1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* Portions Copyright 2007 Jeremy Teo */ 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <vm/kpm.h> 51 #include <vm/seg_kpm.h> 52 #include <sys/mman.h> 53 #include <sys/pathname.h> 54 #include <sys/cmn_err.h> 55 #include <sys/errno.h> 56 #include <sys/unistd.h> 57 #include <sys/zfs_dir.h> 58 #include <sys/zfs_acl.h> 59 #include <sys/zfs_ioctl.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/dmu.h> 62 #include <sys/dmu_objset.h> 63 #include <sys/spa.h> 64 #include <sys/txg.h> 65 #include <sys/dbuf.h> 66 #include <sys/zap.h> 67 #include <sys/sa.h> 68 #include <sys/dirent.h> 69 #include <sys/policy.h> 70 #include <sys/sunddi.h> 71 #include <sys/filio.h> 72 #include <sys/sid.h> 73 #include "fs/fs_subr.h" 74 #include <sys/zfs_ctldir.h> 75 #include <sys/zfs_fuid.h> 76 #include <sys/zfs_sa.h> 77 #include <sys/dnlc.h> 78 #include <sys/zfs_rlock.h> 79 #include <sys/extdirent.h> 80 #include <sys/kidmap.h> 81 #include <sys/cred.h> 82 #include <sys/attr.h> 83 #include <sys/zfs_events.h> 84 #include <sys/fs/zev.h> 85 86 /* 87 * Programming rules. 88 * 89 * Each vnode op performs some logical unit of work. To do this, the ZPL must 90 * properly lock its in-core state, create a DMU transaction, do the work, 91 * record this work in the intent log (ZIL), commit the DMU transaction, 92 * and wait for the intent log to commit if it is a synchronous operation. 93 * Moreover, the vnode ops must work in both normal and log replay context. 94 * The ordering of events is important to avoid deadlocks and references 95 * to freed memory. The example below illustrates the following Big Rules: 96 * 97 * (1) A check must be made in each zfs thread for a mounted file system. 98 * This is done avoiding races using ZFS_ENTER(zfsvfs). 99 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 100 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 101 * can return EIO from the calling function. 102 * 103 * (2) VN_RELE() should always be the last thing except for zil_commit() 104 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 105 * First, if it's the last reference, the vnode/znode 106 * can be freed, so the zp may point to freed memory. Second, the last 107 * reference will call zfs_zinactive(), which may induce a lot of work -- 108 * pushing cached pages (which acquires range locks) and syncing out 109 * cached atime changes. Third, zfs_zinactive() may require a new tx, 110 * which could deadlock the system if you were already holding one. 111 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 112 * 113 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 114 * as they can span dmu_tx_assign() calls. 115 * 116 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 117 * dmu_tx_assign(). This is critical because we don't want to block 118 * while holding locks. 119 * 120 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 121 * reduces lock contention and CPU usage when we must wait (note that if 122 * throughput is constrained by the storage, nearly every transaction 123 * must wait). 124 * 125 * Note, in particular, that if a lock is sometimes acquired before 126 * the tx assigns, and sometimes after (e.g. z_lock), then failing 127 * to use a non-blocking assign can deadlock the system. The scenario: 128 * 129 * Thread A has grabbed a lock before calling dmu_tx_assign(). 130 * Thread B is in an already-assigned tx, and blocks for this lock. 131 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 132 * forever, because the previous txg can't quiesce until B's tx commits. 133 * 134 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 135 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 136 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, 137 * to indicate that this operation has already called dmu_tx_wait(). 138 * This will ensure that we don't retry forever, waiting a short bit 139 * each time. 140 * 141 * (5) If the operation succeeded, generate the intent log entry for it 142 * before dropping locks. This ensures that the ordering of events 143 * in the intent log matches the order in which they actually occurred. 144 * During ZIL replay the zfs_log_* functions will update the sequence 145 * number to indicate the zil transaction has replayed. 146 * 147 * (6) At the end of each vnode op, the DMU tx must always commit, 148 * regardless of whether there were any errors. 149 * 150 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 151 * to ensure that synchronous semantics are provided when necessary. 152 * 153 * In general, this is how things should be ordered in each vnode op: 154 * 155 * ZFS_ENTER(zfsvfs); // exit if unmounted 156 * top: 157 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 158 * rw_enter(...); // grab any other locks you need 159 * tx = dmu_tx_create(...); // get DMU tx 160 * dmu_tx_hold_*(); // hold each object you might modify 161 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 162 * if (error) { 163 * rw_exit(...); // drop locks 164 * zfs_dirent_unlock(dl); // unlock directory entry 165 * VN_RELE(...); // release held vnodes 166 * if (error == ERESTART) { 167 * waited = B_TRUE; 168 * dmu_tx_wait(tx); 169 * dmu_tx_abort(tx); 170 * goto top; 171 * } 172 * dmu_tx_abort(tx); // abort DMU tx 173 * ZFS_EXIT(zfsvfs); // finished in zfs 174 * return (error); // really out of space 175 * } 176 * error = do_real_work(); // do whatever this VOP does 177 * if (error == 0) 178 * zfs_log_*(...); // on success, make ZIL entry 179 * dmu_tx_commit(tx); // commit DMU tx -- error or not 180 * rw_exit(...); // drop locks 181 * zfs_dirent_unlock(dl); // unlock directory entry 182 * VN_RELE(...); // release held vnodes 183 * zil_commit(zilog, foid); // synchronous when necessary 184 * ZFS_EXIT(zfsvfs); // finished in zfs 185 * return (error); // done, report error 186 */ 187 188 /* ARGSUSED */ 189 static int 190 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 191 { 192 znode_t *zp = VTOZ(*vpp); 193 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 194 195 ZFS_ENTER(zfsvfs); 196 ZFS_VERIFY_ZP(zp); 197 198 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 199 ((flag & FAPPEND) == 0)) { 200 ZFS_EXIT(zfsvfs); 201 return (SET_ERROR(EPERM)); 202 } 203 204 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 205 ZTOV(zp)->v_type == VREG && 206 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 207 if (fs_vscan(*vpp, cr, 0) != 0) { 208 ZFS_EXIT(zfsvfs); 209 return (SET_ERROR(EACCES)); 210 } 211 } 212 213 /* Keep a count of the synchronous opens in the znode */ 214 if (flag & (FSYNC | FDSYNC)) 215 atomic_inc_32(&zp->z_sync_cnt); 216 217 ZFS_EXIT(zfsvfs); 218 return (0); 219 } 220 221 /* ARGSUSED */ 222 static int 223 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 224 caller_context_t *ct) 225 { 226 znode_t *zp = VTOZ(vp); 227 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 228 229 /* 230 * Clean up any locks held by this process on the vp. 231 */ 232 cleanlocks(vp, ddi_get_pid(), 0); 233 cleanshares(vp, ddi_get_pid()); 234 235 ZFS_ENTER(zfsvfs); 236 ZFS_VERIFY_ZP(zp); 237 238 /* Decrement the synchronous opens in the znode */ 239 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 240 atomic_dec_32(&zp->z_sync_cnt); 241 242 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 243 ZTOV(zp)->v_type == VREG && 244 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 245 VERIFY(fs_vscan(vp, cr, 1) == 0); 246 247 if (ZTOV(zp)->v_type == VREG && zp->z_new_content) { 248 zp->z_new_content = 0; 249 rw_enter(&rz_zev_rwlock, RW_READER); 250 if (rz_zev_callbacks && 251 rz_zev_callbacks->rz_zev_znode_close_after_update) 252 rz_zev_callbacks->rz_zev_znode_close_after_update(zp); 253 rw_exit(&rz_zev_rwlock); 254 } 255 256 ZFS_EXIT(zfsvfs); 257 return (0); 258 } 259 260 /* 261 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 262 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 263 */ 264 static int 265 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 266 { 267 znode_t *zp = VTOZ(vp); 268 uint64_t noff = (uint64_t)*off; /* new offset */ 269 uint64_t file_sz; 270 int error; 271 boolean_t hole; 272 273 file_sz = zp->z_size; 274 if (noff >= file_sz) { 275 return (SET_ERROR(ENXIO)); 276 } 277 278 if (cmd == _FIO_SEEK_HOLE) 279 hole = B_TRUE; 280 else 281 hole = B_FALSE; 282 283 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 284 285 if (error == ESRCH) 286 return (SET_ERROR(ENXIO)); 287 288 /* 289 * We could find a hole that begins after the logical end-of-file, 290 * because dmu_offset_next() only works on whole blocks. If the 291 * EOF falls mid-block, then indicate that the "virtual hole" 292 * at the end of the file begins at the logical EOF, rather than 293 * at the end of the last block. 294 */ 295 if (noff > file_sz) { 296 ASSERT(hole); 297 noff = file_sz; 298 } 299 300 if (noff < *off) 301 return (error); 302 *off = noff; 303 return (error); 304 } 305 306 /* ARGSUSED */ 307 static int 308 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 309 int *rvalp, caller_context_t *ct) 310 { 311 offset_t off; 312 int error; 313 zfsvfs_t *zfsvfs; 314 znode_t *zp; 315 316 switch (com) { 317 case _FIOFFS: 318 return (zfs_sync(vp->v_vfsp, 0, cred)); 319 320 /* 321 * The following two ioctls are used by bfu. Faking out, 322 * necessary to avoid bfu errors. 323 */ 324 case _FIOGDIO: 325 case _FIOSDIO: 326 return (0); 327 328 case _FIO_SEEK_DATA: 329 case _FIO_SEEK_HOLE: 330 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 331 return (SET_ERROR(EFAULT)); 332 333 zp = VTOZ(vp); 334 zfsvfs = zp->z_zfsvfs; 335 ZFS_ENTER(zfsvfs); 336 ZFS_VERIFY_ZP(zp); 337 338 /* offset parameter is in/out */ 339 error = zfs_holey(vp, com, &off); 340 ZFS_EXIT(zfsvfs); 341 if (error) 342 return (error); 343 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 344 return (SET_ERROR(EFAULT)); 345 return (0); 346 } 347 return (SET_ERROR(ENOTTY)); 348 } 349 350 /* 351 * Utility functions to map and unmap a single physical page. These 352 * are used to manage the mappable copies of ZFS file data, and therefore 353 * do not update ref/mod bits. 354 */ 355 caddr_t 356 zfs_map_page(page_t *pp, enum seg_rw rw) 357 { 358 if (kpm_enable) 359 return (hat_kpm_mapin(pp, 0)); 360 ASSERT(rw == S_READ || rw == S_WRITE); 361 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 362 (caddr_t)-1)); 363 } 364 365 void 366 zfs_unmap_page(page_t *pp, caddr_t addr) 367 { 368 if (kpm_enable) { 369 hat_kpm_mapout(pp, 0, addr); 370 } else { 371 ppmapout(addr); 372 } 373 } 374 375 /* 376 * When a file is memory mapped, we must keep the IO data synchronized 377 * between the DMU cache and the memory mapped pages. What this means: 378 * 379 * On Write: If we find a memory mapped page, we write to *both* 380 * the page and the dmu buffer. 381 */ 382 static void 383 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 384 { 385 int64_t off; 386 387 off = start & PAGEOFFSET; 388 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 389 page_t *pp; 390 uint64_t nbytes = MIN(PAGESIZE - off, len); 391 392 if (pp = page_lookup(vp, start, SE_SHARED)) { 393 caddr_t va; 394 395 va = zfs_map_page(pp, S_WRITE); 396 (void) dmu_read(os, oid, start+off, nbytes, va+off, 397 DMU_READ_PREFETCH); 398 zfs_unmap_page(pp, va); 399 page_unlock(pp); 400 } 401 len -= nbytes; 402 off = 0; 403 } 404 } 405 406 /* 407 * When a file is memory mapped, we must keep the IO data synchronized 408 * between the DMU cache and the memory mapped pages. What this means: 409 * 410 * On Read: We "read" preferentially from memory mapped pages, 411 * else we default from the dmu buffer. 412 * 413 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 414 * the file is memory mapped. 415 */ 416 static int 417 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 418 { 419 znode_t *zp = VTOZ(vp); 420 int64_t start, off; 421 int len = nbytes; 422 int error = 0; 423 424 start = uio->uio_loffset; 425 off = start & PAGEOFFSET; 426 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 427 page_t *pp; 428 uint64_t bytes = MIN(PAGESIZE - off, len); 429 430 if (pp = page_lookup(vp, start, SE_SHARED)) { 431 caddr_t va; 432 433 va = zfs_map_page(pp, S_READ); 434 error = uiomove(va + off, bytes, UIO_READ, uio); 435 zfs_unmap_page(pp, va); 436 page_unlock(pp); 437 } else { 438 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 439 uio, bytes); 440 } 441 len -= bytes; 442 off = 0; 443 if (error) 444 break; 445 } 446 return (error); 447 } 448 449 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 450 451 /* 452 * Read bytes from specified file into supplied buffer. 453 * 454 * IN: vp - vnode of file to be read from. 455 * uio - structure supplying read location, range info, 456 * and return buffer. 457 * ioflag - SYNC flags; used to provide FRSYNC semantics. 458 * cr - credentials of caller. 459 * ct - caller context 460 * 461 * OUT: uio - updated offset and range, buffer filled. 462 * 463 * RETURN: 0 on success, error code on failure. 464 * 465 * Side Effects: 466 * vp - atime updated if byte count > 0 467 */ 468 /* ARGSUSED */ 469 static int 470 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 471 { 472 znode_t *zp = VTOZ(vp); 473 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 474 ssize_t n, nbytes; 475 int error = 0; 476 rl_t *rl; 477 xuio_t *xuio = NULL; 478 479 ZFS_ENTER(zfsvfs); 480 ZFS_VERIFY_ZP(zp); 481 482 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 483 ZFS_EXIT(zfsvfs); 484 return (SET_ERROR(EACCES)); 485 } 486 487 /* 488 * Validate file offset 489 */ 490 if (uio->uio_loffset < (offset_t)0) { 491 ZFS_EXIT(zfsvfs); 492 return (SET_ERROR(EINVAL)); 493 } 494 495 /* 496 * Fasttrack empty reads 497 */ 498 if (uio->uio_resid == 0) { 499 ZFS_EXIT(zfsvfs); 500 return (0); 501 } 502 503 /* 504 * Check for mandatory locks 505 */ 506 if (MANDMODE(zp->z_mode)) { 507 if (error = chklock(vp, FREAD, 508 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 509 ZFS_EXIT(zfsvfs); 510 return (error); 511 } 512 } 513 514 /* 515 * If we're in FRSYNC mode, sync out this znode before reading it. 516 */ 517 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 518 zil_commit(zfsvfs->z_log, zp->z_id); 519 520 /* 521 * Lock the range against changes. 522 */ 523 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 524 525 /* 526 * If we are reading past end-of-file we can skip 527 * to the end; but we might still need to set atime. 528 */ 529 if (uio->uio_loffset >= zp->z_size) { 530 error = 0; 531 goto out; 532 } 533 534 ASSERT(uio->uio_loffset < zp->z_size); 535 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 536 537 if ((uio->uio_extflg == UIO_XUIO) && 538 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 539 int nblk; 540 int blksz = zp->z_blksz; 541 uint64_t offset = uio->uio_loffset; 542 543 xuio = (xuio_t *)uio; 544 if ((ISP2(blksz))) { 545 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 546 blksz)) / blksz; 547 } else { 548 ASSERT(offset + n <= blksz); 549 nblk = 1; 550 } 551 (void) dmu_xuio_init(xuio, nblk); 552 553 if (vn_has_cached_data(vp)) { 554 /* 555 * For simplicity, we always allocate a full buffer 556 * even if we only expect to read a portion of a block. 557 */ 558 while (--nblk >= 0) { 559 (void) dmu_xuio_add(xuio, 560 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 561 blksz), 0, blksz); 562 } 563 } 564 } 565 566 while (n > 0) { 567 nbytes = MIN(n, zfs_read_chunk_size - 568 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 569 570 if (vn_has_cached_data(vp)) { 571 error = mappedread(vp, nbytes, uio); 572 } else { 573 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 574 uio, nbytes); 575 } 576 if (error) { 577 /* convert checksum errors into IO errors */ 578 if (error == ECKSUM) 579 error = SET_ERROR(EIO); 580 break; 581 } 582 583 n -= nbytes; 584 } 585 out: 586 zfs_range_unlock(rl); 587 588 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 589 ZFS_EXIT(zfsvfs); 590 return (error); 591 } 592 593 /* 594 * Write the bytes to a file. 595 * 596 * IN: vp - vnode of file to be written to. 597 * uio - structure supplying write location, range info, 598 * and data buffer. 599 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 600 * set if in append mode. 601 * cr - credentials of caller. 602 * ct - caller context (NFS/CIFS fem monitor only) 603 * 604 * OUT: uio - updated offset and range. 605 * 606 * RETURN: 0 on success, error code on failure. 607 * 608 * Timestamps: 609 * vp - ctime|mtime updated if byte count > 0 610 */ 611 612 /* ARGSUSED */ 613 static int 614 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 615 { 616 znode_t *zp = VTOZ(vp); 617 rlim64_t limit = uio->uio_llimit; 618 ssize_t start_resid = uio->uio_resid; 619 ssize_t tx_bytes; 620 uint64_t end_size; 621 dmu_tx_t *tx; 622 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 623 zilog_t *zilog; 624 offset_t woff; 625 ssize_t n, nbytes; 626 rl_t *rl; 627 int max_blksz = zfsvfs->z_max_blksz; 628 int error = 0; 629 arc_buf_t *abuf; 630 iovec_t *aiov = NULL; 631 xuio_t *xuio = NULL; 632 int i_iov = 0; 633 int iovcnt = uio->uio_iovcnt; 634 iovec_t *iovp = uio->uio_iov; 635 int write_eof; 636 int count = 0; 637 sa_bulk_attr_t bulk[4]; 638 uint64_t mtime[2], ctime[2]; 639 ssize_t lock_off, lock_len; 640 641 /* 642 * Fasttrack empty write 643 */ 644 n = start_resid; 645 if (n == 0) 646 return (0); 647 648 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 649 limit = MAXOFFSET_T; 650 651 ZFS_ENTER(zfsvfs); 652 ZFS_VERIFY_ZP(zp); 653 654 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 655 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 656 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 657 &zp->z_size, 8); 658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 659 &zp->z_pflags, 8); 660 661 /* 662 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 663 * callers might not be able to detect properly that we are read-only, 664 * so check it explicitly here. 665 */ 666 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 667 ZFS_EXIT(zfsvfs); 668 return (SET_ERROR(EROFS)); 669 } 670 671 /* 672 * If immutable or not appending then return EPERM 673 */ 674 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 675 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 676 (uio->uio_loffset < zp->z_size))) { 677 ZFS_EXIT(zfsvfs); 678 return (SET_ERROR(EPERM)); 679 } 680 681 zilog = zfsvfs->z_log; 682 683 /* 684 * Validate file offset 685 */ 686 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 687 if (woff < 0) { 688 ZFS_EXIT(zfsvfs); 689 return (SET_ERROR(EINVAL)); 690 } 691 692 /* 693 * Check for mandatory locks before calling zfs_range_lock() 694 * in order to prevent a deadlock with locks set via fcntl(). 