xref: /titanic_41/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision a9478106a12424322498e53cf7cd75bd8a4d6004)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 /* Portions Copyright 2007 Jeremy Teo */
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/vm.h>
47 #include <vm/seg_vn.h>
48 #include <vm/pvn.h>
49 #include <vm/as.h>
50 #include <vm/kpm.h>
51 #include <vm/seg_kpm.h>
52 #include <sys/mman.h>
53 #include <sys/pathname.h>
54 #include <sys/cmn_err.h>
55 #include <sys/errno.h>
56 #include <sys/unistd.h>
57 #include <sys/zfs_dir.h>
58 #include <sys/zfs_acl.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/dmu.h>
62 #include <sys/dmu_objset.h>
63 #include <sys/spa.h>
64 #include <sys/txg.h>
65 #include <sys/dbuf.h>
66 #include <sys/zap.h>
67 #include <sys/sa.h>
68 #include <sys/dirent.h>
69 #include <sys/policy.h>
70 #include <sys/sunddi.h>
71 #include <sys/filio.h>
72 #include <sys/sid.h>
73 #include "fs/fs_subr.h"
74 #include <sys/zfs_ctldir.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/zfs_sa.h>
77 #include <sys/dnlc.h>
78 #include <sys/zfs_rlock.h>
79 #include <sys/extdirent.h>
80 #include <sys/kidmap.h>
81 #include <sys/cred.h>
82 #include <sys/attr.h>
83 
84 /*
85  * Programming rules.
86  *
87  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
88  * properly lock its in-core state, create a DMU transaction, do the work,
89  * record this work in the intent log (ZIL), commit the DMU transaction,
90  * and wait for the intent log to commit if it is a synchronous operation.
91  * Moreover, the vnode ops must work in both normal and log replay context.
92  * The ordering of events is important to avoid deadlocks and references
93  * to freed memory.  The example below illustrates the following Big Rules:
94  *
95  *  (1)	A check must be made in each zfs thread for a mounted file system.
96  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
97  *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
98  *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
99  *	can return EIO from the calling function.
100  *
101  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
102  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
103  *	First, if it's the last reference, the vnode/znode
104  *	can be freed, so the zp may point to freed memory.  Second, the last
105  *	reference will call zfs_zinactive(), which may induce a lot of work --
106  *	pushing cached pages (which acquires range locks) and syncing out
107  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
108  *	which could deadlock the system if you were already holding one.
109  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
110  *
111  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
112  *	as they can span dmu_tx_assign() calls.
113  *
114  *  (4)	Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
115  *	This is critical because we don't want to block while holding locks.
116  *	Note, in particular, that if a lock is sometimes acquired before
117  *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
118  *	use a non-blocking assign can deadlock the system.  The scenario:
119  *
120  *	Thread A has grabbed a lock before calling dmu_tx_assign().
121  *	Thread B is in an already-assigned tx, and blocks for this lock.
122  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
123  *	forever, because the previous txg can't quiesce until B's tx commits.
124  *
125  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
126  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
127  *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
128  *	to indicate that this operation has already called dmu_tx_wait().
129  *	This will ensure that we don't retry forever, waiting a short bit
130  *	each time.
131  *
132  *  (5)	If the operation succeeded, generate the intent log entry for it
133  *	before dropping locks.  This ensures that the ordering of events
134  *	in the intent log matches the order in which they actually occurred.
135  *	During ZIL replay the zfs_log_* functions will update the sequence
136  *	number to indicate the zil transaction has replayed.
137  *
138  *  (6)	At the end of each vnode op, the DMU tx must always commit,
139  *	regardless of whether there were any errors.
140  *
141  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
142  *	to ensure that synchronous semantics are provided when necessary.
143  *
144  * In general, this is how things should be ordered in each vnode op:
145  *
146  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
147  * top:
148  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
149  *	rw_enter(...);			// grab any other locks you need
150  *	tx = dmu_tx_create(...);	// get DMU tx
151  *	dmu_tx_hold_*();		// hold each object you might modify
152  *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
153  *	if (error) {
154  *		rw_exit(...);		// drop locks
155  *		zfs_dirent_unlock(dl);	// unlock directory entry
156  *		VN_RELE(...);		// release held vnodes
157  *		if (error == ERESTART) {
158  *			waited = B_TRUE;
159  *			dmu_tx_wait(tx);
160  *			dmu_tx_abort(tx);
161  *			goto top;
162  *		}
163  *		dmu_tx_abort(tx);	// abort DMU tx
164  *		ZFS_EXIT(zfsvfs);	// finished in zfs
165  *		return (error);		// really out of space
166  *	}
167  *	error = do_real_work();		// do whatever this VOP does
168  *	if (error == 0)
169  *		zfs_log_*(...);		// on success, make ZIL entry
170  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
171  *	rw_exit(...);			// drop locks
172  *	zfs_dirent_unlock(dl);		// unlock directory entry
173  *	VN_RELE(...);			// release held vnodes
174  *	zil_commit(zilog, foid);	// synchronous when necessary
175  *	ZFS_EXIT(zfsvfs);		// finished in zfs
176  *	return (error);			// done, report error
177  */
178 
179 /* ARGSUSED */
180 static int
181 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
182 {
183 	znode_t	*zp = VTOZ(*vpp);
184 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
185 
186 	ZFS_ENTER(zfsvfs);
187 	ZFS_VERIFY_ZP(zp);
188 
189 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
190 	    ((flag & FAPPEND) == 0)) {
191 		ZFS_EXIT(zfsvfs);
192 		return (SET_ERROR(EPERM));
193 	}
194 
195 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
196 	    ZTOV(zp)->v_type == VREG &&
197 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
198 		if (fs_vscan(*vpp, cr, 0) != 0) {
199 			ZFS_EXIT(zfsvfs);
200 			return (SET_ERROR(EACCES));
201 		}
202 	}
203 
204 	/* Keep a count of the synchronous opens in the znode */
205 	if (flag & (FSYNC | FDSYNC))
206 		atomic_inc_32(&zp->z_sync_cnt);
207 
208 	ZFS_EXIT(zfsvfs);
209 	return (0);
210 }
211 
212 /* ARGSUSED */
213 static int
214 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
215     caller_context_t *ct)
216 {
217 	znode_t	*zp = VTOZ(vp);
218 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
219 
220 	/*
221 	 * Clean up any locks held by this process on the vp.
222 	 */
223 	cleanlocks(vp, ddi_get_pid(), 0);
224 	cleanshares(vp, ddi_get_pid());
225 
226 	ZFS_ENTER(zfsvfs);
227 	ZFS_VERIFY_ZP(zp);
228 
229 	/* Decrement the synchronous opens in the znode */
230 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
231 		atomic_dec_32(&zp->z_sync_cnt);
232 
233 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
234 	    ZTOV(zp)->v_type == VREG &&
235 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
236 		VERIFY(fs_vscan(vp, cr, 1) == 0);
237 
238 	ZFS_EXIT(zfsvfs);
239 	return (0);
240 }
241 
242 /*
243  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
244  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
245  */
246 static int
247 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
248 {
249 	znode_t	*zp = VTOZ(vp);
250 	uint64_t noff = (uint64_t)*off; /* new offset */
251 	uint64_t file_sz;
252 	int error;
253 	boolean_t hole;
254 
255 	file_sz = zp->z_size;
256 	if (noff >= file_sz)  {
257 		return (SET_ERROR(ENXIO));
258 	}
259 
260 	if (cmd == _FIO_SEEK_HOLE)
261 		hole = B_TRUE;
262 	else
263 		hole = B_FALSE;
264 
265 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
266 
267 	/* end of file? */
268 	if ((error == ESRCH) || (noff > file_sz)) {
269 		/*
270 		 * Handle the virtual hole at the end of file.
271 		 */
272 		if (hole) {
273 			*off = file_sz;
274 			return (0);
275 		}
276 		return (SET_ERROR(ENXIO));
277 	}
278 
279 	if (noff < *off)
280 		return (error);
281 	*off = noff;
282 	return (error);
283 }
284 
285 /* ARGSUSED */
286 static int
287 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
288     int *rvalp, caller_context_t *ct)
289 {
290 	offset_t off;
291 	int error;
292 	zfsvfs_t *zfsvfs;
293 	znode_t *zp;
294 
295 	switch (com) {
296 	case _FIOFFS:
297 		return (zfs_sync(vp->v_vfsp, 0, cred));
298 
299 		/*
300 		 * The following two ioctls are used by bfu.  Faking out,
301 		 * necessary to avoid bfu errors.
302 		 */
303 	case _FIOGDIO:
304 	case _FIOSDIO:
305 		return (0);
306 
307 	case _FIO_SEEK_DATA:
308 	case _FIO_SEEK_HOLE:
309 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
310 			return (SET_ERROR(EFAULT));
311 
312 		zp = VTOZ(vp);
313 		zfsvfs = zp->z_zfsvfs;
314 		ZFS_ENTER(zfsvfs);
315 		ZFS_VERIFY_ZP(zp);
316 
317 		/* offset parameter is in/out */
318 		error = zfs_holey(vp, com, &off);
319 		ZFS_EXIT(zfsvfs);
320 		if (error)
321 			return (error);
322 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
323 			return (SET_ERROR(EFAULT));
324 		return (0);
325 	}
326 	return (SET_ERROR(ENOTTY));
327 }
328 
329 /*
330  * Utility functions to map and unmap a single physical page.  These
331  * are used to manage the mappable copies of ZFS file data, and therefore
332  * do not update ref/mod bits.
333  */
334 caddr_t
335 zfs_map_page(page_t *pp, enum seg_rw rw)
336 {
337 	if (kpm_enable)
338 		return (hat_kpm_mapin(pp, 0));
339 	ASSERT(rw == S_READ || rw == S_WRITE);
340 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
341 	    (caddr_t)-1));
342 }
343 
344 void
345 zfs_unmap_page(page_t *pp, caddr_t addr)
346 {
347 	if (kpm_enable) {
348 		hat_kpm_mapout(pp, 0, addr);
349 	} else {
350 		ppmapout(addr);
351 	}
352 }
353 
354 /*
355  * When a file is memory mapped, we must keep the IO data synchronized
356  * between the DMU cache and the memory mapped pages.  What this means:
357  *
358  * On Write:	If we find a memory mapped page, we write to *both*
359  *		the page and the dmu buffer.
360  */
361 static void
362 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
363 {
364 	int64_t	off;
365 
366 	off = start & PAGEOFFSET;
367 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
368 		page_t *pp;
369 		uint64_t nbytes = MIN(PAGESIZE - off, len);
370 
371 		if (pp = page_lookup(vp, start, SE_SHARED)) {
372 			caddr_t va;
373 
374 			va = zfs_map_page(pp, S_WRITE);
375 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
376 			    DMU_READ_PREFETCH);
377 			zfs_unmap_page(pp, va);
378 			page_unlock(pp);
379 		}
380 		len -= nbytes;
381 		off = 0;
382 	}
383 }
384 
385 /*
386  * When a file is memory mapped, we must keep the IO data synchronized
387  * between the DMU cache and the memory mapped pages.  What this means:
388  *
389  * On Read:	We "read" preferentially from memory mapped pages,
390  *		else we default from the dmu buffer.
391  *
392  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
393  *	 the file is memory mapped.
394  */
395 static int
396 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
397 {
398 	znode_t *zp = VTOZ(vp);
399 	objset_t *os = zp->z_zfsvfs->z_os;
400 	int64_t	start, off;
401 	int len = nbytes;
402 	int error = 0;
403 
404 	start = uio->uio_loffset;
405 	off = start & PAGEOFFSET;
406 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
407 		page_t *pp;
408 		uint64_t bytes = MIN(PAGESIZE - off, len);
409 
410 		if (pp = page_lookup(vp, start, SE_SHARED)) {
411 			caddr_t va;
412 
413 			va = zfs_map_page(pp, S_READ);
414 			error = uiomove(va + off, bytes, UIO_READ, uio);
415 			zfs_unmap_page(pp, va);
416 			page_unlock(pp);
417 		} else {
418 			error = dmu_read_uio(os, zp->z_id, uio, bytes);
419 		}
420 		len -= bytes;
421 		off = 0;
422 		if (error)
423 			break;
424 	}
425 	return (error);
426 }
427 
428 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
429 
430 /*
431  * Read bytes from specified file into supplied buffer.
432  *
433  *	IN:	vp	- vnode of file to be read from.
434  *		uio	- structure supplying read location, range info,
435  *			  and return buffer.
436  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
437  *		cr	- credentials of caller.
438  *		ct	- caller context
439  *
440  *	OUT:	uio	- updated offset and range, buffer filled.
441  *
442  *	RETURN:	0 on success, error code on failure.
443  *
444  * Side Effects:
445  *	vp - atime updated if byte count > 0
446  */
447 /* ARGSUSED */
448 static int
449 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
450 {
451 	znode_t		*zp = VTOZ(vp);
452 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
453 	objset_t	*os;
454 	ssize_t		n, nbytes;
455 	int		error = 0;
456 	rl_t		*rl;
457 	xuio_t		*xuio = NULL;
458 
459 	ZFS_ENTER(zfsvfs);
460 	ZFS_VERIFY_ZP(zp);
461 	os = zfsvfs->z_os;
462 
463 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
464 		ZFS_EXIT(zfsvfs);
465 		return (SET_ERROR(EACCES));
466 	}
467 
468 	/*
469 	 * Validate file offset
470 	 */
471 	if (uio->uio_loffset < (offset_t)0) {
472 		ZFS_EXIT(zfsvfs);
473 		return (SET_ERROR(EINVAL));
474 	}
475 
476 	/*
477 	 * Fasttrack empty reads
478 	 */
479 	if (uio->uio_resid == 0) {
480 		ZFS_EXIT(zfsvfs);
481 		return (0);
482 	}
483 
484 	/*
485 	 * Check for mandatory locks
486 	 */
487 	if (MANDMODE(zp->z_mode)) {
488 		if (error = chklock(vp, FREAD,
489 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
490 			ZFS_EXIT(zfsvfs);
491 			return (error);
492 		}
493 	}
494 
495 	/*
496 	 * If we're in FRSYNC mode, sync out this znode before reading it.
497 	 */
498 	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
499 		zil_commit(zfsvfs->z_log, zp->z_id);
500 
501 	/*
502 	 * Lock the range against changes.
503 	 */
504 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
505 
506 	/*
507 	 * If we are reading past end-of-file we can skip
508 	 * to the end; but we might still need to set atime.
509 	 */
510 	if (uio->uio_loffset >= zp->z_size) {
511 		error = 0;
512 		goto out;
513 	}
514 
515 	ASSERT(uio->uio_loffset < zp->z_size);
516 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
517 
518 	if ((uio->uio_extflg == UIO_XUIO) &&
519 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
520 		int nblk;
521 		int blksz = zp->z_blksz;
522 		uint64_t offset = uio->uio_loffset;
523 
524 		xuio = (xuio_t *)uio;
525 		if ((ISP2(blksz))) {
526 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
527 			    blksz)) / blksz;
528 		} else {
529 			ASSERT(offset + n <= blksz);
530 			nblk = 1;
531 		}
532 		(void) dmu_xuio_init(xuio, nblk);
533 
534 		if (vn_has_cached_data(vp)) {
535 			/*
536 			 * For simplicity, we always allocate a full buffer
537 			 * even if we only expect to read a portion of a block.
538 			 */
539 			while (--nblk >= 0) {
540 				(void) dmu_xuio_add(xuio,
541 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
542 				    blksz), 0, blksz);
543 			}
544 		}
545 	}
546 
547 	while (n > 0) {
548 		nbytes = MIN(n, zfs_read_chunk_size -
549 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
550 
551 		if (vn_has_cached_data(vp))
552 			error = mappedread(vp, nbytes, uio);
553 		else
554 			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
555 		if (error) {
556 			/* convert checksum errors into IO errors */
557 			if (error == ECKSUM)
558 				error = SET_ERROR(EIO);
559 			break;
560 		}
561 
562 		n -= nbytes;
563 	}
564 out:
565 	zfs_range_unlock(rl);
566 
567 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
568 	ZFS_EXIT(zfsvfs);
569 	return (error);
570 }
571 
572 /*
573  * Write the bytes to a file.
574  *
575  *	IN:	vp	- vnode of file to be written to.
576  *		uio	- structure supplying write location, range info,
577  *			  and data buffer.
578  *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
579  *			  set if in append mode.
580  *		cr	- credentials of caller.
581  *		ct	- caller context (NFS/CIFS fem monitor only)
582  *
583  *	OUT:	uio	- updated offset and range.
