1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vnode.h> 36 #include <sys/file.h> 37 #include <sys/stat.h> 38 #include <sys/kmem.h> 39 #include <sys/taskq.h> 40 #include <sys/uio.h> 41 #include <sys/vmsystm.h> 42 #include <sys/atomic.h> 43 #include <vm/seg_vn.h> 44 #include <vm/pvn.h> 45 #include <vm/as.h> 46 #include <sys/mman.h> 47 #include <sys/pathname.h> 48 #include <sys/cmn_err.h> 49 #include <sys/errno.h> 50 #include <sys/unistd.h> 51 #include <sys/zfs_vfsops.h> 52 #include <sys/zfs_dir.h> 53 #include <sys/zfs_acl.h> 54 #include <sys/zfs_ioctl.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/dmu.h> 57 #include <sys/spa.h> 58 #include <sys/txg.h> 59 #include <sys/refcount.h> /* temporary for debugging purposes */ 60 #include <sys/dbuf.h> 61 #include <sys/zap.h> 62 #include <sys/dirent.h> 63 #include <sys/policy.h> 64 #include <sys/sunddi.h> 65 #include <sys/filio.h> 66 #include "fs/fs_subr.h" 67 #include <sys/zfs_ctldir.h> 68 #include <sys/dnlc.h> 69 70 /* 71 * Programming rules. 72 * 73 * Each vnode op performs some logical unit of work. To do this, the ZPL must 74 * properly lock its in-core state, create a DMU transaction, do the work, 75 * record this work in the intent log (ZIL), commit the DMU transaction, 76 * and wait the the intent log to commit if it's is a synchronous operation. 77 * Morover, the vnode ops must work in both normal and log replay context. 78 * The ordering of events is important to avoid deadlocks and references 79 * to freed memory. The example below illustrates the following Big Rules: 80 * 81 * (1) A check must be made in each zfs thread for a mounted file system. 82 * This is done avoiding races using ZFS_ENTER(zfsvfs). 83 * A ZFS_EXIT(zfsvfs) is needed before all returns. 84 * 85 * (2) VN_RELE() should always be the last thing except for zil_commit() 86 * and ZFS_EXIT(). This is for 3 reasons: 87 * First, if it's the last reference, the vnode/znode 88 * can be freed, so the zp may point to freed memory. Second, the last 89 * reference will call zfs_zinactive(), which may induce a lot of work -- 90 * pushing cached pages (which requires z_grow_lock) and syncing out 91 * cached atime changes. Third, zfs_zinactive() may require a new tx, 92 * which could deadlock the system if you were already holding one. 93 * 94 * (3) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 95 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 96 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 97 * This is critical because we don't want to block while holding locks. 98 * Note, in particular, that if a lock is sometimes acquired before 99 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 100 * use a non-blocking assign can deadlock the system. The scenario: 101 * 102 * Thread A has grabbed a lock before calling dmu_tx_assign(). 103 * Thread B is in an already-assigned tx, and blocks for this lock. 104 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 105 * forever, because the previous txg can't quiesce until B's tx commits. 106 * 107 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 108 * then drop all locks, call txg_wait_open(), and try again. 109 * 110 * (4) If the operation succeeded, generate the intent log entry for it 111 * before dropping locks. This ensures that the ordering of events 112 * in the intent log matches the order in which they actually occurred. 113 * 114 * (5) At the end of each vnode op, the DMU tx must always commit, 115 * regardless of whether there were any errors. 116 * 117 * (6) After dropping all locks, invoke zil_commit(zilog, seq, ioflag) 118 * to ensure that synchronous semantics are provided when necessary. 119 * 120 * In general, this is how things should be ordered in each vnode op: 121 * 122 * ZFS_ENTER(zfsvfs); // exit if unmounted 123 * top: 124 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 125 * rw_enter(...); // grab any other locks you need 126 * tx = dmu_tx_create(...); // get DMU tx 127 * dmu_tx_hold_*(); // hold each object you might modify 128 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 129 * if (error) { 130 * dmu_tx_abort(tx); // abort DMU tx 131 * rw_exit(...); // drop locks 132 * zfs_dirent_unlock(dl); // unlock directory entry 133 * VN_RELE(...); // release held vnodes 134 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 135 * txg_wait_open(dmu_objset_pool(os), 0); 136 * goto top; 137 * } 138 * ZFS_EXIT(zfsvfs); // finished in zfs 139 * return (error); // really out of space 140 * } 141 * error = do_real_work(); // do whatever this VOP does 142 * if (error == 0) 143 * seq = zfs_log_*(...); // on success, make ZIL entry 144 * dmu_tx_commit(tx); // commit DMU tx -- error or not 145 * rw_exit(...); // drop locks 146 * zfs_dirent_unlock(dl); // unlock directory entry 147 * VN_RELE(...); // release held vnodes 148 * zil_commit(zilog, seq, ioflag); // synchronous when necessary 149 * ZFS_EXIT(zfsvfs); // finished in zfs 150 * return (error); // done, report error 151 */ 152 153 /* ARGSUSED */ 154 static int 155 zfs_open(vnode_t **vpp, int flag, cred_t *cr) 156 { 157 return (0); 158 } 159 160 /* ARGSUSED */ 161 static int 162 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 163 { 164 /* 165 * Clean up any locks held by this process on the vp. 166 */ 167 cleanlocks(vp, ddi_get_pid(), 0); 168 cleanshares(vp, ddi_get_pid()); 169 170 return (0); 171 } 172 173 /* 174 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 175 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 176 */ 177 static int 178 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 179 { 180 znode_t *zp = VTOZ(vp); 181 uint64_t noff = (uint64_t)*off; /* new offset */ 182 uint64_t file_sz; 183 int error; 184 boolean_t hole; 185 186 rw_enter(&zp->z_grow_lock, RW_READER); 187 file_sz = zp->z_phys->zp_size; 188 if (noff >= file_sz) { 189 rw_exit(&zp->z_grow_lock); 190 return (ENXIO); 191 } 192 193 if (cmd == _FIO_SEEK_HOLE) 194 hole = B_TRUE; 195 else 196 hole = B_FALSE; 197 198 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 199 rw_exit(&zp->z_grow_lock); 200 201 /* end of file? */ 202 if ((error == ESRCH) || (noff > file_sz)) { 203 /* 204 * Handle the virtual hole at the end of file. 205 */ 206 if (hole) { 207 *off = file_sz; 208 return (0); 209 } 210 return (ENXIO); 211 } 212 213 if (noff < *off) 214 return (error); 215 *off = noff; 216 return (error); 217 } 218 219 /* ARGSUSED */ 220 static int 221 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 222 int *rvalp) 223 { 224 offset_t off; 225 int error; 226 zfsvfs_t *zfsvfs; 227 228 switch (com) { 229 case _FIOFFS: 230 return (zfs_sync(vp->v_vfsp, 0, cred)); 231 232 /* 233 * The following two ioctls are used by bfu. Faking out, 234 * necessary to avoid bfu errors. 235 */ 236 case _FIOGDIO: 237 case _FIOSDIO: 238 return (0); 239 240 case _FIO_SEEK_DATA: 241 case _FIO_SEEK_HOLE: 242 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 243 return (EFAULT); 244 245 zfsvfs = VTOZ(vp)->z_zfsvfs; 246 ZFS_ENTER(zfsvfs); 247 248 /* offset parameter is in/out */ 249 error = zfs_holey(vp, com, &off); 250 ZFS_EXIT(zfsvfs); 251 if (error) 252 return (error); 253 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 254 return (EFAULT); 255 return (0); 256 } 257 return (ENOTTY); 258 } 259 260 /* 261 * When a file is memory mapped, we must keep the IO data synchronized 262 * between the DMU cache and the memory mapped pages. What this means: 263 * 264 * On Write: If we find a memory mapped page, we write to *both* 265 * the page and the dmu buffer. 266 * 267 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 268 * the file is memory mapped. 269 */ 270 static int 271 mappedwrite(vnode_t *vp, uint64_t woff, int nbytes, uio_t *uio, dmu_tx_t *tx) 272 { 273 znode_t *zp = VTOZ(vp); 274 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 275 int64_t start, off; 276 int len = nbytes; 277 int error = 0; 278 279 start = uio->uio_loffset; 280 off = start & PAGEOFFSET; 281 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 282 page_t *pp; 283 uint64_t bytes = MIN(PAGESIZE - off, len); 284 285 /* 286 * We don't want a new page to "appear" in the middle of 287 * the file update (because it may not get the write 288 * update data), so we grab a lock to block 289 * zfs_getpage(). 290 */ 291 rw_enter(&zp->z_map_lock, RW_WRITER); 292 if (pp = page_lookup(vp, start, SE_SHARED)) { 293 caddr_t va; 294 295 rw_exit(&zp->z_map_lock); 296 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 297 error = uiomove(va+off, bytes, UIO_WRITE, uio); 298 if (error == 0) { 299 dmu_write(zfsvfs->z_os, zp->z_id, 300 woff, bytes, va+off, tx); 301 } 302 ppmapout(va); 303 page_unlock(pp); 304 } else { 305 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 306 woff, bytes, uio, tx); 307 rw_exit(&zp->z_map_lock); 308 } 309 len -= bytes; 310 woff += bytes; 311 off = 0; 312 if (error) 313 break; 314 } 315 return (error); 316 } 317 318 /* 319 * When a file is memory mapped, we must keep the IO data synchronized 320 * between the DMU cache and the memory mapped pages. What this means: 321 * 322 * On Read: We "read" preferentially from memory mapped pages, 323 * else we default from the dmu buffer. 324 * 325 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 326 * the file is memory mapped. 327 */ 328 static int 329 mappedread(vnode_t *vp, char *addr, int nbytes, uio_t *uio) 330 { 331 int64_t start, off, bytes; 332 int len = nbytes; 333 int error = 0; 334 335 start = uio->uio_loffset; 336 off = start & PAGEOFFSET; 337 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 338 page_t *pp; 339 340 bytes = MIN(PAGESIZE - off, len); 341 if (pp = page_lookup(vp, start, SE_SHARED)) { 342 caddr_t va; 343 344 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 345 error = uiomove(va + off, bytes, UIO_READ, uio); 346 ppmapout(va); 347 page_unlock(pp); 348 } else { 349 /* XXX use dmu_read here? */ 350 error = uiomove(addr, bytes, UIO_READ, uio); 351 } 352 len -= bytes; 353 addr += bytes; 354 off = 0; 355 if (error) 356 break; 357 } 358 return (error); 359 } 360 361 uint_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 362 363 /* 364 * Read bytes from specified file into supplied buffer. 365 * 366 * IN: vp - vnode of file to be read from. 367 * uio - structure supplying read location, range info, 368 * and return buffer. 369 * ioflag - SYNC flags; used to provide FRSYNC semantics. 370 * cr - credentials of caller. 371 * 372 * OUT: uio - updated offset and range, buffer filled. 373 * 374 * RETURN: 0 if success 375 * error code if failure 376 * 377 * Side Effects: 378 * vp - atime updated if byte count > 0 379 */ 380 /* ARGSUSED */ 381 static int 382 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 383 { 384 znode_t *zp = VTOZ(vp); 385 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 386 uint64_t delta; 387 ssize_t n, size, cnt, ndone; 388 int error, i, numbufs; 389 dmu_buf_t *dbp, **dbpp; 390 391 ZFS_ENTER(zfsvfs); 392 393 /* 394 * Validate file offset 395 */ 396 if (uio->uio_loffset < (offset_t)0) { 397 ZFS_EXIT(zfsvfs); 398 return (EINVAL); 399 } 400 401 /* 402 * Fasttrack empty reads 403 */ 404 if (uio->uio_resid == 0) { 405 ZFS_EXIT(zfsvfs); 406 return (0); 407 } 408 409 /* 410 * Check for region locks 411 */ 412 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 413 if (error = chklock(vp, FREAD, 414 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 415 ZFS_EXIT(zfsvfs); 416 return (error); 417 } 418 } 419 420 /* 421 * If we're in FRSYNC mode, sync out this znode before reading it. 422 */ 423 zil_commit(zfsvfs->z_log, zp->z_last_itx, ioflag & FRSYNC); 424 425 /* 426 * Make sure nobody restructures the file (changes block size) 427 * in the middle of the read. 428 */ 429 rw_enter(&zp->z_grow_lock, RW_READER); 430 /* 431 * If we are reading past end-of-file we can skip 432 * to the end; but we might still need to set atime. 433 */ 434 if (uio->uio_loffset >= zp->z_phys->zp_size) { 435 cnt = 0; 436 error = 0; 437 goto out; 438 } 439 440 cnt = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 441 442 for (ndone = 0; ndone < cnt; ndone += zfs_read_chunk_size) { 443 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 444 n = MIN(zfs_read_chunk_size, 445 zp->z_phys->zp_size - uio->uio_loffset); 446 n = MIN(n, cnt); 447 error = dmu_buf_hold_array(zfsvfs->z_os, zp->z_id, 448 uio->uio_loffset, n, TRUE, FTAG, &numbufs, &dbpp); 449 if (error) 450 goto out; 451 /* 452 * Compute the adjustment to align the dmu buffers 453 * with the uio buffer. 