695 */ 696 if (MANDMODE((mode_t)zp->z_mode) && 697 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 698 ZFS_EXIT(zfsvfs); 699 return (error); 700 } 701 702 /* 703 * Pre-fault the pages to ensure slow (eg NFS) pages 704 * don't hold up txg. 705 * Skip this if uio contains loaned arc_buf. 706 */ 707 if ((uio->uio_extflg == UIO_XUIO) && 708 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 709 xuio = (xuio_t *)uio; 710 else 711 uio_prefaultpages(MIN(n, max_blksz), uio); 712 713 /* 714 * If in append mode, set the io offset pointer to eof. 715 */ 716 if (ioflag & FAPPEND) { 717 /* 718 * Obtain an appending range lock to guarantee file append 719 * semantics. We reset the write offset once we have the lock. 720 */ 721 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 722 woff = rl->r_off; 723 if (rl->r_len == UINT64_MAX) { 724 /* 725 * We overlocked the file because this write will cause 726 * the file block size to increase. 727 * Note that zp_size cannot change with this lock held. 728 */ 729 woff = zp->z_size; 730 } 731 uio->uio_loffset = woff; 732 } else { 733 /* 734 * Note that if the file block size will change as a result of 735 * this write, then this range lock will lock the entire file 736 * so that we can re-write the block safely. 737 */ 738 739 /* 740 * If in zev mode, lock offsets are quantized to 1MB chunks 741 * so that we can calculate level 1 checksums later on. 742 */ 743 if (rz_zev_active()) { 744 /* start of this megabyte */ 745 lock_off = P2ALIGN(woff, ZEV_L1_SIZE); 746 /* full megabytes */ 747 lock_len = n + (woff - lock_off); 748 lock_len = P2ROUNDUP(lock_len, ZEV_L1_SIZE); 749 } else { 750 lock_off = woff; 751 lock_len = n; 752 } 753 754 rl = zfs_range_lock(zp, lock_off, lock_len, RL_WRITER); 755 } 756 757 if (woff >= limit) { 758 zfs_range_unlock(rl); 759 ZFS_EXIT(zfsvfs); 760 return (SET_ERROR(EFBIG)); 761 } 762 763 if ((woff + n) > limit || woff > (limit - n)) 764 n = limit - woff; 765 766 /* Will this write extend the file length? */ 767 write_eof = (woff + n > zp->z_size); 768 769 end_size = MAX(zp->z_size, woff + n); 770 771 /* 772 * Write the file in reasonable size chunks. Each chunk is written 773 * in a separate transaction; this keeps the intent log records small 774 * and allows us to do more fine-grained space accounting. 775 */ 776 while (n > 0) { 777 abuf = NULL; 778 woff = uio->uio_loffset; 779 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 780 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 781 if (abuf != NULL) 782 dmu_return_arcbuf(abuf); 783 error = SET_ERROR(EDQUOT); 784 break; 785 } 786 787 if (xuio && abuf == NULL) { 788 ASSERT(i_iov < iovcnt); 789 aiov = &iovp[i_iov]; 790 abuf = dmu_xuio_arcbuf(xuio, i_iov); 791 dmu_xuio_clear(xuio, i_iov); 792 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 793 iovec_t *, aiov, arc_buf_t *, abuf); 794 ASSERT((aiov->iov_base == abuf->b_data) || 795 ((char *)aiov->iov_base - (char *)abuf->b_data + 796 aiov->iov_len == arc_buf_size(abuf))); 797 i_iov++; 798 } else if (abuf == NULL && n >= max_blksz && 799 woff >= zp->z_size && 800 P2PHASE(woff, max_blksz) == 0 && 801 zp->z_blksz == max_blksz) { 802 /* 803 * This write covers a full block. "Borrow" a buffer 804 * from the dmu so that we can fill it before we enter 805 * a transaction. This avoids the possibility of 806 * holding up the transaction if the data copy hangs 807 * up on a pagefault (e.g., from an NFS server mapping). 808 */ 809 size_t cbytes; 810 811 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 812 max_blksz); 813 ASSERT(abuf != NULL); 814 ASSERT(arc_buf_size(abuf) == max_blksz); 815 if (error = uiocopy(abuf->b_data, max_blksz, 816 UIO_WRITE, uio, &cbytes)) { 817 dmu_return_arcbuf(abuf); 818 break; 819 } 820 ASSERT(cbytes == max_blksz); 821 } 822 823 /* 824 * Start a transaction. 825 */ 826 tx = dmu_tx_create(zfsvfs->z_os); 827 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 828 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 829 zfs_sa_upgrade_txholds(tx, zp); 830 error = dmu_tx_assign(tx, TXG_WAIT); 831 if (error) { 832 dmu_tx_abort(tx); 833 if (abuf != NULL) 834 dmu_return_arcbuf(abuf); 835 break; 836 } 837 838 /* 839 * If zfs_range_lock() over-locked we grow the blocksize 840 * and then reduce the lock range. This will only happen 841 * on the first iteration since zfs_range_reduce() will 842 * shrink down r_len to the appropriate size. 843 */ 844 if (rl->r_len == UINT64_MAX) { 845 uint64_t new_blksz; 846 847 if (zp->z_blksz > max_blksz) { 848 /* 849 * File's blocksize is already larger than the 850 * "recordsize" property. Only let it grow to 851 * the next power of 2. 852 */ 853 ASSERT(!ISP2(zp->z_blksz)); 854 new_blksz = MIN(end_size, 855 1 << highbit64(zp->z_blksz)); 856 } else { 857 new_blksz = MIN(end_size, max_blksz); 858 } 859 zfs_grow_blocksize(zp, new_blksz, tx); 860 zfs_range_reduce(rl, woff, n); 861 } 862 863 /* 864 * XXX - should we really limit each write to z_max_blksz? 865 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 866 */ 867 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 868 869 if (abuf == NULL) { 870 tx_bytes = uio->uio_resid; 871 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 872 uio, nbytes, tx); 873 tx_bytes -= uio->uio_resid; 874 } else { 875 tx_bytes = nbytes; 876 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 877 /* 878 * If this is not a full block write, but we are 879 * extending the file past EOF and this data starts 880 * block-aligned, use assign_arcbuf(). Otherwise, 881 * write via dmu_write(). 882 */ 883 if (tx_bytes < max_blksz && (!write_eof || 884 aiov->iov_base != abuf->b_data)) { 885 ASSERT(xuio); 886 dmu_write(zfsvfs->z_os, zp->z_id, woff, 887 aiov->iov_len, aiov->iov_base, tx); 888 dmu_return_arcbuf(abuf); 889 xuio_stat_wbuf_copied(); 890 } else { 891 ASSERT(xuio || tx_bytes == max_blksz); 892 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 893 woff, abuf, tx); 894 } 895 ASSERT(tx_bytes <= uio->uio_resid); 896 uioskip(uio, tx_bytes); 897 } 898 if (tx_bytes && vn_has_cached_data(vp)) { 899 update_pages(vp, woff, 900 tx_bytes, zfsvfs->z_os, zp->z_id); 901 } 902 903 /* 904 * If we made no progress, we're done. If we made even 905 * partial progress, update the znode and ZIL accordingly. 906 */ 907 if (tx_bytes == 0) { 908 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 909 (void *)&zp->z_size, sizeof (uint64_t), tx); 910 dmu_tx_commit(tx); 911 ASSERT(error != 0); 912 break; 913 } 914 915 /* 916 * Clear Set-UID/Set-GID bits on successful write if not 917 * privileged and at least one of the excute bits is set. 918 * 919 * It would be nice to to this after all writes have 920 * been done, but that would still expose the ISUID/ISGID 921 * to another app after the partial write is committed. 922 * 923 * Note: we don't call zfs_fuid_map_id() here because 924 * user 0 is not an ephemeral uid. 925 */ 926 mutex_enter(&zp->z_acl_lock); 927 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 928 (S_IXUSR >> 6))) != 0 && 929 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 930 secpolicy_vnode_setid_retain(cr, 931 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 932 uint64_t newmode; 933 zp->z_mode &= ~(S_ISUID | S_ISGID); 934 newmode = zp->z_mode; 935 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 936 (void *)&newmode, sizeof (uint64_t), tx); 937 } 938 mutex_exit(&zp->z_acl_lock); 939 940 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 941 B_TRUE); 942 943 /* 944 * Update the file size (zp_size) if it has changed; 945 * account for possible concurrent updates. 946 */ 947 while ((end_size = zp->z_size) < uio->uio_loffset) { 948 (void) atomic_cas_64(&zp->z_size, end_size, 949 uio->uio_loffset); 950 ASSERT(error == 0); 951 } 952 /* 953 * If we are replaying and eof is non zero then force 954 * the file size to the specified eof. Note, there's no 955 * concurrency during replay. 956 */ 957 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 958 zp->z_size = zfsvfs->z_replay_eof; 959 960 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 961 962 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 963 dmu_tx_commit(tx); 964 965 if (error != 0) 966 break; 967 ASSERT(tx_bytes == nbytes); 968 n -= nbytes; 969 970 if (!xuio && n > 0) 971 uio_prefaultpages(MIN(n, max_blksz), uio); 972 } 973 974 zfs_range_unlock(rl); 975 976 /* 977 * If we're in replay mode, or we made no progress, return error. 978 * Otherwise, it's at least a partial write, so it's successful. 979 */ 980 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 981 ZFS_EXIT(zfsvfs); 982 return (error); 983 } 984 985 if (ioflag & (FSYNC | FDSYNC) || 986 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 987 zil_commit(zilog, zp->z_id); 988 989 ZFS_EXIT(zfsvfs); 990 return (0); 991 } 992 993 void 994 zfs_get_done(zgd_t *zgd, int error) 995 { 996 znode_t *zp = zgd->zgd_private; 997 objset_t *os = zp->z_zfsvfs->z_os; 998 999 if (zgd->zgd_db) 1000 dmu_buf_rele(zgd->zgd_db, zgd); 1001 1002 zfs_range_unlock(zgd->zgd_rl); 1003 1004 /* 1005 * Release the vnode asynchronously as we currently have the 1006 * txg stopped from syncing. 1007 */ 1008 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1009 1010 if (error == 0 && zgd->zgd_bp) 1011 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1012 1013 kmem_free(zgd, sizeof (zgd_t)); 1014 } 1015 1016 #ifdef DEBUG 1017 static int zil_fault_io = 0; 1018 #endif 1019 1020 /* 1021 * Get data to generate a TX_WRITE intent log record. 1022 */ 1023 int 1024 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1025 { 1026 zfsvfs_t *zfsvfs = arg; 1027 objset_t *os = zfsvfs->z_os; 1028 znode_t *zp; 1029 uint64_t object = lr->lr_foid; 1030 uint64_t offset = lr->lr_offset; 1031 uint64_t size = lr->lr_length; 1032 blkptr_t *bp = &lr->lr_blkptr; 1033 dmu_buf_t *db; 1034 zgd_t *zgd; 1035 int error = 0; 1036 1037 ASSERT(zio != NULL); 1038 ASSERT(size != 0); 1039 1040 /* 1041 * Nothing to do if the file has been removed 1042 */ 1043 if (zfs_zget(zfsvfs, object, &zp) != 0) 1044 return (SET_ERROR(ENOENT)); 1045 if (zp->z_unlinked) { 1046 /* 1047 * Release the vnode asynchronously as we currently have the 1048 * txg stopped from syncing. 1049 */ 1050 VN_RELE_ASYNC(ZTOV(zp), 1051 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1052 return (SET_ERROR(ENOENT)); 1053 } 1054 1055 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1056 zgd->zgd_zilog = zfsvfs->z_log; 1057 zgd->zgd_private = zp; 1058 1059 /* 1060 * Write records come in two flavors: immediate and indirect. 1061 * For small writes it's cheaper to store the data with the 1062 * log record (immediate); for large writes it's cheaper to 1063 * sync the data and get a pointer to it (indirect) so that 1064 * we don't have to write the data twice. 1065 */ 1066 if (buf != NULL) { /* immediate write */ 1067 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1068 /* test for truncation needs to be done while range locked */ 1069 if (offset >= zp->z_size) { 1070 error = SET_ERROR(ENOENT); 1071 } else { 1072 error = dmu_read(os, object, offset, size, buf, 1073 DMU_READ_NO_PREFETCH); 1074 } 1075 ASSERT(error == 0 || error == ENOENT); 1076 } else { /* indirect write */ 1077 /* 1078 * Have to lock the whole block to ensure when it's 1079 * written out and it's checksum is being calculated 1080 * that no one can change the data. We need to re-check 1081 * blocksize after we get the lock in case it's changed! 1082 */ 1083 for (;;) { 1084 uint64_t blkoff; 1085 size = zp->z_blksz; 1086 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1087 offset -= blkoff; 1088 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1089 RL_READER); 1090 if (zp->z_blksz == size) 1091 break; 1092 offset += blkoff; 1093 zfs_range_unlock(zgd->zgd_rl); 1094 } 1095 /* test for truncation needs to be done while range locked */ 1096 if (lr->lr_offset >= zp->z_size) 1097 error = SET_ERROR(ENOENT); 1098 #ifdef DEBUG 1099 if (zil_fault_io) { 1100 error = SET_ERROR(EIO); 1101 zil_fault_io = 0; 1102 } 1103 #endif 1104 if (error == 0) 1105 error = dmu_buf_hold(os, object, offset, zgd, &db, 1106 DMU_READ_NO_PREFETCH); 1107 1108 if (error == 0) { 1109 blkptr_t *obp = dmu_buf_get_blkptr(db); 1110 if (obp) { 1111 ASSERT(BP_IS_HOLE(bp)); 1112 *bp = *obp; 1113 } 1114 1115 zgd->zgd_db = db; 1116 zgd->zgd_bp = bp; 1117 1118 ASSERT(db->db_offset == offset); 1119 ASSERT(db->db_size == size); 1120 1121 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1122 zfs_get_done, zgd); 1123 ASSERT(error || lr->lr_length <= zp->z_blksz); 1124 1125 /* 1126 * On success, we need to wait for the write I/O 1127 * initiated by dmu_sync() to complete before we can 1128 * release this dbuf. We will finish everything up 1129 * in the zfs_get_done() callback. 1130 */ 1131 if (error == 0) 1132 return (0); 1133 1134 if (error == EALREADY) { 1135 lr->lr_common.lrc_txtype = TX_WRITE2; 1136 error = 0; 1137 } 1138 } 1139 } 1140 1141 zfs_get_done(zgd, error); 1142 1143 return (error); 1144 } 1145 1146 /*ARGSUSED*/ 1147 static int 1148 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1149 caller_context_t *ct) 1150 { 1151 znode_t *zp = VTOZ(vp); 1152 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1153 int error; 1154 1155 ZFS_ENTER(zfsvfs); 1156 ZFS_VERIFY_ZP(zp); 1157 1158 if (flag & V_ACE_MASK) 1159 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1160 else 1161 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1162 1163 ZFS_EXIT(zfsvfs); 1164 return (error); 1165 } 1166 1167 /* 1168 * If vnode is for a device return a specfs vnode instead. 1169 */ 1170 static int 1171 specvp_check(vnode_t **vpp, cred_t *cr) 1172 { 1173 int error = 0; 1174 1175 if (IS_DEVVP(*vpp)) { 1176 struct vnode *svp; 1177 1178 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1179 VN_RELE(*vpp); 1180 if (svp == NULL) 1181 error = SET_ERROR(ENOSYS); 1182 *vpp = svp; 1183 } 1184 return (error); 1185 } 1186 1187 1188 /* 1189 * Lookup an entry in a directory, or an extended attribute directory. 1190 * If it exists, return a held vnode reference for it. 1191 * 1192 * IN: dvp - vnode of directory to search. 1193 * nm - name of entry to lookup. 1194 * pnp - full pathname to lookup [UNUSED]. 1195 * flags - LOOKUP_XATTR set if looking for an attribute. 1196 * rdir - root directory vnode [UNUSED]. 1197 * cr - credentials of caller. 1198 * ct - caller context 1199 * direntflags - directory lookup flags 1200 * realpnp - returned pathname. 1201 * 1202 * OUT: vpp - vnode of located entry, NULL if not found. 1203 * 1204 * RETURN: 0 on success, error code on failure. 1205 * 1206 * Timestamps: 1207 * NA 1208 */ 1209 /* ARGSUSED */ 1210 static int 1211 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1212 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1213 int *direntflags, pathname_t *realpnp) 1214 { 1215 znode_t *zdp = VTOZ(dvp); 1216 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1217 int error = 0; 1218 1219 /* fast path */ 1220 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1221 1222 if (dvp->v_type != VDIR) { 1223 return (SET_ERROR(ENOTDIR)); 1224 } else if (zdp->z_sa_hdl == NULL) { 1225 return (SET_ERROR(EIO)); 1226 } 1227 1228 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1229 error = zfs_fastaccesschk_execute(zdp, cr); 1230 if (!error) { 1231 *vpp = dvp; 1232 VN_HOLD(*vpp); 1233 return (0); 1234 } 1235 return (error); 1236 } else { 1237 vnode_t *tvp = dnlc_lookup(dvp, nm); 1238 1239 if (tvp) { 1240 error = zfs_fastaccesschk_execute(zdp, cr); 1241 if (error) { 1242 VN_RELE(tvp); 1243 return (error); 1244 } 1245 if (tvp == DNLC_NO_VNODE) { 1246 VN_RELE(tvp); 1247 return (SET_ERROR(ENOENT)); 1248 } else { 1249 *vpp = tvp; 1250 return (specvp_check(vpp, cr)); 1251 } 1252 } 1253 } 1254 } 1255 1256 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1257 1258 ZFS_ENTER(zfsvfs); 1259 ZFS_VERIFY_ZP(zdp); 1260 1261 *vpp = NULL; 1262 1263 if (flags & LOOKUP_XATTR) { 1264 /* 1265 * If the xattr property is off, refuse the lookup request. 1266 */ 1267 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1268 ZFS_EXIT(zfsvfs); 1269 return (SET_ERROR(EINVAL)); 1270 } 1271 1272 /* 1273 * We don't allow recursive attributes.. 1274 * Maybe someday we will. 1275 */ 1276 if (zdp->z_pflags & ZFS_XATTR) { 1277 ZFS_EXIT(zfsvfs); 1278 return (SET_ERROR(EINVAL)); 1279 } 1280 1281 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1282 ZFS_EXIT(zfsvfs); 1283 return (error); 1284 } 1285 1286 /* 1287 * Do we have permission to get into attribute directory? 1288 */ 1289 1290 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1291 B_FALSE, cr)) { 1292 VN_RELE(*vpp); 1293 *vpp = NULL; 1294 } 1295 1296 ZFS_EXIT(zfsvfs); 1297 return (error); 1298 } 1299 1300 if (dvp->v_type != VDIR) { 1301 ZFS_EXIT(zfsvfs); 1302 return (SET_ERROR(ENOTDIR)); 1303 } 1304 1305 /* 1306 * Check accessibility of directory. 1307 */ 1308 1309 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1310 ZFS_EXIT(zfsvfs); 1311 return (error); 1312 } 1313 1314 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1315 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1316 ZFS_EXIT(zfsvfs); 1317 return (SET_ERROR(EILSEQ)); 1318 } 1319 1320 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1321 if (error == 0) 1322 error = specvp_check(vpp, cr); 1323 1324 ZFS_EXIT(zfsvfs); 1325 return (error); 1326 } 1327 1328 /* 1329 * Attempt to create a new entry in a directory. If the entry 1330 * already exists, truncate the file if permissible, else return 1331 * an error. Return the vp of the created or trunc'd file. 1332 * 1333 * IN: dvp - vnode of directory to put new file entry in. 1334 * name - name of new file entry. 1335 * vap - attributes of new file. 1336 * excl - flag indicating exclusive or non-exclusive mode. 1337 * mode - mode to open file with. 1338 * cr - credentials of caller. 1339 * flag - large file flag [UNUSED]. 1340 * ct - caller context 1341 * vsecp - ACL to be set 1342 * 1343 * OUT: vpp - vnode of created or trunc'd entry. 1344 * 1345 * RETURN: 0 on success, error code on failure. 