (e.g., a request to rename 'tim' to 'Tim'), 3391 * we will treat this as a special case in the 3392 * case-insensitive mode: as long as the source name 3393 * is an exact match, we will allow this to proceed as 3394 * a name-change request. 3395 */ 3396 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3397 (zfsvfs->z_case == ZFS_CASE_MIXED && 3398 flags & FIGNORECASE)) && 3399 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3400 &error) == 0) { 3401 /* 3402 * case preserving rename request, require exact 3403 * name matches 3404 */ 3405 zflg |= ZCIEXACT; 3406 zflg &= ~ZCILOOK; 3407 } 3408 } 3409 3410 /* 3411 * If the source and destination directories are the same, we should 3412 * grab the z_name_lock of that directory only once. 3413 */ 3414 if (sdzp == tdzp) { 3415 zflg |= ZHAVELOCK; 3416 rw_enter(&sdzp->z_name_lock, RW_READER); 3417 } 3418 3419 if (cmp < 0) { 3420 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3421 ZEXISTS | zflg, NULL, NULL); 3422 terr = zfs_dirent_lock(&tdl, 3423 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3424 } else { 3425 terr = zfs_dirent_lock(&tdl, 3426 tdzp, tnm, &tzp, zflg, NULL, NULL); 3427 serr = zfs_dirent_lock(&sdl, 3428 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3429 NULL, NULL); 3430 } 3431 3432 if (serr) { 3433 /* 3434 * Source entry invalid or not there. 3435 */ 3436 if (!terr) { 3437 zfs_dirent_unlock(tdl); 3438 if (tzp) 3439 VN_RELE(ZTOV(tzp)); 3440 } 3441 3442 if (sdzp == tdzp) 3443 rw_exit(&sdzp->z_name_lock); 3444 3445 if (strcmp(snm, "..") == 0) 3446 serr = EINVAL; 3447 ZFS_EXIT(zfsvfs); 3448 return (serr); 3449 } 3450 if (terr) { 3451 zfs_dirent_unlock(sdl); 3452 VN_RELE(ZTOV(szp)); 3453 3454 if (sdzp == tdzp) 3455 rw_exit(&sdzp->z_name_lock); 3456 3457 if (strcmp(tnm, "..") == 0) 3458 terr = EINVAL; 3459 ZFS_EXIT(zfsvfs); 3460 return (terr); 3461 } 3462 3463 /* 3464 * Must have write access at the source to remove the old entry 3465 * and write access at the target to create the new entry. 3466 * Note that if target and source are the same, this can be 3467 * done in a single check. 3468 */ 3469 3470 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3471 goto out; 3472 3473 if (ZTOV(szp)->v_type == VDIR) { 3474 /* 3475 * Check to make sure rename is valid. 3476 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3477 */ 3478 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3479 goto out; 3480 } 3481 3482 /* 3483 * Does target exist? 3484 */ 3485 if (tzp) { 3486 /* 3487 * Source and target must be the same type. 3488 */ 3489 if (ZTOV(szp)->v_type == VDIR) { 3490 if (ZTOV(tzp)->v_type != VDIR) { 3491 error = ENOTDIR; 3492 goto out; 3493 } 3494 } else { 3495 if (ZTOV(tzp)->v_type == VDIR) { 3496 error = EISDIR; 3497 goto out; 3498 } 3499 } 3500 /* 3501 * POSIX dictates that when the source and target 3502 * entries refer to the same file object, rename 3503 * must do nothing and exit without error. 3504 */ 3505 if (szp->z_id == tzp->z_id) { 3506 error = 0; 3507 goto out; 3508 } 3509 } 3510 3511 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3512 if (tzp) 3513 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3514 3515 /* 3516 * notify the target directory if it is not the same 3517 * as source directory. 3518 */ 3519 if (tdvp != sdvp) { 3520 vnevent_rename_dest_dir(tdvp, ct); 3521 } 3522 3523 tx = dmu_tx_create(zfsvfs->z_os); 3524 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3525 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3526 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3527 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3528 if (sdzp != tdzp) { 3529 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3530 zfs_sa_upgrade_txholds(tx, tdzp); 3531 } 3532 if (tzp) { 3533 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3534 zfs_sa_upgrade_txholds(tx, tzp); 3535 } 3536 3537 zfs_sa_upgrade_txholds(tx, szp); 3538 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3539 error = dmu_tx_assign(tx, TXG_NOWAIT); 3540 if (error) { 3541 if (zl != NULL) 3542 zfs_rename_unlock(&zl); 3543 zfs_dirent_unlock(sdl); 3544 zfs_dirent_unlock(tdl); 3545 3546 if (sdzp == tdzp) 3547 rw_exit(&sdzp->z_name_lock); 3548 3549 VN_RELE(ZTOV(szp)); 3550 if (tzp) 3551 VN_RELE(ZTOV(tzp)); 3552 if (error == ERESTART) { 3553 dmu_tx_wait(tx); 3554 dmu_tx_abort(tx); 3555 goto top; 3556 } 3557 dmu_tx_abort(tx); 3558 ZFS_EXIT(zfsvfs); 3559 return (error); 3560 } 3561 3562 if (tzp) /* Attempt to remove the existing target */ 3563 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3564 3565 if (error == 0) { 3566 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3567 if (error == 0) { 3568 szp->z_pflags |= ZFS_AV_MODIFIED; 3569 3570 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3571 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3572 ASSERT3U(error, ==, 0); 3573 3574 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3575 if (error == 0) { 3576 zfs_log_rename(zilog, tx, TX_RENAME | 3577 (flags & FIGNORECASE ? TX_CI : 0), 3578 sdzp, sdl->dl_name, tdzp, tdl->dl_name); 3579 3580 /* 3581 * Update path information for the target vnode 3582 */ 3583 vn_renamepath(tdvp, ZTOV(szp), tnm, 3584 strlen(tnm)); 3585 } else { 3586 /* 3587 * At this point, we have successfully created 3588 * the target name, but have failed to remove 3589 * the source name. Since the create was done 3590 * with the ZRENAMING flag, there are 3591 * complications; for one, the link count is 3592 * wrong. The easiest way to deal with this 3593 * is to remove the newly created target, and 3594 * return the original error. This must 3595 * succeed; fortunately, it is very unlikely to 3596 * fail, since we just created it. 3597 */ 3598 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3599 ZRENAMING, NULL), ==, 0); 3600 } 3601 } 3602 } 3603 3604 dmu_tx_commit(tx); 3605 out: 3606 if (zl != NULL) 3607 zfs_rename_unlock(&zl); 3608 3609 zfs_dirent_unlock(sdl); 3610 zfs_dirent_unlock(tdl); 3611 3612 if (sdzp == tdzp) 3613 rw_exit(&sdzp->z_name_lock); 3614 3615 3616 VN_RELE(ZTOV(szp)); 3617 if (tzp) 3618 VN_RELE(ZTOV(tzp)); 3619 3620 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3621 zil_commit(zilog, 0); 3622 3623 ZFS_EXIT(zfsvfs); 3624 return (error); 3625 } 3626 3627 /* 3628 * Insert the indicated symbolic reference entry into the directory. 