454 */ 455 delta = uio->uio_loffset - dbpp[0]->db_offset; 456 457 for (i = 0; i < numbufs; i++) { 458 if (n < 0) 459 break; 460 dbp = dbpp[i]; 461 size = dbp->db_size - delta; 462 /* 463 * XXX -- this is correct, but may be suboptimal. 464 * If the pages are all clean, we don't need to 465 * go through mappedread(). Maybe the VMODSORT 466 * stuff can help us here. 467 */ 468 if (vn_has_cached_data(vp)) { 469 error = mappedread(vp, (caddr_t)dbp->db_data + 470 delta, (n < size ? n : size), uio); 471 } else { 472 error = uiomove((caddr_t)dbp->db_data + delta, 473 (n < size ? n : size), UIO_READ, uio); 474 } 475 if (error) { 476 dmu_buf_rele_array(dbpp, numbufs, FTAG); 477 goto out; 478 } 479 n -= dbp->db_size; 480 if (delta) { 481 n += delta; 482 delta = 0; 483 } 484 } 485 dmu_buf_rele_array(dbpp, numbufs, FTAG); 486 } 487 out: 488 rw_exit(&zp->z_grow_lock); 489 490 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 491 ZFS_EXIT(zfsvfs); 492 return (error); 493 } 494 495 /* 496 * Fault in the pages of the first n bytes specified by the uio structure. 497 * 1 byte in each page is touched and the uio struct is unmodified. 498 * Any error will exit this routine as this is only a best 499 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 500 */ 501 static void 502 zfs_prefault_write(ssize_t n, struct uio *uio) 503 { 504 struct iovec *iov; 505 ulong_t cnt, incr; 506 caddr_t p; 507 uint8_t tmp; 508 509 iov = uio->uio_iov; 510 511 while (n) { 512 cnt = MIN(iov->iov_len, n); 513 if (cnt == 0) { 514 /* empty iov entry */ 515 iov++; 516 continue; 517 } 518 n -= cnt; 519 /* 520 * touch each page in this segment. 521 */ 522 p = iov->iov_base; 523 while (cnt) { 524 switch (uio->uio_segflg) { 525 case UIO_USERSPACE: 526 case UIO_USERISPACE: 527 if (fuword8(p, &tmp)) 528 return; 529 break; 530 case UIO_SYSSPACE: 531 if (kcopy(p, &tmp, 1)) 532 return; 533 break; 534 } 535 incr = MIN(cnt, PAGESIZE); 536 p += incr; 537 cnt -= incr; 538 } 539 /* 540 * touch the last byte in case it straddles a page. 541 */ 542 p--; 543 switch (uio->uio_segflg) { 544 case UIO_USERSPACE: 545 case UIO_USERISPACE: 546 if (fuword8(p, &tmp)) 547 return; 548 break; 549 case UIO_SYSSPACE: 550 if (kcopy(p, &tmp, 1)) 551 return; 552 break; 553 } 554 iov++; 555 } 556 } 557 558 /* 559 * Write the bytes to a file. 560 * 561 * IN: vp - vnode of file to be written to. 562 * uio - structure supplying write location, range info, 563 * and data buffer. 564 * ioflag - FAPPEND flag set if in append mode. 565 * cr - credentials of caller. 566 * 567 * OUT: uio - updated offset and range. 568 * 569 * RETURN: 0 if success 570 * error code if failure 571 * 572 * Timestamps: 573 * vp - ctime|mtime updated if byte count > 0 574 * 575 * Note: zfs_write() holds z_append_lock across calls to txg_wait_open(). 576 * It has to because of the semantics of FAPPEND. The implication is that 577 * we must never grab z_append_lock while in an assigned tx. 578 */ 579 /* ARGSUSED */ 580 static int 581 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 582 { 583 znode_t *zp = VTOZ(vp); 584 rlim64_t limit = uio->uio_llimit; 585 ssize_t start_resid = uio->uio_resid; 586 ssize_t tx_bytes; 587 uint64_t end_size; 588 dmu_tx_t *tx; 589 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 590 zilog_t *zilog = zfsvfs->z_log; 591 uint64_t seq = 0; 592 offset_t woff; 593 ssize_t n, nbytes; 594 int max_blksz = zfsvfs->z_max_blksz; 595 int need_append_lock, error; 596 krw_t grow_rw = RW_READER; 597 598 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 599 limit = MAXOFFSET_T; 600 601 n = start_resid; 602 603 /* 604 * Fasttrack empty write 605 */ 606 if (n == 0) 607 return (0); 608 609 ZFS_ENTER(zfsvfs); 610 611 /* 612 * Pre-fault the pages to ensure slow (eg NFS) pages don't hold up txg 613 */ 614 zfs_prefault_write(MIN(start_resid, SPA_MAXBLOCKSIZE), uio); 615 616 /* 617 * If in append mode, set the io offset pointer to eof. 618 */ 619 need_append_lock = ioflag & FAPPEND; 620 if (need_append_lock) { 621 rw_enter(&zp->z_append_lock, RW_WRITER); 622 woff = uio->uio_loffset = zp->z_phys->zp_size; 623 } else { 624 woff = uio->uio_loffset; 625 /* 626 * Validate file offset 627 */ 628 if (woff < 0) { 629 ZFS_EXIT(zfsvfs); 630 return (EINVAL); 631 } 632 633 /* 634 * If this write could change the file length, 635 * we need to synchronize with "appenders". 636 */ 637 if (woff < limit - n && woff + n > zp->z_phys->zp_size) { 638 need_append_lock = TRUE; 639 rw_enter(&zp->z_append_lock, RW_READER); 640 } 641 } 642 643 if (woff >= limit) { 644 error = EFBIG; 645 goto no_tx_done; 646 } 647 648 if ((woff + n) > limit || woff > (limit - n)) 649 n = limit - woff; 650 651 /* 652 * Check for region locks 653 */ 654 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 655 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) 656 goto no_tx_done; 657 top: 658 /* 659 * Make sure nobody restructures the file (changes block size) 660 * in the middle of the write. 661 */ 662 rw_enter(&zp->z_grow_lock, grow_rw); 663 664 end_size = MAX(zp->z_phys->zp_size, woff + n); 665 tx = dmu_tx_create(zfsvfs->z_os); 666 dmu_tx_hold_bonus(tx, zp->z_id); 667 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 668 error = dmu_tx_assign(tx, zfsvfs->z_assign); 669 if (error) { 670 dmu_tx_abort(tx); 671 rw_exit(&zp->z_grow_lock); 672 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 673 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 674 goto top; 675 } 676 goto no_tx_done; 677 } 678 679 if (end_size > zp->z_blksz && 680 (!ISP2(zp->z_blksz) || zp->z_blksz < max_blksz)) { 681 uint64_t new_blksz; 682 /* 683 * This write will increase the file size beyond 684 * the current block size so increase the block size. 685 */ 686 if (grow_rw == RW_READER && !rw_tryupgrade(&zp->z_grow_lock)) { 687 dmu_tx_commit(tx); 688 rw_exit(&zp->z_grow_lock); 689 grow_rw = RW_WRITER; 690 goto top; 691 } 692 if (zp->z_blksz > max_blksz) { 693 ASSERT(!ISP2(zp->z_blksz)); 694 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 695 } else { 696 new_blksz = MIN(end_size, max_blksz); 697 } 698 error = zfs_grow_blocksize(zp, new_blksz, tx); 699 if (error) { 700 tx_bytes = 0; 701 goto tx_done; 702 } 703 } 704 705 if (grow_rw == RW_WRITER) { 706 rw_downgrade(&zp->z_grow_lock); 707 grow_rw = RW_READER; 708 } 709 710 /* 711 * The file data does not fit in the znode "cache", so we 712 * will be writing to the file block data buffers. 713 * Each buffer will be written in a separate transaction; 714 * this keeps the intent log records small and allows us 715 * to do more fine-grained space accounting. 716 */ 717 while (n > 0) { 718 /* 719 * XXX - should we really limit each write to z_max_blksz? 720 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 721 */ 722 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 723 rw_enter(&zp->z_map_lock, RW_READER); 724 725 tx_bytes = uio->uio_resid; 726 if (vn_has_cached_data(vp)) { 727 rw_exit(&zp->z_map_lock); 728 error = mappedwrite(vp, woff, nbytes, uio, tx); 729 } else { 730 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 731 woff, nbytes, uio, tx); 732 rw_exit(&zp->z_map_lock); 733 } 734 tx_bytes -= uio->uio_resid; 735 736 if (error) { 737 /* XXX - do we need to "clean up" the dmu buffer? */ 738 break; 739 } 740 741 ASSERT(tx_bytes == nbytes); 742 743 /* 744 * Clear Set-UID/Set-GID bits on successful write if not 745 * privileged and at least one of the excute bits is set. 746 * 747 * It would be nice to to this after all writes have 748 * been done, but that would still expose the ISUID/ISGID 749 * to another app after the partial write is committed. 750 */ 751 752 mutex_enter(&zp->z_acl_lock); 753 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 754 (S_IXUSR >> 6))) != 0 && 755 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 756 secpolicy_vnode_setid_retain(cr, 757 (zp->z_phys->zp_mode & S_ISUID) != 0 && 758 zp->z_phys->zp_uid == 0) != 0) { 759 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 760 } 761 mutex_exit(&zp->z_acl_lock); 762 763 n -= nbytes; 764 if (n <= 0) 765 break; 766 767 /* 768 * We have more work ahead of us, so wrap up this transaction 769 * and start another. Exact same logic as tx_done below. 770 */ 771 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 772 dmu_buf_will_dirty(zp->z_dbuf, tx); 773 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 774 uio->uio_loffset); 775 } 776 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 777 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 778 ioflag, uio); 779 dmu_tx_commit(tx); 780 781 /* Pre-fault the next set of pages */ 782 zfs_prefault_write(MIN(n, SPA_MAXBLOCKSIZE), uio); 783 784 /* 785 * Start another transaction. 786 */ 787 woff = uio->uio_loffset; 788 tx = dmu_tx_create(zfsvfs->z_os); 789 dmu_tx_hold_bonus(tx, zp->z_id); 790 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 791 error = dmu_tx_assign(tx, zfsvfs->z_assign); 792 if (error) { 793 dmu_tx_abort(tx); 794 rw_exit(&zp->z_grow_lock); 795 if (error == ERESTART && 796 zfsvfs->z_assign == TXG_NOWAIT) { 797 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 798 goto top; 799 } 800 goto no_tx_done; 801 } 802 } 803 804 tx_done: 805 806 if (tx_bytes != 0) { 807 /* 808 * Update the file size if it has changed; account 809 * for possible concurrent updates. 810 */ 811 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 812 dmu_buf_will_dirty(zp->z_dbuf, tx); 813 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 814 uio->uio_loffset); 815 } 816 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 817 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 818 ioflag, uio); 819 } 820 dmu_tx_commit(tx); 821 822 rw_exit(&zp->z_grow_lock); 823 824 no_tx_done: 825 826 if (need_append_lock) 827 rw_exit(&zp->z_append_lock); 828 829 /* 830 * If we're in replay mode, or we made no progress, return error. 831 * Otherwise, it's at least a partial write, so it's successful. 832 */ 833 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 834 ZFS_EXIT(zfsvfs); 835 return (error); 836 } 837 838 zil_commit(zilog, seq, ioflag & (FSYNC | FDSYNC)); 839 840 ZFS_EXIT(zfsvfs); 841 return (0); 842 } 843 844 /* 845 * Get data to generate a TX_WRITE intent log record. 846 */ 847 int 848 zfs_get_data(void *arg, lr_write_t *lr) 849 { 850 zfsvfs_t *zfsvfs = arg; 851 objset_t *os = zfsvfs->z_os; 852 znode_t *zp; 853 uint64_t off = lr->lr_offset; 854 int dlen = lr->lr_length; /* length of user data */ 855 int reclen = lr->lr_common.lrc_reclen; 856 int error = 0; 857 858 ASSERT(dlen != 0); 859 860 /* 861 * Nothing to do if the file has been removed or truncated. 862 */ 863 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 864 return (ENOENT); 865 if (off >= zp->z_phys->zp_size || zp->z_reap) { 866 VN_RELE(ZTOV(zp)); 867 return (ENOENT); 868 } 869 870 /* 871 * Write records come in two flavors: immediate and indirect. 872 * For small writes it's cheaper to store the data with the 873 * log record (immediate); for large writes it's cheaper to 874 * sync the data and get a pointer to it (indirect) so that 875 * we don't have to write the data twice. 876 */ 877 if (sizeof (lr_write_t) + dlen <= reclen) { /* immediate write */ 878 rw_enter(&zp->z_grow_lock, RW_READER); 879 dmu_buf_t *db; 880 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, off, FTAG, &db)); 881 bcopy((char *)db->db_data + off - db->db_offset, lr + 1, dlen); 882 dmu_buf_rele(db, FTAG); 883 rw_exit(&zp->z_grow_lock); 884 } else { 885 /* 886 * We have to grab z_grow_lock as RW_WRITER because 887 * dmu_sync() can't handle concurrent dbuf_dirty() (6313856). 888 * z_grow_lock will be replaced with a range lock soon, 889 * which will eliminate the concurrency hit, but dmu_sync() 890 * really needs more thought. It shouldn't have to rely on 891 * the caller to provide MT safety. 892 */ 893 rw_enter(&zp->z_grow_lock, RW_WRITER); 894 txg_suspend(dmu_objset_pool(os)); 895 error = dmu_sync(os, lr->lr_foid, off, &lr->lr_blkoff, 896 &lr->lr_blkptr, lr->lr_common.lrc_txg); 897 txg_resume(dmu_objset_pool(os)); 898 rw_exit(&zp->z_grow_lock); 899 } 900 VN_RELE(ZTOV(zp)); 901 return (error); 902 } 903 904 /*ARGSUSED*/ 905 static int 906 zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr) 907 { 908 znode_t *zp = VTOZ(vp); 909 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 910 int error; 911 912 ZFS_ENTER(zfsvfs); 913 error = zfs_zaccess_rwx(zp, mode, cr); 914 ZFS_EXIT(zfsvfs); 915 return (error); 916 } 917 918 /* 919 * Lookup an entry in a directory, or an extended attribute directory. 