1346 * 1347 * Timestamps: 1348 * dvp - ctime|mtime updated if new entry created 1349 * vp - ctime|mtime always, atime if new 1350 */ 1351 1352 /* ARGSUSED */ 1353 static int 1354 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1355 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1356 vsecattr_t *vsecp) 1357 { 1358 znode_t *zp, *dzp = VTOZ(dvp); 1359 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1360 zilog_t *zilog; 1361 objset_t *os; 1362 zfs_dirlock_t *dl; 1363 dmu_tx_t *tx; 1364 int error; 1365 ksid_t *ksid; 1366 uid_t uid; 1367 gid_t gid = crgetgid(cr); 1368 zfs_acl_ids_t acl_ids; 1369 boolean_t fuid_dirtied; 1370 boolean_t have_acl = B_FALSE; 1371 boolean_t waited = B_FALSE; 1372 1373 /* 1374 * If we have an ephemeral id, ACL, or XVATTR then 1375 * make sure file system is at proper version 1376 */ 1377 1378 ksid = crgetsid(cr, KSID_OWNER); 1379 if (ksid) 1380 uid = ksid_getid(ksid); 1381 else 1382 uid = crgetuid(cr); 1383 1384 if (zfsvfs->z_use_fuids == B_FALSE && 1385 (vsecp || (vap->va_mask & AT_XVATTR) || 1386 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1387 return (SET_ERROR(EINVAL)); 1388 1389 ZFS_ENTER(zfsvfs); 1390 ZFS_VERIFY_ZP(dzp); 1391 os = zfsvfs->z_os; 1392 zilog = zfsvfs->z_log; 1393 1394 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1395 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1396 ZFS_EXIT(zfsvfs); 1397 return (SET_ERROR(EILSEQ)); 1398 } 1399 1400 if (vap->va_mask & AT_XVATTR) { 1401 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1402 crgetuid(cr), cr, vap->va_type)) != 0) { 1403 ZFS_EXIT(zfsvfs); 1404 return (error); 1405 } 1406 } 1407 top: 1408 *vpp = NULL; 1409 1410 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1411 vap->va_mode &= ~VSVTX; 1412 1413 if (*name == '\0') { 1414 /* 1415 * Null component name refers to the directory itself. 1416 */ 1417 VN_HOLD(dvp); 1418 zp = dzp; 1419 dl = NULL; 1420 error = 0; 1421 } else { 1422 /* possible VN_HOLD(zp) */ 1423 int zflg = 0; 1424 1425 if (flag & FIGNORECASE) 1426 zflg |= ZCILOOK; 1427 1428 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1429 NULL, NULL); 1430 if (error) { 1431 if (have_acl) 1432 zfs_acl_ids_free(&acl_ids); 1433 if (strcmp(name, "..") == 0) 1434 error = SET_ERROR(EISDIR); 1435 ZFS_EXIT(zfsvfs); 1436 return (error); 1437 } 1438 } 1439 1440 if (zp == NULL) { 1441 uint64_t txtype; 1442 1443 /* 1444 * Create a new file object and update the directory 1445 * to reference it. 1446 */ 1447 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1448 if (have_acl) 1449 zfs_acl_ids_free(&acl_ids); 1450 goto out; 1451 } 1452 1453 /* 1454 * We only support the creation of regular files in 1455 * extended attribute directories. 1456 */ 1457 1458 if ((dzp->z_pflags & ZFS_XATTR) && 1459 (vap->va_type != VREG)) { 1460 if (have_acl) 1461 zfs_acl_ids_free(&acl_ids); 1462 error = SET_ERROR(EINVAL); 1463 goto out; 1464 } 1465 1466 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1467 cr, vsecp, &acl_ids)) != 0) 1468 goto out; 1469 have_acl = B_TRUE; 1470 1471 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1472 zfs_acl_ids_free(&acl_ids); 1473 error = SET_ERROR(EDQUOT); 1474 goto out; 1475 } 1476 1477 tx = dmu_tx_create(os); 1478 1479 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1480 ZFS_SA_BASE_ATTR_SIZE); 1481 1482 fuid_dirtied = zfsvfs->z_fuid_dirty; 1483 if (fuid_dirtied) 1484 zfs_fuid_txhold(zfsvfs, tx); 1485 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1486 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1487 if (!zfsvfs->z_use_sa && 1488 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1489 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1490 0, acl_ids.z_aclp->z_acl_bytes); 1491 } 1492 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1493 if (error) { 1494 zfs_dirent_unlock(dl); 1495 if (error == ERESTART) { 1496 waited = B_TRUE; 1497 dmu_tx_wait(tx); 1498 dmu_tx_abort(tx); 1499 goto top; 1500 } 1501 zfs_acl_ids_free(&acl_ids); 1502 dmu_tx_abort(tx); 1503 ZFS_EXIT(zfsvfs); 1504 return (error); 1505 } 1506 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1507 1508 if (fuid_dirtied) 1509 zfs_fuid_sync(zfsvfs, tx); 1510 1511 (void) zfs_link_create(dl, zp, tx, ZNEW); 1512 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1513 if (flag & FIGNORECASE) 1514 txtype |= TX_CI; 1515 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1516 vsecp, acl_ids.z_fuidp, vap); 1517 zfs_acl_ids_free(&acl_ids); 1518 dmu_tx_commit(tx); 1519 } else { 1520 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1521 1522 if (have_acl) 1523 zfs_acl_ids_free(&acl_ids); 1524 have_acl = B_FALSE; 1525 1526 /* 1527 * A directory entry already exists for this name. 1528 */ 1529 /* 1530 * Can't truncate an existing file if in exclusive mode. 1531 */ 1532 if (excl == EXCL) { 1533 error = SET_ERROR(EEXIST); 1534 goto out; 1535 } 1536 /* 1537 * Can't open a directory for writing. 1538 */ 1539 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1540 error = SET_ERROR(EISDIR); 1541 goto out; 1542 } 1543 /* 1544 * Verify requested access to file. 1545 */ 1546 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1547 goto out; 1548 } 1549 1550 mutex_enter(&dzp->z_lock); 1551 dzp->z_seq++; 1552 mutex_exit(&dzp->z_lock); 1553 1554 /* 1555 * Truncate regular files if requested. 1556 */ 1557 if ((ZTOV(zp)->v_type == VREG) && 1558 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1559 /* we can't hold any locks when calling zfs_freesp() */ 1560 zfs_dirent_unlock(dl); 1561 dl = NULL; 1562 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1563 if (error == 0) { 1564 vnevent_create(ZTOV(zp), ct); 1565 } 1566 } 1567 } 1568 out: 1569 1570 if (dl) 1571 zfs_dirent_unlock(dl); 1572 1573 if (error) { 1574 if (zp) 1575 VN_RELE(ZTOV(zp)); 1576 } else { 1577 *vpp = ZTOV(zp); 1578 error = specvp_check(vpp, cr); 1579 } 1580 1581 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1582 zil_commit(zilog, 0); 1583 1584 ZFS_EXIT(zfsvfs); 1585 return (error); 1586 } 1587 1588 /* 1589 * Remove an entry from a directory. 1590 * 1591 * IN: dvp - vnode of directory to remove entry from. 1592 * name - name of entry to remove. 1593 * cr - credentials of caller. 1594 * ct - caller context 1595 * flags - case flags 1596 * 1597 * RETURN: 0 on success, error code on failure. 1598 * 1599 * Timestamps: 1600 * dvp - ctime|mtime 1601 * vp - ctime (if nlink > 0) 1602 */ 1603 1604 uint64_t null_xattr = 0; 1605 1606 /*ARGSUSED*/ 1607 static int 1608 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1609 int flags) 1610 { 1611 znode_t *zp, *dzp = VTOZ(dvp); 1612 znode_t *xzp; 1613 vnode_t *vp; 1614 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1615 zilog_t *zilog; 1616 uint64_t acl_obj, xattr_obj; 1617 uint64_t xattr_obj_unlinked = 0; 1618 uint64_t obj = 0; 1619 zfs_dirlock_t *dl; 1620 dmu_tx_t *tx; 1621 boolean_t may_delete_now, delete_now = FALSE; 1622 boolean_t unlinked, toobig = FALSE; 1623 uint64_t txtype; 1624 pathname_t *realnmp = NULL; 1625 pathname_t realnm; 1626 int error; 1627 int zflg = ZEXISTS; 1628 boolean_t waited = B_FALSE; 1629 1630 ZFS_ENTER(zfsvfs); 1631 ZFS_VERIFY_ZP(dzp); 1632 zilog = zfsvfs->z_log; 1633 1634 if (flags & FIGNORECASE) { 1635 zflg |= ZCILOOK; 1636 pn_alloc(&realnm); 1637 realnmp = &realnm; 1638 } 1639 1640 top: 1641 xattr_obj = 0; 1642 xzp = NULL; 1643 /* 1644 * Attempt to lock directory; fail if entry doesn't exist. 1645 */ 1646 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1647 NULL, realnmp)) { 1648 if (realnmp) 1649 pn_free(realnmp); 1650 ZFS_EXIT(zfsvfs); 1651 return (error); 1652 } 1653 1654 vp = ZTOV(zp); 1655 1656 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1657 goto out; 1658 } 1659 1660 /* 1661 * Need to use rmdir for removing directories. 1662 */ 1663 if (vp->v_type == VDIR) { 1664 error = SET_ERROR(EPERM); 1665 goto out; 1666 } 1667 1668 vnevent_remove(vp, dvp, name, ct); 1669 1670 if (realnmp) 1671 dnlc_remove(dvp, realnmp->pn_buf); 1672 else 1673 dnlc_remove(dvp, name); 1674 1675 mutex_enter(&vp->v_lock); 1676 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1677 mutex_exit(&vp->v_lock); 1678 1679 /* 1680 * We may delete the znode now, or we may put it in the unlinked set; 1681 * it depends on whether we're the last link, and on whether there are 1682 * other holds on the vnode. So we dmu_tx_hold() the right things to 1683 * allow for either case. 1684 */ 1685 obj = zp->z_id; 1686 tx = dmu_tx_create(zfsvfs->z_os); 1687 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1688 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1689 zfs_sa_upgrade_txholds(tx, zp); 1690 zfs_sa_upgrade_txholds(tx, dzp); 1691 if (may_delete_now) { 1692 toobig = 1693 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1694 /* if the file is too big, only hold_free a token amount */ 1695 dmu_tx_hold_free(tx, zp->z_id, 0, 1696 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1697 } 1698 1699 /* are there any extended attributes? */ 1700 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1701 &xattr_obj, sizeof (xattr_obj)); 1702 if (error == 0 && xattr_obj) { 1703 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1704 ASSERT0(error); 1705 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1706 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1707 } 1708 1709 mutex_enter(&zp->z_lock); 1710 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1711 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1712 mutex_exit(&zp->z_lock); 1713 1714 /* charge as an update -- would be nice not to charge at all */ 1715 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1716 1717 /* 1718 * Mark this transaction as typically resulting in a net free of 1719 * space, unless object removal will be delayed indefinitely 1720 * (due to active holds on the vnode due to the file being open). 1721 */ 1722 if (may_delete_now) 1723 dmu_tx_mark_netfree(tx); 1724 1725 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1726 if (error) { 1727 zfs_dirent_unlock(dl); 1728 VN_RELE(vp); 1729 if (xzp) 1730 VN_RELE(ZTOV(xzp)); 1731 if (error == ERESTART) { 1732 waited = B_TRUE; 1733 dmu_tx_wait(tx); 1734 dmu_tx_abort(tx); 1735 goto top; 1736 } 1737 if (realnmp) 1738 pn_free(realnmp); 1739 dmu_tx_abort(tx); 1740 ZFS_EXIT(zfsvfs); 1741 return (error); 1742 } 1743 1744 /* 1745 * Remove the directory entry. 1746 */ 1747 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1748 1749 if (error) { 1750 dmu_tx_commit(tx); 1751 goto out; 1752 } 1753 1754 if (unlinked) { 1755 /* 1756 * Hold z_lock so that we can make sure that the ACL obj 1757 * hasn't changed. Could have been deleted due to 1758 * zfs_sa_upgrade(). 1759 */ 1760 mutex_enter(&zp->z_lock); 1761 mutex_enter(&vp->v_lock); 1762 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1763 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1764 delete_now = may_delete_now && !toobig && 1765 vp->v_count == 1 && !vn_has_cached_data(vp) && 1766 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1767 acl_obj; 1768 mutex_exit(&vp->v_lock); 1769 } 1770 1771 txtype = TX_REMOVE; 1772 if (flags & FIGNORECASE) 1773 txtype |= TX_CI; 1774 rw_enter(&rz_zev_rwlock, RW_READER); 1775 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_remove) 1776 rz_zev_callbacks->rz_zev_znode_remove(dzp, zp, tx, 1777 name, txtype); 1778 rw_exit(&rz_zev_rwlock); 1779 1780 if (delete_now) { 1781 if (xattr_obj_unlinked) { 1782 ASSERT3U(xzp->z_links, ==, 2); 1783 mutex_enter(&xzp->z_lock); 1784 xzp->z_unlinked = 1; 1785 xzp->z_links = 0; 1786 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1787 &xzp->z_links, sizeof (xzp->z_links), tx); 1788 ASSERT3U(error, ==, 0); 1789 mutex_exit(&xzp->z_lock); 1790 zfs_unlinked_add(xzp, tx); 1791 1792 if (zp->z_is_sa) 1793 error = sa_remove(zp->z_sa_hdl, 1794 SA_ZPL_XATTR(zfsvfs), tx); 1795 else 1796 error = sa_update(zp->z_sa_hdl, 1797 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1798 sizeof (uint64_t), tx); 1799 ASSERT0(error); 1800 } 1801 mutex_enter(&vp->v_lock); 1802 vp->v_count--; 1803 ASSERT0(vp->v_count); 1804 mutex_exit(&vp->v_lock); 1805 mutex_exit(&zp->z_lock); 1806 zfs_znode_delete(zp, tx); 1807 } else if (unlinked) { 1808 mutex_exit(&zp->z_lock); 1809 zfs_unlinked_add(zp, tx); 1810 } 1811 1812 txtype = TX_REMOVE; 1813 if (flags & FIGNORECASE) 1814 txtype |= TX_CI; 1815 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1816 1817 dmu_tx_commit(tx); 1818 out: 1819 if (realnmp) 1820 pn_free(realnmp); 1821 1822 zfs_dirent_unlock(dl); 1823 1824 if (!delete_now) 1825 VN_RELE(vp); 1826 if (xzp) 1827 VN_RELE(ZTOV(xzp)); 1828 1829 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1830 zil_commit(zilog, 0); 1831 1832 ZFS_EXIT(zfsvfs); 1833 return (error); 1834 } 1835 1836 /* 1837 * Create a new directory and insert it into dvp using the name 1838 * provided. Return a pointer to the inserted directory. 1839 * 1840 * IN: dvp - vnode of directory to add subdir to. 1841 * dirname - name of new directory. 1842 * vap - attributes of new directory. 1843 * cr - credentials of caller. 1844 * ct - caller context 1845 * flags - case flags 1846 * vsecp - ACL to be set 1847 * 1848 * OUT: vpp - vnode of created directory. 1849 * 1850 * RETURN: 0 on success, error code on failure. 1851 * 1852 * Timestamps: 1853 * dvp - ctime|mtime updated 1854 * vp - ctime|mtime|atime updated 1855 */ 1856 /*ARGSUSED*/ 1857 static int 1858 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1859 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1860 { 1861 znode_t *zp, *dzp = VTOZ(dvp); 1862 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1863 zilog_t *zilog; 1864 zfs_dirlock_t *dl; 1865 uint64_t txtype; 1866 dmu_tx_t *tx; 1867 int error; 1868 int zf = ZNEW; 1869 ksid_t *ksid; 1870 uid_t uid; 1871 gid_t gid = crgetgid(cr); 1872 zfs_acl_ids_t acl_ids; 1873 boolean_t fuid_dirtied; 1874 boolean_t waited = B_FALSE; 1875 1876 ASSERT(vap->va_type == VDIR); 1877 1878 /* 1879 * If we have an ephemeral id, ACL, or XVATTR then 1880 * make sure file system is at proper version 1881 */ 1882 1883 ksid = crgetsid(cr, KSID_OWNER); 1884 if (ksid) 1885 uid = ksid_getid(ksid); 1886 else 1887 uid = crgetuid(cr); 1888 if (zfsvfs->z_use_fuids == B_FALSE && 1889 (vsecp || (vap->va_mask & AT_XVATTR) || 1890 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1891 return (SET_ERROR(EINVAL)); 1892 1893 ZFS_ENTER(zfsvfs); 1894 ZFS_VERIFY_ZP(dzp); 1895 zilog = zfsvfs->z_log; 1896 1897 if (dzp->z_pflags & ZFS_XATTR) { 1898 ZFS_EXIT(zfsvfs); 1899 return (SET_ERROR(EINVAL)); 1900 } 1901 1902 if (zfsvfs->z_utf8 && u8_validate(dirname, 1903 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1904 ZFS_EXIT(zfsvfs); 1905 return (SET_ERROR(EILSEQ)); 1906 } 1907 if (flags & FIGNORECASE) 1908 zf |= ZCILOOK; 1909 1910 if (vap->va_mask & AT_XVATTR) { 1911 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1912 crgetuid(cr), cr, vap->va_type)) != 0) { 1913 ZFS_EXIT(zfsvfs); 1914 return (error); 1915 } 1916 } 1917 1918 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1919 vsecp, &acl_ids)) != 0) { 1920 ZFS_EXIT(zfsvfs); 1921 return (error); 1922 } 1923 /* 1924 * First make sure the new directory doesn't exist. 1925 * 1926 * Existence is checked first to make sure we don't return 1927 * EACCES instead of EEXIST which can cause some applications 1928 * to fail. 1929 */ 1930 top: 1931 *vpp = NULL; 1932 1933 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1934 NULL, NULL)) { 1935 zfs_acl_ids_free(&acl_ids); 1936 ZFS_EXIT(zfsvfs); 1937 return (error); 1938 } 1939 1940 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1941 zfs_acl_ids_free(&acl_ids); 1942 zfs_dirent_unlock(dl); 1943 ZFS_EXIT(zfsvfs); 1944 return (error); 1945 } 1946 1947 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1948 zfs_acl_ids_free(&acl_ids); 1949 zfs_dirent_unlock(dl); 1950 ZFS_EXIT(zfsvfs); 1951 return (SET_ERROR(EDQUOT)); 1952 } 1953 1954 /* 1955 * Add a new entry to the directory. 1956 */ 1957 tx = dmu_tx_create(zfsvfs->z_os); 1958 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1959 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1960 fuid_dirtied = zfsvfs->z_fuid_dirty; 1961 if (fuid_dirtied) 1962 zfs_fuid_txhold(zfsvfs, tx); 1963 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1964 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1965 acl_ids.z_aclp->z_acl_bytes); 1966 } 1967 1968 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1969 ZFS_SA_BASE_ATTR_SIZE); 1970 1971 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1972 if (error) { 1973 zfs_dirent_unlock(dl); 1974 if (error == ERESTART) { 1975 waited = B_TRUE; 1976 dmu_tx_wait(tx); 1977 dmu_tx_abort(tx); 1978 goto top; 1979 } 1980 zfs_acl_ids_free(&acl_ids); 1981 dmu_tx_abort(tx); 1982 ZFS_EXIT(zfsvfs); 1983 return (error); 1984 } 1985 1986 /* 1987 * Create new node. 1988 */ 1989 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1990 1991 if (fuid_dirtied) 1992 zfs_fuid_sync(zfsvfs, tx); 1993 1994 /* 1995 * Now put new name in parent dir. 1996 */ 1997 (void) zfs_link_create(dl, zp, tx, ZNEW); 1998 1999 *vpp = ZTOV(zp); 2000 2001 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2002 if (flags & FIGNORECASE) 2003 txtype |= TX_CI; 2004 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2005 acl_ids.z_fuidp, vap); 2006 2007 zfs_acl_ids_free(&acl_ids); 2008 2009 dmu_tx_commit(tx); 2010 2011 zfs_dirent_unlock(dl); 2012 2013 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2014 zil_commit(zilog, 0); 2015 2016 ZFS_EXIT(zfsvfs); 2017 return (0); 2018 } 2019 2020 /* 2021 * Remove a directory subdir entry. If the current working 2022 * directory is the same as the subdir to be removed, the 2023 * remove will fail. 2024 * 2025 * IN: dvp - vnode of directory to remove from. 2026 * name - name of directory to be removed. 2027 * cwd - vnode of current working directory. 2028 * cr - credentials of caller. 2029 * ct - caller context 2030 * flags - case flags 2031 * 2032 * RETURN: 0 on success, error code on failure. 2033 * 2034 * Timestamps: 2035 * dvp - ctime|mtime updated 2036 */ 2037 /*ARGSUSED*/ 2038 static int 2039 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2040 caller_context_t *ct, int flags) 2041 { 2042 znode_t *dzp = VTOZ(dvp); 2043 znode_t *zp; 2044 vnode_t *vp; 2045 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2046 zilog_t *zilog; 2047 zfs_dirlock_t *dl; 2048 dmu_tx_t *tx; 2049 int error; 2050 int zflg = ZEXISTS; 2051 boolean_t waited = B_FALSE; 2052 2053 ZFS_ENTER(zfsvfs); 2054 ZFS_VERIFY_ZP(dzp); 2055 zilog = zfsvfs->z_log; 2056 2057 if (flags & FIGNORECASE) 2058 zflg |= ZCILOOK; 2059 top: 2060 zp = NULL; 2061 2062 /* 2063 * Attempt to lock directory; fail if entry doesn't exist. 