3629 * 3630 * IN: dvp - Directory to contain new symbolic link. 3631 * link - Name for new symlink entry. 3632 * vap - Attributes of new entry. 3633 * target - Target path of new symlink. 3634 * cr - credentials of caller. 3635 * ct - caller context 3636 * flags - case flags 3637 * 3638 * RETURN: 0 if success 3639 * error code if failure 3640 * 3641 * Timestamps: 3642 * dvp - ctime|mtime updated 3643 */ 3644 /*ARGSUSED*/ 3645 static int 3646 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3647 caller_context_t *ct, int flags) 3648 { 3649 znode_t *zp, *dzp = VTOZ(dvp); 3650 zfs_dirlock_t *dl; 3651 dmu_tx_t *tx; 3652 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3653 zilog_t *zilog; 3654 uint64_t len = strlen(link); 3655 int error; 3656 int zflg = ZNEW; 3657 zfs_acl_ids_t acl_ids; 3658 boolean_t fuid_dirtied; 3659 uint64_t txtype = TX_SYMLINK; 3660 3661 ASSERT(vap->va_type == VLNK); 3662 3663 ZFS_ENTER(zfsvfs); 3664 ZFS_VERIFY_ZP(dzp); 3665 zilog = zfsvfs->z_log; 3666 3667 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3668 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3669 ZFS_EXIT(zfsvfs); 3670 return (EILSEQ); 3671 } 3672 if (flags & FIGNORECASE) 3673 zflg |= ZCILOOK; 3674 3675 if (len > MAXPATHLEN) { 3676 ZFS_EXIT(zfsvfs); 3677 return (ENAMETOOLONG); 3678 } 3679 3680 if ((error = zfs_acl_ids_create(dzp, 0, 3681 vap, cr, NULL, &acl_ids)) != 0) { 3682 ZFS_EXIT(zfsvfs); 3683 return (error); 3684 } 3685 top: 3686 /* 3687 * Attempt to lock directory; fail if entry already exists. 3688 */ 3689 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3690 if (error) { 3691 zfs_acl_ids_free(&acl_ids); 3692 ZFS_EXIT(zfsvfs); 3693 return (error); 3694 } 3695 3696 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3697 zfs_acl_ids_free(&acl_ids); 3698 zfs_dirent_unlock(dl); 3699 ZFS_EXIT(zfsvfs); 3700 return (error); 3701 } 3702 3703 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3704 zfs_acl_ids_free(&acl_ids); 3705 zfs_dirent_unlock(dl); 3706 ZFS_EXIT(zfsvfs); 3707 return (EDQUOT); 3708 } 3709 tx = dmu_tx_create(zfsvfs->z_os); 3710 fuid_dirtied = zfsvfs->z_fuid_dirty; 3711 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3712 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3713 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3714 ZFS_SA_BASE_ATTR_SIZE + len); 3715 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3716 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3717 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3718 acl_ids.z_aclp->z_acl_bytes); 3719 } 3720 if (fuid_dirtied) 3721 zfs_fuid_txhold(zfsvfs, tx); 3722 error = dmu_tx_assign(tx, TXG_NOWAIT); 3723 if (error) { 3724 zfs_dirent_unlock(dl); 3725 if (error == ERESTART) { 3726 dmu_tx_wait(tx); 3727 dmu_tx_abort(tx); 3728 goto top; 3729 } 3730 zfs_acl_ids_free(&acl_ids); 3731 dmu_tx_abort(tx); 3732 ZFS_EXIT(zfsvfs); 3733 return (error); 3734 } 3735 3736 /* 3737 * Create a new object for the symlink. 3738 * for version 4 ZPL datsets the symlink will be an SA attribute 3739 */ 3740 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3741 3742 if (fuid_dirtied) 3743 zfs_fuid_sync(zfsvfs, tx); 3744 3745 mutex_enter(&zp->z_lock); 3746 if (zp->z_is_sa) 3747 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3748 link, len, tx); 3749 else 3750 zfs_sa_symlink(zp, link, len, tx); 3751 mutex_exit(&zp->z_lock); 3752 3753 zp->z_size = len; 3754 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3755 &zp->z_size, sizeof (zp->z_size), tx); 3756 /* 3757 * Insert the new object into the directory. 3758 */ 3759 (void) zfs_link_create(dl, zp, tx, ZNEW); 3760 3761 if (flags & FIGNORECASE) 3762 txtype |= TX_CI; 3763 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3764 3765 zfs_acl_ids_free(&acl_ids); 3766 3767 dmu_tx_commit(tx); 3768 3769 zfs_dirent_unlock(dl); 3770 3771 VN_RELE(ZTOV(zp)); 3772 3773 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3774 zil_commit(zilog, 0); 3775 3776 ZFS_EXIT(zfsvfs); 3777 return (error); 3778 } 3779 3780 /* 3781 * Return, in the buffer contained in the provided uio structure, 3782 * the symbolic path referred to by vp. 3783 * 3784 * IN: vp - vnode of symbolic link. 3785 * uoip - structure to contain the link path. 3786 * cr - credentials of caller. 3787 * ct - caller context 3788 * 3789 * OUT: uio - structure to contain the link path. 3790 * 3791 * RETURN: 0 if success 3792 * error code if failure 3793 * 3794 * Timestamps: 3795 * vp - atime updated 3796 */ 3797 /* ARGSUSED */ 3798 static int 3799 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3800 { 3801 znode_t *zp = VTOZ(vp); 3802 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3803 int error; 3804 3805 ZFS_ENTER(zfsvfs); 3806 ZFS_VERIFY_ZP(zp); 3807 3808 mutex_enter(&zp->z_lock); 3809 if (zp->z_is_sa) 3810 error = sa_lookup_uio(zp->z_sa_hdl, 3811 SA_ZPL_SYMLINK(zfsvfs), uio); 3812 else 3813 error = zfs_sa_readlink(zp, uio); 3814 mutex_exit(&zp->z_lock); 3815 3816 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3817 3818 ZFS_EXIT(zfsvfs); 3819 return (error); 3820 } 3821 3822 /* 3823 * Insert a new entry into directory tdvp referencing svp. 3824 * 3825 * IN: tdvp - Directory to contain new entry. 3826 * svp - vnode of new entry. 3827 * name - name of new entry. 3828 * cr - credentials of caller. 3829 * ct - caller context 3830 * 3831 * RETURN: 0 if success 3832 * error code if failure 3833 * 3834 * Timestamps: 3835 * tdvp - ctime|mtime updated 3836 * svp - ctime updated 3837 */ 3838 /* ARGSUSED */ 3839 static int 3840 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3841 caller_context_t *ct, int flags) 3842 { 3843 znode_t *dzp = VTOZ(tdvp); 3844 znode_t *tzp, *szp; 3845 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3846 zilog_t *zilog; 3847 zfs_dirlock_t *dl; 3848 dmu_tx_t *tx; 3849 vnode_t *realvp; 3850 int error; 3851 int zf = ZNEW; 3852 uint64_t parent; 3853 3854 ASSERT(tdvp->v_type == VDIR); 3855 3856 ZFS_ENTER(zfsvfs); 3857 ZFS_VERIFY_ZP(dzp); 3858 zilog = zfsvfs->z_log; 3859 3860 if (VOP_REALVP(svp, &realvp, ct) == 0) 3861 svp = realvp; 3862 3863 /* 3864 * POSIX dictates that we return EPERM here. 3865 * Better choices include ENOTSUP or EISDIR. 