920 * If it exists, return a held vnode reference for it. 921 * 922 * IN: dvp - vnode of directory to search. 923 * nm - name of entry to lookup. 924 * pnp - full pathname to lookup [UNUSED]. 925 * flags - LOOKUP_XATTR set if looking for an attribute. 926 * rdir - root directory vnode [UNUSED]. 927 * cr - credentials of caller. 928 * 929 * OUT: vpp - vnode of located entry, NULL if not found. 930 * 931 * RETURN: 0 if success 932 * error code if failure 933 * 934 * Timestamps: 935 * NA 936 */ 937 /* ARGSUSED */ 938 static int 939 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 940 int flags, vnode_t *rdir, cred_t *cr) 941 { 942 943 znode_t *zdp = VTOZ(dvp); 944 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 945 int error; 946 947 ZFS_ENTER(zfsvfs); 948 949 *vpp = NULL; 950 951 if (flags & LOOKUP_XATTR) { 952 /* 953 * We don't allow recursive attributes.. 954 * Maybe someday we will. 955 */ 956 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 957 ZFS_EXIT(zfsvfs); 958 return (EINVAL); 959 } 960 961 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr)) { 962 ZFS_EXIT(zfsvfs); 963 return (error); 964 } 965 966 /* 967 * Do we have permission to get into attribute directory? 968 */ 969 970 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) { 971 VN_RELE(*vpp); 972 } 973 974 ZFS_EXIT(zfsvfs); 975 return (error); 976 } 977 978 if (dvp->v_type != VDIR) { 979 ZFS_EXIT(zfsvfs); 980 return (ENOTDIR); 981 } 982 983 /* 984 * Check accessibility of directory. 985 */ 986 987 if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) { 988 ZFS_EXIT(zfsvfs); 989 return (error); 990 } 991 992 if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) { 993 994 /* 995 * Convert device special files 996 */ 997 if (IS_DEVVP(*vpp)) { 998 vnode_t *svp; 999 1000 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1001 VN_RELE(*vpp); 1002 if (svp == NULL) 1003 error = ENOSYS; 1004 else 1005 *vpp = svp; 1006 } 1007 } 1008 1009 ZFS_EXIT(zfsvfs); 1010 return (error); 1011 } 1012 1013 /* 1014 * Attempt to create a new entry in a directory. If the entry 1015 * already exists, truncate the file if permissible, else return 1016 * an error. Return the vp of the created or trunc'd file. 1017 * 1018 * IN: dvp - vnode of directory to put new file entry in. 1019 * name - name of new file entry. 1020 * vap - attributes of new file. 1021 * excl - flag indicating exclusive or non-exclusive mode. 1022 * mode - mode to open file with. 1023 * cr - credentials of caller. 1024 * flag - large file flag [UNUSED]. 1025 * 1026 * OUT: vpp - vnode of created or trunc'd entry. 1027 * 1028 * RETURN: 0 if success 1029 * error code if failure 1030 * 1031 * Timestamps: 1032 * dvp - ctime|mtime updated if new entry created 1033 * vp - ctime|mtime always, atime if new 1034 */ 1035 /* ARGSUSED */ 1036 static int 1037 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1038 int mode, vnode_t **vpp, cred_t *cr, int flag) 1039 { 1040 znode_t *zp, *dzp = VTOZ(dvp); 1041 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1042 zilog_t *zilog = zfsvfs->z_log; 1043 uint64_t seq = 0; 1044 objset_t *os = zfsvfs->z_os; 1045 zfs_dirlock_t *dl; 1046 dmu_tx_t *tx; 1047 int error; 1048 uint64_t zoid; 1049 1050 ZFS_ENTER(zfsvfs); 1051 1052 top: 1053 *vpp = NULL; 1054 1055 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1056 vap->va_mode &= ~VSVTX; 1057 1058 if (*name == '\0') { 1059 /* 1060 * Null component name refers to the directory itself. 1061 */ 1062 VN_HOLD(dvp); 1063 zp = dzp; 1064 dl = NULL; 1065 error = 0; 1066 } else { 1067 /* possible VN_HOLD(zp) */ 1068 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) { 1069 if (strcmp(name, "..") == 0) 1070 error = EISDIR; 1071 ZFS_EXIT(zfsvfs); 1072 return (error); 1073 } 1074 } 1075 1076 zoid = zp ? zp->z_id : -1ULL; 1077 1078 if (zp == NULL) { 1079 /* 1080 * Create a new file object and update the directory 1081 * to reference it. 1082 */ 1083 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 1084 goto out; 1085 } 1086 1087 /* 1088 * We only support the creation of regular files in 1089 * extended attribute directories. 1090 */ 1091 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1092 (vap->va_type != VREG)) { 1093 error = EINVAL; 1094 goto out; 1095 } 1096 1097 tx = dmu_tx_create(os); 1098 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1099 dmu_tx_hold_bonus(tx, dzp->z_id); 1100 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1101 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1102 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1103 0, SPA_MAXBLOCKSIZE); 1104 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1105 if (error) { 1106 dmu_tx_abort(tx); 1107 zfs_dirent_unlock(dl); 1108 if (error == ERESTART && 1109 zfsvfs->z_assign == TXG_NOWAIT) { 1110 txg_wait_open(dmu_objset_pool(os), 0); 1111 goto top; 1112 } 1113 ZFS_EXIT(zfsvfs); 1114 return (error); 1115 } 1116 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1117 ASSERT(zp->z_id == zoid); 1118 (void) zfs_link_create(dl, zp, tx, ZNEW); 1119 seq = zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name); 1120 dmu_tx_commit(tx); 1121 } else { 1122 /* 1123 * A directory entry already exists for this name. 1124 */ 1125 /* 1126 * Can't truncate an existing file if in exclusive mode. 1127 */ 1128 if (excl == EXCL) { 1129 error = EEXIST; 1130 goto out; 1131 } 1132 /* 1133 * Can't open a directory for writing. 1134 */ 1135 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1136 error = EISDIR; 1137 goto out; 1138 } 1139 /* 1140 * Verify requested access to file. 1141 */ 1142 if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) { 1143 goto out; 1144 } 1145 /* 1146 * Truncate regular files if requested. 1147 */ 1148 1149 /* 1150 * Need to update dzp->z_seq? 1151 */ 1152 1153 mutex_enter(&dzp->z_lock); 1154 dzp->z_seq++; 1155 mutex_exit(&dzp->z_lock); 1156 1157 if ((ZTOV(zp)->v_type == VREG) && (zp->z_phys->zp_size != 0) && 1158 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1159 /* 1160 * Truncate the file. 1161 */ 1162 tx = dmu_tx_create(os); 1163 dmu_tx_hold_bonus(tx, zoid); 1164 dmu_tx_hold_free(tx, zoid, 0, DMU_OBJECT_END); 1165 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1166 if (error) { 1167 dmu_tx_abort(tx); 1168 if (dl) 1169 zfs_dirent_unlock(dl); 1170 VN_RELE(ZTOV(zp)); 1171 if (error == ERESTART && 1172 zfsvfs->z_assign == TXG_NOWAIT) { 1173 txg_wait_open(dmu_objset_pool(os), 0); 1174 goto top; 1175 } 1176 ZFS_EXIT(zfsvfs); 1177 return (error); 1178 } 1179 /* 1180 * Grab the grow_lock to serialize this change with 1181 * respect to other file manipulations. 1182 */ 1183 rw_enter(&zp->z_grow_lock, RW_WRITER); 1184 error = zfs_freesp(zp, 0, 0, mode, tx, cr); 1185 if (error == 0) { 1186 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1187 seq = zfs_log_truncate(zilog, tx, 1188 TX_TRUNCATE, zp, 0, 0); 1189 } 1190 rw_exit(&zp->z_grow_lock); 1191 dmu_tx_commit(tx); 1192 } 1193 } 1194 out: 1195 1196 if (dl) 1197 zfs_dirent_unlock(dl); 1198 1199 if (error) { 1200 if (zp) 1201 VN_RELE(ZTOV(zp)); 1202 } else { 1203 *vpp = ZTOV(zp); 1204 /* 1205 * If vnode is for a device return a specfs vnode instead. 1206 */ 1207 if (IS_DEVVP(*vpp)) { 1208 struct vnode *svp; 1209 1210 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1211 VN_RELE(*vpp); 1212 if (svp == NULL) { 1213 error = ENOSYS; 1214 } 1215 *vpp = svp; 1216 } 1217 } 1218 1219 zil_commit(zilog, seq, 0); 1220 1221 ZFS_EXIT(zfsvfs); 1222 return (error); 1223 } 1224 1225 /* 1226 * Remove an entry from a directory. 1227 * 1228 * IN: dvp - vnode of directory to remove entry from. 1229 * name - name of entry to remove. 1230 * cr - credentials of caller. 1231 * 1232 * RETURN: 0 if success 1233 * error code if failure 1234 * 1235 * Timestamps: 1236 * dvp - ctime|mtime 1237 * vp - ctime (if nlink > 0) 1238 */ 1239 static int 1240 zfs_remove(vnode_t *dvp, char *name, cred_t *cr) 1241 { 1242 znode_t *zp, *dzp = VTOZ(dvp); 1243 znode_t *xzp = NULL; 1244 vnode_t *vp; 1245 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1246 zilog_t *zilog = zfsvfs->z_log; 1247 uint64_t seq = 0; 1248 uint64_t acl_obj, xattr_obj; 1249 zfs_dirlock_t *dl; 1250 dmu_tx_t *tx; 1251 int may_delete_now, delete_now = FALSE; 1252 int reaped; 1253 int error; 1254 1255 ZFS_ENTER(zfsvfs); 1256 1257 top: 1258 /* 1259 * Attempt to lock directory; fail if entry doesn't exist. 1260 */ 1261 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1262 ZFS_EXIT(zfsvfs); 1263 return (error); 1264 } 1265 1266 vp = ZTOV(zp); 1267 1268 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1269 goto out; 1270 } 1271 1272 /* 1273 * Need to use rmdir for removing directories. 1274 */ 1275 if (vp->v_type == VDIR) { 1276 error = EPERM; 1277 goto out; 1278 } 1279 1280 vnevent_remove(vp); 1281 1282 dnlc_remove(dvp, name); 1283 1284 mutex_enter(&vp->v_lock); 1285 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1286 mutex_exit(&vp->v_lock); 1287 1288 /* 1289 * We may delete the znode now, or we may put it on the delete queue; 1290 * it depends on whether we're the last link, and on whether there are 1291 * other holds on the vnode. So we dmu_tx_hold() the right things to 1292 * allow for either case. 1293 */ 1294 tx = dmu_tx_create(zfsvfs->z_os); 1295 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1296 dmu_tx_hold_bonus(tx, zp->z_id); 1297 if (may_delete_now) 1298 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1299 1300 /* are there any extended attributes? */ 1301 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1302 /* 1303 * XXX - There is a possibility that the delete 1304 * of the parent file could succeed, but then we get 1305 * an ENOSPC when we try to delete the xattrs... 1306 * so we would need to re-try the deletes periodically 1307 */ 1308 /* XXX - do we need this if we are deleting? */ 1309 dmu_tx_hold_bonus(tx, xattr_obj); 1310 } 1311 1312 /* are there any additional acls */ 1313 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1314 may_delete_now) 1315 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1316 1317 /* charge as an update -- would be nice not to charge at all */ 1318 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 1319 1320 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1321 if (error) { 1322 dmu_tx_abort(tx); 1323 zfs_dirent_unlock(dl); 1324 VN_RELE(vp); 1325 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1326 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1327 goto top; 1328 } 1329 ZFS_EXIT(zfsvfs); 1330 return (error); 1331 } 1332 1333 /* 1334 * Remove the directory entry. 1335 */ 1336 error = zfs_link_destroy(dl, zp, tx, 0, &reaped); 1337 1338 if (error) { 1339 dmu_tx_commit(tx); 1340 goto out; 1341 } 1342 1343 if (reaped) { 1344 mutex_enter(&vp->v_lock); 1345 delete_now = may_delete_now && 1346 vp->v_count == 1 && !vn_has_cached_data(vp) && 1347 zp->z_phys->zp_xattr == xattr_obj && 1348 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1349 mutex_exit(&vp->v_lock); 1350 } 1351 1352 if (delete_now) { 1353 if (zp->z_phys->zp_xattr) { 1354 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1355 ASSERT3U(error, ==, 0); 1356 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1357 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1358 mutex_enter(&xzp->z_lock); 1359 xzp->z_reap = 1; 1360 xzp->z_phys->zp_links = 0; 1361 mutex_exit(&xzp->z_lock); 1362 zfs_dq_add(xzp, tx); 1363 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1364 } 1365 mutex_enter(&zp->z_lock); 1366 mutex_enter(&vp->v_lock); 1367 vp->v_count--; 1368 ASSERT3U(vp->v_count, ==, 0); 1369 mutex_exit(&vp->v_lock); 1370 zp->z_active = 0; 1371 mutex_exit(&zp->z_lock); 1372 zfs_znode_delete(zp, tx); 1373 VFS_RELE(zfsvfs->z_vfs); 1374 } else if (reaped) { 1375 zfs_dq_add(zp, tx); 1376 } 1377 1378 seq = zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name); 1379 1380 dmu_tx_commit(tx); 1381 out: 1382 zfs_dirent_unlock(dl); 1383 1384 if (!delete_now) { 1385 VN_RELE(vp); 1386 } else if (xzp) { 1387 /* this rele delayed to prevent nesting transactions */ 1388 VN_RELE(ZTOV(xzp)); 1389 } 1390 1391 zil_commit(zilog, seq, 0); 1392 1393 ZFS_EXIT(zfsvfs); 1394 return (error); 1395 } 1396 1397 /* 1398 * Create a new directory and insert it into dvp using the name 1399 * provided. Return a pointer to the inserted directory. 1400 * 1401 * IN: dvp - vnode of directory to add subdir to. 1402 * dirname - name of new directory. 1403 * vap - attributes of new directory. 1404 * cr - credentials of caller. 