584  *
585  *	RETURN:	0 on success, error code on failure.
586  *
587  * Timestamps:
588  *	vp - ctime|mtime updated if byte count > 0
589  */
590 
591 /* ARGSUSED */
592 static int
593 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
594 {
595 	znode_t		*zp = VTOZ(vp);
596 	rlim64_t	limit = uio->uio_llimit;
597 	ssize_t		start_resid = uio->uio_resid;
598 	ssize_t		tx_bytes;
599 	uint64_t	end_size;
600 	dmu_tx_t	*tx;
601 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
602 	zilog_t		*zilog;
603 	offset_t	woff;
604 	ssize_t		n, nbytes;
605 	rl_t		*rl;
606 	int		max_blksz = zfsvfs->z_max_blksz;
607 	int		error = 0;
608 	arc_buf_t	*abuf;
609 	iovec_t		*aiov = NULL;
610 	xuio_t		*xuio = NULL;
611 	int		i_iov = 0;
612 	int		iovcnt = uio->uio_iovcnt;
613 	iovec_t		*iovp = uio->uio_iov;
614 	int		write_eof;
615 	int		count = 0;
616 	sa_bulk_attr_t	bulk[4];
617 	uint64_t	mtime[2], ctime[2];
618 
619 	/*
620 	 * Fasttrack empty write
621 	 */
622 	n = start_resid;
623 	if (n == 0)
624 		return (0);
625 
626 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
627 		limit = MAXOFFSET_T;
628 
629 	ZFS_ENTER(zfsvfs);
630 	ZFS_VERIFY_ZP(zp);
631 
632 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
633 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
634 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
635 	    &zp->z_size, 8);
636 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
637 	    &zp->z_pflags, 8);
638 
639 	/*
640 	 * If immutable or not appending then return EPERM
641 	 */
642 	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
643 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
644 	    (uio->uio_loffset < zp->z_size))) {
645 		ZFS_EXIT(zfsvfs);
646 		return (SET_ERROR(EPERM));
647 	}
648 
649 	zilog = zfsvfs->z_log;
650 
651 	/*
652 	 * Validate file offset
653 	 */
654 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
655 	if (woff < 0) {
656 		ZFS_EXIT(zfsvfs);
657 		return (SET_ERROR(EINVAL));
658 	}
659 
660 	/*
661 	 * Check for mandatory locks before calling zfs_range_lock()
662 	 * in order to prevent a deadlock with locks set via fcntl().
663 	 */
664 	if (MANDMODE((mode_t)zp->z_mode) &&
665 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
666 		ZFS_EXIT(zfsvfs);
667 		return (error);
668 	}
669 
670 	/*
671 	 * Pre-fault the pages to ensure slow (eg NFS) pages
672 	 * don't hold up txg.
673 	 * Skip this if uio contains loaned arc_buf.
674 	 */
675 	if ((uio->uio_extflg == UIO_XUIO) &&
676 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
677 		xuio = (xuio_t *)uio;
678 	else
679 		uio_prefaultpages(MIN(n, max_blksz), uio);
680 
681 	/*
682 	 * If in append mode, set the io offset pointer to eof.
683 	 */
684 	if (ioflag & FAPPEND) {
685 		/*
686 		 * Obtain an appending range lock to guarantee file append
687 		 * semantics.  We reset the write offset once we have the lock.
688 		 */
689 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
690 		woff = rl->r_off;
691 		if (rl->r_len == UINT64_MAX) {
692 			/*
693 			 * We overlocked the file because this write will cause
694 			 * the file block size to increase.
695 			 * Note that zp_size cannot change with this lock held.
696 			 */
697 			woff = zp->z_size;
698 		}
699 		uio->uio_loffset = woff;
700 	} else {
701 		/*
702 		 * Note that if the file block size will change as a result of
703 		 * this write, then this range lock will lock the entire file
704 		 * so that we can re-write the block safely.
705 		 */
706 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
707 	}
708 
709 	if (woff >= limit) {
710 		zfs_range_unlock(rl);
711 		ZFS_EXIT(zfsvfs);
712 		return (SET_ERROR(EFBIG));
713 	}
714 
715 	if ((woff + n) > limit || woff > (limit - n))
716 		n = limit - woff;
717 
718 	/* Will this write extend the file length? */
719 	write_eof = (woff + n > zp->z_size);
720 
721 	end_size = MAX(zp->z_size, woff + n);
722 
723 	/*
724 	 * Write the file in reasonable size chunks.  Each chunk is written
725 	 * in a separate transaction; this keeps the intent log records small
726 	 * and allows us to do more fine-grained space accounting.
727 	 */
728 	while (n > 0) {
729 		abuf = NULL;
730 		woff = uio->uio_loffset;
731 again:
732 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
733 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
734 			if (abuf != NULL)
735 				dmu_return_arcbuf(abuf);
736 			error = SET_ERROR(EDQUOT);
737 			break;
738 		}
739 
740 		if (xuio && abuf == NULL) {
741 			ASSERT(i_iov < iovcnt);
742 			aiov = &iovp[i_iov];
743 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
744 			dmu_xuio_clear(xuio, i_iov);
745 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
746 			    iovec_t *, aiov, arc_buf_t *, abuf);
747 			ASSERT((aiov->iov_base == abuf->b_data) ||
748 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
749 			    aiov->iov_len == arc_buf_size(abuf)));
750 			i_iov++;
751 		} else if (abuf == NULL && n >= max_blksz &&
752 		    woff >= zp->z_size &&
753 		    P2PHASE(woff, max_blksz) == 0 &&
754 		    zp->z_blksz == max_blksz) {
755 			/*
756 			 * This write covers a full block.  "Borrow" a buffer
757 			 * from the dmu so that we can fill it before we enter
758 			 * a transaction.  This avoids the possibility of
759 			 * holding up the transaction if the data copy hangs
760 			 * up on a pagefault (e.g., from an NFS server mapping).
761 			 */
762 			size_t cbytes;
763 
764 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
765 			    max_blksz);
766 			ASSERT(abuf != NULL);
767 			ASSERT(arc_buf_size(abuf) == max_blksz);
768 			if (error = uiocopy(abuf->b_data, max_blksz,
769 			    UIO_WRITE, uio, &cbytes)) {
770 				dmu_return_arcbuf(abuf);
771 				break;
772 			}
773 			ASSERT(cbytes == max_blksz);
774 		}
775 
776 		/*
777 		 * Start a transaction.
778 		 */
779 		tx = dmu_tx_create(zfsvfs->z_os);
780 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
781 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
782 		zfs_sa_upgrade_txholds(tx, zp);
783 		error = dmu_tx_assign(tx, TXG_NOWAIT);
784 		if (error) {
785 			if (error == ERESTART) {
786 				dmu_tx_wait(tx);
787 				dmu_tx_abort(tx);
788 				goto again;
789 			}
790 			dmu_tx_abort(tx);
791 			if (abuf != NULL)
792 				dmu_return_arcbuf(abuf);
793 			break;
794 		}
795 
796 		/*
797 		 * If zfs_range_lock() over-locked we grow the blocksize
798 		 * and then reduce the lock range.  This will only happen
799 		 * on the first iteration since zfs_range_reduce() will
800 		 * shrink down r_len to the appropriate size.
801 		 */
802 		if (rl->r_len == UINT64_MAX) {
803 			uint64_t new_blksz;
804 
805 			if (zp->z_blksz > max_blksz) {
806 				ASSERT(!ISP2(zp->z_blksz));
807 				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
808 			} else {
809 				new_blksz = MIN(end_size, max_blksz);
810 			}
811 			zfs_grow_blocksize(zp, new_blksz, tx);
812 			zfs_range_reduce(rl, woff, n);
813 		}
814 
815 		/*
816 		 * XXX - should we really limit each write to z_max_blksz?
817 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
818 		 */
819 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
820 
821 		if (abuf == NULL) {
822 			tx_bytes = uio->uio_resid;
823 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
824 			    uio, nbytes, tx);
825 			tx_bytes -= uio->uio_resid;
826 		} else {
827 			tx_bytes = nbytes;
828 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
829 			/*
830 			 * If this is not a full block write, but we are
831 			 * extending the file past EOF and this data starts
832 			 * block-aligned, use assign_arcbuf().  Otherwise,
833 			 * write via dmu_write().
834 			 */
835 			if (tx_bytes < max_blksz && (!write_eof ||
836 			    aiov->iov_base != abuf->b_data)) {
837 				ASSERT(xuio);
838 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
839 				    aiov->iov_len, aiov->iov_base, tx);
840 				dmu_return_arcbuf(abuf);
841 				xuio_stat_wbuf_copied();
842 			} else {
843 				ASSERT(xuio || tx_bytes == max_blksz);
844 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
845 				    woff, abuf, tx);
846 			}
847 			ASSERT(tx_bytes <= uio->uio_resid);
848 			uioskip(uio, tx_bytes);
849 		}
850 		if (tx_bytes && vn_has_cached_data(vp)) {
851 			update_pages(vp, woff,
852 			    tx_bytes, zfsvfs->z_os, zp->z_id);
853 		}
854 
855 		/*
856 		 * If we made no progress, we're done.  If we made even
857 		 * partial progress, update the znode and ZIL accordingly.
858 		 */
859 		if (tx_bytes == 0) {
860 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
861 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
862 			dmu_tx_commit(tx);
863 			ASSERT(error != 0);
864 			break;
865 		}
866 
867 		/*
868 		 * Clear Set-UID/Set-GID bits on successful write if not
869 		 * privileged and at least one of the excute bits is set.
870 		 *
871 		 * It would be nice to to this after all writes have
872 		 * been done, but that would still expose the ISUID/ISGID
873 		 * to another app after the partial write is committed.
874 		 *
875 		 * Note: we don't call zfs_fuid_map_id() here because
876 		 * user 0 is not an ephemeral uid.
877 		 */
878 		mutex_enter(&zp->z_acl_lock);
879 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
880 		    (S_IXUSR >> 6))) != 0 &&
881 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
882 		    secpolicy_vnode_setid_retain(cr,
883 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
884 			uint64_t newmode;
885 			zp->z_mode &= ~(S_ISUID | S_ISGID);
886 			newmode = zp->z_mode;
887 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
888 			    (void *)&newmode, sizeof (uint64_t), tx);
889 		}
890 		mutex_exit(&zp->z_acl_lock);
891 
892 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
893 		    B_TRUE);
894 
895 		/*
896 		 * Update the file size (zp_size) if it has changed;
897 		 * account for possible concurrent updates.
898 		 */
899 		while ((end_size = zp->z_size) < uio->uio_loffset) {
900 			(void) atomic_cas_64(&zp->z_size, end_size,
901 			    uio->uio_loffset);
902 			ASSERT(error == 0);
903 		}
904 		/*
905 		 * If we are replaying and eof is non zero then force
906 		 * the file size to the specified eof. Note, there's no
907 		 * concurrency during replay.
908 		 */
909 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
910 			zp->z_size = zfsvfs->z_replay_eof;
911 
912 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
913 
914 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
915 		dmu_tx_commit(tx);
916 
917 		if (error != 0)
918 			break;
919 		ASSERT(tx_bytes == nbytes);
920 		n -= nbytes;
921 
922 		if (!xuio && n > 0)
923 			uio_prefaultpages(MIN(n, max_blksz), uio);
924 	}
925 
926 	zfs_range_unlock(rl);
927 
928 	/*
929 	 * If we're in replay mode, or we made no progress, return error.
930 	 * Otherwise, it's at least a partial write, so it's successful.
931 	 */
932 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
933 		ZFS_EXIT(zfsvfs);
934 		return (error);
935 	}
936 
937 	if (ioflag & (FSYNC | FDSYNC) ||
938 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
939 		zil_commit(zilog, zp->z_id);
940 
941 	ZFS_EXIT(zfsvfs);
942 	return (0);
943 }
944 
945 void
946 zfs_get_done(zgd_t *zgd, int error)
947 {
948 	znode_t *zp = zgd->zgd_private;
949 	objset_t *os = zp->z_zfsvfs->z_os;
950 
951 	if (zgd->zgd_db)
952 		dmu_buf_rele(zgd->zgd_db, zgd);
953 
954 	zfs_range_unlock(zgd->zgd_rl);
955 
956 	/*
957 	 * Release the vnode asynchronously as we currently have the
958 	 * txg stopped from syncing.
959 	 */
960 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
961 
962 	if (error == 0 && zgd->zgd_bp)
963 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
964 
965 	kmem_free(zgd, sizeof (zgd_t));
966 }
967 
968 #ifdef DEBUG
969 static int zil_fault_io = 0;
970 #endif
971 
972 /*
973  * Get data to generate a TX_WRITE intent log record.
974  */
975 int
976 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
977 {
978 	zfsvfs_t *zfsvfs = arg;
979 	objset_t *os = zfsvfs->z_os;
980 	znode_t *zp;
981 	uint64_t object = lr->lr_foid;
982 	uint64_t offset = lr->lr_offset;
983 	uint64_t size = lr->lr_length;
984 	blkptr_t *bp = &lr->lr_blkptr;
985 	dmu_buf_t *db;
986 	zgd_t *zgd;
987 	int error = 0;
988 
989 	ASSERT(zio != NULL);
990 	ASSERT(size != 0);
991 
992 	/*
993 	 * Nothing to do if the file has been removed
994 	 */
995 	if (zfs_zget(zfsvfs, object, &zp) != 0)
996 		return (SET_ERROR(ENOENT));
997 	if (zp->z_unlinked) {
998 		/*
999 		 * Release the vnode asynchronously as we currently have the
1000 		 * txg stopped from syncing.
1001 		 */
1002 		VN_RELE_ASYNC(ZTOV(zp),
1003 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1004 		return (SET_ERROR(ENOENT));
1005 	}
1006 
1007 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1008 	zgd->zgd_zilog = zfsvfs->z_log;
1009 	zgd->zgd_private = zp;
1010 
1011 	/*
1012 	 * Write records come in two flavors: immediate and indirect.
1013 	 * For small writes it's cheaper to store the data with the
1014 	 * log record (immediate); for large writes it's cheaper to
1015 	 * sync the data and get a pointer to it (indirect) so that
1016 	 * we don't have to write the data twice.
1017 	 */
1018 	if (buf != NULL) { /* immediate write */
1019 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1020 		/* test for truncation needs to be done while range locked */
1021 		if (offset >= zp->z_size) {
1022 			error = SET_ERROR(ENOENT);
1023 		} else {
1024 			error = dmu_read(os, object, offset, size, buf,
1025 			    DMU_READ_NO_PREFETCH);
1026 		}
1027 		ASSERT(error == 0 || error == ENOENT);
1028 	} else { /* indirect write */
1029 		/*
1030 		 * Have to lock the whole block to ensure when it's
1031 		 * written out and it's checksum is being calculated
1032 		 * that no one can change the data. We need to re-check
1033 		 * blocksize after we get the lock in case it's changed!
1034 		 */
1035 		for (;;) {
1036 			uint64_t blkoff;
1037 			size = zp->z_blksz;
1038 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1039 			offset -= blkoff;
1040 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1041 			    RL_READER);
1042 			if (zp->z_blksz == size)
1043 				break;
1044 			offset += blkoff;
1045 			zfs_range_unlock(zgd->zgd_rl);
1046 		}
1047 		/* test for truncation needs to be done while range locked */
1048 		if (lr->lr_offset >= zp->z_size)
1049 			error = SET_ERROR(ENOENT);
1050 #ifdef DEBUG
1051 		if (zil_fault_io) {
1052 			error = SET_ERROR(EIO);
1053 			zil_fault_io = 0;
1054 		}
1055 #endif
1056 		if (error == 0)
1057 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1058 			    DMU_READ_NO_PREFETCH);
1059 
1060 		if (error == 0) {
1061 			blkptr_t *obp = dmu_buf_get_blkptr(db);
1062 			if (obp) {
1063 				ASSERT(BP_IS_HOLE(bp));
1064 				*bp = *obp;
1065 			}
1066 
1067 			zgd->zgd_db = db;
1068 			zgd->zgd_bp = bp;
1069 
1070 			ASSERT(db->db_offset == offset);
1071 			ASSERT(db->db_size == size);
1072 
1073 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1074 			    zfs_get_done, zgd);
1075 			ASSERT(error || lr->lr_length <= zp->z_blksz);
1076 
1077 			/*
1078 			 * On success, we need to wait for the write I/O
1079 			 * initiated by dmu_sync() to complete before we can
1080 			 * release this dbuf.  We will finish everything up
1081 			 * in the zfs_get_done() callback.