3866 */ 3867 if (svp->v_type == VDIR) { 3868 ZFS_EXIT(zfsvfs); 3869 return (EPERM); 3870 } 3871 3872 if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) { 3873 ZFS_EXIT(zfsvfs); 3874 return (EXDEV); 3875 } 3876 3877 szp = VTOZ(svp); 3878 ZFS_VERIFY_ZP(szp); 3879 3880 /* Prevent links to .zfs/shares files */ 3881 3882 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 3883 &parent, sizeof (uint64_t))) != 0) { 3884 ZFS_EXIT(zfsvfs); 3885 return (error); 3886 } 3887 if (parent == zfsvfs->z_shares_dir) { 3888 ZFS_EXIT(zfsvfs); 3889 return (EPERM); 3890 } 3891 3892 if (zfsvfs->z_utf8 && u8_validate(name, 3893 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3894 ZFS_EXIT(zfsvfs); 3895 return (EILSEQ); 3896 } 3897 if (flags & FIGNORECASE) 3898 zf |= ZCILOOK; 3899 3900 /* 3901 * We do not support links between attributes and non-attributes 3902 * because of the potential security risk of creating links 3903 * into "normal" file space in order to circumvent restrictions 3904 * imposed in attribute space. 3905 */ 3906 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 3907 ZFS_EXIT(zfsvfs); 3908 return (EINVAL); 3909 } 3910 3911 3912 if (szp->z_uid != crgetuid(cr) && 3913 secpolicy_basic_link(cr) != 0) { 3914 ZFS_EXIT(zfsvfs); 3915 return (EPERM); 3916 } 3917 3918 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3919 ZFS_EXIT(zfsvfs); 3920 return (error); 3921 } 3922 3923 top: 3924 /* 3925 * Attempt to lock directory; fail if entry already exists. 3926 */ 3927 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3928 if (error) { 3929 ZFS_EXIT(zfsvfs); 3930 return (error); 3931 } 3932 3933 tx = dmu_tx_create(zfsvfs->z_os); 3934 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3935 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3936 zfs_sa_upgrade_txholds(tx, szp); 3937 zfs_sa_upgrade_txholds(tx, dzp); 3938 error = dmu_tx_assign(tx, TXG_NOWAIT); 3939 if (error) { 3940 zfs_dirent_unlock(dl); 3941 if (error == ERESTART) { 3942 dmu_tx_wait(tx); 3943 dmu_tx_abort(tx); 3944 goto top; 3945 } 3946 dmu_tx_abort(tx); 3947 ZFS_EXIT(zfsvfs); 3948 return (error); 3949 } 3950 3951 error = zfs_link_create(dl, szp, tx, 0); 3952 3953 if (error == 0) { 3954 uint64_t txtype = TX_LINK; 3955 if (flags & FIGNORECASE) 3956 txtype |= TX_CI; 3957 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3958 } 3959 3960 dmu_tx_commit(tx); 3961 3962 zfs_dirent_unlock(dl); 3963 3964 if (error == 0) { 3965 vnevent_link(svp, ct); 3966 } 3967 3968 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3969 zil_commit(zilog, 0); 3970 3971 ZFS_EXIT(zfsvfs); 3972 return (error); 3973 } 3974 3975 /* 3976 * zfs_null_putapage() is used when the file system has been force 3977 * unmounted. It just drops the pages. 3978 */ 3979 /* ARGSUSED */ 3980 static int 3981 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3982 size_t *lenp, int flags, cred_t *cr) 3983 { 3984 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3985 return (0); 3986 } 3987 3988 /* 3989 * Push a page out to disk, klustering if possible. 3990 * 3991 * IN: vp - file to push page to. 3992 * pp - page to push. 3993 * flags - additional flags. 3994 * cr - credentials of caller. 3995 * 3996 * OUT: offp - start of range pushed. 3997 * lenp - len of range pushed. 3998 * 3999 * RETURN: 0 if success 4000 * error code if failure 4001 * 4002 * NOTE: callers must have locked the page to be pushed. On 4003 * exit, the page (and all other pages in the kluster) must be 4004 * unlocked. 4005 */ 4006 /* ARGSUSED */ 4007 static int 4008 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4009 size_t *lenp, int flags, cred_t *cr) 4010 { 4011 znode_t *zp = VTOZ(vp); 4012 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4013 dmu_tx_t *tx; 4014 u_offset_t off, koff; 4015 size_t len, klen; 4016 int err; 4017 4018 off = pp->p_offset; 4019 len = PAGESIZE; 4020 /* 4021 * If our blocksize is bigger than the page size, try to kluster 4022 * multiple pages so that we write a full block (thus avoiding 4023 * a read-modify-write). 4024 */ 4025 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4026 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4027 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4028 ASSERT(koff <= zp->z_size); 4029 if (koff + klen > zp->z_size) 4030 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4031 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4032 } 4033 ASSERT3U(btop(len), ==, btopr(len)); 4034 4035 /* 4036 * Can't push pages past end-of-file. 4037 */ 4038 if (off >= zp->z_size) { 4039 /* ignore all pages */ 4040 err = 0; 4041 goto out; 4042 } else if (off + len > zp->z_size) { 4043 int npages = btopr(zp->z_size - off); 4044 page_t *trunc; 4045 4046 page_list_break(&pp, &trunc, npages); 4047 /* ignore pages past end of file */ 4048 if (trunc) 4049 pvn_write_done(trunc, flags); 4050 len = zp->z_size - off; 4051 } 4052 4053 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4054 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4055 err = EDQUOT; 4056 goto out; 4057 } 4058 top: 4059 tx = dmu_tx_create(zfsvfs->z_os); 4060 dmu_tx_hold_write(tx, zp->z_id, off, len); 4061 4062 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4063 zfs_sa_upgrade_txholds(tx, zp); 4064 err = dmu_tx_assign(tx, TXG_NOWAIT); 4065 if (err != 0) { 4066 if (err == ERESTART) { 4067 dmu_tx_wait(tx); 4068 dmu_tx_abort(tx); 4069 goto top; 4070 } 4071 dmu_tx_abort(tx); 4072 goto out; 4073 } 4074 4075 if (zp->z_blksz <= PAGESIZE) { 4076 caddr_t va = zfs_map_page(pp, S_READ); 4077 ASSERT3U(len, <=, PAGESIZE); 4078 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4079 zfs_unmap_page(pp, va); 4080 } else { 4081 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4082 } 4083 4084 if (err == 0) { 4085 uint64_t mtime[2], ctime[2]; 4086 sa_bulk_attr_t bulk[3]; 4087 int count = 0; 4088 4089 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4090 &mtime, 16); 4091 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4092 &ctime, 16); 4093 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4094 &zp->z_pflags, 8); 4095 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4096 B_TRUE); 4097 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4098 } 4099 dmu_tx_commit(tx); 4100 4101 out: 4102 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4103 if (offp) 4104 *offp = off; 4105 if (lenp) 4106 *lenp = len; 4107 4108 return (err); 4109 } 4110 4111 /* 4112 * Copy the portion of the file indicated from pages into the file. 4113 * The pages are stored in a page list attached to the files vnode. 