1405 * 1406 * OUT: vpp - vnode of created directory. 1407 * 1408 * RETURN: 0 if success 1409 * error code if failure 1410 * 1411 * Timestamps: 1412 * dvp - ctime|mtime updated 1413 * vp - ctime|mtime|atime updated 1414 */ 1415 static int 1416 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr) 1417 { 1418 znode_t *zp, *dzp = VTOZ(dvp); 1419 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1420 zilog_t *zilog = zfsvfs->z_log; 1421 uint64_t seq = 0; 1422 zfs_dirlock_t *dl; 1423 uint64_t zoid = 0; 1424 dmu_tx_t *tx; 1425 int error; 1426 1427 ASSERT(vap->va_type == VDIR); 1428 1429 ZFS_ENTER(zfsvfs); 1430 1431 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1432 ZFS_EXIT(zfsvfs); 1433 return (EINVAL); 1434 } 1435 top: 1436 *vpp = NULL; 1437 1438 /* 1439 * First make sure the new directory doesn't exist. 1440 */ 1441 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) { 1442 ZFS_EXIT(zfsvfs); 1443 return (error); 1444 } 1445 1446 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) { 1447 zfs_dirent_unlock(dl); 1448 ZFS_EXIT(zfsvfs); 1449 return (error); 1450 } 1451 1452 /* 1453 * Add a new entry to the directory. 1454 */ 1455 tx = dmu_tx_create(zfsvfs->z_os); 1456 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1457 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1458 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1459 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1460 0, SPA_MAXBLOCKSIZE); 1461 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1462 if (error) { 1463 dmu_tx_abort(tx); 1464 zfs_dirent_unlock(dl); 1465 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1466 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1467 goto top; 1468 } 1469 ZFS_EXIT(zfsvfs); 1470 return (error); 1471 } 1472 1473 /* 1474 * Create new node. 1475 */ 1476 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1477 1478 /* 1479 * Now put new name in parent dir. 1480 */ 1481 (void) zfs_link_create(dl, zp, tx, ZNEW); 1482 1483 *vpp = ZTOV(zp); 1484 1485 seq = zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname); 1486 dmu_tx_commit(tx); 1487 1488 zfs_dirent_unlock(dl); 1489 1490 zil_commit(zilog, seq, 0); 1491 1492 ZFS_EXIT(zfsvfs); 1493 return (0); 1494 } 1495 1496 /* 1497 * Remove a directory subdir entry. If the current working 1498 * directory is the same as the subdir to be removed, the 1499 * remove will fail. 1500 * 1501 * IN: dvp - vnode of directory to remove from. 1502 * name - name of directory to be removed. 1503 * cwd - vnode of current working directory. 1504 * cr - credentials of caller. 1505 * 1506 * RETURN: 0 if success 1507 * error code if failure 1508 * 1509 * Timestamps: 1510 * dvp - ctime|mtime updated 1511 */ 1512 static int 1513 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 1514 { 1515 znode_t *dzp = VTOZ(dvp); 1516 znode_t *zp; 1517 vnode_t *vp; 1518 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1519 zilog_t *zilog = zfsvfs->z_log; 1520 uint64_t seq = 0; 1521 zfs_dirlock_t *dl; 1522 dmu_tx_t *tx; 1523 int error; 1524 1525 ZFS_ENTER(zfsvfs); 1526 1527 top: 1528 zp = NULL; 1529 1530 /* 1531 * Attempt to lock directory; fail if entry doesn't exist. 1532 */ 1533 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1534 ZFS_EXIT(zfsvfs); 1535 return (error); 1536 } 1537 1538 vp = ZTOV(zp); 1539 1540 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1541 goto out; 1542 } 1543 1544 if (vp->v_type != VDIR) { 1545 error = ENOTDIR; 1546 goto out; 1547 } 1548 1549 if (vp == cwd) { 1550 error = EINVAL; 1551 goto out; 1552 } 1553 1554 vnevent_rmdir(vp); 1555 1556 /* 1557 * Grab a lock on the parent pointer make sure we play well 1558 * with the treewalk and directory rename code. 1559 */ 1560 rw_enter(&zp->z_parent_lock, RW_WRITER); 1561 1562 tx = dmu_tx_create(zfsvfs->z_os); 1563 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1564 dmu_tx_hold_bonus(tx, zp->z_id); 1565 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 1566 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1567 if (error) { 1568 dmu_tx_abort(tx); 1569 rw_exit(&zp->z_parent_lock); 1570 zfs_dirent_unlock(dl); 1571 VN_RELE(vp); 1572 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1573 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1574 goto top; 1575 } 1576 ZFS_EXIT(zfsvfs); 1577 return (error); 1578 } 1579 1580 error = zfs_link_destroy(dl, zp, tx, 0, NULL); 1581 1582 if (error == 0) 1583 seq = zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name); 1584 1585 dmu_tx_commit(tx); 1586 1587 rw_exit(&zp->z_parent_lock); 1588 out: 1589 zfs_dirent_unlock(dl); 1590 1591 VN_RELE(vp); 1592 1593 zil_commit(zilog, seq, 0); 1594 1595 ZFS_EXIT(zfsvfs); 1596 return (error); 1597 } 1598 1599 /* 1600 * Read as many directory entries as will fit into the provided 1601 * buffer from the given directory cursor position (specified in 1602 * the uio structure. 1603 * 1604 * IN: vp - vnode of directory to read. 1605 * uio - structure supplying read location, range info, 1606 * and return buffer. 1607 * cr - credentials of caller. 1608 * 1609 * OUT: uio - updated offset and range, buffer filled. 1610 * eofp - set to true if end-of-file detected. 1611 * 1612 * RETURN: 0 if success 1613 * error code if failure 1614 * 1615 * Timestamps: 1616 * vp - atime updated 1617 * 1618 * Note that the low 4 bits of the cookie returned by zap is always zero. 1619 * This allows us to use the low range for "special" directory entries: 1620 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1621 * we use the offset 2 for the '.zfs' directory. 1622 */ 1623 /* ARGSUSED */ 1624 static int 1625 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp) 1626 { 1627 znode_t *zp = VTOZ(vp); 1628 iovec_t *iovp; 1629 dirent64_t *odp; 1630 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1631 objset_t *os; 1632 caddr_t outbuf; 1633 size_t bufsize; 1634 zap_cursor_t zc; 1635 zap_attribute_t zap; 1636 uint_t bytes_wanted; 1637 ushort_t this_reclen; 1638 uint64_t offset; /* must be unsigned; checks for < 1 */ 1639 off64_t *next; 1640 int local_eof; 1641 int outcount; 1642 int error; 1643 uint8_t prefetch; 1644 1645 ZFS_ENTER(zfsvfs); 1646 1647 /* 1648 * If we are not given an eof variable, 1649 * use a local one. 1650 */ 1651 if (eofp == NULL) 1652 eofp = &local_eof; 1653 1654 /* 1655 * Check for valid iov_len. 1656 */ 1657 if (uio->uio_iov->iov_len <= 0) { 1658 ZFS_EXIT(zfsvfs); 1659 return (EINVAL); 1660 } 1661 1662 /* 1663 * Quit if directory has been removed (posix) 1664 */ 1665 if ((*eofp = zp->z_reap) != 0) { 1666 ZFS_EXIT(zfsvfs); 1667 return (0); 1668 } 1669 1670 error = 0; 1671 os = zfsvfs->z_os; 1672 offset = uio->uio_loffset; 1673 prefetch = zp->z_zn_prefetch; 1674 1675 /* 1676 * Initialize the iterator cursor. 1677 */ 1678 if (offset <= 3) { 1679 /* 1680 * Start iteration from the beginning of the directory. 1681 */ 1682 zap_cursor_init(&zc, os, zp->z_id); 1683 } else { 1684 /* 1685 * The offset is a serialized cursor. 1686 */ 1687 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1688 } 1689 1690 /* 1691 * Get space to change directory entries into fs independent format. 1692 */ 1693 iovp = uio->uio_iov; 1694 bytes_wanted = iovp->iov_len; 1695 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1696 bufsize = bytes_wanted; 1697 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1698 odp = (struct dirent64 *)outbuf; 1699 } else { 1700 bufsize = bytes_wanted; 1701 odp = (struct dirent64 *)iovp->iov_base; 1702 } 1703 1704 /* 1705 * Transform to file-system independent format 1706 */ 1707 outcount = 0; 1708 while (outcount < bytes_wanted) { 1709 /* 1710 * Special case `.', `..', and `.zfs'. 1711 */ 1712 if (offset == 0) { 1713 (void) strcpy(zap.za_name, "."); 1714 zap.za_first_integer = zp->z_id; 1715 this_reclen = DIRENT64_RECLEN(1); 1716 } else if (offset == 1) { 1717 (void) strcpy(zap.za_name, ".."); 1718 zap.za_first_integer = zp->z_phys->zp_parent; 1719 this_reclen = DIRENT64_RECLEN(2); 1720 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1721 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1722 zap.za_first_integer = ZFSCTL_INO_ROOT; 1723 this_reclen = 1724 DIRENT64_RECLEN(sizeof (ZFS_CTLDIR_NAME) - 1); 1725 } else { 1726 /* 1727 * Grab next entry. 1728 */ 1729 if (error = zap_cursor_retrieve(&zc, &zap)) { 1730 if ((*eofp = (error == ENOENT)) != 0) 1731 break; 1732 else 1733 goto update; 1734 } 1735 1736 if (zap.za_integer_length != 8 || 1737 zap.za_num_integers != 1) { 1738 cmn_err(CE_WARN, "zap_readdir: bad directory " 1739 "entry, obj = %lld, offset = %lld\n", 1740 (u_longlong_t)zp->z_id, 1741 (u_longlong_t)offset); 1742 error = ENXIO; 1743 goto update; 1744 } 1745 this_reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 1746 } 1747 1748 /* 1749 * Will this entry fit in the buffer? 1750 */ 1751 if (outcount + this_reclen > bufsize) { 1752 /* 1753 * Did we manage to fit anything in the buffer? 1754 */ 1755 if (!outcount) { 1756 error = EINVAL; 1757 goto update; 1758 } 1759 break; 1760 } 1761 /* 1762 * Add this entry: 1763 */ 1764 odp->d_ino = (ino64_t)zap.za_first_integer; 1765 odp->d_reclen = (ushort_t)this_reclen; 1766 /* NOTE: d_off is the offset for the *next* entry */ 1767 next = &(odp->d_off); 1768 (void) strncpy(odp->d_name, zap.za_name, 1769 DIRENT64_NAMELEN(this_reclen)); 1770 outcount += this_reclen; 1771 odp = (dirent64_t *)((intptr_t)odp + this_reclen); 1772 1773 ASSERT(outcount <= bufsize); 1774 1775 /* Prefetch znode */ 1776 if (prefetch) 1777 dmu_prefetch(os, zap.za_first_integer, 0, 0); 1778 1779 /* 1780 * Move to the next entry, fill in the previous offset. 1781 */ 1782 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 1783 zap_cursor_advance(&zc); 1784 offset = zap_cursor_serialize(&zc); 1785 } else { 1786 offset += 1; 1787 } 1788 *next = offset; 1789 } 1790 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 1791 1792 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 1793 iovp->iov_base += outcount; 1794 iovp->iov_len -= outcount; 1795 uio->uio_resid -= outcount; 1796 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 1797 /* 1798 * Reset the pointer. 1799 */ 1800 offset = uio->uio_loffset; 1801 } 1802 1803 update: 1804 zap_cursor_fini(&zc); 1805 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 1806 kmem_free(outbuf, bufsize); 1807 1808 if (error == ENOENT) 1809 error = 0; 1810 1811 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 1812 1813 uio->uio_loffset = offset; 1814 ZFS_EXIT(zfsvfs); 1815 return (error); 1816 } 1817 1818 /* ARGSUSED */ 1819 static int 1820 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr) 1821 { 1822 znode_t *zp = VTOZ(vp); 1823 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1824 1825 ZFS_ENTER(zfsvfs); 1826 zil_commit(zfsvfs->z_log, zp->z_last_itx, FSYNC); 1827 ZFS_EXIT(zfsvfs); 1828 return (0); 1829 } 1830 1831 /* 1832 * Get the requested file attributes and place them in the provided 1833 * vattr structure. 1834 * 1835 * IN: vp - vnode of file. 1836 * vap - va_mask identifies requested attributes. 1837 * flags - [UNUSED] 1838 * cr - credentials of caller. 1839 * 1840 * OUT: vap - attribute values. 1841 * 1842 * RETURN: 0 (always succeeds) 1843 */ 1844 /* ARGSUSED */ 1845 static int 1846 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 1847 { 1848 znode_t *zp = VTOZ(vp); 1849 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1850 znode_phys_t *pzp = zp->z_phys; 1851 int error; 1852 1853 ZFS_ENTER(zfsvfs); 1854 1855 /* 1856 * Return all attributes. It's cheaper to provide the answer 1857 * than to determine whether we were asked the question. 1858 */ 1859 mutex_enter(&zp->z_lock); 1860 1861 vap->va_type = vp->v_type; 1862 vap->va_mode = pzp->zp_mode & MODEMASK; 1863 vap->va_uid = zp->z_phys->zp_uid; 1864 vap->va_gid = zp->z_phys->zp_gid; 1865 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 1866 vap->va_nodeid = zp->z_id; 1867 vap->va_nlink = MIN(pzp->zp_links, UINT32_MAX); /* nlink_t limit! */ 1868 vap->va_size = pzp->zp_size; 1869 vap->va_rdev = pzp->zp_rdev; 1870 vap->va_seq = zp->z_seq; 1871 1872 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 1873 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 1874 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 1875 1876 /* 1877 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 1878 * Also, if we are the owner don't bother, since owner should 1879 * always be allowed to read basic attributes of file. 1880 */ 1881 if (!