2064 */ 2065 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2066 NULL, NULL)) { 2067 ZFS_EXIT(zfsvfs); 2068 return (error); 2069 } 2070 2071 vp = ZTOV(zp); 2072 2073 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2074 goto out; 2075 } 2076 2077 if (vp->v_type != VDIR) { 2078 error = SET_ERROR(ENOTDIR); 2079 goto out; 2080 } 2081 2082 if (vp == cwd) { 2083 error = SET_ERROR(EINVAL); 2084 goto out; 2085 } 2086 2087 vnevent_rmdir(vp, dvp, name, ct); 2088 2089 /* 2090 * Grab a lock on the directory to make sure that noone is 2091 * trying to add (or lookup) entries while we are removing it. 2092 */ 2093 rw_enter(&zp->z_name_lock, RW_WRITER); 2094 2095 /* 2096 * Grab a lock on the parent pointer to make sure we play well 2097 * with the treewalk and directory rename code. 2098 */ 2099 rw_enter(&zp->z_parent_lock, RW_WRITER); 2100 2101 tx = dmu_tx_create(zfsvfs->z_os); 2102 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2103 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2104 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2105 zfs_sa_upgrade_txholds(tx, zp); 2106 zfs_sa_upgrade_txholds(tx, dzp); 2107 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 2108 if (error) { 2109 rw_exit(&zp->z_parent_lock); 2110 rw_exit(&zp->z_name_lock); 2111 zfs_dirent_unlock(dl); 2112 VN_RELE(vp); 2113 if (error == ERESTART) { 2114 waited = B_TRUE; 2115 dmu_tx_wait(tx); 2116 dmu_tx_abort(tx); 2117 goto top; 2118 } 2119 dmu_tx_abort(tx); 2120 ZFS_EXIT(zfsvfs); 2121 return (error); 2122 } 2123 2124 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2125 2126 if (error == 0) { 2127 uint64_t txtype = TX_RMDIR; 2128 if (flags & FIGNORECASE) 2129 txtype |= TX_CI; 2130 2131 rw_enter(&rz_zev_rwlock, RW_READER); 2132 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_remove) 2133 rz_zev_callbacks->rz_zev_znode_remove(dzp, zp, tx, 2134 name, txtype); 2135 rw_exit(&rz_zev_rwlock); 2136 2137 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2138 } 2139 2140 dmu_tx_commit(tx); 2141 2142 rw_exit(&zp->z_parent_lock); 2143 rw_exit(&zp->z_name_lock); 2144 out: 2145 zfs_dirent_unlock(dl); 2146 2147 VN_RELE(vp); 2148 2149 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2150 zil_commit(zilog, 0); 2151 2152 ZFS_EXIT(zfsvfs); 2153 return (error); 2154 } 2155 2156 /* 2157 * Read as many directory entries as will fit into the provided 2158 * buffer from the given directory cursor position (specified in 2159 * the uio structure). 2160 * 2161 * IN: vp - vnode of directory to read. 2162 * uio - structure supplying read location, range info, 2163 * and return buffer. 2164 * cr - credentials of caller. 2165 * ct - caller context 2166 * flags - case flags 2167 * 2168 * OUT: uio - updated offset and range, buffer filled. 2169 * eofp - set to true if end-of-file detected. 2170 * 2171 * RETURN: 0 on success, error code on failure. 2172 * 2173 * Timestamps: 2174 * vp - atime updated 2175 * 2176 * Note that the low 4 bits of the cookie returned by zap is always zero. 2177 * This allows us to use the low range for "special" directory entries: 2178 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2179 * we use the offset 2 for the '.zfs' directory. 2180 */ 2181 /* ARGSUSED */ 2182 static int 2183 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2184 caller_context_t *ct, int flags) 2185 { 2186 znode_t *zp = VTOZ(vp); 2187 iovec_t *iovp; 2188 edirent_t *eodp; 2189 dirent64_t *odp; 2190 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2191 objset_t *os; 2192 caddr_t outbuf; 2193 size_t bufsize; 2194 zap_cursor_t zc; 2195 zap_attribute_t zap; 2196 uint_t bytes_wanted; 2197 uint64_t offset; /* must be unsigned; checks for < 1 */ 2198 uint64_t parent; 2199 int local_eof; 2200 int outcount; 2201 int error; 2202 uint8_t prefetch; 2203 boolean_t check_sysattrs; 2204 2205 ZFS_ENTER(zfsvfs); 2206 ZFS_VERIFY_ZP(zp); 2207 2208 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2209 &parent, sizeof (parent))) != 0) { 2210 ZFS_EXIT(zfsvfs); 2211 return (error); 2212 } 2213 2214 /* 2215 * If we are not given an eof variable, 2216 * use a local one. 2217 */ 2218 if (eofp == NULL) 2219 eofp = &local_eof; 2220 2221 /* 2222 * Check for valid iov_len. 2223 */ 2224 if (uio->uio_iov->iov_len <= 0) { 2225 ZFS_EXIT(zfsvfs); 2226 return (SET_ERROR(EINVAL)); 2227 } 2228 2229 /* 2230 * Quit if directory has been removed (posix) 2231 */ 2232 if ((*eofp = zp->z_unlinked) != 0) { 2233 ZFS_EXIT(zfsvfs); 2234 return (0); 2235 } 2236 2237 error = 0; 2238 os = zfsvfs->z_os; 2239 offset = uio->uio_loffset; 2240 prefetch = zp->z_zn_prefetch; 2241 2242 /* 2243 * Initialize the iterator cursor. 2244 */ 2245 if (offset <= 3) { 2246 /* 2247 * Start iteration from the beginning of the directory. 2248 */ 2249 zap_cursor_init(&zc, os, zp->z_id); 2250 } else { 2251 /* 2252 * The offset is a serialized cursor. 2253 */ 2254 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2255 } 2256 2257 /* 2258 * Get space to change directory entries into fs independent format. 2259 */ 2260 iovp = uio->uio_iov; 2261 bytes_wanted = iovp->iov_len; 2262 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2263 bufsize = bytes_wanted; 2264 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2265 odp = (struct dirent64 *)outbuf; 2266 } else { 2267 bufsize = bytes_wanted; 2268 outbuf = NULL; 2269 odp = (struct dirent64 *)iovp->iov_base; 2270 } 2271 eodp = (struct edirent *)odp; 2272 2273 /* 2274 * If this VFS supports the system attribute view interface; and 2275 * we're looking at an extended attribute directory; and we care 2276 * about normalization conflicts on this vfs; then we must check 2277 * for normalization conflicts with the sysattr name space. 2278 */ 2279 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2280 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2281 (flags & V_RDDIR_ENTFLAGS); 2282 2283 /* 2284 * Transform to file-system independent format 2285 */ 2286 outcount = 0; 2287 while (outcount < bytes_wanted) { 2288 ino64_t objnum; 2289 ushort_t reclen; 2290 off64_t *next = NULL; 2291 2292 /* 2293 * Special case `.', `..', and `.zfs'. 2294 */ 2295 if (offset == 0) { 2296 (void) strcpy(zap.za_name, "."); 2297 zap.za_normalization_conflict = 0; 2298 objnum = zp->z_id; 2299 } else if (offset == 1) { 2300 (void) strcpy(zap.za_name, ".."); 2301 zap.za_normalization_conflict = 0; 2302 objnum = parent; 2303 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2304 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2305 zap.za_normalization_conflict = 0; 2306 objnum = ZFSCTL_INO_ROOT; 2307 } else { 2308 /* 2309 * Grab next entry. 2310 */ 2311 if (error = zap_cursor_retrieve(&zc, &zap)) { 2312 if ((*eofp = (error == ENOENT)) != 0) 2313 break; 2314 else 2315 goto update; 2316 } 2317 2318 if (zap.za_integer_length != 8 || 2319 zap.za_num_integers != 1) { 2320 cmn_err(CE_WARN, "zap_readdir: bad directory " 2321 "entry, obj = %lld, offset = %lld\n", 2322 (u_longlong_t)zp->z_id, 2323 (u_longlong_t)offset); 2324 error = SET_ERROR(ENXIO); 2325 goto update; 2326 } 2327 2328 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2329 /* 2330 * MacOS X can extract the object type here such as: 2331 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2332 */ 2333 2334 if (check_sysattrs && !zap.za_normalization_conflict) { 2335 zap.za_normalization_conflict = 2336 xattr_sysattr_casechk(zap.za_name); 2337 } 2338 } 2339 2340 if (flags & V_RDDIR_ACCFILTER) { 2341 /* 2342 * If we have no access at all, don't include 2343 * this entry in the returned information 2344 */ 2345 znode_t *ezp; 2346 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2347 goto skip_entry; 2348 if (!zfs_has_access(ezp, cr)) { 2349 VN_RELE(ZTOV(ezp)); 2350 goto skip_entry; 2351 } 2352 VN_RELE(ZTOV(ezp)); 2353 } 2354 2355 if (flags & V_RDDIR_ENTFLAGS) 2356 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2357 else 2358 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2359 2360 /* 2361 * Will this entry fit in the buffer? 2362 */ 2363 if (outcount + reclen > bufsize) { 2364 /* 2365 * Did we manage to fit anything in the buffer? 2366 */ 2367 if (!outcount) { 2368 error = SET_ERROR(EINVAL); 2369 goto update; 2370 } 2371 break; 2372 } 2373 if (flags & V_RDDIR_ENTFLAGS) { 2374 /* 2375 * Add extended flag entry: 2376 */ 2377 eodp->ed_ino = objnum; 2378 eodp->ed_reclen = reclen; 2379 /* NOTE: ed_off is the offset for the *next* entry */ 2380 next = &(eodp->ed_off); 2381 eodp->ed_eflags = zap.za_normalization_conflict ? 2382 ED_CASE_CONFLICT : 0; 2383 (void) strncpy(eodp->ed_name, zap.za_name, 2384 EDIRENT_NAMELEN(reclen)); 2385 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2386 } else { 2387 /* 2388 * Add normal entry: 2389 */ 2390 odp->d_ino = objnum; 2391 odp->d_reclen = reclen; 2392 /* NOTE: d_off is the offset for the *next* entry */ 2393 next = &(odp->d_off); 2394 (void) strncpy(odp->d_name, zap.za_name, 2395 DIRENT64_NAMELEN(reclen)); 2396 odp = (dirent64_t *)((intptr_t)odp + reclen); 2397 } 2398 outcount += reclen; 2399 2400 ASSERT(outcount <= bufsize); 2401 2402 /* Prefetch znode */ 2403 if (prefetch) 2404 dmu_prefetch(os, objnum, 0, 0); 2405 2406 skip_entry: 2407 /* 2408 * Move to the next entry, fill in the previous offset. 2409 */ 2410 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2411 zap_cursor_advance(&zc); 2412 offset = zap_cursor_serialize(&zc); 2413 } else { 2414 offset += 1; 2415 } 2416 if (next) 2417 *next = offset; 2418 } 2419 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2420 2421 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2422 iovp->iov_base += outcount; 2423 iovp->iov_len -= outcount; 2424 uio->uio_resid -= outcount; 2425 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2426 /* 2427 * Reset the pointer. 2428 */ 2429 offset = uio->uio_loffset; 2430 } 2431 2432 update: 2433 zap_cursor_fini(&zc); 2434 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2435 kmem_free(outbuf, bufsize); 2436 2437 if (error == ENOENT) 2438 error = 0; 2439 2440 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2441 2442 uio->uio_loffset = offset; 2443 ZFS_EXIT(zfsvfs); 2444 return (error); 2445 } 2446 2447 ulong_t zfs_fsync_sync_cnt = 4; 2448 2449 static int 2450 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2451 { 2452 znode_t *zp = VTOZ(vp); 2453 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2454 2455 /* 2456 * Regardless of whether this is required for standards conformance, 2457 * this is the logical behavior when fsync() is called on a file with 2458 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2459 * going to be pushed out as part of the zil_commit(). 2460 */ 2461 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2462 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2463 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2464 2465 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2466 2467 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2468 ZFS_ENTER(zfsvfs); 2469 ZFS_VERIFY_ZP(zp); 2470 zil_commit(zfsvfs->z_log, zp->z_id); 2471 ZFS_EXIT(zfsvfs); 2472 } 2473 return (0); 2474 } 2475 2476 2477 /* 2478 * Get the requested file attributes and place them in the provided 2479 * vattr structure. 2480 * 2481 * IN: vp - vnode of file. 2482 * vap - va_mask identifies requested attributes. 2483 * If AT_XVATTR set, then optional attrs are requested 2484 * flags - ATTR_NOACLCHECK (CIFS server context) 2485 * cr - credentials of caller. 2486 * ct - caller context 2487 * 2488 * OUT: vap - attribute values. 2489 * 2490 * RETURN: 0 (always succeeds). 2491 */ 2492 /* ARGSUSED */ 2493 static int 2494 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2495 caller_context_t *ct) 2496 { 2497 znode_t *zp = VTOZ(vp); 2498 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2499 int error = 0; 2500 uint64_t links; 2501 uint64_t mtime[2], ctime[2]; 2502 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2503 xoptattr_t *xoap = NULL; 2504 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2505 sa_bulk_attr_t bulk[2]; 2506 int count = 0; 2507 2508 ZFS_ENTER(zfsvfs); 2509 ZFS_VERIFY_ZP(zp); 2510 2511 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2512 2513 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2514 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2515 2516 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2517 ZFS_EXIT(zfsvfs); 2518 return (error); 2519 } 2520 2521 /* 2522 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2523 * Also, if we are the owner don't bother, since owner should 2524 * always be allowed to read basic attributes of file. 2525 */ 2526 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2527 (vap->va_uid != crgetuid(cr))) { 2528 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2529 skipaclchk, cr)) { 2530 ZFS_EXIT(zfsvfs); 2531 return (error); 2532 } 2533 } 2534 2535 /* 2536 * Return all attributes. It's cheaper to provide the answer 2537 * than to determine whether we were asked the question. 2538 */ 2539 2540 mutex_enter(&zp->z_lock); 2541 vap->va_type = vp->v_type; 2542 vap->va_mode = zp->z_mode & MODEMASK; 2543 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2544 vap->va_nodeid = zp->z_id; 2545 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2546 links = zp->z_links + 1; 2547 else 2548 links = zp->z_links; 2549 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2550 vap->va_size = zp->z_size; 2551 vap->va_rdev = vp->v_rdev; 2552 vap->va_seq = zp->z_seq; 2553 2554 /* 2555 * Add in any requested optional attributes and the create time. 2556 * Also set the corresponding bits in the returned attribute bitmap. 2557 */ 2558 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2559 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2560 xoap->xoa_archive = 2561 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2562 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2563 } 2564 2565 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2566 xoap->xoa_readonly = 2567 ((zp->z_pflags & ZFS_READONLY) != 0); 2568 XVA_SET_RTN(xvap, XAT_READONLY); 2569 } 2570 2571 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2572 xoap->xoa_system = 2573 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2574 XVA_SET_RTN(xvap, XAT_SYSTEM); 2575 } 2576 2577 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2578 xoap->xoa_hidden = 2579 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2580 XVA_SET_RTN(xvap, XAT_HIDDEN); 2581 } 2582 2583 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2584 xoap->xoa_nounlink = 2585 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2586 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2587 } 2588 2589 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2590 xoap->xoa_immutable = 2591 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2592 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2593 } 2594 2595 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2596 xoap->xoa_appendonly = 2597 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2598 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2599 } 2600 2601 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2602 xoap->xoa_nodump = 2603 ((zp->z_pflags & ZFS_NODUMP) != 0); 2604 XVA_SET_RTN(xvap, XAT_NODUMP); 2605 } 2606 2607 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2608 xoap->xoa_opaque = 2609 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2610 XVA_SET_RTN(xvap, XAT_OPAQUE); 2611 } 2612 2613 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2614 xoap->xoa_av_quarantined = 2615 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2616 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2617 } 2618 2619 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2620 xoap->xoa_av_modified = 2621 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2622 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2623 } 2624 2625 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2626 vp->v_type == VREG) { 2627 zfs_sa_get_scanstamp(zp, xvap); 2628 } 2629 2630 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2631 uint64_t times[2]; 2632 2633 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2634 times, sizeof (times)); 2635 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2636 XVA_SET_RTN(xvap, XAT_CREATETIME); 2637 } 2638 2639 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2640 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2641 XVA_SET_RTN(xvap, XAT_REPARSE); 2642 } 2643 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2644 xoap->xoa_generation = zp->z_gen; 2645 XVA_SET_RTN(xvap, XAT_GEN); 2646 } 2647 2648 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2649 xoap->xoa_offline = 2650 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2651 XVA_SET_RTN(xvap, XAT_OFFLINE); 2652 } 2653 2654 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2655 xoap->xoa_sparse = 2656 ((zp->z_pflags & ZFS_SPARSE) != 0); 2657 XVA_SET_RTN(xvap, XAT_SPARSE); 2658 } 2659 } 2660 2661 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2662 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2663 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2664 2665 mutex_exit(&zp->z_lock); 2666 2667 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2668 2669 if (zp->z_blksz == 0) { 2670 /* 2671 * Block size hasn't been set; suggest maximal I/O transfers. 2672 */ 2673 vap->va_blksize = zfsvfs->z_max_blksz; 2674 } 2675 2676 ZFS_EXIT(zfsvfs); 2677 return (0); 2678 } 2679 2680 /* 2681 * Set the file attributes to the values contained in the 2682 * vattr structure. 2683 * 2684 * IN: vp - vnode of file to be modified. 2685 * vap - new attribute values. 2686 * If AT_XVATTR set, then optional attrs are being set 2687 * flags - ATTR_UTIME set if non-default time values provided. 2688 * - ATTR_NOACLCHECK (CIFS context only). 2689 * cr - credentials of caller. 2690 * ct - caller context 2691 * 2692 * RETURN: 0 on success, error code on failure. 2693 * 2694 * Timestamps: 2695 * vp - ctime updated, mtime updated if size changed. 2696 */ 2697 /* ARGSUSED */ 2698 static int 2699 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2700 caller_context_t *ct) 2701 { 2702 znode_t *zp = VTOZ(vp); 2703 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2704 zilog_t *zilog; 2705 dmu_tx_t *tx; 2706 vattr_t oldva; 2707 xvattr_t tmpxvattr; 2708 uint_t mask = vap->va_mask; 2709 uint_t saved_mask = 0; 2710 int trim_mask = 0; 2711 uint64_t new_mode; 2712 uint64_t new_uid, new_gid; 2713 uint64_t xattr_obj; 2714 uint64_t mtime[2], ctime[2]; 2715 znode_t *attrzp; 2716 int need_policy = FALSE; 2717 int err, err2; 2718 zfs_fuid_info_t *fuidp = NULL; 2719 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2720 xoptattr_t *xoap; 2721 zfs_acl_t *aclp; 2722 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2723 boolean_t fuid_dirtied = B_FALSE; 2724 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2725 int count = 0, xattr_count = 0; 2726 2727 if (mask == 0) 2728 return (0); 2729 2730 if (mask & AT_NOSET) 2731 return (SET_ERROR(EINVAL)); 2732 2733 ZFS_ENTER(zfsvfs); 2734 ZFS_VERIFY_ZP(zp); 2735 2736 zilog = zfsvfs->z_log; 2737 2738 /* 2739 * Make sure that if we have ephemeral uid/gid or xvattr specified 2740 * that file system is at proper version level 2741 */ 2742 2743 if (zfsvfs->z_use_fuids == B_FALSE && 2744 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2745 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2746 (mask & AT_XVATTR))) { 2747 ZFS_EXIT(zfsvfs); 2748 return (SET_ERROR(EINVAL)); 2749 } 2750 2751 if (mask & AT_SIZE && vp->v_type == VDIR) { 2752 ZFS_EXIT(zfsvfs); 2753 return (SET_ERROR(EISDIR)); 2754 } 2755 2756 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2757 ZFS_EXIT(zfsvfs); 2758 return (SET_ERROR(EINVAL)); 2759 } 2760 2761 /* 2762 * If this is an xvattr_t, then get a pointer to the structure of 2763 * optional attributes. If this is NULL, then we have a vattr_t. 2764 */ 2765 xoap = xva_getxoptattr(xvap); 2766 2767 xva_init(&tmpxvattr); 2768 2769 /* 2770 * Immutable files can only alter immutable bit and atime 2771 */ 2772 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2773 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2774 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2775 ZFS_EXIT(zfsvfs); 2776 return (SET_ERROR(EPERM)); 2777 } 2778 2779 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2780 ZFS_EXIT(zfsvfs); 2781 return (SET_ERROR(EPERM)); 2782 } 2783 2784 /* 2785 * Verify timestamps doesn't overflow 32 bits. 2786 * ZFS can handle large timestamps, but 32bit syscalls can't 2787 * handle times greater than 2039. This check should be removed 2788 * once large timestamps are fully supported. 