4114 * 4115 * IN: vp - vnode of file to push page data to. 4116 * off - position in file to put data. 4117 * len - amount of data to write. 4118 * flags - flags to control the operation. 4119 * cr - credentials of caller. 4120 * ct - caller context. 4121 * 4122 * RETURN: 0 if success 4123 * error code if failure 4124 * 4125 * Timestamps: 4126 * vp - ctime|mtime updated 4127 */ 4128 /*ARGSUSED*/ 4129 static int 4130 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4131 caller_context_t *ct) 4132 { 4133 znode_t *zp = VTOZ(vp); 4134 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4135 page_t *pp; 4136 size_t io_len; 4137 u_offset_t io_off; 4138 uint_t blksz; 4139 rl_t *rl; 4140 int error = 0; 4141 4142 ZFS_ENTER(zfsvfs); 4143 ZFS_VERIFY_ZP(zp); 4144 4145 /* 4146 * Align this request to the file block size in case we kluster. 4147 * XXX - this can result in pretty aggresive locking, which can 4148 * impact simultanious read/write access. One option might be 4149 * to break up long requests (len == 0) into block-by-block 4150 * operations to get narrower locking. 4151 */ 4152 blksz = zp->z_blksz; 4153 if (ISP2(blksz)) 4154 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4155 else 4156 io_off = 0; 4157 if (len > 0 && ISP2(blksz)) 4158 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4159 else 4160 io_len = 0; 4161 4162 if (io_len == 0) { 4163 /* 4164 * Search the entire vp list for pages >= io_off. 4165 */ 4166 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4167 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4168 goto out; 4169 } 4170 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4171 4172 if (off > zp->z_size) { 4173 /* past end of file */ 4174 zfs_range_unlock(rl); 4175 ZFS_EXIT(zfsvfs); 4176 return (0); 4177 } 4178 4179 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4180 4181 for (off = io_off; io_off < off + len; io_off += io_len) { 4182 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4183 pp = page_lookup(vp, io_off, 4184 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4185 } else { 4186 pp = page_lookup_nowait(vp, io_off, 4187 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4188 } 4189 4190 if (pp != NULL && pvn_getdirty(pp, flags)) { 4191 int err; 4192 4193 /* 4194 * Found a dirty page to push 4195 */ 4196 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4197 if (err) 4198 error = err; 4199 } else { 4200 io_len = PAGESIZE; 4201 } 4202 } 4203 out: 4204 zfs_range_unlock(rl); 4205 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4206 zil_commit(zfsvfs->z_log, zp->z_id); 4207 ZFS_EXIT(zfsvfs); 4208 return (error); 4209 } 4210 4211 /*ARGSUSED*/ 4212 void 4213 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4214 { 4215 znode_t *zp = VTOZ(vp); 4216 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4217 int error; 4218 4219 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4220 if (zp->z_sa_hdl == NULL) { 4221 /* 4222 * The fs has been unmounted, or we did a 4223 * suspend/resume and this file no longer exists. 4224 */ 4225 if (vn_has_cached_data(vp)) { 4226 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4227 B_INVAL, cr); 4228 } 4229 4230 mutex_enter(&zp->z_lock); 4231 mutex_enter(&vp->v_lock); 4232 ASSERT(vp->v_count == 1); 4233 vp->v_count = 0; 4234 mutex_exit(&vp->v_lock); 4235 mutex_exit(&zp->z_lock); 4236 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4237 zfs_znode_free(zp); 4238 return; 4239 } 4240 4241 /* 4242 * Attempt to push any data in the page cache. If this fails 4243 * we will get kicked out later in zfs_zinactive(). 4244 */ 4245 if (vn_has_cached_data(vp)) { 4246 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4247 cr); 4248 } 4249 4250 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4251 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4252 4253 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4254 zfs_sa_upgrade_txholds(tx, zp); 4255 error = dmu_tx_assign(tx, TXG_WAIT); 4256 if (error) { 4257 dmu_tx_abort(tx); 4258 } else { 4259 mutex_enter(&zp->z_lock); 4260 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4261 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4262 zp->z_atime_dirty = 0; 4263 mutex_exit(&zp->z_lock); 4264 dmu_tx_commit(tx); 4265 } 4266 } 4267 4268 zfs_zinactive(zp); 4269 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4270 } 4271 4272 /* 4273 * Bounds-check the seek operation. 4274 * 4275 * IN: vp - vnode seeking within 4276 * ooff - old file offset 4277 * noffp - pointer to new file offset 4278 * ct - caller context 4279 * 4280 * RETURN: 0 if success 4281 * EINVAL if new offset invalid 4282 */ 4283 /* ARGSUSED */ 4284 static int 4285 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4286 caller_context_t *ct) 4287 { 4288 if (vp->v_type == VDIR) 4289 return (0); 4290 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4291 } 4292 4293 /* 4294 * Pre-filter the generic locking function to trap attempts to place 4295 * a mandatory lock on a memory mapped file. 4296 */ 4297 static int 4298 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4299 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4300 { 4301 znode_t *zp = VTOZ(vp); 4302 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4303 4304 ZFS_ENTER(zfsvfs); 4305 ZFS_VERIFY_ZP(zp); 4306 4307 /* 4308 * We are following the UFS semantics with respect to mapcnt 4309 * here: If we see that the file is mapped already, then we will 4310 * return an error, but we don't worry about races between this 4311 * function and zfs_map(). 4312 */ 4313 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4314 ZFS_EXIT(zfsvfs); 4315 return (EAGAIN); 4316 } 4317 ZFS_EXIT(zfsvfs); 4318 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4319 } 4320 4321 /* 4322 * If we can't find a page in the cache, we will create a new page 4323 * and fill it with file data. For efficiency, we may try to fill 4324 * multiple pages at once (klustering) to fill up the supplied page 4325 * list. Note that the pages to be filled are held with an exclusive 4326 * lock to prevent access by other threads while they are being filled. 