(zp->z_phys->zp_flags & ZFS_ACL_TRIVIAL) && 1882 (zp->z_phys->zp_uid != crgetuid(cr))) { 1883 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) { 1884 mutex_exit(&zp->z_lock); 1885 ZFS_EXIT(zfsvfs); 1886 return (error); 1887 } 1888 } 1889 1890 mutex_exit(&zp->z_lock); 1891 1892 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 1893 1894 if (zp->z_blksz == 0) { 1895 /* 1896 * Block size hasn't been set; suggest maximal I/O transfers. 1897 */ 1898 vap->va_blksize = zfsvfs->z_max_blksz; 1899 } 1900 1901 ZFS_EXIT(zfsvfs); 1902 return (0); 1903 } 1904 1905 /* 1906 * Set the file attributes to the values contained in the 1907 * vattr structure. 1908 * 1909 * IN: vp - vnode of file to be modified. 1910 * vap - new attribute values. 1911 * flags - ATTR_UTIME set if non-default time values provided. 1912 * cr - credentials of caller. 1913 * 1914 * RETURN: 0 if success 1915 * error code if failure 1916 * 1917 * Timestamps: 1918 * vp - ctime updated, mtime updated if size changed. 1919 */ 1920 /* ARGSUSED */ 1921 static int 1922 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1923 caller_context_t *ct) 1924 { 1925 struct znode *zp = VTOZ(vp); 1926 znode_phys_t *pzp = zp->z_phys; 1927 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1928 zilog_t *zilog = zfsvfs->z_log; 1929 uint64_t seq = 0; 1930 dmu_tx_t *tx; 1931 uint_t mask = vap->va_mask; 1932 uint_t mask_applied = 0; 1933 vattr_t oldva; 1934 int trim_mask = FALSE; 1935 int saved_mask; 1936 uint64_t new_mode; 1937 znode_t *attrzp; 1938 int have_grow_lock; 1939 int need_policy = FALSE; 1940 int err; 1941 1942 if (mask == 0) 1943 return (0); 1944 1945 if (mask & AT_NOSET) 1946 return (EINVAL); 1947 1948 if (mask & AT_SIZE && vp->v_type == VDIR) 1949 return (EISDIR); 1950 1951 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) 1952 return (EINVAL); 1953 1954 ZFS_ENTER(zfsvfs); 1955 1956 top: 1957 have_grow_lock = FALSE; 1958 attrzp = NULL; 1959 1960 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 1961 ZFS_EXIT(zfsvfs); 1962 return (EROFS); 1963 } 1964 1965 /* 1966 * First validate permissions 1967 */ 1968 1969 if (mask & AT_SIZE) { 1970 err = zfs_zaccess(zp, ACE_WRITE_DATA, cr); 1971 if (err) { 1972 ZFS_EXIT(zfsvfs); 1973 return (err); 1974 } 1975 } 1976 1977 if (mask & (AT_ATIME|AT_MTIME)) 1978 need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr); 1979 1980 if (mask & (AT_UID|AT_GID)) { 1981 int idmask = (mask & (AT_UID|AT_GID)); 1982 int take_owner; 1983 int take_group; 1984 1985 /* 1986 * NOTE: even if a new mode is being set, 1987 * we may clear S_ISUID/S_ISGID bits. 1988 */ 1989 1990 if (!(mask & AT_MODE)) 1991 vap->va_mode = pzp->zp_mode; 1992 1993 /* 1994 * Take ownership or chgrp to group we are a member of 1995 */ 1996 1997 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 1998 take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr); 1999 2000 /* 2001 * If both AT_UID and AT_GID are set then take_owner and 2002 * take_group must both be set in order to allow taking 2003 * ownership. 2004 * 2005 * Otherwise, send the check through secpolicy_vnode_setattr() 2006 * 2007 */ 2008 2009 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2010 ((idmask == AT_UID) && take_owner) || 2011 ((idmask == AT_GID) && take_group)) { 2012 if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) { 2013 /* 2014 * Remove setuid/setgid for non-privileged users 2015 */ 2016 secpolicy_setid_clear(vap, cr); 2017 trim_mask = TRUE; 2018 saved_mask = vap->va_mask; 2019 } else { 2020 need_policy = TRUE; 2021 } 2022 } else { 2023 need_policy = TRUE; 2024 } 2025 } 2026 2027 if (mask & AT_MODE) 2028 need_policy = TRUE; 2029 2030 if (need_policy) { 2031 mutex_enter(&zp->z_lock); 2032 oldva.va_mode = pzp->zp_mode; 2033 oldva.va_uid = zp->z_phys->zp_uid; 2034 oldva.va_gid = zp->z_phys->zp_gid; 2035 mutex_exit(&zp->z_lock); 2036 2037 /* 2038 * If trim_mask is set then take ownership 2039 * has been granted. In that case remove 2040 * UID|GID from mask so that 2041 * secpolicy_vnode_setattr() doesn't revoke it. 2042 */ 2043 if (trim_mask) 2044 vap->va_mask &= ~(AT_UID|AT_GID); 2045 2046 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2047 (int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp); 2048 if (err) { 2049 ZFS_EXIT(zfsvfs); 2050 return (err); 2051 } 2052 2053 if (trim_mask) 2054 vap->va_mask |= (saved_mask & (AT_UID|AT_GID)); 2055 } 2056 2057 /* 2058 * secpolicy_vnode_setattr, or take ownership may have 2059 * changed va_mask 2060 */ 2061 mask = vap->va_mask; 2062 2063 tx = dmu_tx_create(zfsvfs->z_os); 2064 dmu_tx_hold_bonus(tx, zp->z_id); 2065 2066 if (mask & AT_MODE) { 2067 uint64_t pmode = pzp->zp_mode; 2068 2069 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2070 2071 if (zp->z_phys->zp_acl.z_acl_extern_obj) 2072 dmu_tx_hold_write(tx, 2073 pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE); 2074 else 2075 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2076 0, ZFS_ACL_SIZE(MAX_ACL_SIZE)); 2077 } 2078 2079 if (mask & AT_SIZE) { 2080 uint64_t off = vap->va_size; 2081 /* 2082 * Grab the grow_lock to serialize this change with 2083 * respect to other file manipulations. 2084 */ 2085 rw_enter(&zp->z_grow_lock, RW_WRITER); 2086 have_grow_lock = TRUE; 2087 if (off < zp->z_phys->zp_size) 2088 dmu_tx_hold_free(tx, zp->z_id, off, DMU_OBJECT_END); 2089 else if (zp->z_blksz < zfsvfs->z_max_blksz && off > zp->z_blksz) 2090 /* we will rewrite this block if we grow */ 2091 dmu_tx_hold_write(tx, zp->z_id, 0, zp->z_phys->zp_size); 2092 } 2093 2094 if ((mask & (AT_UID | AT_GID)) && zp->z_phys->zp_xattr != 0) { 2095 err = zfs_zget(zp->z_zfsvfs, zp->z_phys->zp_xattr, &attrzp); 2096 if (err) { 2097 dmu_tx_abort(tx); 2098 if (have_grow_lock) 2099 rw_exit(&zp->z_grow_lock); 2100 ZFS_EXIT(zfsvfs); 2101 return (err); 2102 } 2103 dmu_tx_hold_bonus(tx, attrzp->z_id); 2104 } 2105 2106 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2107 if (err) { 2108 if (attrzp) 2109 VN_RELE(ZTOV(attrzp)); 2110 dmu_tx_abort(tx); 2111 if (have_grow_lock) 2112 rw_exit(&zp->z_grow_lock); 2113 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2114 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2115 goto top; 2116 } 2117 ZFS_EXIT(zfsvfs); 2118 return (err); 2119 } 2120 2121 dmu_buf_will_dirty(zp->z_dbuf, tx); 2122 2123 /* 2124 * Set each attribute requested. 2125 * We group settings according to the locks they need to acquire. 2126 * 2127 * Note: you cannot set ctime directly, although it will be 2128 * updated as a side-effect of calling this function. 2129 */ 2130 if (mask & AT_SIZE) { 2131 /* 2132 * XXX - Note, we are not providing any open 2133 * mode flags here (like FNDELAY), so we may 2134 * block if there are locks present... this 2135 * should be addressed in openat(). 2136 */ 2137 err = zfs_freesp(zp, vap->va_size, 0, 0, tx, cr); 2138 if (err) { 2139 mutex_enter(&zp->z_lock); 2140 goto out; 2141 } 2142 mask_applied |= AT_SIZE; 2143 } 2144 2145 mask_applied = mask; /* no errors after this point */ 2146 2147 mutex_enter(&zp->z_lock); 2148 2149 if (mask & AT_MODE) { 2150 err = zfs_acl_chmod_setattr(zp, new_mode, tx); 2151 ASSERT3U(err, ==, 0); 2152 } 2153 2154 if (attrzp) 2155 mutex_enter(&attrzp->z_lock); 2156 2157 if (mask & AT_UID) { 2158 zp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2159 if (attrzp) { 2160 attrzp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2161 } 2162 } 2163 2164 if (mask & AT_GID) { 2165 zp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2166 if (attrzp) 2167 attrzp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2168 } 2169 2170 if (attrzp) 2171 mutex_exit(&attrzp->z_lock); 2172 2173 if (mask & AT_ATIME) 2174 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2175 2176 if (mask & AT_MTIME) 2177 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2178 2179 if (mask_applied & AT_SIZE) 2180 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2181 else if (mask_applied != 0) 2182 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2183 2184 out: 2185 2186 if (mask_applied != 0) 2187 seq = zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, 2188 mask_applied); 2189 2190 mutex_exit(&zp->z_lock); 2191 2192 if (attrzp) 2193 VN_RELE(ZTOV(attrzp)); 2194 2195 if (have_grow_lock) 2196 rw_exit(&zp->z_grow_lock); 2197 2198 dmu_tx_commit(tx); 2199 2200 zil_commit(zilog, seq, 0); 2201 2202 ZFS_EXIT(zfsvfs); 2203 return (err); 2204 } 2205 2206 /* 2207 * Search back through the directory tree, using the ".." entries. 2208 * Lock each directory in the chain to prevent concurrent renames. 2209 * Fail any attempt to move a directory into one of its own descendants. 2210 * XXX - z_parent_lock can overlap with map or grow locks 2211 */ 2212 typedef struct zfs_zlock { 2213 krwlock_t *zl_rwlock; /* lock we acquired */ 2214 znode_t *zl_znode; /* znode we held */ 2215 struct zfs_zlock *zl_next; /* next in list */ 2216 } zfs_zlock_t; 2217 2218 static int 2219 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2220 { 2221 zfs_zlock_t *zl; 2222 znode_t *zp = tdzp; 2223 uint64_t rootid = zp->z_zfsvfs->z_root; 2224 uint64_t *oidp = &zp->z_id; 2225 krwlock_t *rwlp = &szp->z_parent_lock; 2226 krw_t rw = RW_WRITER; 2227 2228 /* 2229 * First pass write-locks szp and compares to zp->z_id. 2230 * Later passes read-lock zp and compare to zp->z_parent. 2231 */ 2232 do { 2233 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2234 zl->zl_rwlock = rwlp; 2235 zl->zl_znode = NULL; 2236 zl->zl_next = *zlpp; 2237 *zlpp = zl; 2238 2239 rw_enter(rwlp, rw); 2240 2241 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2242 return (EINVAL); 2243 2244 if (*oidp == rootid) /* We've hit the top */ 2245 return (0); 2246 2247 if (rw == RW_READER) { /* i.e. not the first pass */ 2248 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2249 if (error) 2250 return (error); 2251 zl->zl_znode = zp; 2252 } 2253 oidp = &zp->z_phys->zp_parent; 2254 rwlp = &zp->z_parent_lock; 2255 rw = RW_READER; 2256 2257 } while (zp->z_id != sdzp->z_id); 2258 2259 return (0); 2260 } 2261 2262 /* 2263 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2264 */ 2265 static void 2266 zfs_rename_unlock(zfs_zlock_t **zlpp) 2267 { 2268 zfs_zlock_t *zl; 2269 2270 while ((zl = *zlpp) != NULL) { 2271 if (zl->zl_znode != NULL) 2272 VN_RELE(ZTOV(zl->zl_znode)); 2273 rw_exit(zl->zl_rwlock); 2274 *zlpp = zl->zl_next; 2275 kmem_free(zl, sizeof (*zl)); 2276 } 2277 } 2278 2279 /* 2280 * Move an entry from the provided source directory to the target 2281 * directory. Change the entry name as indicated. 2282 * 2283 * IN: sdvp - Source directory containing the "old entry". 2284 * snm - Old entry name. 2285 * tdvp - Target directory to contain the "new entry". 2286 * tnm - New entry name. 2287 * cr - credentials of caller. 2288 * 2289 * RETURN: 0 if success 2290 * error code if failure 2291 * 2292 * Timestamps: 2293 * sdvp,tdvp - ctime|mtime updated 2294 */ 2295 static int 2296 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr) 2297 { 2298 znode_t *tdzp, *szp, *tzp; 2299 znode_t *sdzp = VTOZ(sdvp); 2300 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2301 zilog_t *zilog = zfsvfs->z_log; 2302 uint64_t seq = 0; 2303 vnode_t *realvp; 2304 zfs_dirlock_t *sdl, *tdl; 2305 dmu_tx_t *tx; 2306 zfs_zlock_t *zl; 2307 int cmp, serr, terr, error; 2308 2309 ZFS_ENTER(zfsvfs); 2310 2311 /* 2312 * Make sure we have the real vp for the target directory. 2313 */ 2314 if (VOP_REALVP(tdvp, &realvp) == 0) 2315 tdvp = realvp; 2316 2317 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2318 ZFS_EXIT(zfsvfs); 2319 return (EXDEV); 2320 } 2321 2322 tdzp = VTOZ(tdvp); 2323 top: 2324 szp = NULL; 2325 tzp = NULL; 2326 zl = NULL; 2327 2328 /* 2329 * This is to prevent the creation of links into attribute space 2330 * by renaming a linked file into/outof an attribute directory. 2331 * See the comment in zfs_link() for why this is considered bad. 2332 */ 2333 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2334 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2335 ZFS_EXIT(zfsvfs); 2336 return (EINVAL); 2337 } 2338 2339 /* 2340 * Lock source and target directory entries. To prevent deadlock, 2341 * a lock ordering must be defined. We lock the directory with 2342 * the smallest object id first, or if it's a tie, the one with 2343 * the lexically first name. 2344 */ 2345 if (sdzp->z_id < tdzp->z_id) { 2346 cmp = -1; 2347 } else if (sdzp->z_id > tdzp->z_id) { 2348 cmp = 1; 2349 } else { 2350 cmp = strcmp(snm, tnm); 2351 if (cmp == 0) { 2352 /* 2353 * POSIX: "If the old argument and the new argument 2354 * both refer to links to the same existing file, 2355 * the rename() function shall return successfully 2356 * and perform no other action." 