1082 			 */
1083 			if (error == 0)
1084 				return (0);
1085 
1086 			if (error == EALREADY) {
1087 				lr->lr_common.lrc_txtype = TX_WRITE2;
1088 				error = 0;
1089 			}
1090 		}
1091 	}
1092 
1093 	zfs_get_done(zgd, error);
1094 
1095 	return (error);
1096 }
1097 
1098 /*ARGSUSED*/
1099 static int
1100 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1101     caller_context_t *ct)
1102 {
1103 	znode_t *zp = VTOZ(vp);
1104 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1105 	int error;
1106 
1107 	ZFS_ENTER(zfsvfs);
1108 	ZFS_VERIFY_ZP(zp);
1109 
1110 	if (flag & V_ACE_MASK)
1111 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1112 	else
1113 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1114 
1115 	ZFS_EXIT(zfsvfs);
1116 	return (error);
1117 }
1118 
1119 /*
1120  * If vnode is for a device return a specfs vnode instead.
1121  */
1122 static int
1123 specvp_check(vnode_t **vpp, cred_t *cr)
1124 {
1125 	int error = 0;
1126 
1127 	if (IS_DEVVP(*vpp)) {
1128 		struct vnode *svp;
1129 
1130 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1131 		VN_RELE(*vpp);
1132 		if (svp == NULL)
1133 			error = SET_ERROR(ENOSYS);
1134 		*vpp = svp;
1135 	}
1136 	return (error);
1137 }
1138 
1139 
1140 /*
1141  * Lookup an entry in a directory, or an extended attribute directory.
1142  * If it exists, return a held vnode reference for it.
1143  *
1144  *	IN:	dvp	- vnode of directory to search.
1145  *		nm	- name of entry to lookup.
1146  *		pnp	- full pathname to lookup [UNUSED].
1147  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1148  *		rdir	- root directory vnode [UNUSED].
1149  *		cr	- credentials of caller.
1150  *		ct	- caller context
1151  *		direntflags - directory lookup flags
1152  *		realpnp - returned pathname.
1153  *
1154  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1155  *
1156  *	RETURN:	0 on success, error code on failure.
1157  *
1158  * Timestamps:
1159  *	NA
1160  */
1161 /* ARGSUSED */
1162 static int
1163 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1164     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1165     int *direntflags, pathname_t *realpnp)
1166 {
1167 	znode_t *zdp = VTOZ(dvp);
1168 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1169 	int	error = 0;
1170 
1171 	/* fast path */
1172 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1173 
1174 		if (dvp->v_type != VDIR) {
1175 			return (SET_ERROR(ENOTDIR));
1176 		} else if (zdp->z_sa_hdl == NULL) {
1177 			return (SET_ERROR(EIO));
1178 		}
1179 
1180 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1181 			error = zfs_fastaccesschk_execute(zdp, cr);
1182 			if (!error) {
1183 				*vpp = dvp;
1184 				VN_HOLD(*vpp);
1185 				return (0);
1186 			}
1187 			return (error);
1188 		} else {
1189 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1190 
1191 			if (tvp) {
1192 				error = zfs_fastaccesschk_execute(zdp, cr);
1193 				if (error) {
1194 					VN_RELE(tvp);
1195 					return (error);
1196 				}
1197 				if (tvp == DNLC_NO_VNODE) {
1198 					VN_RELE(tvp);
1199 					return (SET_ERROR(ENOENT));
1200 				} else {
1201 					*vpp = tvp;
1202 					return (specvp_check(vpp, cr));
1203 				}
1204 			}
1205 		}
1206 	}
1207 
1208 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1209 
1210 	ZFS_ENTER(zfsvfs);
1211 	ZFS_VERIFY_ZP(zdp);
1212 
1213 	*vpp = NULL;
1214 
1215 	if (flags & LOOKUP_XATTR) {
1216 		/*
1217 		 * If the xattr property is off, refuse the lookup request.
1218 		 */
1219 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1220 			ZFS_EXIT(zfsvfs);
1221 			return (SET_ERROR(EINVAL));
1222 		}
1223 
1224 		/*
1225 		 * We don't allow recursive attributes..
1226 		 * Maybe someday we will.
1227 		 */
1228 		if (zdp->z_pflags & ZFS_XATTR) {
1229 			ZFS_EXIT(zfsvfs);
1230 			return (SET_ERROR(EINVAL));
1231 		}
1232 
1233 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1234 			ZFS_EXIT(zfsvfs);
1235 			return (error);
1236 		}
1237 
1238 		/*
1239 		 * Do we have permission to get into attribute directory?
1240 		 */
1241 
1242 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1243 		    B_FALSE, cr)) {
1244 			VN_RELE(*vpp);
1245 			*vpp = NULL;
1246 		}
1247 
1248 		ZFS_EXIT(zfsvfs);
1249 		return (error);
1250 	}
1251 
1252 	if (dvp->v_type != VDIR) {
1253 		ZFS_EXIT(zfsvfs);
1254 		return (SET_ERROR(ENOTDIR));
1255 	}
1256 
1257 	/*
1258 	 * Check accessibility of directory.
1259 	 */
1260 
1261 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1262 		ZFS_EXIT(zfsvfs);
1263 		return (error);
1264 	}
1265 
1266 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1267 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1268 		ZFS_EXIT(zfsvfs);
1269 		return (SET_ERROR(EILSEQ));
1270 	}
1271 
1272 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1273 	if (error == 0)
1274 		error = specvp_check(vpp, cr);
1275 
1276 	ZFS_EXIT(zfsvfs);
1277 	return (error);
1278 }
1279 
1280 /*
1281  * Attempt to create a new entry in a directory.  If the entry
1282  * already exists, truncate the file if permissible, else return
1283  * an error.  Return the vp of the created or trunc'd file.
1284  *
1285  *	IN:	dvp	- vnode of directory to put new file entry in.
1286  *		name	- name of new file entry.
1287  *		vap	- attributes of new file.
1288  *		excl	- flag indicating exclusive or non-exclusive mode.
1289  *		mode	- mode to open file with.
1290  *		cr	- credentials of caller.
1291  *		flag	- large file flag [UNUSED].
1292  *		ct	- caller context
1293  *		vsecp 	- ACL to be set
1294  *
1295  *	OUT:	vpp	- vnode of created or trunc'd entry.
1296  *
1297  *	RETURN:	0 on success, error code on failure.
1298  *
1299  * Timestamps:
1300  *	dvp - ctime|mtime updated if new entry created
1301  *	 vp - ctime|mtime always, atime if new
1302  */
1303 
1304 /* ARGSUSED */
1305 static int
1306 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1307     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1308     vsecattr_t *vsecp)
1309 {
1310 	znode_t		*zp, *dzp = VTOZ(dvp);
1311 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1312 	zilog_t		*zilog;
1313 	objset_t	*os;
1314 	zfs_dirlock_t	*dl;
1315 	dmu_tx_t	*tx;
1316 	int		error;
1317 	ksid_t		*ksid;
1318 	uid_t		uid;
1319 	gid_t		gid = crgetgid(cr);
1320 	zfs_acl_ids_t   acl_ids;
1321 	boolean_t	fuid_dirtied;
1322 	boolean_t	have_acl = B_FALSE;
1323 	boolean_t	waited = B_FALSE;
1324 
1325 	/*
1326 	 * If we have an ephemeral id, ACL, or XVATTR then
1327 	 * make sure file system is at proper version
1328 	 */
1329 
1330 	ksid = crgetsid(cr, KSID_OWNER);
1331 	if (ksid)
1332 		uid = ksid_getid(ksid);
1333 	else
1334 		uid = crgetuid(cr);
1335 
1336 	if (zfsvfs->z_use_fuids == B_FALSE &&
1337 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1338 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1339 		return (SET_ERROR(EINVAL));
1340 
1341 	ZFS_ENTER(zfsvfs);
1342 	ZFS_VERIFY_ZP(dzp);
1343 	os = zfsvfs->z_os;
1344 	zilog = zfsvfs->z_log;
1345 
1346 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1347 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1348 		ZFS_EXIT(zfsvfs);
1349 		return (SET_ERROR(EILSEQ));
1350 	}
1351 
1352 	if (vap->va_mask & AT_XVATTR) {
1353 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1354 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1355 			ZFS_EXIT(zfsvfs);
1356 			return (error);
1357 		}
1358 	}
1359 top:
1360 	*vpp = NULL;
1361 
1362 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1363 		vap->va_mode &= ~VSVTX;
1364 
1365 	if (*name == '\0') {
1366 		/*
1367 		 * Null component name refers to the directory itself.
1368 		 */
1369 		VN_HOLD(dvp);
1370 		zp = dzp;
1371 		dl = NULL;
1372 		error = 0;
1373 	} else {
1374 		/* possible VN_HOLD(zp) */
1375 		int zflg = 0;
1376 
1377 		if (flag & FIGNORECASE)
1378 			zflg |= ZCILOOK;
1379 
1380 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1381 		    NULL, NULL);
1382 		if (error) {
1383 			if (have_acl)
1384 				zfs_acl_ids_free(&acl_ids);
1385 			if (strcmp(name, "..") == 0)
1386 				error = SET_ERROR(EISDIR);
1387 			ZFS_EXIT(zfsvfs);
1388 			return (error);
1389 		}
1390 	}
1391 
1392 	if (zp == NULL) {
1393 		uint64_t txtype;
1394 
1395 		/*
1396 		 * Create a new file object and update the directory
1397 		 * to reference it.
1398 		 */
1399 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1400 			if (have_acl)
1401 				zfs_acl_ids_free(&acl_ids);
1402 			goto out;
1403 		}
1404 
1405 		/*
1406 		 * We only support the creation of regular files in
1407 		 * extended attribute directories.
1408 		 */
1409 
1410 		if ((dzp->z_pflags & ZFS_XATTR) &&
1411 		    (vap->va_type != VREG)) {
1412 			if (have_acl)
1413 				zfs_acl_ids_free(&acl_ids);
1414 			error = SET_ERROR(EINVAL);
1415 			goto out;
1416 		}
1417 
1418 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1419 		    cr, vsecp, &acl_ids)) != 0)
1420 			goto out;
1421 		have_acl = B_TRUE;
1422 
1423 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1424 			zfs_acl_ids_free(&acl_ids);
1425 			error = SET_ERROR(EDQUOT);
1426 			goto out;
1427 		}
1428 
1429 		tx = dmu_tx_create(os);
1430 
1431 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1432 		    ZFS_SA_BASE_ATTR_SIZE);
1433 
1434 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1435 		if (fuid_dirtied)
1436 			zfs_fuid_txhold(zfsvfs, tx);
1437 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1438 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1439 		if (!zfsvfs->z_use_sa &&
1440 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1441 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1442 			    0, acl_ids.z_aclp->z_acl_bytes);
1443 		}
1444 		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1445 		if (error) {
1446 			zfs_dirent_unlock(dl);
1447 			if (error == ERESTART) {
1448 				waited = B_TRUE;
1449 				dmu_tx_wait(tx);
1450 				dmu_tx_abort(tx);
1451 				goto top;
1452 			}
1453 			zfs_acl_ids_free(&acl_ids);
1454 			dmu_tx_abort(tx);
1455 			ZFS_EXIT(zfsvfs);
1456 			return (error);
1457 		}
1458 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1459 
1460 		if (fuid_dirtied)
1461 			zfs_fuid_sync(zfsvfs, tx);
1462 
1463 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1464 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1465 		if (flag & FIGNORECASE)
1466 			txtype |= TX_CI;
1467 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1468 		    vsecp, acl_ids.z_fuidp, vap);
1469 		zfs_acl_ids_free(&acl_ids);
1470 		dmu_tx_commit(tx);
1471 	} else {
1472 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1473 
1474 		if (have_acl)
1475 			zfs_acl_ids_free(&acl_ids);
1476 		have_acl = B_FALSE;
1477 
1478 		/*
1479 		 * A directory entry already exists for this name.
1480 		 */
1481 		/*
1482 		 * Can't truncate an existing file if in exclusive mode.
1483 		 */
1484 		if (excl == EXCL) {
1485 			error = SET_ERROR(EEXIST);
1486 			goto out;
1487 		}
1488 		/*
1489 		 * Can't open a directory for writing.
1490 		 */
1491 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1492 			error = SET_ERROR(EISDIR);
1493 			goto out;
1494 		}
1495 		/*
1496 		 * Verify requested access to file.
1497 		 */
1498 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1499 			goto out;
1500 		}
1501 
1502 		mutex_enter(&dzp->z_lock);
1503 		dzp->z_seq++;
1504 		mutex_exit(&dzp->z_lock);
1505 
1506 		/*
1507 		 * Truncate regular files if requested.
1508 		 */
1509 		if ((ZTOV(zp)->v_type == VREG) &&
1510 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1511 			/* we can't hold any locks when calling zfs_freesp() */
1512 			zfs_dirent_unlock(dl);
1513 			dl = NULL;
1514 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1515 			if (error == 0) {
1516 				vnevent_create(ZTOV(zp), ct);
1517 			}
1518 		}
1519 	}
1520 out:
1521 
1522 	if (dl)
1523 		zfs_dirent_unlock(dl);
1524 
1525 	if (error) {
1526 		if (zp)
1527 			VN_RELE(ZTOV(zp));
1528 	} else {
1529 		*vpp = ZTOV(zp);
1530 		error = specvp_check(vpp, cr);
1531 	}
1532 
1533 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1534 		zil_commit(zilog, 0);
1535 
1536 	ZFS_EXIT(zfsvfs);
1537 	return (error);
1538 }
1539 
1540 /*
1541  * Remove an entry from a directory.
1542  *
1543  *	IN:	dvp	- vnode of directory to remove entry from.
1544  *		name	- name of entry to remove.
1545  *		cr	- credentials of caller.
1546  *		ct	- caller context
1547  *		flags	- case flags
1548  *
1549  *	RETURN:	0 on success, error code on failure.
1550  *
1551  * Timestamps:
1552  *	dvp - ctime|mtime
1553  *	 vp - ctime (if nlink > 0)
1554  */
1555 
1556 uint64_t null_xattr = 0;
1557 
1558 /*ARGSUSED*/
1559 static int
1560 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1561     int flags)
1562 {
1563 	znode_t		*zp, *dzp = VTOZ(dvp);
1564 	znode_t		*xzp;
1565 	vnode_t		*vp;
1566 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1567 	zilog_t		*zilog;
1568 	uint64_t	acl_obj, xattr_obj;
1569 	uint64_t 	xattr_obj_unlinked = 0;
1570 	uint64_t	obj = 0;
1571 	zfs_dirlock_t	*dl;
1572 	dmu_tx_t	*tx;
1573 	boolean_t	may_delete_now, delete_now = FALSE;
1574 	boolean_t	unlinked, toobig = FALSE;
1575 	uint64_t	txtype;
1576 	pathname_t	*realnmp = NULL;
1577 	pathname_t	realnm;
1578 	int		error;
1579 	int		zflg = ZEXISTS;
1580 	boolean_t	waited = B_FALSE;
1581 
1582 	ZFS_ENTER(zfsvfs);
1583 	ZFS_VERIFY_ZP(dzp);
1584 	zilog = zfsvfs->z_log;
1585 
1586 	if (flags & FIGNORECASE) {
1587 		zflg |= ZCILOOK;
1588 		pn_alloc(&realnm);
1589 		realnmp = &realnm;
1590 	}
1591 
1592 top:
1593 	xattr_obj = 0;
1594 	xzp = NULL;
1595 	/*
1596 	 * Attempt to lock directory; fail if entry doesn't exist.
1597 	 */
1598 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1599 	    NULL, realnmp)) {
1600 		if (realnmp)
1601 			pn_free(realnmp);
1602 		ZFS_EXIT(zfsvfs);
1603 		return (error);
1604 	}
1605 
1606 	vp = ZTOV(zp);
1607 
1608 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1609 		goto out;
1610 	}
1611 
1612 	/*
1613 	 * Need to use rmdir for removing directories.
1614 	 */
1615 	if (vp->v_type == VDIR) {
1616 		error = SET_ERROR(EPERM);
1617 		goto out;
1618 	}
1619 
1620 	vnevent_remove(vp, dvp, name, ct);
1621 
1622 	if (realnmp)
1623 		dnlc_remove(dvp, realnmp->pn_buf);
1624 	else
1625 		dnlc_remove(dvp, name);
1626 
1627 	mutex_enter(&vp->v_lock);
1628 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1629 	mutex_exit(&vp->v_lock);
1630 
1631 	/*
1632 	 * We may delete the znode now, or we may put it in the unlinked set;
1633 	 * it depends on whether we're the last link, and on whether there are
1634 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1635 	 * allow for either case.