2789 */ 2790 if (mask & (AT_ATIME | AT_MTIME)) { 2791 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2792 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2793 ZFS_EXIT(zfsvfs); 2794 return (SET_ERROR(EOVERFLOW)); 2795 } 2796 } 2797 2798 top: 2799 attrzp = NULL; 2800 aclp = NULL; 2801 2802 /* Can this be moved to before the top label? */ 2803 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2804 ZFS_EXIT(zfsvfs); 2805 return (SET_ERROR(EROFS)); 2806 } 2807 2808 /* 2809 * First validate permissions 2810 */ 2811 2812 if (mask & AT_SIZE) { 2813 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2814 if (err) { 2815 ZFS_EXIT(zfsvfs); 2816 return (err); 2817 } 2818 /* 2819 * XXX - Note, we are not providing any open 2820 * mode flags here (like FNDELAY), so we may 2821 * block if there are locks present... this 2822 * should be addressed in openat(). 2823 */ 2824 /* XXX - would it be OK to generate a log record here? */ 2825 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2826 if (err) { 2827 ZFS_EXIT(zfsvfs); 2828 return (err); 2829 } 2830 2831 if (vap->va_size == 0) 2832 vnevent_truncate(ZTOV(zp), ct); 2833 } 2834 2835 if (mask & (AT_ATIME|AT_MTIME) || 2836 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2837 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2838 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2839 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2840 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2841 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2842 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2843 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2844 skipaclchk, cr); 2845 } 2846 2847 if (mask & (AT_UID|AT_GID)) { 2848 int idmask = (mask & (AT_UID|AT_GID)); 2849 int take_owner; 2850 int take_group; 2851 2852 /* 2853 * NOTE: even if a new mode is being set, 2854 * we may clear S_ISUID/S_ISGID bits. 2855 */ 2856 2857 if (!(mask & AT_MODE)) 2858 vap->va_mode = zp->z_mode; 2859 2860 /* 2861 * Take ownership or chgrp to group we are a member of 2862 */ 2863 2864 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2865 take_group = (mask & AT_GID) && 2866 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2867 2868 /* 2869 * If both AT_UID and AT_GID are set then take_owner and 2870 * take_group must both be set in order to allow taking 2871 * ownership. 2872 * 2873 * Otherwise, send the check through secpolicy_vnode_setattr() 2874 * 2875 */ 2876 2877 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2878 ((idmask == AT_UID) && take_owner) || 2879 ((idmask == AT_GID) && take_group)) { 2880 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2881 skipaclchk, cr) == 0) { 2882 /* 2883 * Remove setuid/setgid for non-privileged users 2884 */ 2885 secpolicy_setid_clear(vap, cr); 2886 trim_mask = (mask & (AT_UID|AT_GID)); 2887 } else { 2888 need_policy = TRUE; 2889 } 2890 } else { 2891 need_policy = TRUE; 2892 } 2893 } 2894 2895 mutex_enter(&zp->z_lock); 2896 oldva.va_mode = zp->z_mode; 2897 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2898 if (mask & AT_XVATTR) { 2899 /* 2900 * Update xvattr mask to include only those attributes 2901 * that are actually changing. 2902 * 2903 * the bits will be restored prior to actually setting 2904 * the attributes so the caller thinks they were set. 2905 */ 2906 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2907 if (xoap->xoa_appendonly != 2908 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2909 need_policy = TRUE; 2910 } else { 2911 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2912 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2913 } 2914 } 2915 2916 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2917 if (xoap->xoa_nounlink != 2918 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2919 need_policy = TRUE; 2920 } else { 2921 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2922 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2923 } 2924 } 2925 2926 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2927 if (xoap->xoa_immutable != 2928 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2929 need_policy = TRUE; 2930 } else { 2931 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2932 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2933 } 2934 } 2935 2936 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2937 if (xoap->xoa_nodump != 2938 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2939 need_policy = TRUE; 2940 } else { 2941 XVA_CLR_REQ(xvap, XAT_NODUMP); 2942 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2943 } 2944 } 2945 2946 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2947 if (xoap->xoa_av_modified != 2948 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2949 need_policy = TRUE; 2950 } else { 2951 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2952 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2953 } 2954 } 2955 2956 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2957 if ((vp->v_type != VREG && 2958 xoap->xoa_av_quarantined) || 2959 xoap->xoa_av_quarantined != 2960 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2961 need_policy = TRUE; 2962 } else { 2963 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2964 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2965 } 2966 } 2967 2968 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2969 mutex_exit(&zp->z_lock); 2970 ZFS_EXIT(zfsvfs); 2971 return (SET_ERROR(EPERM)); 2972 } 2973 2974 if (need_policy == FALSE && 2975 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2976 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2977 need_policy = TRUE; 2978 } 2979 } 2980 2981 mutex_exit(&zp->z_lock); 2982 2983 if (mask & AT_MODE) { 2984 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2985 err = secpolicy_setid_setsticky_clear(vp, vap, 2986 &oldva, cr); 2987 if (err) { 2988 ZFS_EXIT(zfsvfs); 2989 return (err); 2990 } 2991 trim_mask |= AT_MODE; 2992 } else { 2993 need_policy = TRUE; 2994 } 2995 } 2996 2997 if (need_policy) { 2998 /* 2999 * If trim_mask is set then take ownership 3000 * has been granted or write_acl is present and user 3001 * has the ability to modify mode. In that case remove 3002 * UID|GID and or MODE from mask so that 3003 * secpolicy_vnode_setattr() doesn't revoke it. 3004 */ 3005 3006 if (trim_mask) { 3007 saved_mask = vap->va_mask; 3008 vap->va_mask &= ~trim_mask; 3009 } 3010 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3011 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3012 if (err) { 3013 ZFS_EXIT(zfsvfs); 3014 return (err); 3015 } 3016 3017 if (trim_mask) 3018 vap->va_mask |= saved_mask; 3019 } 3020 3021 /* 3022 * secpolicy_vnode_setattr, or take ownership may have 3023 * changed va_mask 3024 */ 3025 mask = vap->va_mask; 3026 3027 if ((mask & (AT_UID | AT_GID))) { 3028 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3029 &xattr_obj, sizeof (xattr_obj)); 3030 3031 if (err == 0 && xattr_obj) { 3032 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3033 if (err) 3034 goto out2; 3035 } 3036 if (mask & AT_UID) { 3037 new_uid = zfs_fuid_create(zfsvfs, 3038 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3039 if (new_uid != zp->z_uid && 3040 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 3041 if (attrzp) 3042 VN_RELE(ZTOV(attrzp)); 3043 err = SET_ERROR(EDQUOT); 3044 goto out2; 3045 } 3046 } 3047 3048 if (mask & AT_GID) { 3049 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3050 cr, ZFS_GROUP, &fuidp); 3051 if (new_gid != zp->z_gid && 3052 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 3053 if (attrzp) 3054 VN_RELE(ZTOV(attrzp)); 3055 err = SET_ERROR(EDQUOT); 3056 goto out2; 3057 } 3058 } 3059 } 3060 tx = dmu_tx_create(zfsvfs->z_os); 3061 3062 if (mask & AT_MODE) { 3063 uint64_t pmode = zp->z_mode; 3064 uint64_t acl_obj; 3065 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3066 3067 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3068 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3069 err = SET_ERROR(EPERM); 3070 goto out; 3071 } 3072 3073 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3074 goto out; 3075 3076 mutex_enter(&zp->z_lock); 3077 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3078 /* 3079 * Are we upgrading ACL from old V0 format 3080 * to V1 format? 3081 */ 3082 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3083 zfs_znode_acl_version(zp) == 3084 ZFS_ACL_VERSION_INITIAL) { 3085 dmu_tx_hold_free(tx, acl_obj, 0, 3086 DMU_OBJECT_END); 3087 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3088 0, aclp->z_acl_bytes); 3089 } else { 3090 dmu_tx_hold_write(tx, acl_obj, 0, 3091 aclp->z_acl_bytes); 3092 } 3093 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3094 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3095 0, aclp->z_acl_bytes); 3096 } 3097 mutex_exit(&zp->z_lock); 3098 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3099 } else { 3100 if ((mask & AT_XVATTR) && 3101 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3102 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3103 else 3104 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3105 } 3106 3107 if (attrzp) { 3108 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3109 } 3110 3111 fuid_dirtied = zfsvfs->z_fuid_dirty; 3112 if (fuid_dirtied) 3113 zfs_fuid_txhold(zfsvfs, tx); 3114 3115 zfs_sa_upgrade_txholds(tx, zp); 3116 3117 err = dmu_tx_assign(tx, TXG_WAIT); 3118 if (err) 3119 goto out; 3120 3121 count = 0; 3122 /* 3123 * Set each attribute requested. 3124 * We group settings according to the locks they need to acquire. 3125 * 3126 * Note: you cannot set ctime directly, although it will be 3127 * updated as a side-effect of calling this function. 3128 */ 3129 3130 3131 if (mask & (AT_UID|AT_GID|AT_MODE)) 3132 mutex_enter(&zp->z_acl_lock); 3133 mutex_enter(&zp->z_lock); 3134 3135 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3136 &zp->z_pflags, sizeof (zp->z_pflags)); 3137 3138 if (attrzp) { 3139 if (mask & (AT_UID|AT_GID|AT_MODE)) 3140 mutex_enter(&attrzp->z_acl_lock); 3141 mutex_enter(&attrzp->z_lock); 3142 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3143 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3144 sizeof (attrzp->z_pflags)); 3145 } 3146 3147 if (mask & (AT_UID|AT_GID)) { 3148 3149 if (mask & AT_UID) { 3150 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3151 &new_uid, sizeof (new_uid)); 3152 zp->z_uid = new_uid; 3153 if (attrzp) { 3154 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3155 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3156 sizeof (new_uid)); 3157 attrzp->z_uid = new_uid; 3158 } 3159 } 3160 3161 if (mask & AT_GID) { 3162 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3163 NULL, &new_gid, sizeof (new_gid)); 3164 zp->z_gid = new_gid; 3165 if (attrzp) { 3166 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3167 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3168 sizeof (new_gid)); 3169 attrzp->z_gid = new_gid; 3170 } 3171 } 3172 if (!(mask & AT_MODE)) { 3173 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3174 NULL, &new_mode, sizeof (new_mode)); 3175 new_mode = zp->z_mode; 3176 } 3177 err = zfs_acl_chown_setattr(zp); 3178 ASSERT(err == 0); 3179 if (attrzp) { 3180 err = zfs_acl_chown_setattr(attrzp); 3181 ASSERT(err == 0); 3182 } 3183 } 3184 3185 if (mask & AT_MODE) { 3186 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3187 &new_mode, sizeof (new_mode)); 3188 zp->z_mode = new_mode; 3189 ASSERT3U((uintptr_t)aclp, !=, NULL); 3190 err = zfs_aclset_common(zp, aclp, cr, tx); 3191 ASSERT0(err); 3192 if (zp->z_acl_cached) 3193 zfs_acl_free(zp->z_acl_cached); 3194 zp->z_acl_cached = aclp; 3195 aclp = NULL; 3196 } 3197 3198 3199 if (mask & AT_ATIME) { 3200 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3201 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3202 &zp->z_atime, sizeof (zp->z_atime)); 3203 } 3204 3205 if (mask & AT_MTIME) { 3206 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3207 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3208 mtime, sizeof (mtime)); 3209 } 3210 3211 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3212 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3213 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3214 NULL, mtime, sizeof (mtime)); 3215 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3216 &ctime, sizeof (ctime)); 3217 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3218 B_TRUE); 3219 } else if (mask != 0) { 3220 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3221 &ctime, sizeof (ctime)); 3222 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3223 B_TRUE); 3224 if (attrzp) { 3225 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3226 SA_ZPL_CTIME(zfsvfs), NULL, 3227 &ctime, sizeof (ctime)); 3228 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3229 mtime, ctime, B_TRUE); 3230 } 3231 } 3232 /* 3233 * Do this after setting timestamps to prevent timestamp 3234 * update from toggling bit 3235 */ 3236 3237 if (xoap && (mask & AT_XVATTR)) { 3238 3239 /* 3240 * restore trimmed off masks 3241 * so that return masks can be set for caller. 3242 */ 3243 3244 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3245 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3246 } 3247 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3248 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3249 } 3250 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3251 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3252 } 3253 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3254 XVA_SET_REQ(xvap, XAT_NODUMP); 3255 } 3256 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3257 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3258 } 3259 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3260 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3261 } 3262 3263 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3264 ASSERT(vp->v_type == VREG); 3265 3266 zfs_xvattr_set(zp, xvap, tx); 3267 } 3268 3269 if (fuid_dirtied) 3270 zfs_fuid_sync(zfsvfs, tx); 3271 3272 if (mask != 0) 3273 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3274 3275 mutex_exit(&zp->z_lock); 3276 if (mask & (AT_UID|AT_GID|AT_MODE)) 3277 mutex_exit(&zp->z_acl_lock); 3278 3279 if (attrzp) { 3280 if (mask & (AT_UID|AT_GID|AT_MODE)) 3281 mutex_exit(&attrzp->z_acl_lock); 3282 mutex_exit(&attrzp->z_lock); 3283 } 3284 out: 3285 if (err == 0 && attrzp) { 3286 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3287 xattr_count, tx); 3288 ASSERT(err2 == 0); 3289 } 3290 3291 if (attrzp) 3292 VN_RELE(ZTOV(attrzp)); 3293 3294 if (aclp) 3295 zfs_acl_free(aclp); 3296 3297 if (fuidp) { 3298 zfs_fuid_info_free(fuidp); 3299 fuidp = NULL; 3300 } 3301 3302 if (err) { 3303 dmu_tx_abort(tx); 3304 if (err == ERESTART) 3305 goto top; 3306 } else { 3307 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3308 rw_enter(&rz_zev_rwlock, RW_READER); 3309 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_setattr) 3310 rz_zev_callbacks->rz_zev_znode_setattr(zp, tx); 3311 rw_exit(&rz_zev_rwlock); 3312 dmu_tx_commit(tx); 3313 } 3314 3315 out2: 3316 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3317 zil_commit(zilog, 0); 3318 3319 ZFS_EXIT(zfsvfs); 3320 return (err); 3321 } 3322 3323 typedef struct zfs_zlock { 3324 krwlock_t *zl_rwlock; /* lock we acquired */ 3325 znode_t *zl_znode; /* znode we held */ 3326 struct zfs_zlock *zl_next; /* next in list */ 3327 } zfs_zlock_t; 3328 3329 /* 3330 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3331 */ 3332 static void 3333 zfs_rename_unlock(zfs_zlock_t **zlpp) 3334 { 3335 zfs_zlock_t *zl; 3336 3337 while ((zl = *zlpp) != NULL) { 3338 if (zl->zl_znode != NULL) 3339 VN_RELE(ZTOV(zl->zl_znode)); 3340 rw_exit(zl->zl_rwlock); 3341 *zlpp = zl->zl_next; 3342 kmem_free(zl, sizeof (*zl)); 3343 } 3344 } 3345 3346 /* 3347 * Search back through the directory tree, using the ".." entries. 3348 * Lock each directory in the chain to prevent concurrent renames. 3349 * Fail any attempt to move a directory into one of its own descendants. 3350 * XXX - z_parent_lock can overlap with map or grow locks 3351 */ 3352 static int 3353 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3354 { 3355 zfs_zlock_t *zl; 3356 znode_t *zp = tdzp; 3357 uint64_t rootid = zp->z_zfsvfs->z_root; 3358 uint64_t oidp = zp->z_id; 3359 krwlock_t *rwlp = &szp->z_parent_lock; 3360 krw_t rw = RW_WRITER; 3361 3362 /* 3363 * First pass write-locks szp and compares to zp->z_id. 3364 * Later passes read-lock zp and compare to zp->z_parent. 3365 */ 3366 do { 3367 if (!rw_tryenter(rwlp, rw)) { 3368 /* 3369 * Another thread is renaming in this path. 3370 * Note that if we are a WRITER, we don't have any 3371 * parent_locks held yet. 3372 */ 3373 if (rw == RW_READER && zp->z_id > szp->z_id) { 3374 /* 3375 * Drop our locks and restart 3376 */ 3377 zfs_rename_unlock(&zl); 3378 *zlpp = NULL; 3379 zp = tdzp; 3380 oidp = zp->z_id; 3381 rwlp = &szp->z_parent_lock; 3382 rw = RW_WRITER; 3383 continue; 3384 } else { 3385 /* 3386 * Wait for other thread to drop its locks 3387 */ 3388 rw_enter(rwlp, rw); 3389 } 3390 } 3391 3392 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3393 zl->zl_rwlock = rwlp; 3394 zl->zl_znode = NULL; 3395 zl->zl_next = *zlpp; 3396 *zlpp = zl; 3397 3398 if (oidp == szp->z_id) /* We're a descendant of szp */ 3399 return (SET_ERROR(EINVAL)); 3400 3401 if (oidp == rootid) /* We've hit the top */ 3402 return (0); 3403 3404 if (rw == RW_READER) { /* i.e. not the first pass */ 3405 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3406 if (error) 3407 return (error); 3408 zl->zl_znode = zp; 3409 } 3410 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3411 &oidp, sizeof (oidp)); 3412 rwlp = &zp->z_parent_lock; 3413 rw = RW_READER; 3414 3415 } while (zp->z_id != sdzp->z_id); 3416 3417 return (0); 3418 } 3419 3420 /* 3421 * Move an entry from the provided source directory to the target 3422 * directory. Change the entry name as indicated. 