2357 */ 2358 ZFS_EXIT(zfsvfs); 2359 return (0); 2360 } 2361 } 2362 if (cmp < 0) { 2363 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2364 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2365 } else { 2366 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2367 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2368 } 2369 2370 if (serr) { 2371 /* 2372 * Source entry invalid or not there. 2373 */ 2374 if (!terr) { 2375 zfs_dirent_unlock(tdl); 2376 if (tzp) 2377 VN_RELE(ZTOV(tzp)); 2378 } 2379 if (strcmp(snm, "..") == 0) 2380 serr = EINVAL; 2381 ZFS_EXIT(zfsvfs); 2382 return (serr); 2383 } 2384 if (terr) { 2385 zfs_dirent_unlock(sdl); 2386 VN_RELE(ZTOV(szp)); 2387 if (strcmp(tnm, "..") == 0) 2388 terr = EINVAL; 2389 ZFS_EXIT(zfsvfs); 2390 return (terr); 2391 } 2392 2393 /* 2394 * Must have write access at the source to remove the old entry 2395 * and write access at the target to create the new entry. 2396 * Note that if target and source are the same, this can be 2397 * done in a single check. 2398 */ 2399 2400 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 2401 goto out; 2402 2403 if (ZTOV(szp)->v_type == VDIR) { 2404 /* 2405 * Check to make sure rename is valid. 2406 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 2407 */ 2408 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 2409 goto out; 2410 } 2411 2412 /* 2413 * Does target exist? 2414 */ 2415 if (tzp) { 2416 /* 2417 * Source and target must be the same type. 2418 */ 2419 if (ZTOV(szp)->v_type == VDIR) { 2420 if (ZTOV(tzp)->v_type != VDIR) { 2421 error = ENOTDIR; 2422 goto out; 2423 } 2424 } else { 2425 if (ZTOV(tzp)->v_type == VDIR) { 2426 error = EISDIR; 2427 goto out; 2428 } 2429 } 2430 /* 2431 * POSIX dictates that when the source and target 2432 * entries refer to the same file object, rename 2433 * must do nothing and exit without error. 2434 */ 2435 if (szp->z_id == tzp->z_id) { 2436 error = 0; 2437 goto out; 2438 } 2439 } 2440 2441 vnevent_rename_src(ZTOV(szp)); 2442 if (tzp) 2443 vnevent_rename_dest(ZTOV(tzp)); 2444 2445 tx = dmu_tx_create(zfsvfs->z_os); 2446 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 2447 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 2448 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 2449 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 2450 if (sdzp != tdzp) 2451 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 2452 if (tzp) 2453 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 2454 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 2455 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2456 if (error) { 2457 dmu_tx_abort(tx); 2458 if (zl != NULL) 2459 zfs_rename_unlock(&zl); 2460 zfs_dirent_unlock(sdl); 2461 zfs_dirent_unlock(tdl); 2462 VN_RELE(ZTOV(szp)); 2463 if (tzp) 2464 VN_RELE(ZTOV(tzp)); 2465 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2466 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2467 goto top; 2468 } 2469 ZFS_EXIT(zfsvfs); 2470 return (error); 2471 } 2472 2473 if (tzp) /* Attempt to remove the existing target */ 2474 error = zfs_link_destroy(tdl, tzp, tx, 0, NULL); 2475 2476 if (error == 0) { 2477 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 2478 if (error == 0) { 2479 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 2480 ASSERT(error == 0); 2481 seq = zfs_log_rename(zilog, tx, TX_RENAME, 2482 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 2483 } 2484 } 2485 2486 dmu_tx_commit(tx); 2487 out: 2488 if (zl != NULL) 2489 zfs_rename_unlock(&zl); 2490 2491 zfs_dirent_unlock(sdl); 2492 zfs_dirent_unlock(tdl); 2493 2494 VN_RELE(ZTOV(szp)); 2495 if (tzp) 2496 VN_RELE(ZTOV(tzp)); 2497 2498 zil_commit(zilog, seq, 0); 2499 2500 ZFS_EXIT(zfsvfs); 2501 return (error); 2502 } 2503 2504 /* 2505 * Insert the indicated symbolic reference entry into the directory. 2506 * 2507 * IN: dvp - Directory to contain new symbolic link. 2508 * link - Name for new symlink entry. 2509 * vap - Attributes of new entry. 2510 * target - Target path of new symlink. 2511 * cr - credentials of caller. 2512 * 2513 * RETURN: 0 if success 2514 * error code if failure 2515 * 2516 * Timestamps: 2517 * dvp - ctime|mtime updated 2518 */ 2519 static int 2520 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr) 2521 { 2522 znode_t *zp, *dzp = VTOZ(dvp); 2523 zfs_dirlock_t *dl; 2524 dmu_tx_t *tx; 2525 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2526 zilog_t *zilog = zfsvfs->z_log; 2527 uint64_t seq = 0; 2528 uint64_t zoid; 2529 int len = strlen(link); 2530 int error; 2531 2532 ASSERT(vap->va_type == VLNK); 2533 2534 ZFS_ENTER(zfsvfs); 2535 top: 2536 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2537 ZFS_EXIT(zfsvfs); 2538 return (error); 2539 } 2540 2541 if (len > MAXPATHLEN) { 2542 ZFS_EXIT(zfsvfs); 2543 return (ENAMETOOLONG); 2544 } 2545 2546 /* 2547 * Attempt to lock directory; fail if entry already exists. 2548 */ 2549 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) { 2550 ZFS_EXIT(zfsvfs); 2551 return (error); 2552 } 2553 2554 tx = dmu_tx_create(zfsvfs->z_os); 2555 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 2556 dmu_tx_hold_bonus(tx, dzp->z_id); 2557 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 2558 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 2559 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 2560 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2561 if (error) { 2562 dmu_tx_abort(tx); 2563 zfs_dirent_unlock(dl); 2564 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2565 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2566 goto top; 2567 } 2568 ZFS_EXIT(zfsvfs); 2569 return (error); 2570 } 2571 2572 dmu_buf_will_dirty(dzp->z_dbuf, tx); 2573 2574 /* 2575 * Create a new object for the symlink. 2576 * Put the link content into bonus buffer if it will fit; 2577 * otherwise, store it just like any other file data. 2578 */ 2579 zoid = 0; 2580 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 2581 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len); 2582 if (len != 0) 2583 bcopy(link, zp->z_phys + 1, len); 2584 } else { 2585 dmu_buf_t *dbp; 2586 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 2587 2588 rw_enter(&zp->z_grow_lock, RW_WRITER); 2589 error = zfs_grow_blocksize(zp, len, tx); 2590 rw_exit(&zp->z_grow_lock); 2591 if (error) 2592 goto out; 2593 2594 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, zoid, 0, FTAG, &dbp)); 2595 dmu_buf_will_dirty(dbp, tx); 2596 2597 ASSERT3U(len, <=, dbp->db_size); 2598 bcopy(link, dbp->db_data, len); 2599 dmu_buf_rele(dbp, FTAG); 2600 } 2601 zp->z_phys->zp_size = len; 2602 2603 /* 2604 * Insert the new object into the directory. 2605 */ 2606 (void) zfs_link_create(dl, zp, tx, ZNEW); 2607 out: 2608 if (error == 0) 2609 seq = zfs_log_symlink(zilog, tx, TX_SYMLINK, 2610 dzp, zp, name, link); 2611 2612 dmu_tx_commit(tx); 2613 2614 zfs_dirent_unlock(dl); 2615 2616 VN_RELE(ZTOV(zp)); 2617 2618 zil_commit(zilog, seq, 0); 2619 2620 ZFS_EXIT(zfsvfs); 2621 return (error); 2622 } 2623 2624 /* 2625 * Return, in the buffer contained in the provided uio structure, 2626 * the symbolic path referred to by vp. 2627 * 2628 * IN: vp - vnode of symbolic link. 2629 * uoip - structure to contain the link path. 2630 * cr - credentials of caller. 2631 * 2632 * OUT: uio - structure to contain the link path. 2633 * 2634 * RETURN: 0 if success 2635 * error code if failure 2636 * 2637 * Timestamps: 2638 * vp - atime updated 2639 */ 2640 /* ARGSUSED */ 2641 static int 2642 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr) 2643 { 2644 znode_t *zp = VTOZ(vp); 2645 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2646 size_t bufsz; 2647 int error; 2648 2649 ZFS_ENTER(zfsvfs); 2650 2651 bufsz = (size_t)zp->z_phys->zp_size; 2652 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 2653 error = uiomove(zp->z_phys + 1, 2654 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2655 } else { 2656 dmu_buf_t *dbp; 2657 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 2658 if (error) { 2659 ZFS_EXIT(zfsvfs); 2660 return (error); 2661 } 2662 error = uiomove(dbp->db_data, 2663 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2664 dmu_buf_rele(dbp, FTAG); 2665 } 2666 2667 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2668 ZFS_EXIT(zfsvfs); 2669 return (error); 2670 } 2671 2672 /* 2673 * Insert a new entry into directory tdvp referencing svp. 2674 * 2675 * IN: tdvp - Directory to contain new entry. 2676 * svp - vnode of new entry. 2677 * name - name of new entry. 2678 * cr - credentials of caller. 2679 * 2680 * RETURN: 0 if success 2681 * error code if failure 2682 * 2683 * Timestamps: 2684 * tdvp - ctime|mtime updated 2685 * svp - ctime updated 2686 */ 2687 /* ARGSUSED */ 2688 static int 2689 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr) 2690 { 2691 znode_t *dzp = VTOZ(tdvp); 2692 znode_t *tzp, *szp; 2693 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2694 zilog_t *zilog = zfsvfs->z_log; 2695 uint64_t seq = 0; 2696 zfs_dirlock_t *dl; 2697 dmu_tx_t *tx; 2698 vnode_t *realvp; 2699 int error; 2700 2701 ASSERT(tdvp->v_type == VDIR); 2702 2703 ZFS_ENTER(zfsvfs); 2704 2705 if (VOP_REALVP(svp, &realvp) == 0) 2706 svp = realvp; 2707 2708 if (svp->v_vfsp != tdvp->v_vfsp) { 2709 ZFS_EXIT(zfsvfs); 2710 return (EXDEV); 2711 } 2712 2713 szp = VTOZ(svp); 2714 top: 2715 /* 2716 * We do not support links between attributes and non-attributes 2717 * because of the potential security risk of creating links 2718 * into "normal" file space in order to circumvent restrictions 2719 * imposed in attribute space. 2720 */ 2721 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 2722 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 2723 ZFS_EXIT(zfsvfs); 2724 return (EINVAL); 2725 } 2726 2727 /* 2728 * POSIX dictates that we return EPERM here. 2729 * Better choices include ENOTSUP or EISDIR. 2730 */ 2731 if (svp->v_type == VDIR) { 2732 ZFS_EXIT(zfsvfs); 2733 return (EPERM); 2734 } 2735 2736 if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) && 2737 secpolicy_basic_link(cr) != 0) { 2738 ZFS_EXIT(zfsvfs); 2739 return (EPERM); 2740 } 2741 2742 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2743 ZFS_EXIT(zfsvfs); 2744 return (error); 2745 } 2746 2747 /* 2748 * Attempt to lock directory; fail if entry already exists. 2749 */ 2750 if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) { 2751 ZFS_EXIT(zfsvfs); 2752 return (error); 2753 } 2754 2755 tx = dmu_tx_create(zfsvfs->z_os); 2756 dmu_tx_hold_bonus(tx, szp->z_id); 2757 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 2758 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2759 if (error) { 2760 dmu_tx_abort(tx); 2761 zfs_dirent_unlock(dl); 2762 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2763 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2764 goto top; 2765 } 2766 ZFS_EXIT(zfsvfs); 2767 return (error); 2768 } 2769 2770 error = zfs_link_create(dl, szp, tx, 0); 2771 2772 if (error == 0) 2773 seq = zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name); 2774 2775 dmu_tx_commit(tx); 2776 2777 zfs_dirent_unlock(dl); 2778 2779 zil_commit(zilog, seq, 0); 2780 2781 ZFS_EXIT(zfsvfs); 2782 return (error); 2783 } 2784 2785 /* 2786 * zfs_null_putapage() is used when the file system has been force 2787 * unmounted. It just drops the pages. 2788 */ 2789 /* ARGSUSED */ 2790 static int 2791 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2792 size_t *lenp, int flags, cred_t *cr) 2793 { 2794 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 2795 return (0); 2796 } 2797 2798 /* ARGSUSED */ 2799 static int 2800 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2801 size_t *lenp, int flags, cred_t *cr) 2802 { 2803 znode_t *zp = VTOZ(vp); 2804 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2805 zilog_t *zilog = zfsvfs->z_log; 2806 dmu_tx_t *tx; 2807 u_offset_t off; 2808 ssize_t len; 2809 caddr_t va; 2810 int err; 2811 2812 top: 2813 rw_enter(&zp->z_grow_lock, RW_READER); 2814 2815 off = pp->p_offset; 2816 len = MIN(PAGESIZE, zp->z_phys->zp_size - off); 2817 2818 tx = dmu_tx_create(zfsvfs->z_os); 2819 dmu_tx_hold_write(tx, zp->z_id, off, len); 2820 dmu_tx_hold_bonus(tx, zp->z_id); 2821 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2822 if (err != 0) { 2823 dmu_tx_abort(tx); 2824 rw_exit(&zp->z_grow_lock); 2825 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2826 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2827 goto top; 2828 } 2829 goto out; 2830 } 2831 2832 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 2833 2834 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 2835 2836 ppmapout(va); 2837 2838 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 2839 (void) zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0, NULL); 2840 dmu_tx_commit(tx); 2841 2842 rw_exit(&zp->z_grow_lock); 2843 2844 pvn_write_done(pp, B_WRITE | flags); 2845 if (offp) 2846 *offp = off; 2847 if (lenp) 2848 *lenp = len; 2849 2850 out: 2851 return (err); 2852 } 2853 2854 /* 2855 * Copy the portion of the file indicated from pages into the file. 2856 * The pages are stored in a page list attached to the files vnode. 