1636 	 */
1637 	obj = zp->z_id;
1638 	tx = dmu_tx_create(zfsvfs->z_os);
1639 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1640 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1641 	zfs_sa_upgrade_txholds(tx, zp);
1642 	zfs_sa_upgrade_txholds(tx, dzp);
1643 	if (may_delete_now) {
1644 		toobig =
1645 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1646 		/* if the file is too big, only hold_free a token amount */
1647 		dmu_tx_hold_free(tx, zp->z_id, 0,
1648 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1649 	}
1650 
1651 	/* are there any extended attributes? */
1652 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1653 	    &xattr_obj, sizeof (xattr_obj));
1654 	if (error == 0 && xattr_obj) {
1655 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1656 		ASSERT0(error);
1657 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1658 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1659 	}
1660 
1661 	mutex_enter(&zp->z_lock);
1662 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1663 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1664 	mutex_exit(&zp->z_lock);
1665 
1666 	/* charge as an update -- would be nice not to charge at all */
1667 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1668 
1669 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1670 	if (error) {
1671 		zfs_dirent_unlock(dl);
1672 		VN_RELE(vp);
1673 		if (xzp)
1674 			VN_RELE(ZTOV(xzp));
1675 		if (error == ERESTART) {
1676 			waited = B_TRUE;
1677 			dmu_tx_wait(tx);
1678 			dmu_tx_abort(tx);
1679 			goto top;
1680 		}
1681 		if (realnmp)
1682 			pn_free(realnmp);
1683 		dmu_tx_abort(tx);
1684 		ZFS_EXIT(zfsvfs);
1685 		return (error);
1686 	}
1687 
1688 	/*
1689 	 * Remove the directory entry.
1690 	 */
1691 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1692 
1693 	if (error) {
1694 		dmu_tx_commit(tx);
1695 		goto out;
1696 	}
1697 
1698 	if (unlinked) {
1699 
1700 		/*
1701 		 * Hold z_lock so that we can make sure that the ACL obj
1702 		 * hasn't changed.  Could have been deleted due to
1703 		 * zfs_sa_upgrade().
1704 		 */
1705 		mutex_enter(&zp->z_lock);
1706 		mutex_enter(&vp->v_lock);
1707 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1708 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1709 		delete_now = may_delete_now && !toobig &&
1710 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1711 		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1712 		    acl_obj;
1713 		mutex_exit(&vp->v_lock);
1714 	}
1715 
1716 	if (delete_now) {
1717 		if (xattr_obj_unlinked) {
1718 			ASSERT3U(xzp->z_links, ==, 2);
1719 			mutex_enter(&xzp->z_lock);
1720 			xzp->z_unlinked = 1;
1721 			xzp->z_links = 0;
1722 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1723 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1724 			ASSERT3U(error,  ==,  0);
1725 			mutex_exit(&xzp->z_lock);
1726 			zfs_unlinked_add(xzp, tx);
1727 
1728 			if (zp->z_is_sa)
1729 				error = sa_remove(zp->z_sa_hdl,
1730 				    SA_ZPL_XATTR(zfsvfs), tx);
1731 			else
1732 				error = sa_update(zp->z_sa_hdl,
1733 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1734 				    sizeof (uint64_t), tx);
1735 			ASSERT0(error);
1736 		}
1737 		mutex_enter(&vp->v_lock);
1738 		vp->v_count--;
1739 		ASSERT0(vp->v_count);
1740 		mutex_exit(&vp->v_lock);
1741 		mutex_exit(&zp->z_lock);
1742 		zfs_znode_delete(zp, tx);
1743 	} else if (unlinked) {
1744 		mutex_exit(&zp->z_lock);
1745 		zfs_unlinked_add(zp, tx);
1746 	}
1747 
1748 	txtype = TX_REMOVE;
1749 	if (flags & FIGNORECASE)
1750 		txtype |= TX_CI;
1751 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1752 
1753 	dmu_tx_commit(tx);
1754 out:
1755 	if (realnmp)
1756 		pn_free(realnmp);
1757 
1758 	zfs_dirent_unlock(dl);
1759 
1760 	if (!delete_now)
1761 		VN_RELE(vp);
1762 	if (xzp)
1763 		VN_RELE(ZTOV(xzp));
1764 
1765 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1766 		zil_commit(zilog, 0);
1767 
1768 	ZFS_EXIT(zfsvfs);
1769 	return (error);
1770 }
1771 
1772 /*
1773  * Create a new directory and insert it into dvp using the name
1774  * provided.  Return a pointer to the inserted directory.
1775  *
1776  *	IN:	dvp	- vnode of directory to add subdir to.
1777  *		dirname	- name of new directory.
1778  *		vap	- attributes of new directory.
1779  *		cr	- credentials of caller.
1780  *		ct	- caller context
1781  *		flags	- case flags
1782  *		vsecp	- ACL to be set
1783  *
1784  *	OUT:	vpp	- vnode of created directory.
1785  *
1786  *	RETURN:	0 on success, error code on failure.
1787  *
1788  * Timestamps:
1789  *	dvp - ctime|mtime updated
1790  *	 vp - ctime|mtime|atime updated
1791  */
1792 /*ARGSUSED*/
1793 static int
1794 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1795     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1796 {
1797 	znode_t		*zp, *dzp = VTOZ(dvp);
1798 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1799 	zilog_t		*zilog;
1800 	zfs_dirlock_t	*dl;
1801 	uint64_t	txtype;
1802 	dmu_tx_t	*tx;
1803 	int		error;
1804 	int		zf = ZNEW;
1805 	ksid_t		*ksid;
1806 	uid_t		uid;
1807 	gid_t		gid = crgetgid(cr);
1808 	zfs_acl_ids_t   acl_ids;
1809 	boolean_t	fuid_dirtied;
1810 	boolean_t	waited = B_FALSE;
1811 
1812 	ASSERT(vap->va_type == VDIR);
1813 
1814 	/*
1815 	 * If we have an ephemeral id, ACL, or XVATTR then
1816 	 * make sure file system is at proper version
1817 	 */
1818 
1819 	ksid = crgetsid(cr, KSID_OWNER);
1820 	if (ksid)
1821 		uid = ksid_getid(ksid);
1822 	else
1823 		uid = crgetuid(cr);
1824 	if (zfsvfs->z_use_fuids == B_FALSE &&
1825 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1826 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1827 		return (SET_ERROR(EINVAL));
1828 
1829 	ZFS_ENTER(zfsvfs);
1830 	ZFS_VERIFY_ZP(dzp);
1831 	zilog = zfsvfs->z_log;
1832 
1833 	if (dzp->z_pflags & ZFS_XATTR) {
1834 		ZFS_EXIT(zfsvfs);
1835 		return (SET_ERROR(EINVAL));
1836 	}
1837 
1838 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1839 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1840 		ZFS_EXIT(zfsvfs);
1841 		return (SET_ERROR(EILSEQ));
1842 	}
1843 	if (flags & FIGNORECASE)
1844 		zf |= ZCILOOK;
1845 
1846 	if (vap->va_mask & AT_XVATTR) {
1847 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1848 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1849 			ZFS_EXIT(zfsvfs);
1850 			return (error);
1851 		}
1852 	}
1853 
1854 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1855 	    vsecp, &acl_ids)) != 0) {
1856 		ZFS_EXIT(zfsvfs);
1857 		return (error);
1858 	}
1859 	/*
1860 	 * First make sure the new directory doesn't exist.
1861 	 *
1862 	 * Existence is checked first to make sure we don't return
1863 	 * EACCES instead of EEXIST which can cause some applications
1864 	 * to fail.
1865 	 */
1866 top:
1867 	*vpp = NULL;
1868 
1869 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1870 	    NULL, NULL)) {
1871 		zfs_acl_ids_free(&acl_ids);
1872 		ZFS_EXIT(zfsvfs);
1873 		return (error);
1874 	}
1875 
1876 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1877 		zfs_acl_ids_free(&acl_ids);
1878 		zfs_dirent_unlock(dl);
1879 		ZFS_EXIT(zfsvfs);
1880 		return (error);
1881 	}
1882 
1883 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1884 		zfs_acl_ids_free(&acl_ids);
1885 		zfs_dirent_unlock(dl);
1886 		ZFS_EXIT(zfsvfs);
1887 		return (SET_ERROR(EDQUOT));
1888 	}
1889 
1890 	/*
1891 	 * Add a new entry to the directory.
1892 	 */
1893 	tx = dmu_tx_create(zfsvfs->z_os);
1894 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1895 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1896 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1897 	if (fuid_dirtied)
1898 		zfs_fuid_txhold(zfsvfs, tx);
1899 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1900 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1901 		    acl_ids.z_aclp->z_acl_bytes);
1902 	}
1903 
1904 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1905 	    ZFS_SA_BASE_ATTR_SIZE);
1906 
1907 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1908 	if (error) {
1909 		zfs_dirent_unlock(dl);
1910 		if (error == ERESTART) {
1911 			waited = B_TRUE;
1912 			dmu_tx_wait(tx);
1913 			dmu_tx_abort(tx);
1914 			goto top;
1915 		}
1916 		zfs_acl_ids_free(&acl_ids);
1917 		dmu_tx_abort(tx);
1918 		ZFS_EXIT(zfsvfs);
1919 		return (error);
1920 	}
1921 
1922 	/*
1923 	 * Create new node.
1924 	 */
1925 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1926 
1927 	if (fuid_dirtied)
1928 		zfs_fuid_sync(zfsvfs, tx);
1929 
1930 	/*
1931 	 * Now put new name in parent dir.
1932 	 */
1933 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1934 
1935 	*vpp = ZTOV(zp);
1936 
1937 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1938 	if (flags & FIGNORECASE)
1939 		txtype |= TX_CI;
1940 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1941 	    acl_ids.z_fuidp, vap);
1942 
1943 	zfs_acl_ids_free(&acl_ids);
1944 
1945 	dmu_tx_commit(tx);
1946 
1947 	zfs_dirent_unlock(dl);
1948 
1949 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1950 		zil_commit(zilog, 0);
1951 
1952 	ZFS_EXIT(zfsvfs);
1953 	return (0);
1954 }
1955 
1956 /*
1957  * Remove a directory subdir entry.  If the current working
1958  * directory is the same as the subdir to be removed, the
1959  * remove will fail.
1960  *
1961  *	IN:	dvp	- vnode of directory to remove from.
1962  *		name	- name of directory to be removed.
1963  *		cwd	- vnode of current working directory.
1964  *		cr	- credentials of caller.
1965  *		ct	- caller context
1966  *		flags	- case flags
1967  *
1968  *	RETURN:	0 on success, error code on failure.
1969  *
1970  * Timestamps:
1971  *	dvp - ctime|mtime updated
1972  */
1973 /*ARGSUSED*/
1974 static int
1975 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1976     caller_context_t *ct, int flags)
1977 {
1978 	znode_t		*dzp = VTOZ(dvp);
1979 	znode_t		*zp;
1980 	vnode_t		*vp;
1981 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1982 	zilog_t		*zilog;
1983 	zfs_dirlock_t	*dl;
1984 	dmu_tx_t	*tx;
1985 	int		error;
1986 	int		zflg = ZEXISTS;
1987 	boolean_t	waited = B_FALSE;
1988 
1989 	ZFS_ENTER(zfsvfs);
1990 	ZFS_VERIFY_ZP(dzp);
1991 	zilog = zfsvfs->z_log;
1992 
1993 	if (flags & FIGNORECASE)
1994 		zflg |= ZCILOOK;
1995 top:
1996 	zp = NULL;
1997 
1998 	/*
1999 	 * Attempt to lock directory; fail if entry doesn't exist.
2000 	 */
2001 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2002 	    NULL, NULL)) {
2003 		ZFS_EXIT(zfsvfs);
2004 		return (error);
2005 	}
2006 
2007 	vp = ZTOV(zp);
2008 
2009 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2010 		goto out;
2011 	}
2012 
2013 	if (vp->v_type != VDIR) {
2014 		error = SET_ERROR(ENOTDIR);
2015 		goto out;
2016 	}
2017 
2018 	if (vp == cwd) {
2019 		error = SET_ERROR(EINVAL);
2020 		goto out;
2021 	}
2022 
2023 	vnevent_rmdir(vp, dvp, name, ct);
2024 
2025 	/*
2026 	 * Grab a lock on the directory to make sure that noone is
2027 	 * trying to add (or lookup) entries while we are removing it.
2028 	 */
2029 	rw_enter(&zp->z_name_lock, RW_WRITER);
2030 
2031 	/*
2032 	 * Grab a lock on the parent pointer to make sure we play well
2033 	 * with the treewalk and directory rename code.
2034 	 */
2035 	rw_enter(&zp->z_parent_lock, RW_WRITER);
2036 
2037 	tx = dmu_tx_create(zfsvfs->z_os);
2038 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2039 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2040 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2041 	zfs_sa_upgrade_txholds(tx, zp);
2042 	zfs_sa_upgrade_txholds(tx, dzp);
2043 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2044 	if (error) {
2045 		rw_exit(&zp->z_parent_lock);
2046 		rw_exit(&zp->z_name_lock);
2047 		zfs_dirent_unlock(dl);
2048 		VN_RELE(vp);
2049 		if (error == ERESTART) {
2050 			waited = B_TRUE;
2051 			dmu_tx_wait(tx);
2052 			dmu_tx_abort(tx);
2053 			goto top;
2054 		}
2055 		dmu_tx_abort(tx);
2056 		ZFS_EXIT(zfsvfs);
2057 		return (error);
2058 	}
2059 
2060 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2061 
2062 	if (error == 0) {
2063 		uint64_t txtype = TX_RMDIR;
2064 		if (flags & FIGNORECASE)
2065 			txtype |= TX_CI;
2066 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2067 	}
2068 
2069 	dmu_tx_commit(tx);
2070 
2071 	rw_exit(&zp->z_parent_lock);
2072 	rw_exit(&zp->z_name_lock);
2073 out:
2074 	zfs_dirent_unlock(dl);
2075 
2076 	VN_RELE(vp);
2077 
2078 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2079 		zil_commit(zilog, 0);
2080 
2081 	ZFS_EXIT(zfsvfs);
2082 	return (error);
2083 }
2084 
2085 /*
2086  * Read as many directory entries as will fit into the provided
2087  * buffer from the given directory cursor position (specified in
2088  * the uio structure).
2089  *
2090  *	IN:	vp	- vnode of directory to read.
2091  *		uio	- structure supplying read location, range info,
2092  *			  and return buffer.
2093  *		cr	- credentials of caller.
2094  *		ct	- caller context
2095  *		flags	- case flags
2096  *
2097  *	OUT:	uio	- updated offset and range, buffer filled.
2098  *		eofp	- set to true if end-of-file detected.
2099  *
2100  *	RETURN:	0 on success, error code on failure.
2101  *
2102  * Timestamps:
2103  *	vp - atime updated
2104  *
2105  * Note that the low 4 bits of the cookie returned by zap is always zero.
2106  * This allows us to use the low range for "special" directory entries:
2107  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2108  * we use the offset 2 for the '.zfs' directory.
2109  */
2110 /* ARGSUSED */
2111 static int
2112 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2113     caller_context_t *ct, int flags)
2114 {
2115 	znode_t		*zp = VTOZ(vp);
2116 	iovec_t		*iovp;
2117 	edirent_t	*eodp;
2118 	dirent64_t	*odp;
2119 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2120 	objset_t	*os;
2121 	caddr_t		outbuf;
2122 	size_t		bufsize;
2123 	zap_cursor_t	zc;
2124 	zap_attribute_t	zap;
2125 	uint_t		bytes_wanted;
2126 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2127 	uint64_t	parent;
2128 	int		local_eof;
2129 	int		outcount;
2130 	int		error;
2131 	uint8_t		prefetch;
2132 	boolean_t	check_sysattrs;
2133 
2134 	ZFS_ENTER(zfsvfs);
2135 	ZFS_VERIFY_ZP(zp);
2136 
2137 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2138 	    &parent, sizeof (parent))) != 0) {
2139 		ZFS_EXIT(zfsvfs);
2140 		return (error);
2141 	}
2142 
2143 	/*
2144 	 * If we are not given an eof variable,
2145 	 * use a local one.
2146 	 */
2147 	if (eofp == NULL)
2148 		eofp = &local_eof;
2149 
2150 	/*
2151 	 * Check for valid iov_len.