4327 */ 4328 static int 4329 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4330 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4331 { 4332 znode_t *zp = VTOZ(vp); 4333 page_t *pp, *cur_pp; 4334 objset_t *os = zp->z_zfsvfs->z_os; 4335 u_offset_t io_off, total; 4336 size_t io_len; 4337 int err; 4338 4339 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4340 /* 4341 * We only have a single page, don't bother klustering 4342 */ 4343 io_off = off; 4344 io_len = PAGESIZE; 4345 pp = page_create_va(vp, io_off, io_len, 4346 PG_EXCL | PG_WAIT, seg, addr); 4347 } else { 4348 /* 4349 * Try to find enough pages to fill the page list 4350 */ 4351 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4352 &io_len, off, plsz, 0); 4353 } 4354 if (pp == NULL) { 4355 /* 4356 * The page already exists, nothing to do here. 4357 */ 4358 *pl = NULL; 4359 return (0); 4360 } 4361 4362 /* 4363 * Fill the pages in the kluster. 4364 */ 4365 cur_pp = pp; 4366 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4367 caddr_t va; 4368 4369 ASSERT3U(io_off, ==, cur_pp->p_offset); 4370 va = zfs_map_page(cur_pp, S_WRITE); 4371 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4372 DMU_READ_PREFETCH); 4373 zfs_unmap_page(cur_pp, va); 4374 if (err) { 4375 /* On error, toss the entire kluster */ 4376 pvn_read_done(pp, B_ERROR); 4377 /* convert checksum errors into IO errors */ 4378 if (err == ECKSUM) 4379 err = EIO; 4380 return (err); 4381 } 4382 cur_pp = cur_pp->p_next; 4383 } 4384 4385 /* 4386 * Fill in the page list array from the kluster starting 4387 * from the desired offset `off'. 4388 * NOTE: the page list will always be null terminated. 4389 */ 4390 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4391 ASSERT(pl == NULL || (*pl)->p_offset == off); 4392 4393 return (0); 4394 } 4395 4396 /* 4397 * Return pointers to the pages for the file region [off, off + len] 4398 * in the pl array. If plsz is greater than len, this function may 4399 * also return page pointers from after the specified region 4400 * (i.e. the region [off, off + plsz]). These additional pages are 4401 * only returned if they are already in the cache, or were created as 4402 * part of a klustered read. 4403 * 4404 * IN: vp - vnode of file to get data from. 4405 * off - position in file to get data from. 4406 * len - amount of data to retrieve. 4407 * plsz - length of provided page list. 4408 * seg - segment to obtain pages for. 4409 * addr - virtual address of fault. 4410 * rw - mode of created pages. 4411 * cr - credentials of caller. 4412 * ct - caller context. 4413 * 4414 * OUT: protp - protection mode of created pages. 4415 * pl - list of pages created. 4416 * 4417 * RETURN: 0 if success 4418 * error code if failure 4419 * 4420 * Timestamps: 4421 * vp - atime updated 4422 */ 4423 /* ARGSUSED */ 4424 static int 4425 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4426 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4427 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4428 { 4429 znode_t *zp = VTOZ(vp); 4430 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4431 page_t **pl0 = pl; 4432 int err = 0; 4433 4434 /* we do our own caching, faultahead is unnecessary */ 4435 if (pl == NULL) 4436 return (0); 4437 else if (len > plsz) 4438 len = plsz; 4439 else 4440 len = P2ROUNDUP(len, PAGESIZE); 4441 ASSERT(plsz >= len); 4442 4443 ZFS_ENTER(zfsvfs); 4444 ZFS_VERIFY_ZP(zp); 4445 4446 if (protp) 4447 *protp = PROT_ALL; 4448 4449 /* 4450 * Loop through the requested range [off, off + len) looking 4451 * for pages. If we don't find a page, we will need to create 4452 * a new page and fill it with data from the file. 4453 */ 4454 while (len > 0) { 4455 if (*pl = page_lookup(vp, off, SE_SHARED)) 4456 *(pl+1) = NULL; 4457 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4458 goto out; 4459 while (*pl) { 4460 ASSERT3U((*pl)->p_offset, ==, off); 4461 off += PAGESIZE; 4462 addr += PAGESIZE; 4463 if (len > 0) { 4464 ASSERT3U(len, >=, PAGESIZE); 4465 len -= PAGESIZE; 4466 } 4467 ASSERT3U(plsz, >=, PAGESIZE); 4468 plsz -= PAGESIZE; 4469 pl++; 4470 } 4471 } 4472 4473 /* 4474 * Fill out the page array with any pages already in the cache. 4475 */ 4476 while (plsz > 0 && 4477 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4478 off += PAGESIZE; 4479 plsz -= PAGESIZE; 4480 } 4481 out: 4482 if (err) { 4483 /* 4484 * Release any pages we have previously locked. 4485 */ 4486 while (pl > pl0) 4487 page_unlock(*--pl); 4488 } else { 4489 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4490 } 4491 4492 *pl = NULL; 4493 4494 ZFS_EXIT(zfsvfs); 4495 return (err); 4496 } 4497 4498 /* 4499 * Request a memory map for a section of a file. This code interacts 4500 * with common code and the VM system as follows: 4501 * 4502 * common code calls mmap(), which ends up in smmap_common() 4503 * 4504 * this calls VOP_MAP(), which takes you into (say) zfs 4505 * 4506 * zfs_map() calls as_map(), passing segvn_create() as the callback 4507 * 4508 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4509 * 4510 * zfs_addmap() updates z_mapcnt 4511 */ 4512 /*ARGSUSED*/ 4513 static int 4514 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4515 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4516 caller_context_t *ct) 4517 { 4518 znode_t *zp = VTOZ(vp); 4519 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4520 segvn_crargs_t vn_a; 4521 int error; 4522 4523 ZFS_ENTER(zfsvfs); 4524 ZFS_VERIFY_ZP(zp); 4525 4526 if ((prot & PROT_WRITE) && (zp->z_pflags & 4527 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4528 ZFS_EXIT(zfsvfs); 4529 return (EPERM); 4530 } 4531 4532 if ((prot & (PROT_READ | PROT_EXEC)) && 4533 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4534 ZFS_EXIT(zfsvfs); 4535 return (EACCES); 4536 } 4537 4538 if (vp->v_flag & VNOMAP) { 4539 ZFS_EXIT(zfsvfs); 4540 return (ENOSYS); 4541 } 4542 4543 if (off < 0 || len > MAXOFFSET_T - off) { 4544 ZFS_EXIT(zfsvfs); 4545 return (ENXIO); 4546 } 4547 4548 if (vp->v_type != VREG) { 4549 ZFS_EXIT(zfsvfs); 4550 return (ENODEV); 4551 } 4552 4553 /* 4554 * If file is locked, disallow mapping. 