3423 * 3424 * IN: sdvp - Source directory containing the "old entry". 3425 * snm - Old entry name. 3426 * tdvp - Target directory to contain the "new entry". 3427 * tnm - New entry name. 3428 * cr - credentials of caller. 3429 * ct - caller context 3430 * flags - case flags 3431 * 3432 * RETURN: 0 on success, error code on failure. 3433 * 3434 * Timestamps: 3435 * sdvp,tdvp - ctime|mtime updated 3436 */ 3437 /*ARGSUSED*/ 3438 static int 3439 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3440 caller_context_t *ct, int flags) 3441 { 3442 znode_t *tdzp, *szp, *tzp; 3443 znode_t *sdzp = VTOZ(sdvp); 3444 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3445 zilog_t *zilog; 3446 vnode_t *realvp; 3447 zfs_dirlock_t *sdl, *tdl; 3448 dmu_tx_t *tx; 3449 zfs_zlock_t *zl; 3450 int cmp, serr, terr; 3451 int error = 0; 3452 int zflg = 0; 3453 boolean_t waited = B_FALSE; 3454 3455 ZFS_ENTER(zfsvfs); 3456 ZFS_VERIFY_ZP(sdzp); 3457 zilog = zfsvfs->z_log; 3458 3459 /* 3460 * Make sure we have the real vp for the target directory. 3461 */ 3462 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3463 tdvp = realvp; 3464 3465 tdzp = VTOZ(tdvp); 3466 ZFS_VERIFY_ZP(tdzp); 3467 3468 /* 3469 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3470 * ctldir appear to have the same v_vfsp. 3471 */ 3472 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3473 ZFS_EXIT(zfsvfs); 3474 return (SET_ERROR(EXDEV)); 3475 } 3476 3477 if (zfsvfs->z_utf8 && u8_validate(tnm, 3478 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3479 ZFS_EXIT(zfsvfs); 3480 return (SET_ERROR(EILSEQ)); 3481 } 3482 3483 if (flags & FIGNORECASE) 3484 zflg |= ZCILOOK; 3485 3486 top: 3487 szp = NULL; 3488 tzp = NULL; 3489 zl = NULL; 3490 3491 /* 3492 * This is to prevent the creation of links into attribute space 3493 * by renaming a linked file into/outof an attribute directory. 3494 * See the comment in zfs_link() for why this is considered bad. 3495 */ 3496 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3497 ZFS_EXIT(zfsvfs); 3498 return (SET_ERROR(EINVAL)); 3499 } 3500 3501 /* 3502 * Lock source and target directory entries. To prevent deadlock, 3503 * a lock ordering must be defined. We lock the directory with 3504 * the smallest object id first, or if it's a tie, the one with 3505 * the lexically first name. 3506 */ 3507 if (sdzp->z_id < tdzp->z_id) { 3508 cmp = -1; 3509 } else if (sdzp->z_id > tdzp->z_id) { 3510 cmp = 1; 3511 } else { 3512 /* 3513 * First compare the two name arguments without 3514 * considering any case folding. 3515 */ 3516 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3517 3518 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3519 ASSERT(error == 0 || !zfsvfs->z_utf8); 3520 if (cmp == 0) { 3521 /* 3522 * POSIX: "If the old argument and the new argument 3523 * both refer to links to the same existing file, 3524 * the rename() function shall return successfully 3525 * and perform no other action." 3526 */ 3527 ZFS_EXIT(zfsvfs); 3528 return (0); 3529 } 3530 /* 3531 * If the file system is case-folding, then we may 3532 * have some more checking to do. A case-folding file 3533 * system is either supporting mixed case sensitivity 3534 * access or is completely case-insensitive. Note 3535 * that the file system is always case preserving. 3536 * 3537 * In mixed sensitivity mode case sensitive behavior 3538 * is the default. FIGNORECASE must be used to 3539 * explicitly request case insensitive behavior. 3540 * 3541 * If the source and target names provided differ only 3542 * by case (e.g., a request to rename 'tim' to 'Tim'), 3543 * we will treat this as a special case in the 3544 * case-insensitive mode: as long as the source name 3545 * is an exact match, we will allow this to proceed as 3546 * a name-change request. 3547 */ 3548 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3549 (zfsvfs->z_case == ZFS_CASE_MIXED && 3550 flags & FIGNORECASE)) && 3551 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3552 &error) == 0) { 3553 /* 3554 * case preserving rename request, require exact 3555 * name matches 3556 */ 3557 zflg |= ZCIEXACT; 3558 zflg &= ~ZCILOOK; 3559 } 3560 } 3561 3562 /* 3563 * If the source and destination directories are the same, we should 3564 * grab the z_name_lock of that directory only once. 3565 */ 3566 if (sdzp == tdzp) { 3567 zflg |= ZHAVELOCK; 3568 rw_enter(&sdzp->z_name_lock, RW_READER); 3569 } 3570 3571 if (cmp < 0) { 3572 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3573 ZEXISTS | zflg, NULL, NULL); 3574 terr = zfs_dirent_lock(&tdl, 3575 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3576 } else { 3577 terr = zfs_dirent_lock(&tdl, 3578 tdzp, tnm, &tzp, zflg, NULL, NULL); 3579 serr = zfs_dirent_lock(&sdl, 3580 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3581 NULL, NULL); 3582 } 3583 3584 if (serr) { 3585 /* 3586 * Source entry invalid or not there. 3587 */ 3588 if (!terr) { 3589 zfs_dirent_unlock(tdl); 3590 if (tzp) 3591 VN_RELE(ZTOV(tzp)); 3592 } 3593 3594 if (sdzp == tdzp) 3595 rw_exit(&sdzp->z_name_lock); 3596 3597 if (strcmp(snm, "..") == 0) 3598 serr = SET_ERROR(EINVAL); 3599 ZFS_EXIT(zfsvfs); 3600 return (serr); 3601 } 3602 if (terr) { 3603 zfs_dirent_unlock(sdl); 3604 VN_RELE(ZTOV(szp)); 3605 3606 if (sdzp == tdzp) 3607 rw_exit(&sdzp->z_name_lock); 3608 3609 if (strcmp(tnm, "..") == 0) 3610 terr = SET_ERROR(EINVAL); 3611 ZFS_EXIT(zfsvfs); 3612 return (terr); 3613 } 3614 3615 /* 3616 * Must have write access at the source to remove the old entry 3617 * and write access at the target to create the new entry. 3618 * Note that if target and source are the same, this can be 3619 * done in a single check. 3620 */ 3621 3622 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3623 goto out; 3624 3625 if (ZTOV(szp)->v_type == VDIR) { 3626 /* 3627 * Check to make sure rename is valid. 3628 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3629 */ 3630 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3631 goto out; 3632 } 3633 3634 /* 3635 * Does target exist? 3636 */ 3637 if (tzp) { 3638 /* 3639 * Source and target must be the same type. 3640 */ 3641 if (ZTOV(szp)->v_type == VDIR) { 3642 if (ZTOV(tzp)->v_type != VDIR) { 3643 error = SET_ERROR(ENOTDIR); 3644 goto out; 3645 } 3646 } else { 3647 if (ZTOV(tzp)->v_type == VDIR) { 3648 error = SET_ERROR(EISDIR); 3649 goto out; 3650 } 3651 } 3652 /* 3653 * POSIX dictates that when the source and target 3654 * entries refer to the same file object, rename 3655 * must do nothing and exit without error. 3656 */ 3657 if (szp->z_id == tzp->z_id) { 3658 error = 0; 3659 goto out; 3660 } 3661 } 3662 3663 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3664 if (tzp) 3665 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3666 3667 /* 3668 * notify the target directory if it is not the same 3669 * as source directory. 3670 */ 3671 if (tdvp != sdvp) { 3672 vnevent_rename_dest_dir(tdvp, ct); 3673 } 3674 3675 tx = dmu_tx_create(zfsvfs->z_os); 3676 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3677 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3678 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3679 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3680 if (sdzp != tdzp) { 3681 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3682 zfs_sa_upgrade_txholds(tx, tdzp); 3683 } 3684 if (tzp) { 3685 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3686 zfs_sa_upgrade_txholds(tx, tzp); 3687 } 3688 3689 zfs_sa_upgrade_txholds(tx, szp); 3690 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3691 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3692 if (error) { 3693 if (zl != NULL) 3694 zfs_rename_unlock(&zl); 3695 zfs_dirent_unlock(sdl); 3696 zfs_dirent_unlock(tdl); 3697 3698 if (sdzp == tdzp) 3699 rw_exit(&sdzp->z_name_lock); 3700 3701 VN_RELE(ZTOV(szp)); 3702 if (tzp) 3703 VN_RELE(ZTOV(tzp)); 3704 if (error == ERESTART) { 3705 waited = B_TRUE; 3706 dmu_tx_wait(tx); 3707 dmu_tx_abort(tx); 3708 goto top; 3709 } 3710 dmu_tx_abort(tx); 3711 ZFS_EXIT(zfsvfs); 3712 return (error); 3713 } 3714 3715 if (tzp) /* Attempt to remove the existing target */ 3716 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3717 3718 if (error == 0) { 3719 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3720 if (error == 0) { 3721 szp->z_pflags |= ZFS_AV_MODIFIED; 3722 3723 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3724 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3725 ASSERT0(error); 3726 3727 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3728 if (error == 0) { 3729 zfs_log_rename(zilog, tx, TX_RENAME | 3730 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3731 sdl->dl_name, tdzp, tdl->dl_name, szp, tzp); 3732 3733 /* 3734 * Update path information for the target vnode 3735 */ 3736 vn_renamepath(tdvp, ZTOV(szp), tnm, 3737 strlen(tnm)); 3738 } else { 3739 /* 3740 * At this point, we have successfully created 3741 * the target name, but have failed to remove 3742 * the source name. Since the create was done 3743 * with the ZRENAMING flag, there are 3744 * complications; for one, the link count is 3745 * wrong. The easiest way to deal with this 3746 * is to remove the newly created target, and 3747 * return the original error. This must 3748 * succeed; fortunately, it is very unlikely to 3749 * fail, since we just created it. 3750 */ 3751 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3752 ZRENAMING, NULL), ==, 0); 3753 } 3754 } 3755 } 3756 3757 dmu_tx_commit(tx); 3758 out: 3759 if (zl != NULL) 3760 zfs_rename_unlock(&zl); 3761 3762 zfs_dirent_unlock(sdl); 3763 zfs_dirent_unlock(tdl); 3764 3765 if (sdzp == tdzp) 3766 rw_exit(&sdzp->z_name_lock); 3767 3768 3769 VN_RELE(ZTOV(szp)); 3770 if (tzp) 3771 VN_RELE(ZTOV(tzp)); 3772 3773 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3774 zil_commit(zilog, 0); 3775 3776 ZFS_EXIT(zfsvfs); 3777 return (error); 3778 } 3779 3780 /* 3781 * Insert the indicated symbolic reference entry into the directory. 3782 * 3783 * IN: dvp - Directory to contain new symbolic link. 3784 * link - Name for new symlink entry. 3785 * vap - Attributes of new entry. 3786 * cr - credentials of caller. 3787 * ct - caller context 3788 * flags - case flags 3789 * 3790 * RETURN: 0 on success, error code on failure. 3791 * 3792 * Timestamps: 3793 * dvp - ctime|mtime updated 3794 */ 3795 /*ARGSUSED*/ 3796 static int 3797 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3798 caller_context_t *ct, int flags) 3799 { 3800 znode_t *zp, *dzp = VTOZ(dvp); 3801 zfs_dirlock_t *dl; 3802 dmu_tx_t *tx; 3803 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3804 zilog_t *zilog; 3805 uint64_t len = strlen(link); 3806 int error; 3807 int zflg = ZNEW; 3808 zfs_acl_ids_t acl_ids; 3809 boolean_t fuid_dirtied; 3810 uint64_t txtype = TX_SYMLINK; 3811 boolean_t waited = B_FALSE; 3812 3813 ASSERT(vap->va_type == VLNK); 3814 3815 ZFS_ENTER(zfsvfs); 3816 ZFS_VERIFY_ZP(dzp); 3817 zilog = zfsvfs->z_log; 3818 3819 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3820 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3821 ZFS_EXIT(zfsvfs); 3822 return (SET_ERROR(EILSEQ)); 3823 } 3824 if (flags & FIGNORECASE) 3825 zflg |= ZCILOOK; 3826 3827 if (len > MAXPATHLEN) { 3828 ZFS_EXIT(zfsvfs); 3829 return (SET_ERROR(ENAMETOOLONG)); 3830 } 3831 3832 if ((error = zfs_acl_ids_create(dzp, 0, 3833 vap, cr, NULL, &acl_ids)) != 0) { 3834 ZFS_EXIT(zfsvfs); 3835 return (error); 3836 } 3837 top: 3838 /* 3839 * Attempt to lock directory; fail if entry already exists. 3840 */ 3841 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3842 if (error) { 3843 zfs_acl_ids_free(&acl_ids); 3844 ZFS_EXIT(zfsvfs); 3845 return (error); 3846 } 3847 3848 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3849 zfs_acl_ids_free(&acl_ids); 3850 zfs_dirent_unlock(dl); 3851 ZFS_EXIT(zfsvfs); 3852 return (error); 3853 } 3854 3855 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3856 zfs_acl_ids_free(&acl_ids); 3857 zfs_dirent_unlock(dl); 3858 ZFS_EXIT(zfsvfs); 3859 return (SET_ERROR(EDQUOT)); 3860 } 3861 tx = dmu_tx_create(zfsvfs->z_os); 3862 fuid_dirtied = zfsvfs->z_fuid_dirty; 3863 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3864 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3865 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3866 ZFS_SA_BASE_ATTR_SIZE + len); 3867 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3868 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3869 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3870 acl_ids.z_aclp->z_acl_bytes); 3871 } 3872 if (fuid_dirtied) 3873 zfs_fuid_txhold(zfsvfs, tx); 3874 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3875 if (error) { 3876 zfs_dirent_unlock(dl); 3877 if (error == ERESTART) { 3878 waited = B_TRUE; 3879 dmu_tx_wait(tx); 3880 dmu_tx_abort(tx); 3881 goto top; 3882 } 3883 zfs_acl_ids_free(&acl_ids); 3884 dmu_tx_abort(tx); 3885 ZFS_EXIT(zfsvfs); 3886 return (error); 3887 } 3888 3889 /* 3890 * Create a new object for the symlink. 3891 * for version 4 ZPL datsets the symlink will be an SA attribute 3892 */ 3893 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3894 3895 if (fuid_dirtied) 3896 zfs_fuid_sync(zfsvfs, tx); 3897 3898 mutex_enter(&zp->z_lock); 3899 if (zp->z_is_sa) 3900 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3901 link, len, tx); 3902 else 3903 zfs_sa_symlink(zp, link, len, tx); 3904 mutex_exit(&zp->z_lock); 3905 3906 zp->z_size = len; 3907 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3908 &zp->z_size, sizeof (zp->z_size), tx); 3909 /* 3910 * Insert the new object into the directory. 3911 */ 3912 (void) zfs_link_create(dl, zp, tx, ZNEW); 3913 3914 if (flags & FIGNORECASE) 3915 txtype |= TX_CI; 3916 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3917 3918 zfs_acl_ids_free(&acl_ids); 3919 3920 dmu_tx_commit(tx); 3921 3922 zfs_dirent_unlock(dl); 3923 3924 VN_RELE(ZTOV(zp)); 3925 3926 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3927 zil_commit(zilog, 0); 3928 3929 ZFS_EXIT(zfsvfs); 3930 return (error); 3931 } 3932 3933 /* 3934 * Return, in the buffer contained in the provided uio structure, 3935 * the symbolic path referred to by vp. 3936 * 3937 * IN: vp - vnode of symbolic link. 3938 * uio - structure to contain the link path. 3939 * cr - credentials of caller. 3940 * ct - caller context 3941 * 3942 * OUT: uio - structure containing the link path. 3943 * 3944 * RETURN: 0 on success, error code on failure. 3945 * 3946 * Timestamps: 3947 * vp - atime updated 3948 */ 3949 /* ARGSUSED */ 3950 static int 3951 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3952 { 3953 znode_t *zp = VTOZ(vp); 3954 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3955 int error; 3956 3957 ZFS_ENTER(zfsvfs); 3958 ZFS_VERIFY_ZP(zp); 3959 3960 mutex_enter(&zp->z_lock); 3961 if (zp->z_is_sa) 3962 error = sa_lookup_uio(zp->z_sa_hdl, 3963 SA_ZPL_SYMLINK(zfsvfs), uio); 3964 else 3965 error = zfs_sa_readlink(zp, uio); 3966 mutex_exit(&zp->z_lock); 3967 3968 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3969 3970 ZFS_EXIT(zfsvfs); 3971 return (error); 3972 } 3973 3974 /* 3975 * Insert a new entry into directory tdvp referencing svp. 3976 * 3977 * IN: tdvp - Directory to contain new entry. 3978 * svp - vnode of new entry. 3979 * name - name of new entry. 3980 * cr - credentials of caller. 3981 * ct - caller context 3982 * 3983 * RETURN: 0 on success, error code on failure. 3984 * 3985 * Timestamps: 3986 * tdvp - ctime|mtime updated 3987 * svp - ctime updated 3988 */ 3989 /* ARGSUSED */ 3990 static int 3991 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3992 caller_context_t *ct, int flags) 3993 { 3994 znode_t *dzp = VTOZ(tdvp); 3995 znode_t *tzp, *szp; 3996 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3997 zilog_t *zilog; 3998 zfs_dirlock_t *dl; 3999 dmu_tx_t *tx; 4000 vnode_t *realvp; 4001 int error; 4002 int zf = ZNEW; 4003 uint64_t parent; 4004 uid_t owner; 4005 boolean_t waited = B_FALSE; 4006 4007 ASSERT(tdvp->v_type == VDIR); 4008 4009 ZFS_ENTER(zfsvfs); 4010 ZFS_VERIFY_ZP(dzp); 4011 zilog = zfsvfs->z_log; 4012 4013 if (VOP_REALVP(svp, &realvp, ct) == 0) 4014 svp = realvp; 4015 4016 /* 4017 * POSIX dictates that we return EPERM here. 4018 * Better choices include ENOTSUP or EISDIR. 4019 */ 4020 if (svp->v_type == VDIR) { 4021 ZFS_EXIT(zfsvfs); 4022 return (SET_ERROR(EPERM)); 4023 } 4024 4025 szp = VTOZ(svp); 4026 ZFS_VERIFY_ZP(szp); 4027 4028 /* 4029 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4030 * ctldir appear to have the same v_vfsp. 4031 */ 4032 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4033 ZFS_EXIT(zfsvfs); 4034 return (SET_ERROR(EXDEV)); 4035 } 4036 4037 /* Prevent links to .zfs/shares files */ 4038 4039 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4040 &parent, sizeof (uint64_t))) != 0) { 4041 ZFS_EXIT(zfsvfs); 4042 return (error); 4043 } 4044 if (parent == zfsvfs->z_shares_dir) { 4045 ZFS_EXIT(zfsvfs); 4046 return (SET_ERROR(EPERM)); 4047 } 4048 4049 if (zfsvfs->z_utf8 && u8_validate(name, 4050 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4051 ZFS_EXIT(zfsvfs); 4052 return (SET_ERROR(EILSEQ)); 4053 } 4054 if (flags & FIGNORECASE) 4055 zf |= ZCILOOK; 4056 4057 /* 4058 * We do not support links between attributes and non-attributes 4059 * because of the potential security risk of creating links 4060 * into "normal" file space in order to circumvent restrictions 4061 * imposed in attribute space. 4062 */ 4063 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4064 ZFS_EXIT(zfsvfs); 4065 return (SET_ERROR(EINVAL)); 4066 } 4067 4068 4069 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4070 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4071 ZFS_EXIT(zfsvfs); 4072 return (SET_ERROR(EPERM)); 4073 } 4074 4075 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4076 ZFS_EXIT(zfsvfs); 4077 return (error); 4078 } 4079 4080 top: 4081 /* 4082 * Attempt to lock directory; fail if entry already exists. 