2857 * 2858 * IN: vp - vnode of file to push page data to. 2859 * off - position in file to put data. 2860 * len - amount of data to write. 2861 * flags - flags to control the operation. 2862 * cr - credentials of caller. 2863 * 2864 * RETURN: 0 if success 2865 * error code if failure 2866 * 2867 * Timestamps: 2868 * vp - ctime|mtime updated 2869 */ 2870 static int 2871 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 2872 { 2873 znode_t *zp = VTOZ(vp); 2874 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2875 page_t *pp; 2876 size_t io_len; 2877 u_offset_t io_off; 2878 int error = 0; 2879 2880 ZFS_ENTER(zfsvfs); 2881 2882 ASSERT(zp->z_dbuf_held && zp->z_phys); 2883 2884 if (len == 0) { 2885 /* 2886 * Search the entire vp list for pages >= off. 2887 */ 2888 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 2889 flags, cr); 2890 goto out; 2891 } 2892 2893 if (off > zp->z_phys->zp_size) { 2894 /* past end of file */ 2895 ZFS_EXIT(zfsvfs); 2896 return (0); 2897 } 2898 2899 len = MIN(len, zp->z_phys->zp_size - off); 2900 2901 for (io_off = off; io_off < off + len; io_off += io_len) { 2902 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2903 pp = page_lookup(vp, io_off, 2904 (flags & (B_INVAL | B_FREE)) ? 2905 SE_EXCL : SE_SHARED); 2906 } else { 2907 pp = page_lookup_nowait(vp, io_off, 2908 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2909 } 2910 2911 if (pp != NULL && pvn_getdirty(pp, flags)) { 2912 int err; 2913 2914 /* 2915 * Found a dirty page to push 2916 */ 2917 if (err = 2918 zfs_putapage(vp, pp, &io_off, &io_len, flags, cr)) 2919 error = err; 2920 } else { 2921 io_len = PAGESIZE; 2922 } 2923 } 2924 out: 2925 zil_commit(zfsvfs->z_log, UINT64_MAX, (flags & B_ASYNC) ? 0 : FDSYNC); 2926 ZFS_EXIT(zfsvfs); 2927 return (error); 2928 } 2929 2930 void 2931 zfs_inactive(vnode_t *vp, cred_t *cr) 2932 { 2933 znode_t *zp = VTOZ(vp); 2934 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2935 int error; 2936 2937 rw_enter(&zfsvfs->z_um_lock, RW_READER); 2938 if (zfsvfs->z_unmounted2) { 2939 ASSERT(zp->z_dbuf_held == 0); 2940 2941 if (vn_has_cached_data(vp)) { 2942 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 2943 B_INVAL, cr); 2944 } 2945 2946 mutex_enter(&zp->z_lock); 2947 vp->v_count = 0; /* count arrives as 1 */ 2948 if (zp->z_dbuf == NULL) { 2949 mutex_exit(&zp->z_lock); 2950 zfs_znode_free(zp); 2951 } else { 2952 mutex_exit(&zp->z_lock); 2953 } 2954 rw_exit(&zfsvfs->z_um_lock); 2955 VFS_RELE(zfsvfs->z_vfs); 2956 return; 2957 } 2958 2959 /* 2960 * Attempt to push any data in the page cache. If this fails 2961 * we will get kicked out later in zfs_zinactive(). 2962 */ 2963 if (vn_has_cached_data(vp)) { 2964 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 2965 cr); 2966 } 2967 2968 if (zp->z_atime_dirty && zp->z_reap == 0) { 2969 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 2970 2971 dmu_tx_hold_bonus(tx, zp->z_id); 2972 error = dmu_tx_assign(tx, TXG_WAIT); 2973 if (error) { 2974 dmu_tx_abort(tx); 2975 } else { 2976 dmu_buf_will_dirty(zp->z_dbuf, tx); 2977 mutex_enter(&zp->z_lock); 2978 zp->z_atime_dirty = 0; 2979 mutex_exit(&zp->z_lock); 2980 dmu_tx_commit(tx); 2981 } 2982 } 2983 2984 zfs_zinactive(zp); 2985 rw_exit(&zfsvfs->z_um_lock); 2986 } 2987 2988 /* 2989 * Bounds-check the seek operation. 2990 * 2991 * IN: vp - vnode seeking within 2992 * ooff - old file offset 2993 * noffp - pointer to new file offset 2994 * 2995 * RETURN: 0 if success 2996 * EINVAL if new offset invalid 2997 */ 2998 /* ARGSUSED */ 2999 static int 3000 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 3001 { 3002 if (vp->v_type == VDIR) 3003 return (0); 3004 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3005 } 3006 3007 /* 3008 * Pre-filter the generic locking function to trap attempts to place 3009 * a mandatory lock on a memory mapped file. 3010 */ 3011 static int 3012 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3013 flk_callback_t *flk_cbp, cred_t *cr) 3014 { 3015 znode_t *zp = VTOZ(vp); 3016 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3017 int error; 3018 3019 ZFS_ENTER(zfsvfs); 3020 3021 /* 3022 * We are following the UFS semantics with respect to mapcnt 3023 * here: If we see that the file is mapped already, then we will 3024 * return an error, but we don't worry about races between this 3025 * function and zfs_map(). 3026 */ 3027 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3028 ZFS_EXIT(zfsvfs); 3029 return (EAGAIN); 3030 } 3031 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr); 3032 ZFS_EXIT(zfsvfs); 3033 return (error); 3034 } 3035 3036 /* 3037 * If we can't find a page in the cache, we will create a new page 3038 * and fill it with file data. For efficiency, we may try to fill 3039 * multiple pages as once (klustering). 3040 */ 3041 static int 3042 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3043 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3044 { 3045 znode_t *zp = VTOZ(vp); 3046 page_t *pp, *cur_pp; 3047 objset_t *os = zp->z_zfsvfs->z_os; 3048 caddr_t va; 3049 u_offset_t io_off, total; 3050 uint64_t oid = zp->z_id; 3051 size_t io_len; 3052 int err; 3053 3054 /* 3055 * If we are only asking for a single page don't bother klustering. 3056 */ 3057 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE || 3058 off > zp->z_phys->zp_size) { 3059 io_off = off; 3060 io_len = PAGESIZE; 3061 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3062 } else { 3063 /* 3064 * Try to fill a kluster of pages (a blocks worth). 3065 */ 3066 size_t klen; 3067 u_offset_t koff; 3068 3069 if (!ISP2(zp->z_blksz)) { 3070 /* Only one block in the file. */ 3071 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3072 koff = 0; 3073 } else { 3074 klen = plsz; 3075 koff = P2ALIGN(off, (u_offset_t)klen); 3076 } 3077 if (klen > zp->z_phys->zp_size) 3078 klen = P2ROUNDUP(zp->z_phys->zp_size, 3079 (uint64_t)PAGESIZE); 3080 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3081 &io_len, koff, klen, 0); 3082 } 3083 if (pp == NULL) { 3084 /* 3085 * Some other thread entered the page before us. 3086 * Return to zfs_getpage to retry the lookup. 3087 */ 3088 *pl = NULL; 3089 return (0); 3090 } 3091 3092 /* 3093 * Fill the pages in the kluster. 3094 */ 3095 cur_pp = pp; 3096 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3097 ASSERT(io_off == cur_pp->p_offset); 3098 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3099 err = dmu_read(os, oid, io_off, PAGESIZE, va); 3100 ppmapout(va); 3101 if (err) { 3102 /* On error, toss the entire kluster */ 3103 pvn_read_done(pp, B_ERROR); 3104 return (err); 3105 } 3106 cur_pp = cur_pp->p_next; 3107 } 3108 out: 3109 /* 3110 * Fill in the page list array from the kluster. If 3111 * there are too many pages in the kluster, return 3112 * as many pages as possible starting from the desired 3113 * offset `off'. 3114 * NOTE: the page list will always be null terminated. 3115 */ 3116 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3117 3118 return (0); 3119 } 3120 3121 /* 3122 * Return pointers to the pages for the file region [off, off + len] 3123 * in the pl array. If plsz is greater than len, this function may 3124 * also return page pointers from before or after the specified 3125 * region (i.e. some region [off', off' + plsz]). These additional 3126 * pages are only returned if they are already in the cache, or were 3127 * created as part of a klustered read. 3128 * 3129 * IN: vp - vnode of file to get data from. 3130 * off - position in file to get data from. 3131 * len - amount of data to retrieve. 3132 * plsz - length of provided page list. 3133 * seg - segment to obtain pages for. 3134 * addr - virtual address of fault. 3135 * rw - mode of created pages. 3136 * cr - credentials of caller. 3137 * 3138 * OUT: protp - protection mode of created pages. 3139 * pl - list of pages created. 3140 * 3141 * RETURN: 0 if success 3142 * error code if failure 3143 * 3144 * Timestamps: 3145 * vp - atime updated 3146 */ 3147 /* ARGSUSED */ 3148 static int 3149 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3150 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3151 enum seg_rw rw, cred_t *cr) 3152 { 3153 znode_t *zp = VTOZ(vp); 3154 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3155 page_t *pp, **pl0 = pl; 3156 int cnt = 0, need_unlock = 0, err = 0; 3157 3158 ZFS_ENTER(zfsvfs); 3159 3160 if (protp) 3161 *protp = PROT_ALL; 3162 3163 ASSERT(zp->z_dbuf_held && zp->z_phys); 3164 3165 /* no faultahead (for now) */ 3166 if (pl == NULL) { 3167 ZFS_EXIT(zfsvfs); 3168 return (0); 3169 } 3170 3171 /* can't fault past EOF */ 3172 if (off >= zp->z_phys->zp_size) { 3173 ZFS_EXIT(zfsvfs); 3174 return (EFAULT); 3175 } 3176 3177 /* 3178 * Make sure nobody restructures the file (changes block size) 3179 * in the middle of the getpage. 3180 */ 3181 rw_enter(&zp->z_grow_lock, RW_READER); 3182 3183 /* 3184 * If we already own the lock, then we must be page faulting 3185 * in the middle of a write to this file (i.e., we are writing 3186 * to this file using data from a mapped region of the file). 3187 */ 3188 if (!rw_owner(&zp->z_map_lock)) { 3189 rw_enter(&zp->z_map_lock, RW_WRITER); 3190 need_unlock = TRUE; 3191 } 3192 3193 /* 3194 * Loop through the requested range [off, off + len] looking 3195 * for pages. If we don't find a page, we will need to create 3196 * a new page and fill it with data from the file. 3197 */ 3198 while (len > 0) { 3199 if (plsz < PAGESIZE) 3200 break; 3201 if (pp = page_lookup(vp, off, SE_SHARED)) { 3202 *pl++ = pp; 3203 off += PAGESIZE; 3204 addr += PAGESIZE; 3205 len -= PAGESIZE; 3206 plsz -= PAGESIZE; 3207 } else { 3208 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3209 /* 3210 * klustering may have changed our region 3211 * to be block aligned. 3212 */ 3213 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 3214 int delta = off - pp->p_offset; 3215 len += delta; 3216 off -= delta; 3217 addr -= delta; 3218 } 3219 while (*pl) { 3220 pl++; 3221 cnt++; 3222 off += PAGESIZE; 3223 addr += PAGESIZE; 3224 plsz -= PAGESIZE; 3225 if (len > PAGESIZE) 3226 len -= PAGESIZE; 3227 else 3228 len = 0; 3229 } 3230 } 3231 if (err) 3232 goto out; 3233 } 3234 3235 /* 3236 * Fill out the page array with any pages already in the cache. 3237 */ 3238 while (plsz > 0) { 3239 pp = page_lookup_nowait(vp, off, SE_SHARED); 3240 if (pp == NULL) 3241 break; 3242 *pl++ = pp; 3243 off += PAGESIZE; 3244 plsz -= PAGESIZE; 3245 } 3246 3247 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3248 out: 3249 if (err) { 3250 /* 3251 * Release any pages we have locked. 3252 */ 3253 while (pl > pl0) 3254 page_unlock(*--pl); 3255 } 3256 *pl = NULL; 3257 3258 if (need_unlock) 3259 rw_exit(&zp->z_map_lock); 3260 rw_exit(&zp->z_grow_lock); 3261 3262 ZFS_EXIT(zfsvfs); 3263 return (err); 3264 } 3265 3266 /* 3267 * Request a memory map for a section of a file. This code interacts 3268 * with common code and the VM system as follows: 3269 * 3270 * common code calls mmap(), which ends up in smmap_common() 3271 * 3272 * this calls VOP_MAP(), which takes you into (say) zfs 3273 * 3274 * zfs_map() calls as_map(), passing segvn_create() as the callback 3275 * 3276 * segvn_create() creates the new segment and calls VOP_ADDMAP() 3277 * 3278 * zfs_addmap() updates z_mapcnt 3279 */ 3280 static int 3281 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 3282 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3283 { 3284 znode_t *zp = VTOZ(vp); 3285 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3286 segvn_crargs_t vn_a; 3287 int error; 3288 3289 ZFS_ENTER(zfsvfs); 3290 3291 if (vp->v_flag & VNOMAP) { 3292 ZFS_EXIT(zfsvfs); 3293 return (ENOSYS); 3294 } 3295 3296 if (off < 0 || len > MAXOFFSET_T - off) { 3297 ZFS_EXIT(zfsvfs); 3298 return (ENXIO); 3299 } 3300 3301 if (vp->v_type != VREG) { 3302 ZFS_EXIT(zfsvfs); 3303 return (ENODEV); 3304 } 3305 3306 /* 3307 * If file is locked, disallow mapping. 