2152 	 */
2153 	if (uio->uio_iov->iov_len <= 0) {
2154 		ZFS_EXIT(zfsvfs);
2155 		return (SET_ERROR(EINVAL));
2156 	}
2157 
2158 	/*
2159 	 * Quit if directory has been removed (posix)
2160 	 */
2161 	if ((*eofp = zp->z_unlinked) != 0) {
2162 		ZFS_EXIT(zfsvfs);
2163 		return (0);
2164 	}
2165 
2166 	error = 0;
2167 	os = zfsvfs->z_os;
2168 	offset = uio->uio_loffset;
2169 	prefetch = zp->z_zn_prefetch;
2170 
2171 	/*
2172 	 * Initialize the iterator cursor.
2173 	 */
2174 	if (offset <= 3) {
2175 		/*
2176 		 * Start iteration from the beginning of the directory.
2177 		 */
2178 		zap_cursor_init(&zc, os, zp->z_id);
2179 	} else {
2180 		/*
2181 		 * The offset is a serialized cursor.
2182 		 */
2183 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2184 	}
2185 
2186 	/*
2187 	 * Get space to change directory entries into fs independent format.
2188 	 */
2189 	iovp = uio->uio_iov;
2190 	bytes_wanted = iovp->iov_len;
2191 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2192 		bufsize = bytes_wanted;
2193 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2194 		odp = (struct dirent64 *)outbuf;
2195 	} else {
2196 		bufsize = bytes_wanted;
2197 		outbuf = NULL;
2198 		odp = (struct dirent64 *)iovp->iov_base;
2199 	}
2200 	eodp = (struct edirent *)odp;
2201 
2202 	/*
2203 	 * If this VFS supports the system attribute view interface; and
2204 	 * we're looking at an extended attribute directory; and we care
2205 	 * about normalization conflicts on this vfs; then we must check
2206 	 * for normalization conflicts with the sysattr name space.
2207 	 */
2208 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2209 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2210 	    (flags & V_RDDIR_ENTFLAGS);
2211 
2212 	/*
2213 	 * Transform to file-system independent format
2214 	 */
2215 	outcount = 0;
2216 	while (outcount < bytes_wanted) {
2217 		ino64_t objnum;
2218 		ushort_t reclen;
2219 		off64_t *next = NULL;
2220 
2221 		/*
2222 		 * Special case `.', `..', and `.zfs'.
2223 		 */
2224 		if (offset == 0) {
2225 			(void) strcpy(zap.za_name, ".");
2226 			zap.za_normalization_conflict = 0;
2227 			objnum = zp->z_id;
2228 		} else if (offset == 1) {
2229 			(void) strcpy(zap.za_name, "..");
2230 			zap.za_normalization_conflict = 0;
2231 			objnum = parent;
2232 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2233 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2234 			zap.za_normalization_conflict = 0;
2235 			objnum = ZFSCTL_INO_ROOT;
2236 		} else {
2237 			/*
2238 			 * Grab next entry.
2239 			 */
2240 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2241 				if ((*eofp = (error == ENOENT)) != 0)
2242 					break;
2243 				else
2244 					goto update;
2245 			}
2246 
2247 			if (zap.za_integer_length != 8 ||
2248 			    zap.za_num_integers != 1) {
2249 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2250 				    "entry, obj = %lld, offset = %lld\n",
2251 				    (u_longlong_t)zp->z_id,
2252 				    (u_longlong_t)offset);
2253 				error = SET_ERROR(ENXIO);
2254 				goto update;
2255 			}
2256 
2257 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2258 			/*
2259 			 * MacOS X can extract the object type here such as:
2260 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2261 			 */
2262 
2263 			if (check_sysattrs && !zap.za_normalization_conflict) {
2264 				zap.za_normalization_conflict =
2265 				    xattr_sysattr_casechk(zap.za_name);
2266 			}
2267 		}
2268 
2269 		if (flags & V_RDDIR_ACCFILTER) {
2270 			/*
2271 			 * If we have no access at all, don't include
2272 			 * this entry in the returned information
2273 			 */
2274 			znode_t	*ezp;
2275 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2276 				goto skip_entry;
2277 			if (!zfs_has_access(ezp, cr)) {
2278 				VN_RELE(ZTOV(ezp));
2279 				goto skip_entry;
2280 			}
2281 			VN_RELE(ZTOV(ezp));
2282 		}
2283 
2284 		if (flags & V_RDDIR_ENTFLAGS)
2285 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2286 		else
2287 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2288 
2289 		/*
2290 		 * Will this entry fit in the buffer?
2291 		 */
2292 		if (outcount + reclen > bufsize) {
2293 			/*
2294 			 * Did we manage to fit anything in the buffer?
2295 			 */
2296 			if (!outcount) {
2297 				error = SET_ERROR(EINVAL);
2298 				goto update;
2299 			}
2300 			break;
2301 		}
2302 		if (flags & V_RDDIR_ENTFLAGS) {
2303 			/*
2304 			 * Add extended flag entry:
2305 			 */
2306 			eodp->ed_ino = objnum;
2307 			eodp->ed_reclen = reclen;
2308 			/* NOTE: ed_off is the offset for the *next* entry */
2309 			next = &(eodp->ed_off);
2310 			eodp->ed_eflags = zap.za_normalization_conflict ?
2311 			    ED_CASE_CONFLICT : 0;
2312 			(void) strncpy(eodp->ed_name, zap.za_name,
2313 			    EDIRENT_NAMELEN(reclen));
2314 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2315 		} else {
2316 			/*
2317 			 * Add normal entry:
2318 			 */
2319 			odp->d_ino = objnum;
2320 			odp->d_reclen = reclen;
2321 			/* NOTE: d_off is the offset for the *next* entry */
2322 			next = &(odp->d_off);
2323 			(void) strncpy(odp->d_name, zap.za_name,
2324 			    DIRENT64_NAMELEN(reclen));
2325 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2326 		}
2327 		outcount += reclen;
2328 
2329 		ASSERT(outcount <= bufsize);
2330 
2331 		/* Prefetch znode */
2332 		if (prefetch)
2333 			dmu_prefetch(os, objnum, 0, 0);
2334 
2335 	skip_entry:
2336 		/*
2337 		 * Move to the next entry, fill in the previous offset.
2338 		 */
2339 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2340 			zap_cursor_advance(&zc);
2341 			offset = zap_cursor_serialize(&zc);
2342 		} else {
2343 			offset += 1;
2344 		}
2345 		if (next)
2346 			*next = offset;
2347 	}
2348 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2349 
2350 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2351 		iovp->iov_base += outcount;
2352 		iovp->iov_len -= outcount;
2353 		uio->uio_resid -= outcount;
2354 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2355 		/*
2356 		 * Reset the pointer.
2357 		 */
2358 		offset = uio->uio_loffset;
2359 	}
2360 
2361 update:
2362 	zap_cursor_fini(&zc);
2363 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2364 		kmem_free(outbuf, bufsize);
2365 
2366 	if (error == ENOENT)
2367 		error = 0;
2368 
2369 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2370 
2371 	uio->uio_loffset = offset;
2372 	ZFS_EXIT(zfsvfs);
2373 	return (error);
2374 }
2375 
2376 ulong_t zfs_fsync_sync_cnt = 4;
2377 
2378 static int
2379 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2380 {
2381 	znode_t	*zp = VTOZ(vp);
2382 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2383 
2384 	/*
2385 	 * Regardless of whether this is required for standards conformance,
2386 	 * this is the logical behavior when fsync() is called on a file with
2387 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2388 	 * going to be pushed out as part of the zil_commit().
2389 	 */
2390 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2391 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2392 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2393 
2394 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2395 
2396 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2397 		ZFS_ENTER(zfsvfs);
2398 		ZFS_VERIFY_ZP(zp);
2399 		zil_commit(zfsvfs->z_log, zp->z_id);
2400 		ZFS_EXIT(zfsvfs);
2401 	}
2402 	return (0);
2403 }
2404 
2405 
2406 /*
2407  * Get the requested file attributes and place them in the provided
2408  * vattr structure.
2409  *
2410  *	IN:	vp	- vnode of file.
2411  *		vap	- va_mask identifies requested attributes.
2412  *			  If AT_XVATTR set, then optional attrs are requested
2413  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2414  *		cr	- credentials of caller.
2415  *		ct	- caller context
2416  *
2417  *	OUT:	vap	- attribute values.
2418  *
2419  *	RETURN:	0 (always succeeds).
2420  */
2421 /* ARGSUSED */
2422 static int
2423 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2424     caller_context_t *ct)
2425 {
2426 	znode_t *zp = VTOZ(vp);
2427 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2428 	int	error = 0;
2429 	uint64_t links;
2430 	uint64_t mtime[2], ctime[2];
2431 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2432 	xoptattr_t *xoap = NULL;
2433 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2434 	sa_bulk_attr_t bulk[2];
2435 	int count = 0;
2436 
2437 	ZFS_ENTER(zfsvfs);
2438 	ZFS_VERIFY_ZP(zp);
2439 
2440 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2441 
2442 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2443 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2444 
2445 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2446 		ZFS_EXIT(zfsvfs);
2447 		return (error);
2448 	}
2449 
2450 	/*
2451 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2452 	 * Also, if we are the owner don't bother, since owner should
2453 	 * always be allowed to read basic attributes of file.
2454 	 */
2455 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2456 	    (vap->va_uid != crgetuid(cr))) {
2457 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2458 		    skipaclchk, cr)) {
2459 			ZFS_EXIT(zfsvfs);
2460 			return (error);
2461 		}
2462 	}
2463 
2464 	/*
2465 	 * Return all attributes.  It's cheaper to provide the answer
2466 	 * than to determine whether we were asked the question.
2467 	 */
2468 
2469 	mutex_enter(&zp->z_lock);
2470 	vap->va_type = vp->v_type;
2471 	vap->va_mode = zp->z_mode & MODEMASK;
2472 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2473 	vap->va_nodeid = zp->z_id;
2474 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2475 		links = zp->z_links + 1;
2476 	else
2477 		links = zp->z_links;
2478 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2479 	vap->va_size = zp->z_size;
2480 	vap->va_rdev = vp->v_rdev;
2481 	vap->va_seq = zp->z_seq;
2482 
2483 	/*
2484 	 * Add in any requested optional attributes and the create time.
2485 	 * Also set the corresponding bits in the returned attribute bitmap.
2486 	 */
2487 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2488 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2489 			xoap->xoa_archive =
2490 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2491 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2492 		}
2493 
2494 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2495 			xoap->xoa_readonly =
2496 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2497 			XVA_SET_RTN(xvap, XAT_READONLY);
2498 		}
2499 
2500 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2501 			xoap->xoa_system =
2502 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2503 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2504 		}
2505 
2506 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2507 			xoap->xoa_hidden =
2508 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2509 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2510 		}
2511 
2512 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2513 			xoap->xoa_nounlink =
2514 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2515 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2516 		}
2517 
2518 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2519 			xoap->xoa_immutable =
2520 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2521 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2522 		}
2523 
2524 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2525 			xoap->xoa_appendonly =
2526 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2527 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2528 		}
2529 
2530 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2531 			xoap->xoa_nodump =
2532 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2533 			XVA_SET_RTN(xvap, XAT_NODUMP);
2534 		}
2535 
2536 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2537 			xoap->xoa_opaque =
2538 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2539 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2540 		}
2541 
2542 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2543 			xoap->xoa_av_quarantined =
2544 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2545 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2546 		}
2547 
2548 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2549 			xoap->xoa_av_modified =
2550 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2551 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2552 		}
2553 
2554 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2555 		    vp->v_type == VREG) {
2556 			zfs_sa_get_scanstamp(zp, xvap);
2557 		}
2558 
2559 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2560 			uint64_t times[2];
2561 
2562 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2563 			    times, sizeof (times));
2564 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2565 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2566 		}
2567 
2568 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2569 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2570 			XVA_SET_RTN(xvap, XAT_REPARSE);
2571 		}
2572 		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2573 			xoap->xoa_generation = zp->z_gen;
2574 			XVA_SET_RTN(xvap, XAT_GEN);
2575 		}
2576 
2577 		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2578 			xoap->xoa_offline =
2579 			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2580 			XVA_SET_RTN(xvap, XAT_OFFLINE);
2581 		}
2582 
2583 		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2584 			xoap->xoa_sparse =
2585 			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2586 			XVA_SET_RTN(xvap, XAT_SPARSE);
2587 		}
2588 	}
2589 
2590 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2591 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2592 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2593 
2594 	mutex_exit(&zp->z_lock);
2595 
2596 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2597 
2598 	if (zp->z_blksz == 0) {
2599 		/*
2600 		 * Block size hasn't been set; suggest maximal I/O transfers.
2601 		 */
2602 		vap->va_blksize = zfsvfs->z_max_blksz;
2603 	}
2604 
2605 	ZFS_EXIT(zfsvfs);
2606 	return (0);
2607 }
2608 
2609 /*
2610  * Set the file attributes to the values contained in the
2611  * vattr structure.
2612  *
2613  *	IN:	vp	- vnode of file to be modified.
2614  *		vap	- new attribute values.
2615  *			  If AT_XVATTR set, then optional attrs are being set
2616  *		flags	- ATTR_UTIME set if non-default time values provided.
2617  *			- ATTR_NOACLCHECK (CIFS context only).
2618  *		cr	- credentials of caller.
2619  *		ct	- caller context
2620  *
2621  *	RETURN:	0 on success, error code on failure.
2622  *
2623  * Timestamps:
2624  *	vp - ctime updated, mtime updated if size changed.
2625  */
2626 /* ARGSUSED */
2627 static int
2628 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2629     caller_context_t *ct)
2630 {
2631 	znode_t		*zp = VTOZ(vp);
2632 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2633 	zilog_t		*zilog;
2634 	dmu_tx_t	*tx;
2635 	vattr_t		oldva;
2636 	xvattr_t	tmpxvattr;
2637 	uint_t		mask = vap->va_mask;
2638 	uint_t		saved_mask = 0;
2639 	int		trim_mask = 0;
2640 	uint64_t	new_mode;
2641 	uint64_t	new_uid, new_gid;
2642 	uint64_t	xattr_obj;
2643 	uint64_t	mtime[2], ctime[2];
2644 	znode_t		*attrzp;
2645 	int		need_policy = FALSE;
2646 	int		err, err2;
2647 	zfs_fuid_info_t *fuidp = NULL;
2648 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2649 	xoptattr_t	*xoap;
2650 	zfs_acl_t	*aclp;
2651 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2652 	boolean_t	fuid_dirtied = B_FALSE;
2653 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2654 	int		count = 0, xattr_count = 0;
2655 
2656 	if (mask == 0)
2657 		return (0);
2658 
2659 	if (mask & AT_NOSET)
2660 		return (SET_ERROR(EINVAL));
2661 
2662 	ZFS_ENTER(zfsvfs);
2663 	ZFS_VERIFY_ZP(zp);
2664 
2665 	zilog = zfsvfs->z_log;
2666 
2667 	/*
2668 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2669 	 * that file system is at proper version level
2670 	 */
2671 
2672 	if (zfsvfs->z_use_fuids == B_FALSE &&
2673 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2674 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2675 	    (mask & AT_XVATTR))) {
2676 		ZFS_EXIT(zfsvfs);
2677 		return (SET_ERROR(EINVAL));
2678 	}
2679 
2680 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2681 		ZFS_EXIT(zfsvfs);
2682 		return (SET_ERROR(EISDIR));
2683 	}
2684 
2685 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2686 		ZFS_EXIT(zfsvfs);
2687 		return (SET_ERROR(EINVAL));
2688 	}
2689 
2690 	/*
2691 	 * If this is an xvattr_t, then get a pointer to the structure of
2692 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2693 	 */
2694 	xoap = xva_getxoptattr(xvap);
2695 
2696 	xva_init(&tmpxvattr);
2697 
2698 	/*
2699 	 * Immutable files can only alter immutable bit and atime
2700 	 */
2701 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2702 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2703 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2704 		ZFS_EXIT(zfsvfs);
2705 		return (SET_ERROR(EPERM));
2706 	}
2707 
2708 	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2709 		ZFS_EXIT(zfsvfs);
2710 		return (SET_ERROR(EPERM));
2711 	}
2712 
2713 	/*
2714 	 * Verify timestamps doesn't overflow 32 bits.
2715 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2716 	 * handle times greater than 2039.  This check should be removed
2717 	 * once large timestamps are fully supported.