4083 */ 4084 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4085 if (error) { 4086 ZFS_EXIT(zfsvfs); 4087 return (error); 4088 } 4089 4090 tx = dmu_tx_create(zfsvfs->z_os); 4091 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4092 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4093 zfs_sa_upgrade_txholds(tx, szp); 4094 zfs_sa_upgrade_txholds(tx, dzp); 4095 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 4096 if (error) { 4097 zfs_dirent_unlock(dl); 4098 if (error == ERESTART) { 4099 waited = B_TRUE; 4100 dmu_tx_wait(tx); 4101 dmu_tx_abort(tx); 4102 goto top; 4103 } 4104 dmu_tx_abort(tx); 4105 ZFS_EXIT(zfsvfs); 4106 return (error); 4107 } 4108 4109 error = zfs_link_create(dl, szp, tx, 0); 4110 4111 if (error == 0) { 4112 uint64_t txtype = TX_LINK; 4113 if (flags & FIGNORECASE) 4114 txtype |= TX_CI; 4115 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4116 } 4117 4118 dmu_tx_commit(tx); 4119 4120 zfs_dirent_unlock(dl); 4121 4122 if (error == 0) { 4123 vnevent_link(svp, ct); 4124 } 4125 4126 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4127 zil_commit(zilog, 0); 4128 4129 ZFS_EXIT(zfsvfs); 4130 return (error); 4131 } 4132 4133 /* 4134 * zfs_null_putapage() is used when the file system has been force 4135 * unmounted. It just drops the pages. 4136 */ 4137 /* ARGSUSED */ 4138 static int 4139 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4140 size_t *lenp, int flags, cred_t *cr) 4141 { 4142 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4143 return (0); 4144 } 4145 4146 /* 4147 * Push a page out to disk, klustering if possible. 4148 * 4149 * IN: vp - file to push page to. 4150 * pp - page to push. 4151 * flags - additional flags. 4152 * cr - credentials of caller. 4153 * 4154 * OUT: offp - start of range pushed. 4155 * lenp - len of range pushed. 4156 * 4157 * RETURN: 0 on success, error code on failure. 4158 * 4159 * NOTE: callers must have locked the page to be pushed. On 4160 * exit, the page (and all other pages in the kluster) must be 4161 * unlocked. 4162 */ 4163 /* ARGSUSED */ 4164 static int 4165 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4166 size_t *lenp, int flags, cred_t *cr) 4167 { 4168 znode_t *zp = VTOZ(vp); 4169 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4170 dmu_tx_t *tx; 4171 u_offset_t off, koff; 4172 size_t len, klen; 4173 int err; 4174 4175 off = pp->p_offset; 4176 len = PAGESIZE; 4177 /* 4178 * If our blocksize is bigger than the page size, try to kluster 4179 * multiple pages so that we write a full block (thus avoiding 4180 * a read-modify-write). 4181 */ 4182 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4183 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4184 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4185 ASSERT(koff <= zp->z_size); 4186 if (koff + klen > zp->z_size) 4187 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4188 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4189 } 4190 ASSERT3U(btop(len), ==, btopr(len)); 4191 4192 /* 4193 * Can't push pages past end-of-file. 4194 */ 4195 if (off >= zp->z_size) { 4196 /* ignore all pages */ 4197 err = 0; 4198 goto out; 4199 } else if (off + len > zp->z_size) { 4200 int npages = btopr(zp->z_size - off); 4201 page_t *trunc; 4202 4203 page_list_break(&pp, &trunc, npages); 4204 /* ignore pages past end of file */ 4205 if (trunc) 4206 pvn_write_done(trunc, flags); 4207 len = zp->z_size - off; 4208 } 4209 4210 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4211 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4212 err = SET_ERROR(EDQUOT); 4213 goto out; 4214 } 4215 tx = dmu_tx_create(zfsvfs->z_os); 4216 dmu_tx_hold_write(tx, zp->z_id, off, len); 4217 4218 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4219 zfs_sa_upgrade_txholds(tx, zp); 4220 err = dmu_tx_assign(tx, TXG_WAIT); 4221 if (err != 0) { 4222 dmu_tx_abort(tx); 4223 goto out; 4224 } 4225 4226 if (zp->z_blksz <= PAGESIZE) { 4227 caddr_t va = zfs_map_page(pp, S_READ); 4228 ASSERT3U(len, <=, PAGESIZE); 4229 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4230 zfs_unmap_page(pp, va); 4231 } else { 4232 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4233 } 4234 4235 if (err == 0) { 4236 uint64_t mtime[2], ctime[2]; 4237 sa_bulk_attr_t bulk[3]; 4238 int count = 0; 4239 4240 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4241 &mtime, 16); 4242 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4243 &ctime, 16); 4244 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4245 &zp->z_pflags, 8); 4246 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4247 B_TRUE); 4248 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4249 } 4250 dmu_tx_commit(tx); 4251 4252 out: 4253 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4254 if (offp) 4255 *offp = off; 4256 if (lenp) 4257 *lenp = len; 4258 4259 return (err); 4260 } 4261 4262 /* 4263 * Copy the portion of the file indicated from pages into the file. 4264 * The pages are stored in a page list attached to the files vnode. 4265 * 4266 * IN: vp - vnode of file to push page data to. 4267 * off - position in file to put data. 4268 * len - amount of data to write. 4269 * flags - flags to control the operation. 4270 * cr - credentials of caller. 4271 * ct - caller context. 4272 * 4273 * RETURN: 0 on success, error code on failure. 4274 * 4275 * Timestamps: 4276 * vp - ctime|mtime updated 4277 */ 4278 /*ARGSUSED*/ 4279 static int 4280 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4281 caller_context_t *ct) 4282 { 4283 znode_t *zp = VTOZ(vp); 4284 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4285 page_t *pp; 4286 size_t io_len; 4287 u_offset_t io_off; 4288 uint_t blksz; 4289 rl_t *rl; 4290 int error = 0; 4291 4292 ZFS_ENTER(zfsvfs); 4293 ZFS_VERIFY_ZP(zp); 4294 4295 /* 4296 * There's nothing to do if no data is cached. 4297 */ 4298 if (!vn_has_cached_data(vp)) { 4299 ZFS_EXIT(zfsvfs); 4300 return (0); 4301 } 4302 4303 /* 4304 * Align this request to the file block size in case we kluster. 4305 * XXX - this can result in pretty aggresive locking, which can 4306 * impact simultanious read/write access. One option might be 4307 * to break up long requests (len == 0) into block-by-block 4308 * operations to get narrower locking. 4309 */ 4310 blksz = zp->z_blksz; 4311 if (ISP2(blksz)) 4312 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4313 else 4314 io_off = 0; 4315 if (len > 0 && ISP2(blksz)) 4316 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4317 else 4318 io_len = 0; 4319 4320 if (io_len == 0) { 4321 /* 4322 * Search the entire vp list for pages >= io_off. 4323 */ 4324 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4325 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4326 goto out; 4327 } 4328 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4329 4330 if (off > zp->z_size) { 4331 /* past end of file */ 4332 zfs_range_unlock(rl); 4333 ZFS_EXIT(zfsvfs); 4334 return (0); 4335 } 4336 4337 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4338 4339 for (off = io_off; io_off < off + len; io_off += io_len) { 4340 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4341 pp = page_lookup(vp, io_off, 4342 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4343 } else { 4344 pp = page_lookup_nowait(vp, io_off, 4345 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4346 } 4347 4348 if (pp != NULL && pvn_getdirty(pp, flags)) { 4349 int err; 4350 4351 /* 4352 * Found a dirty page to push 4353 */ 4354 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4355 if (err) 4356 error = err; 4357 } else { 4358 io_len = PAGESIZE; 4359 } 4360 } 4361 out: 4362 zfs_range_unlock(rl); 4363 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4364 zil_commit(zfsvfs->z_log, zp->z_id); 4365 ZFS_EXIT(zfsvfs); 4366 return (error); 4367 } 4368 4369 /*ARGSUSED*/ 4370 void 4371 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4372 { 4373 znode_t *zp = VTOZ(vp); 4374 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4375 int error; 4376 4377 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4378 if (zp->z_sa_hdl == NULL) { 4379 /* 4380 * The fs has been unmounted, or we did a 4381 * suspend/resume and this file no longer exists. 4382 */ 4383 if (vn_has_cached_data(vp)) { 4384 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4385 B_INVAL, cr); 4386 } 4387 4388 mutex_enter(&zp->z_lock); 4389 mutex_enter(&vp->v_lock); 4390 ASSERT(vp->v_count == 1); 4391 vp->v_count = 0; 4392 mutex_exit(&vp->v_lock); 4393 mutex_exit(&zp->z_lock); 4394 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4395 zfs_znode_free(zp); 4396 return; 4397 } 4398 4399 /* 4400 * Attempt to push any data in the page cache. If this fails 4401 * we will get kicked out later in zfs_zinactive(). 4402 */ 4403 if (vn_has_cached_data(vp)) { 4404 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4405 cr); 4406 } 4407 4408 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4409 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4410 4411 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4412 zfs_sa_upgrade_txholds(tx, zp); 4413 error = dmu_tx_assign(tx, TXG_WAIT); 4414 if (error) { 4415 dmu_tx_abort(tx); 4416 } else { 4417 mutex_enter(&zp->z_lock); 4418 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4419 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4420 zp->z_atime_dirty = 0; 4421 mutex_exit(&zp->z_lock); 4422 dmu_tx_commit(tx); 4423 } 4424 } 4425 4426 zfs_zinactive(zp); 4427 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4428 } 4429 4430 /* 4431 * Bounds-check the seek operation. 4432 * 4433 * IN: vp - vnode seeking within 4434 * ooff - old file offset 4435 * noffp - pointer to new file offset 4436 * ct - caller context 4437 * 4438 * RETURN: 0 on success, EINVAL if new offset invalid. 4439 */ 4440 /* ARGSUSED */ 4441 static int 4442 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4443 caller_context_t *ct) 4444 { 4445 if (vp->v_type == VDIR) 4446 return (0); 4447 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4448 } 4449 4450 /* 4451 * Pre-filter the generic locking function to trap attempts to place 4452 * a mandatory lock on a memory mapped file. 4453 */ 4454 static int 4455 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4456 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4457 { 4458 znode_t *zp = VTOZ(vp); 4459 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4460 4461 ZFS_ENTER(zfsvfs); 4462 ZFS_VERIFY_ZP(zp); 4463 4464 /* 4465 * We are following the UFS semantics with respect to mapcnt 4466 * here: If we see that the file is mapped already, then we will 4467 * return an error, but we don't worry about races between this 4468 * function and zfs_map(). 4469 */ 4470 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4471 ZFS_EXIT(zfsvfs); 4472 return (SET_ERROR(EAGAIN)); 4473 } 4474 ZFS_EXIT(zfsvfs); 4475 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4476 } 4477 4478 /* 4479 * If we can't find a page in the cache, we will create a new page 4480 * and fill it with file data. For efficiency, we may try to fill 4481 * multiple pages at once (klustering) to fill up the supplied page 4482 * list. Note that the pages to be filled are held with an exclusive 4483 * lock to prevent access by other threads while they are being filled. 4484 */ 4485 static int 4486 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4487 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4488 { 4489 znode_t *zp = VTOZ(vp); 4490 page_t *pp, *cur_pp; 4491 objset_t *os = zp->z_zfsvfs->z_os; 4492 u_offset_t io_off, total; 4493 size_t io_len; 4494 int err; 4495 4496 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4497 /* 4498 * We only have a single page, don't bother klustering 4499 */ 4500 io_off = off; 4501 io_len = PAGESIZE; 4502 pp = page_create_va(vp, io_off, io_len, 4503 PG_EXCL | PG_WAIT, seg, addr); 4504 } else { 4505 /* 4506 * Try to find enough pages to fill the page list 4507 */ 4508 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4509 &io_len, off, plsz, 0); 4510 } 4511 if (pp == NULL) { 4512 /* 4513 * The page already exists, nothing to do here. 4514 */ 4515 *pl = NULL; 4516 return (0); 4517 } 4518 4519 /* 4520 * Fill the pages in the kluster. 4521 */ 4522 cur_pp = pp; 4523 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4524 caddr_t va; 4525 4526 ASSERT3U(io_off, ==, cur_pp->p_offset); 4527 va = zfs_map_page(cur_pp, S_WRITE); 4528 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4529 DMU_READ_PREFETCH); 4530 zfs_unmap_page(cur_pp, va); 4531 if (err) { 4532 /* On error, toss the entire kluster */ 4533 pvn_read_done(pp, B_ERROR); 4534 /* convert checksum errors into IO errors */ 4535 if (err == ECKSUM) 4536 err = SET_ERROR(EIO); 4537 return (err); 4538 } 4539 cur_pp = cur_pp->p_next; 4540 } 4541 4542 /* 4543 * Fill in the page list array from the kluster starting 4544 * from the desired offset `off'. 4545 * NOTE: the page list will always be null terminated. 4546 */ 4547 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4548 ASSERT(pl == NULL || (*pl)->p_offset == off); 4549 4550 return (0); 4551 } 4552 4553 /* 4554 * Return pointers to the pages for the file region [off, off + len] 4555 * in the pl array. If plsz is greater than len, this function may 4556 * also return page pointers from after the specified region 4557 * (i.e. the region [off, off + plsz]). These additional pages are 4558 * only returned if they are already in the cache, or were created as 4559 * part of a klustered read. 4560 * 4561 * IN: vp - vnode of file to get data from. 4562 * off - position in file to get data from. 4563 * len - amount of data to retrieve. 4564 * plsz - length of provided page list. 4565 * seg - segment to obtain pages for. 4566 * addr - virtual address of fault. 4567 * rw - mode of created pages. 4568 * cr - credentials of caller. 4569 * ct - caller context. 4570 * 4571 * OUT: protp - protection mode of created pages. 4572 * pl - list of pages created. 4573 * 4574 * RETURN: 0 on success, error code on failure. 4575 * 4576 * Timestamps: 4577 * vp - atime updated 4578 */ 4579 /* ARGSUSED */ 4580 static int 4581 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4582 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4583 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4584 { 4585 znode_t *zp = VTOZ(vp); 4586 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4587 page_t **pl0 = pl; 4588 int err = 0; 4589 4590 /* we do our own caching, faultahead is unnecessary */ 4591 if (pl == NULL) 4592 return (0); 4593 else if (len > plsz) 4594 len = plsz; 4595 else 4596 len = P2ROUNDUP(len, PAGESIZE); 4597 ASSERT(plsz >= len); 4598 4599 ZFS_ENTER(zfsvfs); 4600 ZFS_VERIFY_ZP(zp); 4601 4602 if (protp) 4603 *protp = PROT_ALL; 4604 4605 /* 4606 * Loop through the requested range [off, off + len) looking 4607 * for pages. If we don't find a page, we will need to create 4608 * a new page and fill it with data from the file. 4609 */ 4610 while (len > 0) { 4611 if (*pl = page_lookup(vp, off, SE_SHARED)) 4612 *(pl+1) = NULL; 4613 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4614 goto out; 4615 while (*pl) { 4616 ASSERT3U((*pl)->p_offset, ==, off); 4617 off += PAGESIZE; 4618 addr += PAGESIZE; 4619 if (len > 0) { 4620 ASSERT3U(len, >=, PAGESIZE); 4621 len -= PAGESIZE; 4622 } 4623 ASSERT3U(plsz, >=, PAGESIZE); 4624 plsz -= PAGESIZE; 4625 pl++; 4626 } 4627 } 4628 4629 /* 4630 * Fill out the page array with any pages already in the cache. 4631 */ 4632 while (plsz > 0 && 4633 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4634 off += PAGESIZE; 4635 plsz -= PAGESIZE; 4636 } 4637 out: 4638 if (err) { 4639 /* 4640 * Release any pages we have previously locked. 4641 */ 4642 while (pl > pl0) 4643 page_unlock(*--pl); 4644 } else { 4645 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4646 } 4647 4648 *pl = NULL; 4649 4650 ZFS_EXIT(zfsvfs); 4651 return (err); 4652 } 4653 4654 /* 4655 * Request a memory map for a section of a file. This code interacts 4656 * with common code and the VM system as follows: 4657 * 4658 * - common code calls mmap(), which ends up in smmap_common() 4659 * - this calls VOP_MAP(), which takes you into (say) zfs 4660 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4661 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4662 * - zfs_addmap() updates z_mapcnt 4663 */ 4664 /*ARGSUSED*/ 4665 static int 4666 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4667 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4668 caller_context_t *ct) 4669 { 4670 znode_t *zp = VTOZ(vp); 4671 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4672 segvn_crargs_t vn_a; 4673 int error; 4674 4675 ZFS_ENTER(zfsvfs); 4676 ZFS_VERIFY_ZP(zp); 4677 4678 if ((prot & PROT_WRITE) && (zp->z_pflags & 4679 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4680 ZFS_EXIT(zfsvfs); 4681 return (SET_ERROR(EPERM)); 4682 } 4683 4684 if ((prot & (PROT_READ | PROT_EXEC)) && 4685 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4686 ZFS_EXIT(zfsvfs); 4687 return (SET_ERROR(EACCES)); 4688 } 4689 4690 if (vp->v_flag & VNOMAP) { 4691 ZFS_EXIT(zfsvfs); 4692 return (SET_ERROR(ENOSYS)); 4693 } 4694 4695 if (off < 0 || len > MAXOFFSET_T - off) { 4696 ZFS_EXIT(zfsvfs); 4697 return (SET_ERROR(ENXIO)); 4698 } 4699 4700 if (vp->v_type != VREG) { 4701 ZFS_EXIT(zfsvfs); 4702 return (SET_ERROR(ENODEV)); 4703 } 4704 4705 /* 4706 * If file is locked, disallow mapping. 4707 */ 4708 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4709 ZFS_EXIT(zfsvfs); 4710 return (SET_ERROR(EAGAIN)); 4711 } 4712 4713 as_rangelock(as); 4714 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4715 if (error != 0) { 4716 as_rangeunlock(as); 4717 ZFS_EXIT(zfsvfs); 4718 return (error); 4719 } 4720 4721 vn_a.vp = vp; 4722 vn_a.offset = (u_offset_t)off; 4723 vn_a.type = flags & MAP_TYPE; 4724 vn_a.prot = prot; 4725 vn_a.maxprot = maxprot; 4726 vn_a.cred = cr; 4727 vn_a.amp = NULL; 4728 vn_a.flags = flags & ~MAP_TYPE; 4729 vn_a.szc = 0; 4730 vn_a.lgrp_mem_policy_flags = 0; 4731 4732 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4733 4734 as_rangeunlock(as); 4735 ZFS_EXIT(zfsvfs); 4736 return (error); 4737 } 4738 4739 /* ARGSUSED */ 4740 static int 4741 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4742 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4743 caller_context_t *ct) 4744 { 4745 uint64_t pages = btopr(len); 4746 4747 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4748 return (0); 4749 } 4750 4751 /* 4752 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4753 * more accurate mtime for the associated file. Since we don't have a way of 4754 * detecting when the data was actually modified, we have to resort to 4755 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4756 * last page is pushed. The problem occurs when the msync() call is omitted, 4757 * which by far the most common case: 4758 * 4759 * open() 4760 * mmap() 4761 * <modify memory> 4762 * munmap() 4763 * close() 4764 * <time lapse> 4765 * putpage() via fsflush 4766 * 4767 * If we wait until fsflush to come along, we can have a modification time that 4768 * is some arbitrary point in the future. In order to prevent this in the 4769 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4770 * torn down. 4771 */ 4772 /* ARGSUSED */ 4773 static int 4774 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4775 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4776 caller_context_t *ct) 4777 { 4778 uint64_t pages = btopr(len); 4779 4780 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4781 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4782 4783 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4784 vn_has_cached_data(vp)) 4785 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4786 4787 return (0); 4788 } 4789 4790 /* 4791 * Free or allocate space in a file. Currently, this function only 4792 * supports the `F_FREESP' command. However, this command is somewhat 4793 * misnamed, as its functionality includes the ability to allocate as 4794 * well as free space. 