4555 */ 4556 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4557 ZFS_EXIT(zfsvfs); 4558 return (EAGAIN); 4559 } 4560 4561 as_rangelock(as); 4562 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4563 if (error != 0) { 4564 as_rangeunlock(as); 4565 ZFS_EXIT(zfsvfs); 4566 return (error); 4567 } 4568 4569 vn_a.vp = vp; 4570 vn_a.offset = (u_offset_t)off; 4571 vn_a.type = flags & MAP_TYPE; 4572 vn_a.prot = prot; 4573 vn_a.maxprot = maxprot; 4574 vn_a.cred = cr; 4575 vn_a.amp = NULL; 4576 vn_a.flags = flags & ~MAP_TYPE; 4577 vn_a.szc = 0; 4578 vn_a.lgrp_mem_policy_flags = 0; 4579 4580 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4581 4582 as_rangeunlock(as); 4583 ZFS_EXIT(zfsvfs); 4584 return (error); 4585 } 4586 4587 /* ARGSUSED */ 4588 static int 4589 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4590 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4591 caller_context_t *ct) 4592 { 4593 uint64_t pages = btopr(len); 4594 4595 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4596 return (0); 4597 } 4598 4599 /* 4600 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4601 * more accurate mtime for the associated file. Since we don't have a way of 4602 * detecting when the data was actually modified, we have to resort to 4603 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4604 * last page is pushed. The problem occurs when the msync() call is omitted, 4605 * which by far the most common case: 4606 * 4607 * open() 4608 * mmap() 4609 * <modify memory> 4610 * munmap() 4611 * close() 4612 * <time lapse> 4613 * putpage() via fsflush 4614 * 4615 * If we wait until fsflush to come along, we can have a modification time that 4616 * is some arbitrary point in the future. In order to prevent this in the 4617 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4618 * torn down. 4619 */ 4620 /* ARGSUSED */ 4621 static int 4622 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4623 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4624 caller_context_t *ct) 4625 { 4626 uint64_t pages = btopr(len); 4627 4628 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4629 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4630 4631 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4632 vn_has_cached_data(vp)) 4633 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4634 4635 return (0); 4636 } 4637 4638 /* 4639 * Free or allocate space in a file. Currently, this function only 4640 * supports the `F_FREESP' command. However, this command is somewhat 4641 * misnamed, as its functionality includes the ability to allocate as 4642 * well as free space. 4643 * 4644 * IN: vp - vnode of file to free data in. 4645 * cmd - action to take (only F_FREESP supported). 4646 * bfp - section of file to free/alloc. 4647 * flag - current file open mode flags. 4648 * offset - current file offset. 4649 * cr - credentials of caller [UNUSED]. 4650 * ct - caller context. 4651 * 4652 * RETURN: 0 if success 4653 * error code if failure 4654 * 4655 * Timestamps: 4656 * vp - ctime|mtime updated 4657 */ 4658 /* ARGSUSED */ 4659 static int 4660 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4661 offset_t offset, cred_t *cr, caller_context_t *ct) 4662 { 4663 znode_t *zp = VTOZ(vp); 4664 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4665 uint64_t off, len; 4666 int error; 4667 4668 ZFS_ENTER(zfsvfs); 4669 ZFS_VERIFY_ZP(zp); 4670 4671 if (cmd != F_FREESP) { 4672 ZFS_EXIT(zfsvfs); 4673 return (EINVAL); 4674 } 4675 4676 if (error = convoff(vp, bfp, 0, offset)) { 4677 ZFS_EXIT(zfsvfs); 4678 return (error); 4679 } 4680 4681 if (bfp->l_len < 0) { 4682 ZFS_EXIT(zfsvfs); 4683 return (EINVAL); 4684 } 4685 4686 off = bfp->l_start; 4687 len = bfp->l_len; /* 0 means from off to end of file */ 4688 4689 error = zfs_freesp(zp, off, len, flag, TRUE); 4690 4691 ZFS_EXIT(zfsvfs); 4692 return (error); 4693 } 4694 4695 /*ARGSUSED*/ 4696 static int 4697 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4698 { 4699 znode_t *zp = VTOZ(vp); 4700 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4701 uint32_t gen; 4702 uint64_t gen64; 4703 uint64_t object = zp->z_id; 4704 zfid_short_t *zfid; 4705 int size, i, error; 4706 4707 ZFS_ENTER(zfsvfs); 4708 ZFS_VERIFY_ZP(zp); 4709 4710 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4711 &gen64, sizeof (uint64_t))) != 0) { 4712 ZFS_EXIT(zfsvfs); 4713 return (error); 4714 } 4715 4716 gen = (uint32_t)gen64; 4717 4718 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4719 if (fidp->fid_len < size) { 4720 fidp->fid_len = size; 4721 ZFS_EXIT(zfsvfs); 4722 return (ENOSPC); 4723 } 4724 4725 zfid = (zfid_short_t *)fidp; 4726 4727 zfid->zf_len = size; 4728 4729 for (i = 0; i < sizeof (zfid->zf_object); i++) 4730 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4731 4732 /* Must have a non-zero generation number to distinguish from .zfs */ 4733 if (gen == 0) 4734 gen = 1; 4735 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4736 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4737 4738 if (size == LONG_FID_LEN) { 4739 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4740 zfid_long_t *zlfid; 4741 4742 zlfid = (zfid_long_t *)fidp; 4743 4744 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4745 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4746 4747 /* XXX - this should be the generation number for the objset */ 4748 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4749 zlfid->zf_setgen[i] = 0; 4750 } 4751 4752 ZFS_EXIT(zfsvfs); 4753 return (0); 4754 } 4755 4756 static int 4757 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4758 caller_context_t *ct) 4759 { 4760 znode_t *zp, *xzp; 4761 zfsvfs_t *zfsvfs; 4762 zfs_dirlock_t *dl; 4763 int error; 4764 4765 switch (cmd) { 4766 case _PC_LINK_MAX: 4767 *valp = ULONG_MAX; 4768 return (0); 4769 4770 case _PC_FILESIZEBITS: 4771 *valp = 64; 4772 return (0); 4773 4774 case _PC_XATTR_EXISTS: 4775 zp = VTOZ(vp); 4776 zfsvfs = zp->z_zfsvfs; 4777 ZFS_ENTER(zfsvfs); 4778 ZFS_VERIFY_ZP(zp); 4779 *valp = 0; 4780 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4781 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4782 if (error == 0) { 4783 zfs_dirent_unlock(dl); 4784 if (!zfs_dirempty(xzp)) 4785 *valp = 1; 4786 VN_RELE(ZTOV(xzp)); 4787 } else if (error == ENOENT) { 4788 /* 4789 * If there aren't extended attributes, it's the 4790 * same as having zero of them. 4791 */ 4792 error = 0; 4793 } 4794 ZFS_EXIT(zfsvfs); 4795 return (error); 4796 4797 case _PC_SATTR_ENABLED: 4798 case _PC_SATTR_EXISTS: 4799 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4800 (vp->v_type == VREG || vp->v_type == VDIR); 4801 return (0); 4802 4803 case _PC_ACCESS_FILTERING: 4804 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4805 vp->v_type == VDIR; 4806 return (0); 4807 4808 case _PC_ACL_ENABLED: 4809 *valp = _ACL_ACE_ENABLED; 4810 return (0); 4811 4812 case _PC_MIN_HOLE_SIZE: 