2718 	 */
2719 	if (mask & (AT_ATIME | AT_MTIME)) {
2720 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2721 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2722 			ZFS_EXIT(zfsvfs);
2723 			return (SET_ERROR(EOVERFLOW));
2724 		}
2725 	}
2726 
2727 top:
2728 	attrzp = NULL;
2729 	aclp = NULL;
2730 
2731 	/* Can this be moved to before the top label? */
2732 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2733 		ZFS_EXIT(zfsvfs);
2734 		return (SET_ERROR(EROFS));
2735 	}
2736 
2737 	/*
2738 	 * First validate permissions
2739 	 */
2740 
2741 	if (mask & AT_SIZE) {
2742 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2743 		if (err) {
2744 			ZFS_EXIT(zfsvfs);
2745 			return (err);
2746 		}
2747 		/*
2748 		 * XXX - Note, we are not providing any open
2749 		 * mode flags here (like FNDELAY), so we may
2750 		 * block if there are locks present... this
2751 		 * should be addressed in openat().
2752 		 */
2753 		/* XXX - would it be OK to generate a log record here? */
2754 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2755 		if (err) {
2756 			ZFS_EXIT(zfsvfs);
2757 			return (err);
2758 		}
2759 	}
2760 
2761 	if (mask & (AT_ATIME|AT_MTIME) ||
2762 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2763 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2764 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2765 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2766 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2767 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2768 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2769 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2770 		    skipaclchk, cr);
2771 	}
2772 
2773 	if (mask & (AT_UID|AT_GID)) {
2774 		int	idmask = (mask & (AT_UID|AT_GID));
2775 		int	take_owner;
2776 		int	take_group;
2777 
2778 		/*
2779 		 * NOTE: even if a new mode is being set,
2780 		 * we may clear S_ISUID/S_ISGID bits.
2781 		 */
2782 
2783 		if (!(mask & AT_MODE))
2784 			vap->va_mode = zp->z_mode;
2785 
2786 		/*
2787 		 * Take ownership or chgrp to group we are a member of
2788 		 */
2789 
2790 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2791 		take_group = (mask & AT_GID) &&
2792 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2793 
2794 		/*
2795 		 * If both AT_UID and AT_GID are set then take_owner and
2796 		 * take_group must both be set in order to allow taking
2797 		 * ownership.
2798 		 *
2799 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2800 		 *
2801 		 */
2802 
2803 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2804 		    ((idmask == AT_UID) && take_owner) ||
2805 		    ((idmask == AT_GID) && take_group)) {
2806 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2807 			    skipaclchk, cr) == 0) {
2808 				/*
2809 				 * Remove setuid/setgid for non-privileged users
2810 				 */
2811 				secpolicy_setid_clear(vap, cr);
2812 				trim_mask = (mask & (AT_UID|AT_GID));
2813 			} else {
2814 				need_policy =  TRUE;
2815 			}
2816 		} else {
2817 			need_policy =  TRUE;
2818 		}
2819 	}
2820 
2821 	mutex_enter(&zp->z_lock);
2822 	oldva.va_mode = zp->z_mode;
2823 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2824 	if (mask & AT_XVATTR) {
2825 		/*
2826 		 * Update xvattr mask to include only those attributes
2827 		 * that are actually changing.
2828 		 *
2829 		 * the bits will be restored prior to actually setting
2830 		 * the attributes so the caller thinks they were set.
2831 		 */
2832 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2833 			if (xoap->xoa_appendonly !=
2834 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2835 				need_policy = TRUE;
2836 			} else {
2837 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2838 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2839 			}
2840 		}
2841 
2842 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2843 			if (xoap->xoa_nounlink !=
2844 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2845 				need_policy = TRUE;
2846 			} else {
2847 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2848 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2849 			}
2850 		}
2851 
2852 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2853 			if (xoap->xoa_immutable !=
2854 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2855 				need_policy = TRUE;
2856 			} else {
2857 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2858 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2859 			}
2860 		}
2861 
2862 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2863 			if (xoap->xoa_nodump !=
2864 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2865 				need_policy = TRUE;
2866 			} else {
2867 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2868 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2869 			}
2870 		}
2871 
2872 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2873 			if (xoap->xoa_av_modified !=
2874 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2875 				need_policy = TRUE;
2876 			} else {
2877 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2878 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2879 			}
2880 		}
2881 
2882 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2883 			if ((vp->v_type != VREG &&
2884 			    xoap->xoa_av_quarantined) ||
2885 			    xoap->xoa_av_quarantined !=
2886 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2887 				need_policy = TRUE;
2888 			} else {
2889 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2890 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2891 			}
2892 		}
2893 
2894 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2895 			mutex_exit(&zp->z_lock);
2896 			ZFS_EXIT(zfsvfs);
2897 			return (SET_ERROR(EPERM));
2898 		}
2899 
2900 		if (need_policy == FALSE &&
2901 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2902 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2903 			need_policy = TRUE;
2904 		}
2905 	}
2906 
2907 	mutex_exit(&zp->z_lock);
2908 
2909 	if (mask & AT_MODE) {
2910 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2911 			err = secpolicy_setid_setsticky_clear(vp, vap,
2912 			    &oldva, cr);
2913 			if (err) {
2914 				ZFS_EXIT(zfsvfs);
2915 				return (err);
2916 			}
2917 			trim_mask |= AT_MODE;
2918 		} else {
2919 			need_policy = TRUE;
2920 		}
2921 	}
2922 
2923 	if (need_policy) {
2924 		/*
2925 		 * If trim_mask is set then take ownership
2926 		 * has been granted or write_acl is present and user
2927 		 * has the ability to modify mode.  In that case remove
2928 		 * UID|GID and or MODE from mask so that
2929 		 * secpolicy_vnode_setattr() doesn't revoke it.
2930 		 */
2931 
2932 		if (trim_mask) {
2933 			saved_mask = vap->va_mask;
2934 			vap->va_mask &= ~trim_mask;
2935 		}
2936 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2937 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2938 		if (err) {
2939 			ZFS_EXIT(zfsvfs);
2940 			return (err);
2941 		}
2942 
2943 		if (trim_mask)
2944 			vap->va_mask |= saved_mask;
2945 	}
2946 
2947 	/*
2948 	 * secpolicy_vnode_setattr, or take ownership may have
2949 	 * changed va_mask
2950 	 */
2951 	mask = vap->va_mask;
2952 
2953 	if ((mask & (AT_UID | AT_GID))) {
2954 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2955 		    &xattr_obj, sizeof (xattr_obj));
2956 
2957 		if (err == 0 && xattr_obj) {
2958 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2959 			if (err)
2960 				goto out2;
2961 		}
2962 		if (mask & AT_UID) {
2963 			new_uid = zfs_fuid_create(zfsvfs,
2964 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2965 			if (new_uid != zp->z_uid &&
2966 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2967 				if (attrzp)
2968 					VN_RELE(ZTOV(attrzp));
2969 				err = SET_ERROR(EDQUOT);
2970 				goto out2;
2971 			}
2972 		}
2973 
2974 		if (mask & AT_GID) {
2975 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2976 			    cr, ZFS_GROUP, &fuidp);
2977 			if (new_gid != zp->z_gid &&
2978 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
2979 				if (attrzp)
2980 					VN_RELE(ZTOV(attrzp));
2981 				err = SET_ERROR(EDQUOT);
2982 				goto out2;
2983 			}
2984 		}
2985 	}
2986 	tx = dmu_tx_create(zfsvfs->z_os);
2987 
2988 	if (mask & AT_MODE) {
2989 		uint64_t pmode = zp->z_mode;
2990 		uint64_t acl_obj;
2991 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2992 
2993 		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
2994 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2995 			err = SET_ERROR(EPERM);
2996 			goto out;
2997 		}
2998 
2999 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3000 			goto out;
3001 
3002 		mutex_enter(&zp->z_lock);
3003 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3004 			/*
3005 			 * Are we upgrading ACL from old V0 format
3006 			 * to V1 format?
3007 			 */
3008 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3009 			    zfs_znode_acl_version(zp) ==
3010 			    ZFS_ACL_VERSION_INITIAL) {
3011 				dmu_tx_hold_free(tx, acl_obj, 0,
3012 				    DMU_OBJECT_END);
3013 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3014 				    0, aclp->z_acl_bytes);
3015 			} else {
3016 				dmu_tx_hold_write(tx, acl_obj, 0,
3017 				    aclp->z_acl_bytes);
3018 			}
3019 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3020 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3021 			    0, aclp->z_acl_bytes);
3022 		}
3023 		mutex_exit(&zp->z_lock);
3024 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3025 	} else {
3026 		if ((mask & AT_XVATTR) &&
3027 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3028 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3029 		else
3030 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3031 	}
3032 
3033 	if (attrzp) {
3034 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3035 	}
3036 
3037 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3038 	if (fuid_dirtied)
3039 		zfs_fuid_txhold(zfsvfs, tx);
3040 
3041 	zfs_sa_upgrade_txholds(tx, zp);
3042 
3043 	err = dmu_tx_assign(tx, TXG_NOWAIT);
3044 	if (err) {
3045 		if (err == ERESTART)
3046 			dmu_tx_wait(tx);
3047 		goto out;
3048 	}
3049 
3050 	count = 0;
3051 	/*
3052 	 * Set each attribute requested.
3053 	 * We group settings according to the locks they need to acquire.
3054 	 *
3055 	 * Note: you cannot set ctime directly, although it will be
3056 	 * updated as a side-effect of calling this function.
3057 	 */
3058 
3059 
3060 	if (mask & (AT_UID|AT_GID|AT_MODE))
3061 		mutex_enter(&zp->z_acl_lock);
3062 	mutex_enter(&zp->z_lock);
3063 
3064 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3065 	    &zp->z_pflags, sizeof (zp->z_pflags));
3066 
3067 	if (attrzp) {
3068 		if (mask & (AT_UID|AT_GID|AT_MODE))
3069 			mutex_enter(&attrzp->z_acl_lock);
3070 		mutex_enter(&attrzp->z_lock);
3071 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3072 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3073 		    sizeof (attrzp->z_pflags));
3074 	}
3075 
3076 	if (mask & (AT_UID|AT_GID)) {
3077 
3078 		if (mask & AT_UID) {
3079 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3080 			    &new_uid, sizeof (new_uid));
3081 			zp->z_uid = new_uid;
3082 			if (attrzp) {
3083 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3084 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3085 				    sizeof (new_uid));
3086 				attrzp->z_uid = new_uid;
3087 			}
3088 		}
3089 
3090 		if (mask & AT_GID) {
3091 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3092 			    NULL, &new_gid, sizeof (new_gid));
3093 			zp->z_gid = new_gid;
3094 			if (attrzp) {
3095 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3096 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3097 				    sizeof (new_gid));
3098 				attrzp->z_gid = new_gid;
3099 			}
3100 		}
3101 		if (!(mask & AT_MODE)) {
3102 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3103 			    NULL, &new_mode, sizeof (new_mode));
3104 			new_mode = zp->z_mode;
3105 		}
3106 		err = zfs_acl_chown_setattr(zp);
3107 		ASSERT(err == 0);
3108 		if (attrzp) {
3109 			err = zfs_acl_chown_setattr(attrzp);
3110 			ASSERT(err == 0);
3111 		}
3112 	}
3113 
3114 	if (mask & AT_MODE) {
3115 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3116 		    &new_mode, sizeof (new_mode));
3117 		zp->z_mode = new_mode;
3118 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3119 		err = zfs_aclset_common(zp, aclp, cr, tx);
3120 		ASSERT0(err);
3121 		if (zp->z_acl_cached)
3122 			zfs_acl_free(zp->z_acl_cached);
3123 		zp->z_acl_cached = aclp;
3124 		aclp = NULL;
3125 	}
3126 
3127 
3128 	if (mask & AT_ATIME) {
3129 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3130 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3131 		    &zp->z_atime, sizeof (zp->z_atime));
3132 	}
3133 
3134 	if (mask & AT_MTIME) {
3135 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3136 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3137 		    mtime, sizeof (mtime));
3138 	}
3139 
3140 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3141 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3142 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3143 		    NULL, mtime, sizeof (mtime));
3144 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3145 		    &ctime, sizeof (ctime));
3146 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3147 		    B_TRUE);
3148 	} else if (mask != 0) {
3149 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3150 		    &ctime, sizeof (ctime));
3151 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3152 		    B_TRUE);
3153 		if (attrzp) {
3154 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3155 			    SA_ZPL_CTIME(zfsvfs), NULL,
3156 			    &ctime, sizeof (ctime));
3157 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3158 			    mtime, ctime, B_TRUE);
3159 		}
3160 	}
3161 	/*
3162 	 * Do this after setting timestamps to prevent timestamp
3163 	 * update from toggling bit
3164 	 */
3165 
3166 	if (xoap && (mask & AT_XVATTR)) {
3167 
3168 		/*
3169 		 * restore trimmed off masks
3170 		 * so that return masks can be set for caller.
3171 		 */
3172 
3173 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3174 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3175 		}
3176 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3177 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3178 		}
3179 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3180 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3181 		}
3182 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3183 			XVA_SET_REQ(xvap, XAT_NODUMP);
3184 		}
3185 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3186 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3187 		}
3188 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3189 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3190 		}
3191 
3192 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3193 			ASSERT(vp->v_type == VREG);
3194 
3195 		zfs_xvattr_set(zp, xvap, tx);
3196 	}
3197 
3198 	if (fuid_dirtied)
3199 		zfs_fuid_sync(zfsvfs, tx);
3200 
3201 	if (mask != 0)
3202 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3203 
3204 	mutex_exit(&zp->z_lock);
3205 	if (mask & (AT_UID|AT_GID|AT_MODE))
3206 		mutex_exit(&zp->z_acl_lock);
3207 
3208 	if (attrzp) {
3209 		if (mask & (AT_UID|AT_GID|AT_MODE))
3210 			mutex_exit(&attrzp->z_acl_lock);
3211 		mutex_exit(&attrzp->z_lock);
3212 	}
3213 out:
3214 	if (err == 0 && attrzp) {
3215 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3216 		    xattr_count, tx);
3217 		ASSERT(err2 == 0);
3218 	}
3219 
3220 	if (attrzp)
3221 		VN_RELE(ZTOV(attrzp));
3222 
3223 	if (aclp)
3224 		zfs_acl_free(aclp);
3225 
3226 	if (fuidp) {
3227 		zfs_fuid_info_free(fuidp);
3228 		fuidp = NULL;
3229 	}
3230 
3231 	if (err) {
3232 		dmu_tx_abort(tx);
3233 		if (err == ERESTART)
3234 			goto top;
3235 	} else {
3236 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3237 		dmu_tx_commit(tx);
3238 	}
3239 
3240 out2:
3241 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3242 		zil_commit(zilog, 0);
3243 
3244 	ZFS_EXIT(zfsvfs);
3245 	return (err);
3246 }
3247 
3248 typedef struct zfs_zlock {
3249 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3250 	znode_t		*zl_znode;	/* znode we held */
3251 	struct zfs_zlock *zl_next;	/* next in list */
3252 } zfs_zlock_t;
3253 
3254 /*
3255  * Drop locks and release vnodes that were held by zfs_rename_lock().
3256  */
3257 static void
3258 zfs_rename_unlock(zfs_zlock_t **zlpp)
3259 {
3260 	zfs_zlock_t *zl;
3261 
3262 	while ((zl = *zlpp) != NULL) {
3263 		if (zl->zl_znode != NULL)
3264 			VN_RELE(ZTOV(zl->zl_znode));
3265 		rw_exit(zl->zl_rwlock);
3266 		*zlpp = zl->zl_next;
3267 		kmem_free(zl, sizeof (*zl));
3268 	}
3269 }
3270 
3271 /*
3272  * Search back through the directory tree, using the ".." entries.
3273  * Lock each directory in the chain to prevent concurrent renames.
3274  * Fail any attempt to move a directory into one of its own descendants.
3275  * XXX - z_parent_lock can overlap with map or grow locks
3276  */
3277 static int
3278 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3279 {
3280 	zfs_zlock_t	*zl;
3281 	znode_t		*zp = tdzp;
3282 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3283 	uint64_t	oidp = zp->z_id;
3284 	krwlock_t	*rwlp = &szp->z_parent_lock;
3285 	krw_t		rw = RW_WRITER;
3286 
3287 	/*
3288 	 * First pass write-locks szp and compares to zp->z_id.
3289 	 * Later passes read-lock zp and compare to zp->z_parent.
3290 	 */
3291 	do {
3292 		if (!rw_tryenter(rwlp, rw)) {
3293 			/*
3294 			 * Another thread is renaming in this path.