4795 * 4796 * IN: vp - vnode of file to free data in. 4797 * cmd - action to take (only F_FREESP supported). 4798 * bfp - section of file to free/alloc. 4799 * flag - current file open mode flags. 4800 * offset - current file offset. 4801 * cr - credentials of caller [UNUSED]. 4802 * ct - caller context. 4803 * 4804 * RETURN: 0 on success, error code on failure. 4805 * 4806 * Timestamps: 4807 * vp - ctime|mtime updated 4808 */ 4809 /* ARGSUSED */ 4810 static int 4811 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4812 offset_t offset, cred_t *cr, caller_context_t *ct) 4813 { 4814 znode_t *zp = VTOZ(vp); 4815 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4816 uint64_t off, len; 4817 int error; 4818 4819 ZFS_ENTER(zfsvfs); 4820 ZFS_VERIFY_ZP(zp); 4821 4822 if (cmd != F_FREESP) { 4823 ZFS_EXIT(zfsvfs); 4824 return (SET_ERROR(EINVAL)); 4825 } 4826 4827 /* 4828 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 4829 * callers might not be able to detect properly that we are read-only, 4830 * so check it explicitly here. 4831 */ 4832 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 4833 ZFS_EXIT(zfsvfs); 4834 return (SET_ERROR(EROFS)); 4835 } 4836 4837 if (error = convoff(vp, bfp, 0, offset)) { 4838 ZFS_EXIT(zfsvfs); 4839 return (error); 4840 } 4841 4842 if (bfp->l_len < 0) { 4843 ZFS_EXIT(zfsvfs); 4844 return (SET_ERROR(EINVAL)); 4845 } 4846 4847 off = bfp->l_start; 4848 len = bfp->l_len; /* 0 means from off to end of file */ 4849 4850 error = zfs_freesp(zp, off, len, flag, TRUE); 4851 4852 if (error == 0 && off == 0 && len == 0) 4853 vnevent_truncate(ZTOV(zp), ct); 4854 4855 ZFS_EXIT(zfsvfs); 4856 return (error); 4857 } 4858 4859 /*ARGSUSED*/ 4860 static int 4861 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4862 { 4863 znode_t *zp = VTOZ(vp); 4864 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4865 uint32_t gen; 4866 uint64_t gen64; 4867 uint64_t object = zp->z_id; 4868 zfid_short_t *zfid; 4869 int size, i, error; 4870 4871 ZFS_ENTER(zfsvfs); 4872 ZFS_VERIFY_ZP(zp); 4873 4874 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4875 &gen64, sizeof (uint64_t))) != 0) { 4876 ZFS_EXIT(zfsvfs); 4877 return (error); 4878 } 4879 4880 gen = (uint32_t)gen64; 4881 4882 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4883 if (fidp->fid_len < size) { 4884 fidp->fid_len = size; 4885 ZFS_EXIT(zfsvfs); 4886 return (SET_ERROR(ENOSPC)); 4887 } 4888 4889 zfid = (zfid_short_t *)fidp; 4890 4891 zfid->zf_len = size; 4892 4893 for (i = 0; i < sizeof (zfid->zf_object); i++) 4894 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4895 4896 /* Must have a non-zero generation number to distinguish from .zfs */ 4897 if (gen == 0) 4898 gen = 1; 4899 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4900 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4901 4902 if (size == LONG_FID_LEN) { 4903 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4904 zfid_long_t *zlfid; 4905 4906 zlfid = (zfid_long_t *)fidp; 4907 4908 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4909 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4910 4911 /* XXX - this should be the generation number for the objset */ 4912 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4913 zlfid->zf_setgen[i] = 0; 4914 } 4915 4916 ZFS_EXIT(zfsvfs); 4917 return (0); 4918 } 4919 4920 static int 4921 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4922 caller_context_t *ct) 4923 { 4924 znode_t *zp, *xzp; 4925 zfsvfs_t *zfsvfs; 4926 zfs_dirlock_t *dl; 4927 int error; 4928 4929 switch (cmd) { 4930 case _PC_LINK_MAX: 4931 *valp = ULONG_MAX; 4932 return (0); 4933 4934 case _PC_FILESIZEBITS: 4935 *valp = 64; 4936 return (0); 4937 4938 case _PC_XATTR_EXISTS: 4939 zp = VTOZ(vp); 4940 zfsvfs = zp->z_zfsvfs; 4941 ZFS_ENTER(zfsvfs); 4942 ZFS_VERIFY_ZP(zp); 4943 *valp = 0; 4944 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4945 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4946 if (error == 0) { 4947 zfs_dirent_unlock(dl); 4948 if (!zfs_dirempty(xzp)) 4949 *valp = 1; 4950 VN_RELE(ZTOV(xzp)); 4951 } else if (error == ENOENT) { 4952 /* 4953 * If there aren't extended attributes, it's the 4954 * same as having zero of them. 4955 */ 4956 error = 0; 4957 } 4958 ZFS_EXIT(zfsvfs); 4959 return (error); 4960 4961 case _PC_SATTR_ENABLED: 4962 case _PC_SATTR_EXISTS: 4963 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4964 (vp->v_type == VREG || vp->v_type == VDIR); 4965 return (0); 4966 4967 case _PC_ACCESS_FILTERING: 4968 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4969 vp->v_type == VDIR; 4970 return (0); 4971 4972 case _PC_ACL_ENABLED: 4973 *valp = _ACL_ACE_ENABLED; 4974 return (0); 4975 4976 case _PC_MIN_HOLE_SIZE: 4977 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4978 return (0); 4979 4980 case _PC_TIMESTAMP_RESOLUTION: 4981 /* nanosecond timestamp resolution */ 4982 *valp = 1L; 4983 return (0); 4984 4985 default: 4986 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4987 } 4988 } 4989 4990 /*ARGSUSED*/ 4991 static int 4992 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4993 caller_context_t *ct) 4994 { 4995 znode_t *zp = VTOZ(vp); 4996 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4997 int error; 4998 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4999 5000 ZFS_ENTER(zfsvfs); 5001 ZFS_VERIFY_ZP(zp); 5002 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5003 ZFS_EXIT(zfsvfs); 5004 5005 return (error); 5006 } 5007 5008 /*ARGSUSED*/ 5009 static int 5010 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5011 caller_context_t *ct) 5012 { 5013 znode_t *zp = VTOZ(vp); 5014 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5015 int error; 5016 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5017 zilog_t *zilog = zfsvfs->z_log; 5018 5019 ZFS_ENTER(zfsvfs); 5020 ZFS_VERIFY_ZP(zp); 5021 5022 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5023 5024 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5025 zil_commit(zilog, 0); 5026 5027 ZFS_EXIT(zfsvfs); 5028 return (error); 5029 } 5030 5031 /* 5032 * The smallest read we may consider to loan out an arcbuf. 5033 * This must be a power of 2. 5034 */ 5035 int zcr_blksz_min = (1 << 10); /* 1K */ 5036 /* 5037 * If set to less than the file block size, allow loaning out of an 5038 * arcbuf for a partial block read. This must be a power of 2. 5039 */ 5040 int zcr_blksz_max = (1 << 17); /* 128K */ 5041 5042 /*ARGSUSED*/ 5043 static int 5044 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5045 caller_context_t *ct) 5046 { 5047 znode_t *zp = VTOZ(vp); 5048 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5049 int max_blksz = zfsvfs->z_max_blksz; 5050 uio_t *uio = &xuio->xu_uio; 5051 ssize_t size = uio->uio_resid; 5052 offset_t offset = uio->uio_loffset; 5053 int blksz; 5054 int fullblk, i; 5055 arc_buf_t *abuf; 5056 ssize_t maxsize; 5057 int preamble, postamble; 5058 5059 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5060 return (SET_ERROR(EINVAL)); 5061 5062 ZFS_ENTER(zfsvfs); 5063 ZFS_VERIFY_ZP(zp); 5064 switch (ioflag) { 5065 case UIO_WRITE: 5066 /* 5067 * Loan out an arc_buf for write if write size is bigger than 5068 * max_blksz, and the file's block size is also max_blksz. 5069 */ 5070 blksz = max_blksz; 5071 if (size < blksz || zp->z_blksz != blksz) { 5072 ZFS_EXIT(zfsvfs); 5073 return (SET_ERROR(EINVAL)); 5074 } 5075 /* 5076 * Caller requests buffers for write before knowing where the 5077 * write offset might be (e.g. NFS TCP write). 5078 */ 5079 if (offset == -1) { 5080 preamble = 0; 5081 } else { 5082 preamble = P2PHASE(offset, blksz); 5083 if (preamble) { 5084 preamble = blksz - preamble; 5085 size -= preamble; 5086 } 5087 } 5088 5089 postamble = P2PHASE(size, blksz); 5090 size -= postamble; 5091 5092 fullblk = size / blksz; 5093 (void) dmu_xuio_init(xuio, 5094 (preamble != 0) + fullblk + (postamble != 0)); 5095 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5096 int, postamble, int, 5097 (preamble != 0) + fullblk + (postamble != 0)); 5098 5099 /* 5100 * Have to fix iov base/len for partial buffers. They 5101 * currently represent full arc_buf's. 5102 */ 5103 if (preamble) { 5104 /* data begins in the middle of the arc_buf */ 5105 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5106 blksz); 5107 ASSERT(abuf); 5108 (void) dmu_xuio_add(xuio, abuf, 5109 blksz - preamble, preamble); 5110 } 5111 5112 for (i = 0; i < fullblk; i++) { 5113 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5114 blksz); 5115 ASSERT(abuf); 5116 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5117 } 5118 5119 if (postamble) { 5120 /* data ends in the middle of the arc_buf */ 5121 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5122 blksz); 5123 ASSERT(abuf); 5124 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5125 } 5126 break; 5127 case UIO_READ: 5128 /* 5129 * Loan out an arc_buf for read if the read size is larger than 5130 * the current file block size. Block alignment is not 5131 * considered. Partial arc_buf will be loaned out for read. 5132 */ 5133 blksz = zp->z_blksz; 5134 if (blksz < zcr_blksz_min) 5135 blksz = zcr_blksz_min; 5136 if (blksz > zcr_blksz_max) 5137 blksz = zcr_blksz_max; 5138 /* avoid potential complexity of dealing with it */ 5139 if (blksz > max_blksz) { 5140 ZFS_EXIT(zfsvfs); 5141 return (SET_ERROR(EINVAL)); 5142 } 5143 5144 maxsize = zp->z_size - uio->uio_loffset; 5145 if (size > maxsize) 5146 size = maxsize; 5147 5148 if (size < blksz || vn_has_cached_data(vp)) { 5149 ZFS_EXIT(zfsvfs); 5150 return (SET_ERROR(EINVAL)); 5151 } 5152 break; 5153 default: 5154 ZFS_EXIT(zfsvfs); 5155 return (SET_ERROR(EINVAL)); 5156 } 5157 5158 uio->uio_extflg = UIO_XUIO; 5159 XUIO_XUZC_RW(xuio) = ioflag; 5160 ZFS_EXIT(zfsvfs); 5161 return (0); 5162 } 5163 5164 /*ARGSUSED*/ 5165 static int 5166 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5167 { 5168 int i; 5169 arc_buf_t *abuf; 5170 int ioflag = XUIO_XUZC_RW(xuio); 5171 5172 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5173 5174 i = dmu_xuio_cnt(xuio); 5175 while (i-- > 0) { 5176 abuf = dmu_xuio_arcbuf(xuio, i); 5177 /* 5178 * if abuf == NULL, it must be a write buffer 5179 * that has been returned in zfs_write(). 5180 */ 5181 if (abuf) 5182 dmu_return_arcbuf(abuf); 5183 ASSERT(abuf || ioflag == UIO_WRITE); 5184 } 5185 5186 dmu_xuio_fini(xuio); 5187 return (0); 5188 } 5189 5190 /* 5191 * Predeclare these here so that the compiler assumes that 5192 * this is an "old style" function declaration that does 5193 * not include arguments => we won't get type mismatch errors 5194 * in the initializations that follow. 5195 */ 5196 static int zfs_inval(); 5197 static int zfs_isdir(); 5198 5199 static int 5200 zfs_inval() 5201 { 5202 return (SET_ERROR(EINVAL)); 5203 } 5204 5205 static int 5206 zfs_isdir() 5207 { 5208 return (SET_ERROR(EISDIR)); 5209 } 5210 /* 5211 * Directory vnode operations template 5212 */ 5213 vnodeops_t *zfs_dvnodeops; 5214 const fs_operation_def_t zfs_dvnodeops_template[] = { 5215 VOPNAME_OPEN, { .vop_open = zfs_open }, 5216 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5217 VOPNAME_READ, { .error = zfs_isdir }, 5218 VOPNAME_WRITE, { .error = zfs_isdir }, 5219 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5220 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5221 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5222 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5223 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5224 VOPNAME_CREATE, { .vop_create = zfs_create }, 5225 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5226 VOPNAME_LINK, { .vop_link = zfs_link }, 5227 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5228 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5229 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5230 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5231 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5232 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5233 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5234 VOPNAME_FID, { .vop_fid = zfs_fid }, 5235 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5236 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5237 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5238 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5239 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5240 NULL, NULL 5241 }; 5242 5243 /* 5244 * Regular file vnode operations template 5245 */ 5246 vnodeops_t *zfs_fvnodeops; 5247 const fs_operation_def_t zfs_fvnodeops_template[] = { 5248 VOPNAME_OPEN, { .vop_open = zfs_open }, 5249 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5250 VOPNAME_READ, { .vop_read = zfs_read }, 5251 VOPNAME_WRITE, { .vop_write = zfs_write }, 5252 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5253 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5254 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5255 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5256 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5257 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5258 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5259 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5260 VOPNAME_FID, { .vop_fid = zfs_fid }, 5261 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5262 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5263 VOPNAME_SPACE, { .vop_space = zfs_space }, 5264 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5265 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5266 VOPNAME_MAP, { .vop_map = zfs_map }, 5267 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5268 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5269 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5270 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5271 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5272 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5273 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5274 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5275 NULL, NULL 5276 }; 5277 5278 /* 5279 * Symbolic link vnode operations template 5280 */ 5281 vnodeops_t *zfs_symvnodeops; 5282 const fs_operation_def_t zfs_symvnodeops_template[] = { 5283 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5284 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5285 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5286 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5287 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5288 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5289 VOPNAME_FID, { .vop_fid = zfs_fid }, 5290 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5291 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5292 NULL, NULL 5293 }; 5294 5295 /* 5296 * special share hidden files vnode operations template 5297 */ 5298 vnodeops_t *zfs_sharevnodeops; 5299 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5300 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5301 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5302 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5303 VOPNAME_FID, { .vop_fid = zfs_fid }, 5304 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5305 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5306 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5307 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5308 NULL, NULL 5309 }; 5310 5311 /* 5312 * Extended attribute directory vnode operations template 5313 * 5314 * This template is identical to the directory vnodes 5315 * operation template except for restricted operations: 5316 * VOP_MKDIR() 5317 * VOP_SYMLINK() 5318 * 5319 * Note that there are other restrictions embedded in: 5320 * zfs_create() - restrict type to VREG 5321 * zfs_link() - no links into/out of attribute space 5322 * zfs_rename() - no moves into/out of attribute space 5323 */ 5324 vnodeops_t *zfs_xdvnodeops; 5325 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5326 VOPNAME_OPEN, { .vop_open = zfs_open }, 5327 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5328 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5329 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5330 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5331 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5332 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5333 VOPNAME_CREATE, { .vop_create = zfs_create }, 5334 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5335 VOPNAME_LINK, { .vop_link = zfs_link }, 5336 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5337 VOPNAME_MKDIR, { .error = zfs_inval }, 5338 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5339 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5340 VOPNAME_SYMLINK, { .error = zfs_inval }, 5341 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5342 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5343 VOPNAME_FID, { .vop_fid = zfs_fid }, 5344 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5345 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5346 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5347 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5348 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5349 NULL, NULL 5350 }; 5351 5352 /* 5353 * Error vnode operations template 5354 */ 5355 vnodeops_t *zfs_evnodeops; 5356 const fs_operation_def_t zfs_evnodeops_template[] = { 5357 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5358 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5359 NULL, NULL 5360 }; 5361