4813 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4814 return (0); 4815 4816 case _PC_TIMESTAMP_RESOLUTION: 4817 /* nanosecond timestamp resolution */ 4818 *valp = 1L; 4819 return (0); 4820 4821 default: 4822 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4823 } 4824 } 4825 4826 /*ARGSUSED*/ 4827 static int 4828 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4829 caller_context_t *ct) 4830 { 4831 znode_t *zp = VTOZ(vp); 4832 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4833 int error; 4834 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4835 4836 ZFS_ENTER(zfsvfs); 4837 ZFS_VERIFY_ZP(zp); 4838 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4839 ZFS_EXIT(zfsvfs); 4840 4841 return (error); 4842 } 4843 4844 /*ARGSUSED*/ 4845 static int 4846 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4847 caller_context_t *ct) 4848 { 4849 znode_t *zp = VTOZ(vp); 4850 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4851 int error; 4852 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4853 zilog_t *zilog = zfsvfs->z_log; 4854 4855 ZFS_ENTER(zfsvfs); 4856 ZFS_VERIFY_ZP(zp); 4857 4858 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4859 4860 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4861 zil_commit(zilog, 0); 4862 4863 ZFS_EXIT(zfsvfs); 4864 return (error); 4865 } 4866 4867 /* 4868 * Tunable, both must be a power of 2. 4869 * 4870 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf 4871 * zcr_blksz_max: if set to less than the file block size, allow loaning out of 4872 * an arcbuf for a partial block read 4873 */ 4874 int zcr_blksz_min = (1 << 10); /* 1K */ 4875 int zcr_blksz_max = (1 << 17); /* 128K */ 4876 4877 /*ARGSUSED*/ 4878 static int 4879 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 4880 caller_context_t *ct) 4881 { 4882 znode_t *zp = VTOZ(vp); 4883 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4884 int max_blksz = zfsvfs->z_max_blksz; 4885 uio_t *uio = &xuio->xu_uio; 4886 ssize_t size = uio->uio_resid; 4887 offset_t offset = uio->uio_loffset; 4888 int blksz; 4889 int fullblk, i; 4890 arc_buf_t *abuf; 4891 ssize_t maxsize; 4892 int preamble, postamble; 4893 4894 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 4895 return (EINVAL); 4896 4897 ZFS_ENTER(zfsvfs); 4898 ZFS_VERIFY_ZP(zp); 4899 switch (ioflag) { 4900 case UIO_WRITE: 4901 /* 4902 * Loan out an arc_buf for write if write size is bigger than 4903 * max_blksz, and the file's block size is also max_blksz. 4904 */ 4905 blksz = max_blksz; 4906 if (size < blksz || zp->z_blksz != blksz) { 4907 ZFS_EXIT(zfsvfs); 4908 return (EINVAL); 4909 } 4910 /* 4911 * Caller requests buffers for write before knowing where the 4912 * write offset might be (e.g. NFS TCP write). 4913 */ 4914 if (offset == -1) { 4915 preamble = 0; 4916 } else { 4917 preamble = P2PHASE(offset, blksz); 4918 if (preamble) { 4919 preamble = blksz - preamble; 4920 size -= preamble; 4921 } 4922 } 4923 4924 postamble = P2PHASE(size, blksz); 4925 size -= postamble; 4926 4927 fullblk = size / blksz; 4928 (void) dmu_xuio_init(xuio, 4929 (preamble != 0) + fullblk + (postamble != 0)); 4930 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 4931 int, postamble, int, 4932 (preamble != 0) + fullblk + (postamble != 0)); 4933 4934 /* 4935 * Have to fix iov base/len for partial buffers. They 4936 * currently represent full arc_buf's. 4937 */ 4938 if (preamble) { 4939 /* data begins in the middle of the arc_buf */ 4940 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4941 blksz); 4942 ASSERT(abuf); 4943 (void) dmu_xuio_add(xuio, abuf, 4944 blksz - preamble, preamble); 4945 } 4946 4947 for (i = 0; i < fullblk; i++) { 4948 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4949 blksz); 4950 ASSERT(abuf); 4951 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 4952 } 4953 4954 if (postamble) { 4955 /* data ends in the middle of the arc_buf */ 4956 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4957 blksz); 4958 ASSERT(abuf); 4959 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 4960 } 4961 break; 4962 case UIO_READ: 4963 /* 4964 * Loan out an arc_buf for read if the read size is larger than 4965 * the current file block size. Block alignment is not 4966 * considered. Partial arc_buf will be loaned out for read. 4967 */ 4968 blksz = zp->z_blksz; 4969 if (blksz < zcr_blksz_min) 4970 blksz = zcr_blksz_min; 4971 if (blksz > zcr_blksz_max) 4972 blksz = zcr_blksz_max; 4973 /* avoid potential complexity of dealing with it */ 4974 if (blksz > max_blksz) { 4975 ZFS_EXIT(zfsvfs); 4976 return (EINVAL); 4977 } 4978 4979 maxsize = zp->z_size - uio->uio_loffset; 4980 if (size > maxsize) 4981 size = maxsize; 4982 4983 if (size < blksz || vn_has_cached_data(vp)) { 4984 ZFS_EXIT(zfsvfs); 4985 return (EINVAL); 4986 } 4987 break; 4988 default: 4989 ZFS_EXIT(zfsvfs); 4990 return (EINVAL); 4991 } 4992 4993 uio->uio_extflg = UIO_XUIO; 4994 XUIO_XUZC_RW(xuio) = ioflag; 4995 ZFS_EXIT(zfsvfs); 4996 return (0); 4997 } 4998 4999 /*ARGSUSED*/ 5000 static int 5001 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5002 { 5003 int i; 5004 arc_buf_t *abuf; 5005 int ioflag = XUIO_XUZC_RW(xuio); 5006 5007 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5008 5009 i = dmu_xuio_cnt(xuio); 5010 while (i-- > 0) { 5011 abuf = dmu_xuio_arcbuf(xuio, i); 5012 /* 5013 * if abuf == NULL, it must be a write buffer 5014 * that has been returned in zfs_write(). 5015 */ 5016 if (abuf) 5017 dmu_return_arcbuf(abuf); 5018 ASSERT(abuf || ioflag == UIO_WRITE); 5019 } 5020 5021 dmu_xuio_fini(xuio); 5022 return (0); 5023 } 5024 5025 /* 5026 * Predeclare these here so that the compiler assumes that 5027 * this is an "old style" function declaration that does 5028 * not include arguments => we won't get type mismatch errors 5029 * in the initializations that follow. 