3295 			 * Note that if we are a WRITER, we don't have any
3296 			 * parent_locks held yet.
3297 			 */
3298 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3299 				/*
3300 				 * Drop our locks and restart
3301 				 */
3302 				zfs_rename_unlock(&zl);
3303 				*zlpp = NULL;
3304 				zp = tdzp;
3305 				oidp = zp->z_id;
3306 				rwlp = &szp->z_parent_lock;
3307 				rw = RW_WRITER;
3308 				continue;
3309 			} else {
3310 				/*
3311 				 * Wait for other thread to drop its locks
3312 				 */
3313 				rw_enter(rwlp, rw);
3314 			}
3315 		}
3316 
3317 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3318 		zl->zl_rwlock = rwlp;
3319 		zl->zl_znode = NULL;
3320 		zl->zl_next = *zlpp;
3321 		*zlpp = zl;
3322 
3323 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3324 			return (SET_ERROR(EINVAL));
3325 
3326 		if (oidp == rootid)		/* We've hit the top */
3327 			return (0);
3328 
3329 		if (rw == RW_READER) {		/* i.e. not the first pass */
3330 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3331 			if (error)
3332 				return (error);
3333 			zl->zl_znode = zp;
3334 		}
3335 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3336 		    &oidp, sizeof (oidp));
3337 		rwlp = &zp->z_parent_lock;
3338 		rw = RW_READER;
3339 
3340 	} while (zp->z_id != sdzp->z_id);
3341 
3342 	return (0);
3343 }
3344 
3345 /*
3346  * Move an entry from the provided source directory to the target
3347  * directory.  Change the entry name as indicated.
3348  *
3349  *	IN:	sdvp	- Source directory containing the "old entry".
3350  *		snm	- Old entry name.
3351  *		tdvp	- Target directory to contain the "new entry".
3352  *		tnm	- New entry name.
3353  *		cr	- credentials of caller.
3354  *		ct	- caller context
3355  *		flags	- case flags
3356  *
3357  *	RETURN:	0 on success, error code on failure.
3358  *
3359  * Timestamps:
3360  *	sdvp,tdvp - ctime|mtime updated
3361  */
3362 /*ARGSUSED*/
3363 static int
3364 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3365     caller_context_t *ct, int flags)
3366 {
3367 	znode_t		*tdzp, *szp, *tzp;
3368 	znode_t		*sdzp = VTOZ(sdvp);
3369 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3370 	zilog_t		*zilog;
3371 	vnode_t		*realvp;
3372 	zfs_dirlock_t	*sdl, *tdl;
3373 	dmu_tx_t	*tx;
3374 	zfs_zlock_t	*zl;
3375 	int		cmp, serr, terr;
3376 	int		error = 0;
3377 	int		zflg = 0;
3378 	boolean_t	waited = B_FALSE;
3379 
3380 	ZFS_ENTER(zfsvfs);
3381 	ZFS_VERIFY_ZP(sdzp);
3382 	zilog = zfsvfs->z_log;
3383 
3384 	/*
3385 	 * Make sure we have the real vp for the target directory.
3386 	 */
3387 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3388 		tdvp = realvp;
3389 
3390 	tdzp = VTOZ(tdvp);
3391 	ZFS_VERIFY_ZP(tdzp);
3392 
3393 	/*
3394 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3395 	 * ctldir appear to have the same v_vfsp.
3396 	 */
3397 	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3398 		ZFS_EXIT(zfsvfs);
3399 		return (SET_ERROR(EXDEV));
3400 	}
3401 
3402 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3403 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3404 		ZFS_EXIT(zfsvfs);
3405 		return (SET_ERROR(EILSEQ));
3406 	}
3407 
3408 	if (flags & FIGNORECASE)
3409 		zflg |= ZCILOOK;
3410 
3411 top:
3412 	szp = NULL;
3413 	tzp = NULL;
3414 	zl = NULL;
3415 
3416 	/*
3417 	 * This is to prevent the creation of links into attribute space
3418 	 * by renaming a linked file into/outof an attribute directory.
3419 	 * See the comment in zfs_link() for why this is considered bad.
3420 	 */
3421 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3422 		ZFS_EXIT(zfsvfs);
3423 		return (SET_ERROR(EINVAL));
3424 	}
3425 
3426 	/*
3427 	 * Lock source and target directory entries.  To prevent deadlock,
3428 	 * a lock ordering must be defined.  We lock the directory with
3429 	 * the smallest object id first, or if it's a tie, the one with
3430 	 * the lexically first name.
3431 	 */
3432 	if (sdzp->z_id < tdzp->z_id) {
3433 		cmp = -1;
3434 	} else if (sdzp->z_id > tdzp->z_id) {
3435 		cmp = 1;
3436 	} else {
3437 		/*
3438 		 * First compare the two name arguments without
3439 		 * considering any case folding.
3440 		 */
3441 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3442 
3443 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3444 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3445 		if (cmp == 0) {
3446 			/*
3447 			 * POSIX: "If the old argument and the new argument
3448 			 * both refer to links to the same existing file,
3449 			 * the rename() function shall return successfully
3450 			 * and perform no other action."
3451 			 */
3452 			ZFS_EXIT(zfsvfs);
3453 			return (0);
3454 		}
3455 		/*
3456 		 * If the file system is case-folding, then we may
3457 		 * have some more checking to do.  A case-folding file
3458 		 * system is either supporting mixed case sensitivity
3459 		 * access or is completely case-insensitive.  Note
3460 		 * that the file system is always case preserving.
3461 		 *
3462 		 * In mixed sensitivity mode case sensitive behavior
3463 		 * is the default.  FIGNORECASE must be used to
3464 		 * explicitly request case insensitive behavior.
3465 		 *
3466 		 * If the source and target names provided differ only
3467 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3468 		 * we will treat this as a special case in the
3469 		 * case-insensitive mode: as long as the source name
3470 		 * is an exact match, we will allow this to proceed as
3471 		 * a name-change request.
3472 		 */
3473 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3474 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3475 		    flags & FIGNORECASE)) &&
3476 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3477 		    &error) == 0) {
3478 			/*
3479 			 * case preserving rename request, require exact
3480 			 * name matches
3481 			 */
3482 			zflg |= ZCIEXACT;
3483 			zflg &= ~ZCILOOK;
3484 		}
3485 	}
3486 
3487 	/*
3488 	 * If the source and destination directories are the same, we should
3489 	 * grab the z_name_lock of that directory only once.
3490 	 */
3491 	if (sdzp == tdzp) {
3492 		zflg |= ZHAVELOCK;
3493 		rw_enter(&sdzp->z_name_lock, RW_READER);
3494 	}
3495 
3496 	if (cmp < 0) {
3497 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3498 		    ZEXISTS | zflg, NULL, NULL);
3499 		terr = zfs_dirent_lock(&tdl,
3500 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3501 	} else {
3502 		terr = zfs_dirent_lock(&tdl,
3503 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3504 		serr = zfs_dirent_lock(&sdl,
3505 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3506 		    NULL, NULL);
3507 	}
3508 
3509 	if (serr) {
3510 		/*
3511 		 * Source entry invalid or not there.
3512 		 */
3513 		if (!terr) {
3514 			zfs_dirent_unlock(tdl);
3515 			if (tzp)
3516 				VN_RELE(ZTOV(tzp));
3517 		}
3518 
3519 		if (sdzp == tdzp)
3520 			rw_exit(&sdzp->z_name_lock);
3521 
3522 		if (strcmp(snm, "..") == 0)
3523 			serr = SET_ERROR(EINVAL);
3524 		ZFS_EXIT(zfsvfs);
3525 		return (serr);
3526 	}
3527 	if (terr) {
3528 		zfs_dirent_unlock(sdl);
3529 		VN_RELE(ZTOV(szp));
3530 
3531 		if (sdzp == tdzp)
3532 			rw_exit(&sdzp->z_name_lock);
3533 
3534 		if (strcmp(tnm, "..") == 0)
3535 			terr = SET_ERROR(EINVAL);
3536 		ZFS_EXIT(zfsvfs);
3537 		return (terr);
3538 	}
3539 
3540 	/*
3541 	 * Must have write access at the source to remove the old entry
3542 	 * and write access at the target to create the new entry.
3543 	 * Note that if target and source are the same, this can be
3544 	 * done in a single check.
3545 	 */
3546 
3547 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3548 		goto out;
3549 
3550 	if (ZTOV(szp)->v_type == VDIR) {
3551 		/*
3552 		 * Check to make sure rename is valid.
3553 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3554 		 */
3555 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3556 			goto out;
3557 	}
3558 
3559 	/*
3560 	 * Does target exist?
3561 	 */
3562 	if (tzp) {
3563 		/*
3564 		 * Source and target must be the same type.
3565 		 */
3566 		if (ZTOV(szp)->v_type == VDIR) {
3567 			if (ZTOV(tzp)->v_type != VDIR) {
3568 				error = SET_ERROR(ENOTDIR);
3569 				goto out;
3570 			}
3571 		} else {
3572 			if (ZTOV(tzp)->v_type == VDIR) {
3573 				error = SET_ERROR(EISDIR);
3574 				goto out;
3575 			}
3576 		}
3577 		/*
3578 		 * POSIX dictates that when the source and target
3579 		 * entries refer to the same file object, rename
3580 		 * must do nothing and exit without error.
3581 		 */
3582 		if (szp->z_id == tzp->z_id) {
3583 			error = 0;
3584 			goto out;
3585 		}
3586 	}
3587 
3588 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3589 	if (tzp)
3590 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3591 
3592 	/*
3593 	 * notify the target directory if it is not the same
3594 	 * as source directory.
3595 	 */
3596 	if (tdvp != sdvp) {
3597 		vnevent_rename_dest_dir(tdvp, ct);
3598 	}
3599 
3600 	tx = dmu_tx_create(zfsvfs->z_os);
3601 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3602 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3603 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3604 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3605 	if (sdzp != tdzp) {
3606 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3607 		zfs_sa_upgrade_txholds(tx, tdzp);
3608 	}
3609 	if (tzp) {
3610 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3611 		zfs_sa_upgrade_txholds(tx, tzp);
3612 	}
3613 
3614 	zfs_sa_upgrade_txholds(tx, szp);
3615 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3616 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3617 	if (error) {
3618 		if (zl != NULL)
3619 			zfs_rename_unlock(&zl);
3620 		zfs_dirent_unlock(sdl);
3621 		zfs_dirent_unlock(tdl);
3622 
3623 		if (sdzp == tdzp)
3624 			rw_exit(&sdzp->z_name_lock);
3625 
3626 		VN_RELE(ZTOV(szp));
3627 		if (tzp)
3628 			VN_RELE(ZTOV(tzp));
3629 		if (error == ERESTART) {
3630 			waited = B_TRUE;
3631 			dmu_tx_wait(tx);
3632 			dmu_tx_abort(tx);
3633 			goto top;
3634 		}
3635 		dmu_tx_abort(tx);
3636 		ZFS_EXIT(zfsvfs);
3637 		return (error);
3638 	}
3639 
3640 	if (tzp)	/* Attempt to remove the existing target */
3641 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3642 
3643 	if (error == 0) {
3644 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3645 		if (error == 0) {
3646 			szp->z_pflags |= ZFS_AV_MODIFIED;
3647 
3648 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3649 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3650 			ASSERT0(error);
3651 
3652 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3653 			if (error == 0) {
3654 				zfs_log_rename(zilog, tx, TX_RENAME |
3655 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3656 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
3657 
3658 				/*
3659 				 * Update path information for the target vnode
3660 				 */
3661 				vn_renamepath(tdvp, ZTOV(szp), tnm,
3662 				    strlen(tnm));
3663 			} else {
3664 				/*
3665 				 * At this point, we have successfully created
3666 				 * the target name, but have failed to remove
3667 				 * the source name.  Since the create was done
3668 				 * with the ZRENAMING flag, there are
3669 				 * complications; for one, the link count is
3670 				 * wrong.  The easiest way to deal with this
3671 				 * is to remove the newly created target, and
3672 				 * return the original error.  This must
3673 				 * succeed; fortunately, it is very unlikely to
3674 				 * fail, since we just created it.
3675 				 */
3676 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3677 				    ZRENAMING, NULL), ==, 0);
3678 			}
3679 		}
3680 	}
3681 
3682 	dmu_tx_commit(tx);
3683 out:
3684 	if (zl != NULL)
3685 		zfs_rename_unlock(&zl);
3686 
3687 	zfs_dirent_unlock(sdl);
3688 	zfs_dirent_unlock(tdl);
3689 
3690 	if (sdzp == tdzp)
3691 		rw_exit(&sdzp->z_name_lock);
3692 
3693 
3694 	VN_RELE(ZTOV(szp));
3695 	if (tzp)
3696 		VN_RELE(ZTOV(tzp));
3697 
3698 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3699 		zil_commit(zilog, 0);
3700 
3701 	ZFS_EXIT(zfsvfs);
3702 	return (error);
3703 }
3704 
3705 /*
3706  * Insert the indicated symbolic reference entry into the directory.
3707  *
3708  *	IN:	dvp	- Directory to contain new symbolic link.
3709  *		link	- Name for new symlink entry.
3710  *		vap	- Attributes of new entry.
3711  *		cr	- credentials of caller.
3712  *		ct	- caller context
3713  *		flags	- case flags
3714  *
3715  *	RETURN:	0 on success, error code on failure.
3716  *
3717  * Timestamps:
3718  *	dvp - ctime|mtime updated
3719  */
3720 /*ARGSUSED*/
3721 static int
3722 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3723     caller_context_t *ct, int flags)
3724 {
3725 	znode_t		*zp, *dzp = VTOZ(dvp);
3726 	zfs_dirlock_t	*dl;
3727 	dmu_tx_t	*tx;
3728 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3729 	zilog_t		*zilog;
3730 	uint64_t	len = strlen(link);
3731 	int		error;
3732 	int		zflg = ZNEW;
3733 	zfs_acl_ids_t	acl_ids;
3734 	boolean_t	fuid_dirtied;
3735 	uint64_t	txtype = TX_SYMLINK;
3736 	boolean_t	waited = B_FALSE;
3737 
3738 	ASSERT(vap->va_type == VLNK);
3739 
3740 	ZFS_ENTER(zfsvfs);
3741 	ZFS_VERIFY_ZP(dzp);
3742 	zilog = zfsvfs->z_log;
3743 
3744 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3745 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3746 		ZFS_EXIT(zfsvfs);
3747 		return (SET_ERROR(EILSEQ));
3748 	}
3749 	if (flags & FIGNORECASE)
3750 		zflg |= ZCILOOK;
3751 
3752 	if (len > MAXPATHLEN) {
3753 		ZFS_EXIT(zfsvfs);
3754 		return (SET_ERROR(ENAMETOOLONG));
3755 	}
3756 
3757 	if ((error = zfs_acl_ids_create(dzp, 0,
3758 	    vap, cr, NULL, &acl_ids)) != 0) {
3759 		ZFS_EXIT(zfsvfs);
3760 		return (error);
3761 	}
3762 top:
3763 	/*
3764 	 * Attempt to lock directory; fail if entry already exists.
3765 	 */
3766 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3767 	if (error) {
3768 		zfs_acl_ids_free(&acl_ids);
3769 		ZFS_EXIT(zfsvfs);
3770 		return (error);
3771 	}
3772 
3773 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3774 		zfs_acl_ids_free(&acl_ids);
3775 		zfs_dirent_unlock(dl);
3776 		ZFS_EXIT(zfsvfs);
3777 		return (error);
3778 	}
3779 
3780 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3781 		zfs_acl_ids_free(&acl_ids);
3782 		zfs_dirent_unlock(dl);
3783 		ZFS_EXIT(zfsvfs);
3784 		return (SET_ERROR(EDQUOT));
3785 	}
3786 	tx = dmu_tx_create(zfsvfs->z_os);
3787 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3788 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3789 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3790 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3791 	    ZFS_SA_BASE_ATTR_SIZE + len);
3792 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3793 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3794 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3795 		    acl_ids.z_aclp->z_acl_bytes);
3796 	}
3797 	if (fuid_dirtied)
3798 		zfs_fuid_txhold(zfsvfs, tx);
3799 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3800 	if (error) {
3801 		zfs_dirent_unlock(dl);
3802 		if (error == ERESTART) {
3803 			waited = B_TRUE;
3804 			dmu_tx_wait(tx);
3805 			dmu_tx_abort(tx);
3806 			goto top;
3807 		}
3808 		zfs_acl_ids_free(&acl_ids);
3809 		dmu_tx_abort(tx);
3810 		ZFS_EXIT(zfsvfs);
3811 		return (error);
3812 	}
3813 
3814 	/*
3815 	 * Create a new object for the symlink.