3308 */ 3309 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 3310 ZFS_EXIT(zfsvfs); 3311 return (EAGAIN); 3312 } 3313 3314 as_rangelock(as); 3315 if ((flags & MAP_FIXED) == 0) { 3316 map_addr(addrp, len, off, 1, flags); 3317 if (*addrp == NULL) { 3318 as_rangeunlock(as); 3319 ZFS_EXIT(zfsvfs); 3320 return (ENOMEM); 3321 } 3322 } else { 3323 /* 3324 * User specified address - blow away any previous mappings 3325 */ 3326 (void) as_unmap(as, *addrp, len); 3327 } 3328 3329 vn_a.vp = vp; 3330 vn_a.offset = (u_offset_t)off; 3331 vn_a.type = flags & MAP_TYPE; 3332 vn_a.prot = prot; 3333 vn_a.maxprot = maxprot; 3334 vn_a.cred = cr; 3335 vn_a.amp = NULL; 3336 vn_a.flags = flags & ~MAP_TYPE; 3337 vn_a.szc = 0; 3338 vn_a.lgrp_mem_policy_flags = 0; 3339 3340 error = as_map(as, *addrp, len, segvn_create, &vn_a); 3341 3342 as_rangeunlock(as); 3343 ZFS_EXIT(zfsvfs); 3344 return (error); 3345 } 3346 3347 /* ARGSUSED */ 3348 static int 3349 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3350 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3351 { 3352 uint64_t pages = btopr(len); 3353 3354 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 3355 return (0); 3356 } 3357 3358 /* ARGSUSED */ 3359 static int 3360 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3361 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 3362 { 3363 uint64_t pages = btopr(len); 3364 3365 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 3366 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 3367 return (0); 3368 } 3369 3370 /* 3371 * Free or allocate space in a file. Currently, this function only 3372 * supports the `F_FREESP' command. However, this command is somewhat 3373 * misnamed, as its functionality includes the ability to allocate as 3374 * well as free space. 3375 * 3376 * IN: vp - vnode of file to free data in. 3377 * cmd - action to take (only F_FREESP supported). 3378 * bfp - section of file to free/alloc. 3379 * flag - current file open mode flags. 3380 * offset - current file offset. 3381 * cr - credentials of caller [UNUSED]. 3382 * 3383 * RETURN: 0 if success 3384 * error code if failure 3385 * 3386 * Timestamps: 3387 * vp - ctime|mtime updated 3388 * 3389 * NOTE: This function is limited in that it will only permit space to 3390 * be freed at the end of a file. In essence, this function simply 3391 * allows one to set the file size. 3392 */ 3393 /* ARGSUSED */ 3394 static int 3395 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 3396 offset_t offset, cred_t *cr, caller_context_t *ct) 3397 { 3398 dmu_tx_t *tx; 3399 znode_t *zp = VTOZ(vp); 3400 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3401 zilog_t *zilog = zfsvfs->z_log; 3402 uint64_t seq = 0; 3403 uint64_t off, len; 3404 int error; 3405 3406 ZFS_ENTER(zfsvfs); 3407 3408 top: 3409 if (cmd != F_FREESP) { 3410 ZFS_EXIT(zfsvfs); 3411 return (EINVAL); 3412 } 3413 3414 if (error = convoff(vp, bfp, 0, offset)) { 3415 ZFS_EXIT(zfsvfs); 3416 return (error); 3417 } 3418 3419 if (bfp->l_len < 0) { 3420 ZFS_EXIT(zfsvfs); 3421 return (EINVAL); 3422 } 3423 3424 off = bfp->l_start; 3425 len = bfp->l_len; 3426 tx = dmu_tx_create(zfsvfs->z_os); 3427 /* 3428 * Grab the grow_lock to serialize this change with 3429 * respect to other file size changes. 3430 */ 3431 dmu_tx_hold_bonus(tx, zp->z_id); 3432 rw_enter(&zp->z_grow_lock, RW_WRITER); 3433 if (off + len > zp->z_blksz && zp->z_blksz < zfsvfs->z_max_blksz && 3434 off >= zp->z_phys->zp_size) { 3435 /* 3436 * We are increasing the length of the file, 3437 * and this may mean a block size increase. 3438 */ 3439 dmu_tx_hold_write(tx, zp->z_id, 0, 3440 MIN(off + len, zfsvfs->z_max_blksz)); 3441 } else if (off < zp->z_phys->zp_size) { 3442 /* 3443 * If len == 0, we are truncating the file. 3444 */ 3445 dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END); 3446 } 3447 3448 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3449 if (error) { 3450 dmu_tx_abort(tx); 3451 rw_exit(&zp->z_grow_lock); 3452 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3453 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 3454 goto top; 3455 } 3456 ZFS_EXIT(zfsvfs); 3457 return (error); 3458 } 3459 3460 error = zfs_freesp(zp, off, len, flag, tx, cr); 3461 3462 if (error == 0) { 3463 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3464 seq = zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 3465 } 3466 3467 rw_exit(&zp->z_grow_lock); 3468 3469 dmu_tx_commit(tx); 3470 3471 zil_commit(zilog, seq, 0); 3472 3473 ZFS_EXIT(zfsvfs); 3474 return (error); 3475 } 3476 3477 static int 3478 zfs_fid(vnode_t *vp, fid_t *fidp) 3479 { 3480 znode_t *zp = VTOZ(vp); 3481 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3482 uint32_t gen = (uint32_t)zp->z_phys->zp_gen; 3483 uint64_t object = zp->z_id; 3484 zfid_short_t *zfid; 3485 int size, i; 3486 3487 ZFS_ENTER(zfsvfs); 3488 3489 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 3490 if (fidp->fid_len < size) { 3491 fidp->fid_len = size; 3492 ZFS_EXIT(zfsvfs); 3493 return (ENOSPC); 3494 } 3495 3496 zfid = (zfid_short_t *)fidp; 3497 3498 zfid->zf_len = size; 3499 3500 for (i = 0; i < sizeof (zfid->zf_object); i++) 3501 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 3502 3503 /* Must have a non-zero generation number to distinguish from .zfs */ 3504 if (gen == 0) 3505 gen = 1; 3506 for (i = 0; i < sizeof (zfid->zf_gen); i++) 3507 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 3508 3509 if (size == LONG_FID_LEN) { 3510 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 3511 zfid_long_t *zlfid; 3512 3513 zlfid = (zfid_long_t *)fidp; 3514 3515 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 3516 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 3517 3518 /* XXX - this should be the generation number for the objset */ 3519 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 3520 zlfid->zf_setgen[i] = 0; 3521 } 3522 3523 ZFS_EXIT(zfsvfs); 3524 return (0); 3525 } 3526 3527 static int 3528 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 3529 { 3530 znode_t *zp, *xzp; 3531 zfsvfs_t *zfsvfs; 3532 zfs_dirlock_t *dl; 3533 int error; 3534 3535 switch (cmd) { 3536 case _PC_LINK_MAX: 3537 *valp = ULONG_MAX; 3538 return (0); 3539 3540 case _PC_FILESIZEBITS: 3541 *valp = 64; 3542 return (0); 3543 3544 case _PC_XATTR_EXISTS: 3545 zp = VTOZ(vp); 3546 zfsvfs = zp->z_zfsvfs; 3547 ZFS_ENTER(zfsvfs); 3548 *valp = 0; 3549 error = zfs_dirent_lock(&dl, zp, "", &xzp, 3550 ZXATTR | ZEXISTS | ZSHARED); 3551 if (error == 0) { 3552 zfs_dirent_unlock(dl); 3553 if (!zfs_dirempty(xzp)) 3554 *valp = 1; 3555 VN_RELE(ZTOV(xzp)); 3556 } else if (error == ENOENT) { 3557 /* 3558 * If there aren't extended attributes, it's the 3559 * same as having zero of them. 3560 */ 3561 error = 0; 3562 } 3563 ZFS_EXIT(zfsvfs); 3564 return (error); 3565 3566 case _PC_ACL_ENABLED: 3567 *valp = _ACL_ACE_ENABLED; 3568 return (0); 3569 3570 case _PC_MIN_HOLE_SIZE: 3571 *valp = (ulong_t)SPA_MINBLOCKSIZE; 3572 return (0); 3573 3574 default: 3575 return (fs_pathconf(vp, cmd, valp, cr)); 3576 } 3577 } 3578 3579 /*ARGSUSED*/ 3580 static int 3581 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3582 { 3583 znode_t *zp = VTOZ(vp); 3584 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3585 int error; 3586 3587 ZFS_ENTER(zfsvfs); 3588 error = zfs_getacl(zp, vsecp, cr); 3589 ZFS_EXIT(zfsvfs); 3590 3591 return (error); 3592 } 3593 3594 /*ARGSUSED*/ 3595 static int 3596 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3597 { 3598 znode_t *zp = VTOZ(vp); 3599 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3600 int error; 3601 3602 ZFS_ENTER(zfsvfs); 3603 error = zfs_setacl(zp, vsecp, cr); 3604 ZFS_EXIT(zfsvfs); 3605 return (error); 3606 } 3607 3608 /* 3609 * Predeclare these here so that the compiler assumes that 3610 * this is an "old style" function declaration that does 3611 * not include arguments => we won't get type mismatch errors 3612 * in the initializations that follow. 3613 */ 3614 static int zfs_inval(); 3615 static int zfs_isdir(); 3616 3617 static int 3618 zfs_inval() 3619 { 3620 return (EINVAL); 3621 } 3622 3623 static int 3624 zfs_isdir() 3625 { 3626 return (EISDIR); 3627 } 3628 /* 3629 * Directory vnode operations template 3630 */ 3631 vnodeops_t *zfs_dvnodeops; 3632 const fs_operation_def_t zfs_dvnodeops_template[] = { 3633 VOPNAME_OPEN, zfs_open, 3634 VOPNAME_CLOSE, zfs_close, 3635 VOPNAME_READ, zfs_isdir, 3636 VOPNAME_WRITE, zfs_isdir, 3637 VOPNAME_IOCTL, zfs_ioctl, 3638 VOPNAME_GETATTR, zfs_getattr, 3639 VOPNAME_SETATTR, zfs_setattr, 3640 VOPNAME_ACCESS, zfs_access, 3641 VOPNAME_LOOKUP, zfs_lookup, 3642 VOPNAME_CREATE, zfs_create, 3643 VOPNAME_REMOVE, zfs_remove, 3644 VOPNAME_LINK, zfs_link, 3645 VOPNAME_RENAME, zfs_rename, 3646 VOPNAME_MKDIR, zfs_mkdir, 3647 VOPNAME_RMDIR, zfs_rmdir, 3648 VOPNAME_READDIR, zfs_readdir, 3649 VOPNAME_SYMLINK, zfs_symlink, 3650 VOPNAME_FSYNC, zfs_fsync, 3651 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3652 VOPNAME_FID, zfs_fid, 3653 VOPNAME_SEEK, zfs_seek, 3654 VOPNAME_PATHCONF, zfs_pathconf, 3655 VOPNAME_GETSECATTR, zfs_getsecattr, 3656 VOPNAME_SETSECATTR, zfs_setsecattr, 3657 NULL, NULL 3658 }; 3659 3660 /* 3661 * Regular file vnode operations template 3662 */ 3663 vnodeops_t *zfs_fvnodeops; 3664 const fs_operation_def_t zfs_fvnodeops_template[] = { 3665 VOPNAME_OPEN, zfs_open, 3666 VOPNAME_CLOSE, zfs_close, 3667 VOPNAME_READ, zfs_read, 3668 VOPNAME_WRITE, zfs_write, 3669 VOPNAME_IOCTL, zfs_ioctl, 3670 VOPNAME_GETATTR, zfs_getattr, 3671 VOPNAME_SETATTR, zfs_setattr, 3672 VOPNAME_ACCESS, zfs_access, 3673 VOPNAME_LOOKUP, zfs_lookup, 3674 VOPNAME_RENAME, zfs_rename, 3675 VOPNAME_FSYNC, zfs_fsync, 3676 VOPNAME_INACTIVE, (fs_generic_func_p)zfs_inactive, 3677 VOPNAME_FID, zfs_fid, 3678 VOPNAME_SEEK, zfs_seek, 3679 VOPNAME_FRLOCK, zfs_frlock, 3680 VOPNAME_SPACE, zfs_space, 3681 VOPNAME_GETPAGE, zfs_getpage, 3682 VOPNAME_PUTPAGE, zfs_putpage, 3683 VOPNAME_MAP, (fs_generic_func_p) zfs_map, 3684 VOPNAME_ADDMAP, (fs_generic_func_p) zfs_addmap, 3685 VOPNAME_DELMAP, zfs_delmap, 3686 VOPNAME_PATHCONF, zfs_pathconf, 3687 VOPNAME_GETSECATTR, zfs_getsecattr, 3688 VOPNAME_SETSECATTR, zfs_setsecattr, 3689 VOPNAME_VNEVENT, fs_vnevent_support, 3690 NULL, NULL 3691 }; 3692 3693 /* 3694 * Symbolic link vnode operations template 3695 */ 3696 vnodeops_t *zfs_symvnodeops; 3697 const fs_operation_def_t zfs_symvnodeops_template[] = { 3698 VOPNAME_GETATTR, zfs_getattr, 3699 VOPNAME_SETATTR, zfs_setattr, 3700 VOPNAME_ACCESS, zfs_access, 3701 VOPNAME_RENAME, zfs_rename, 3702 VOPNAME_READLINK, zfs_readlink, 3703 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3704 VOPNAME_FID, zfs_fid, 3705 VOPNAME_PATHCONF, zfs_pathconf, 3706 VOPNAME_VNEVENT, fs_vnevent_support, 3707 NULL, NULL 3708 }; 3709 3710 /* 3711 * Extended attribute directory vnode operations template 3712 * This template is identical to the directory vnodes 3713 * operation template except for restricted operations: 3714 * VOP_MKDIR() 3715 * VOP_SYMLINK() 3716 * Note that there are other restrictions embedded in: 3717 * zfs_create() - restrict type to VREG 3718 * zfs_link() - no links into/out of attribute space 3719 * zfs_rename() - no moves into/out of attribute space 3720 */ 3721 vnodeops_t *zfs_xdvnodeops; 3722 const fs_operation_def_t zfs_xdvnodeops_template[] = { 3723 VOPNAME_OPEN, zfs_open, 3724 VOPNAME_CLOSE, zfs_close, 3725 VOPNAME_IOCTL, zfs_ioctl, 3726 VOPNAME_GETATTR, zfs_getattr, 3727 VOPNAME_SETATTR, zfs_setattr, 3728 VOPNAME_ACCESS, zfs_access, 3729 VOPNAME_LOOKUP, zfs_lookup, 3730 VOPNAME_CREATE, zfs_create, 3731 VOPNAME_REMOVE, zfs_remove, 3732 VOPNAME_LINK, zfs_link, 3733 VOPNAME_RENAME, zfs_rename, 3734 VOPNAME_MKDIR, zfs_inval, 3735 VOPNAME_RMDIR, zfs_rmdir, 3736 VOPNAME_READDIR, zfs_readdir, 3737 VOPNAME_SYMLINK, zfs_inval, 3738 VOPNAME_FSYNC, zfs_fsync, 3739 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3740 VOPNAME_FID, zfs_fid, 3741 VOPNAME_SEEK, zfs_seek, 3742 VOPNAME_PATHCONF, zfs_pathconf, 3743 VOPNAME_GETSECATTR, zfs_getsecattr, 3744 VOPNAME_SETSECATTR, zfs_setsecattr, 3745 VOPNAME_VNEVENT, fs_vnevent_support, 3746 NULL, NULL 3747 }; 3748 3749 /* 3750 * Error vnode operations template 3751 */ 3752 vnodeops_t *zfs_evnodeops; 3753 const fs_operation_def_t zfs_evnodeops_template[] = { 3754 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3755 VOPNAME_PATHCONF, zfs_pathconf, 3756 NULL, NULL 3757 }; 3758