5030 */ 5031 static int zfs_inval(); 5032 static int zfs_isdir(); 5033 5034 static int 5035 zfs_inval() 5036 { 5037 return (EINVAL); 5038 } 5039 5040 static int 5041 zfs_isdir() 5042 { 5043 return (EISDIR); 5044 } 5045 /* 5046 * Directory vnode operations template 5047 */ 5048 vnodeops_t *zfs_dvnodeops; 5049 const fs_operation_def_t zfs_dvnodeops_template[] = { 5050 VOPNAME_OPEN, { .vop_open = zfs_open }, 5051 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5052 VOPNAME_READ, { .error = zfs_isdir }, 5053 VOPNAME_WRITE, { .error = zfs_isdir }, 5054 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5055 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5056 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5057 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5058 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5059 VOPNAME_CREATE, { .vop_create = zfs_create }, 5060 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5061 VOPNAME_LINK, { .vop_link = zfs_link }, 5062 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5063 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5064 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5065 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5066 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5067 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5068 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5069 VOPNAME_FID, { .vop_fid = zfs_fid }, 5070 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5071 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5072 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5073 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5074 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5075 NULL, NULL 5076 }; 5077 5078 /* 5079 * Regular file vnode operations template 5080 */ 5081 vnodeops_t *zfs_fvnodeops; 5082 const fs_operation_def_t zfs_fvnodeops_template[] = { 5083 VOPNAME_OPEN, { .vop_open = zfs_open }, 5084 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5085 VOPNAME_READ, { .vop_read = zfs_read }, 5086 VOPNAME_WRITE, { .vop_write = zfs_write }, 5087 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5088 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5089 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5090 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5091 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5092 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5093 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5094 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5095 VOPNAME_FID, { .vop_fid = zfs_fid }, 5096 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5097 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5098 VOPNAME_SPACE, { .vop_space = zfs_space }, 5099 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5100 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5101 VOPNAME_MAP, { .vop_map = zfs_map }, 5102 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5103 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5104 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5105 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5106 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5107 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5108 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5109 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5110 NULL, NULL 5111 }; 5112 5113 /* 5114 * Symbolic link vnode operations template 5115 */ 5116 vnodeops_t *zfs_symvnodeops; 5117 const fs_operation_def_t zfs_symvnodeops_template[] = { 5118 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5119 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5120 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5121 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5122 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5123 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5124 VOPNAME_FID, { .vop_fid = zfs_fid }, 5125 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5126 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5127 NULL, NULL 5128 }; 5129 5130 /* 5131 * special share hidden files vnode operations template 5132 */ 5133 vnodeops_t *zfs_sharevnodeops; 5134 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5135 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5136 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5137 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5138 VOPNAME_FID, { .vop_fid = zfs_fid }, 5139 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5140 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5141 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5142 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5143 NULL, NULL 5144 }; 5145 5146 /* 5147 * Extended attribute directory vnode operations template 5148 * This template is identical to the directory vnodes 5149 * operation template except for restricted operations: 5150 * VOP_MKDIR() 5151 * VOP_SYMLINK() 5152 * Note that there are other restrictions embedded in: 5153 * zfs_create() - restrict type to VREG 5154 * zfs_link() - no links into/out of attribute space 5155 * zfs_rename() - no moves into/out of attribute space 5156 */ 5157 vnodeops_t *zfs_xdvnodeops; 5158 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5159 VOPNAME_OPEN, { .vop_open = zfs_open }, 5160 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5161 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5162 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5163 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5164 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5165 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5166 VOPNAME_CREATE, { .vop_create = zfs_create }, 5167 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5168 VOPNAME_LINK, { .vop_link = zfs_link }, 5169 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5170 VOPNAME_MKDIR, { .error = zfs_inval }, 5171 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5172 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5173 VOPNAME_SYMLINK, { .error = zfs_inval }, 5174 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5175 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5176 VOPNAME_FID, { .vop_fid = zfs_fid }, 5177 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5178 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5179 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5180 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5181 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5182 NULL, NULL 5183 }; 5184 5185 /* 5186 * Error vnode operations template 5187 */ 5188 vnodeops_t *zfs_evnodeops; 5189 const fs_operation_def_t zfs_evnodeops_template[] = { 5190 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5191 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5192 NULL, NULL 5193 }; 5194