3816 	 * for version 4 ZPL datsets the symlink will be an SA attribute
3817 	 */
3818 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3819 
3820 	if (fuid_dirtied)
3821 		zfs_fuid_sync(zfsvfs, tx);
3822 
3823 	mutex_enter(&zp->z_lock);
3824 	if (zp->z_is_sa)
3825 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3826 		    link, len, tx);
3827 	else
3828 		zfs_sa_symlink(zp, link, len, tx);
3829 	mutex_exit(&zp->z_lock);
3830 
3831 	zp->z_size = len;
3832 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3833 	    &zp->z_size, sizeof (zp->z_size), tx);
3834 	/*
3835 	 * Insert the new object into the directory.
3836 	 */
3837 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3838 
3839 	if (flags & FIGNORECASE)
3840 		txtype |= TX_CI;
3841 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3842 
3843 	zfs_acl_ids_free(&acl_ids);
3844 
3845 	dmu_tx_commit(tx);
3846 
3847 	zfs_dirent_unlock(dl);
3848 
3849 	VN_RELE(ZTOV(zp));
3850 
3851 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3852 		zil_commit(zilog, 0);
3853 
3854 	ZFS_EXIT(zfsvfs);
3855 	return (error);
3856 }
3857 
3858 /*
3859  * Return, in the buffer contained in the provided uio structure,
3860  * the symbolic path referred to by vp.
3861  *
3862  *	IN:	vp	- vnode of symbolic link.
3863  *		uio	- structure to contain the link path.
3864  *		cr	- credentials of caller.
3865  *		ct	- caller context
3866  *
3867  *	OUT:	uio	- structure containing the link path.
3868  *
3869  *	RETURN:	0 on success, error code on failure.
3870  *
3871  * Timestamps:
3872  *	vp - atime updated
3873  */
3874 /* ARGSUSED */
3875 static int
3876 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3877 {
3878 	znode_t		*zp = VTOZ(vp);
3879 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3880 	int		error;
3881 
3882 	ZFS_ENTER(zfsvfs);
3883 	ZFS_VERIFY_ZP(zp);
3884 
3885 	mutex_enter(&zp->z_lock);
3886 	if (zp->z_is_sa)
3887 		error = sa_lookup_uio(zp->z_sa_hdl,
3888 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3889 	else
3890 		error = zfs_sa_readlink(zp, uio);
3891 	mutex_exit(&zp->z_lock);
3892 
3893 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3894 
3895 	ZFS_EXIT(zfsvfs);
3896 	return (error);
3897 }
3898 
3899 /*
3900  * Insert a new entry into directory tdvp referencing svp.
3901  *
3902  *	IN:	tdvp	- Directory to contain new entry.
3903  *		svp	- vnode of new entry.
3904  *		name	- name of new entry.
3905  *		cr	- credentials of caller.
3906  *		ct	- caller context
3907  *
3908  *	RETURN:	0 on success, error code on failure.
3909  *
3910  * Timestamps:
3911  *	tdvp - ctime|mtime updated
3912  *	 svp - ctime updated
3913  */
3914 /* ARGSUSED */
3915 static int
3916 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3917     caller_context_t *ct, int flags)
3918 {
3919 	znode_t		*dzp = VTOZ(tdvp);
3920 	znode_t		*tzp, *szp;
3921 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3922 	zilog_t		*zilog;
3923 	zfs_dirlock_t	*dl;
3924 	dmu_tx_t	*tx;
3925 	vnode_t		*realvp;
3926 	int		error;
3927 	int		zf = ZNEW;
3928 	uint64_t	parent;
3929 	uid_t		owner;
3930 	boolean_t	waited = B_FALSE;
3931 
3932 	ASSERT(tdvp->v_type == VDIR);
3933 
3934 	ZFS_ENTER(zfsvfs);
3935 	ZFS_VERIFY_ZP(dzp);
3936 	zilog = zfsvfs->z_log;
3937 
3938 	if (VOP_REALVP(svp, &realvp, ct) == 0)
3939 		svp = realvp;
3940 
3941 	/*
3942 	 * POSIX dictates that we return EPERM here.
3943 	 * Better choices include ENOTSUP or EISDIR.
3944 	 */
3945 	if (svp->v_type == VDIR) {
3946 		ZFS_EXIT(zfsvfs);
3947 		return (SET_ERROR(EPERM));
3948 	}
3949 
3950 	szp = VTOZ(svp);
3951 	ZFS_VERIFY_ZP(szp);
3952 
3953 	/*
3954 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3955 	 * ctldir appear to have the same v_vfsp.
3956 	 */
3957 	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
3958 		ZFS_EXIT(zfsvfs);
3959 		return (SET_ERROR(EXDEV));
3960 	}
3961 
3962 	/* Prevent links to .zfs/shares files */
3963 
3964 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3965 	    &parent, sizeof (uint64_t))) != 0) {
3966 		ZFS_EXIT(zfsvfs);
3967 		return (error);
3968 	}
3969 	if (parent == zfsvfs->z_shares_dir) {
3970 		ZFS_EXIT(zfsvfs);
3971 		return (SET_ERROR(EPERM));
3972 	}
3973 
3974 	if (zfsvfs->z_utf8 && u8_validate(name,
3975 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3976 		ZFS_EXIT(zfsvfs);
3977 		return (SET_ERROR(EILSEQ));
3978 	}
3979 	if (flags & FIGNORECASE)
3980 		zf |= ZCILOOK;
3981 
3982 	/*
3983 	 * We do not support links between attributes and non-attributes
3984 	 * because of the potential security risk of creating links
3985 	 * into "normal" file space in order to circumvent restrictions
3986 	 * imposed in attribute space.
3987 	 */
3988 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3989 		ZFS_EXIT(zfsvfs);
3990 		return (SET_ERROR(EINVAL));
3991 	}
3992 
3993 
3994 	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
3995 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3996 		ZFS_EXIT(zfsvfs);
3997 		return (SET_ERROR(EPERM));
3998 	}
3999 
4000 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4001 		ZFS_EXIT(zfsvfs);
4002 		return (error);
4003 	}
4004 
4005 top:
4006 	/*
4007 	 * Attempt to lock directory; fail if entry already exists.
4008 	 */
4009 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4010 	if (error) {
4011 		ZFS_EXIT(zfsvfs);
4012 		return (error);
4013 	}
4014 
4015 	tx = dmu_tx_create(zfsvfs->z_os);
4016 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4017 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4018 	zfs_sa_upgrade_txholds(tx, szp);
4019 	zfs_sa_upgrade_txholds(tx, dzp);
4020 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4021 	if (error) {
4022 		zfs_dirent_unlock(dl);
4023 		if (error == ERESTART) {
4024 			waited = B_TRUE;
4025 			dmu_tx_wait(tx);
4026 			dmu_tx_abort(tx);
4027 			goto top;
4028 		}
4029 		dmu_tx_abort(tx);
4030 		ZFS_EXIT(zfsvfs);
4031 		return (error);
4032 	}
4033 
4034 	error = zfs_link_create(dl, szp, tx, 0);
4035 
4036 	if (error == 0) {
4037 		uint64_t txtype = TX_LINK;
4038 		if (flags & FIGNORECASE)
4039 			txtype |= TX_CI;
4040 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4041 	}
4042 
4043 	dmu_tx_commit(tx);
4044 
4045 	zfs_dirent_unlock(dl);
4046 
4047 	if (error == 0) {
4048 		vnevent_link(svp, ct);
4049 	}
4050 
4051 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4052 		zil_commit(zilog, 0);
4053 
4054 	ZFS_EXIT(zfsvfs);
4055 	return (error);
4056 }
4057 
4058 /*
4059  * zfs_null_putapage() is used when the file system has been force
4060  * unmounted. It just drops the pages.
4061  */
4062 /* ARGSUSED */
4063 static int
4064 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4065 		size_t *lenp, int flags, cred_t *cr)
4066 {
4067 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4068 	return (0);
4069 }
4070 
4071 /*
4072  * Push a page out to disk, klustering if possible.
4073  *
4074  *	IN:	vp	- file to push page to.
4075  *		pp	- page to push.
4076  *		flags	- additional flags.
4077  *		cr	- credentials of caller.
4078  *
4079  *	OUT:	offp	- start of range pushed.
4080  *		lenp	- len of range pushed.
4081  *
4082  *	RETURN:	0 on success, error code on failure.
4083  *
4084  * NOTE: callers must have locked the page to be pushed.  On
4085  * exit, the page (and all other pages in the kluster) must be
4086  * unlocked.
4087  */
4088 /* ARGSUSED */
4089 static int
4090 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4091 		size_t *lenp, int flags, cred_t *cr)
4092 {
4093 	znode_t		*zp = VTOZ(vp);
4094 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4095 	dmu_tx_t	*tx;
4096 	u_offset_t	off, koff;
4097 	size_t		len, klen;
4098 	int		err;
4099 
4100 	off = pp->p_offset;
4101 	len = PAGESIZE;
4102 	/*
4103 	 * If our blocksize is bigger than the page size, try to kluster
4104 	 * multiple pages so that we write a full block (thus avoiding
4105 	 * a read-modify-write).
4106 	 */
4107 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4108 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4109 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4110 		ASSERT(koff <= zp->z_size);
4111 		if (koff + klen > zp->z_size)
4112 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4113 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4114 	}
4115 	ASSERT3U(btop(len), ==, btopr(len));
4116 
4117 	/*
4118 	 * Can't push pages past end-of-file.
4119 	 */
4120 	if (off >= zp->z_size) {
4121 		/* ignore all pages */
4122 		err = 0;
4123 		goto out;
4124 	} else if (off + len > zp->z_size) {
4125 		int npages = btopr(zp->z_size - off);
4126 		page_t *trunc;
4127 
4128 		page_list_break(&pp, &trunc, npages);
4129 		/* ignore pages past end of file */
4130 		if (trunc)
4131 			pvn_write_done(trunc, flags);
4132 		len = zp->z_size - off;
4133 	}
4134 
4135 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4136 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4137 		err = SET_ERROR(EDQUOT);
4138 		goto out;
4139 	}
4140 top:
4141 	tx = dmu_tx_create(zfsvfs->z_os);
4142 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4143 
4144 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4145 	zfs_sa_upgrade_txholds(tx, zp);
4146 	err = dmu_tx_assign(tx, TXG_NOWAIT);
4147 	if (err != 0) {
4148 		if (err == ERESTART) {
4149 			dmu_tx_wait(tx);
4150 			dmu_tx_abort(tx);
4151 			goto top;
4152 		}
4153 		dmu_tx_abort(tx);
4154 		goto out;
4155 	}
4156 
4157 	if (zp->z_blksz <= PAGESIZE) {
4158 		caddr_t va = zfs_map_page(pp, S_READ);
4159 		ASSERT3U(len, <=, PAGESIZE);
4160 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4161 		zfs_unmap_page(pp, va);
4162 	} else {
4163 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4164 	}
4165 
4166 	if (err == 0) {
4167 		uint64_t mtime[2], ctime[2];
4168 		sa_bulk_attr_t bulk[3];
4169 		int count = 0;
4170 
4171 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4172 		    &mtime, 16);
4173 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4174 		    &ctime, 16);
4175 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4176 		    &zp->z_pflags, 8);
4177 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4178 		    B_TRUE);
4179 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4180 	}
4181 	dmu_tx_commit(tx);
4182 
4183 out:
4184 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4185 	if (offp)
4186 		*offp = off;
4187 	if (lenp)
4188 		*lenp = len;
4189 
4190 	return (err);
4191 }
4192 
4193 /*
4194  * Copy the portion of the file indicated from pages into the file.
4195  * The pages are stored in a page list attached to the files vnode.
4196  *
4197  *	IN:	vp	- vnode of file to push page data to.
4198  *		off	- position in file to put data.
4199  *		len	- amount of data to write.
4200  *		flags	- flags to control the operation.
4201  *		cr	- credentials of caller.
4202  *		ct	- caller context.
4203  *
4204  *	RETURN:	0 on success, error code on failure.
4205  *
4206  * Timestamps:
4207  *	vp - ctime|mtime updated
4208  */
4209 /*ARGSUSED*/
4210 static int
4211 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4212     caller_context_t *ct)
4213 {
4214 	znode_t		*zp = VTOZ(vp);
4215 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4216 	page_t		*pp;
4217 	size_t		io_len;
4218 	u_offset_t	io_off;
4219 	uint_t		blksz;
4220 	rl_t		*rl;
4221 	int		error = 0;
4222 
4223 	ZFS_ENTER(zfsvfs);
4224 	ZFS_VERIFY_ZP(zp);
4225 
4226 	/*
4227 	 * There's nothing to do if no data is cached.
4228 	 */
4229 	if (!vn_has_cached_data(vp)) {
4230 		ZFS_EXIT(zfsvfs);
4231 		return (0);
4232 	}
4233 
4234 	/*
4235 	 * Align this request to the file block size in case we kluster.
4236 	 * XXX - this can result in pretty aggresive locking, which can
4237 	 * impact simultanious read/write access.  One option might be
4238 	 * to break up long requests (len == 0) into block-by-block
4239 	 * operations to get narrower locking.
4240 	 */
4241 	blksz = zp->z_blksz;
4242 	if (ISP2(blksz))
4243 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4244 	else
4245 		io_off = 0;
4246 	if (len > 0 && ISP2(blksz))
4247 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4248 	else
4249 		io_len = 0;
4250 
4251 	if (io_len == 0) {
4252 		/*
4253 		 * Search the entire vp list for pages >= io_off.
4254 		 */
4255 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4256 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4257 		goto out;
4258 	}
4259 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4260 
4261 	if (off > zp->z_size) {
4262 		/* past end of file */
4263 		zfs_range_unlock(rl);
4264 		ZFS_EXIT(zfsvfs);
4265 		return (0);
4266 	}
4267 
4268 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4269 
4270 	for (off = io_off; io_off < off + len; io_off += io_len) {
4271 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4272 			pp = page_lookup(vp, io_off,
4273 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4274 		} else {
4275 			pp = page_lookup_nowait(vp, io_off,
4276 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4277 		}
4278 
4279 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4280 			int err;
4281 
4282 			/*
4283 			 * Found a dirty page to push
4284 			 */
4285 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4286 			if (err)
4287 				error = err;
4288 		} else {
4289 			io_len = PAGESIZE;
4290 		}
4291 	}
4292 out:
4293 	zfs_range_unlock(rl);
4294 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4295 		zil_commit(zfsvfs->z_log, zp->z_id);
4296 	ZFS_EXIT(zfsvfs);
4297 	return (error);
4298 }
4299 
4300 /*ARGSUSED*/
4301 void
4302 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4303 {
4304 	znode_t	*zp = VTOZ(vp);
4305 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4306 	int error;
4307 
4308 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4309 	if (zp->z_sa_hdl == NULL) {
4310 		/*
4311 		 * The fs has been unmounted, or we did a
4312 		 * suspend/resume and this file no longer exists.
4313 		 */
4314 		if (vn_has_cached_data(vp)) {
4315 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4316 			    B_INVAL, cr);
4317 		}
4318 
4319 		mutex_enter(&zp->z_lock);
4320 		mutex_enter(&vp->v_lock);
4321 		ASSERT(vp->v_count == 1);
4322 		vp->v_count = 0;
4323 		mutex_exit(&vp->v_lock);
4324 		mutex_exit(&zp->z_lock);
4325 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4326 		zfs_znode_free(zp);
4327 		return;
4328 	}
4329 
4330 	/*
4331 	 * Attempt to push any data in the page cache.  If this fails
4332 	 * we will get kicked out later in zfs_zinactive().
4333 	 */
4334 	if (vn_has_cached_data(vp)) {
4335 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4336 		    cr);
4337 	}
4338 
4339 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4340 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4341 
4342 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4343 		zfs_sa_upgrade_txholds(tx, zp);
4344 		error = dmu_tx_assign(tx, TXG_WAIT);
4345 		if (error) {
4346 			dmu_tx_abort(tx);
4347 		} else {
4348 			mutex_enter(&zp->z_lock);
4349 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4350 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4351 			zp->z_atime_dirty = 0;
4352 			mutex_exit(&zp->z_lock);
4353 			dmu_tx_commit(tx);
4354 		}
4355 	}
4356 
4357 	zfs_zinactive(zp);
4358 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4359 }
4360 
4361 /*
4362  * Bounds-check the seek operation.
4363  *
4364  *	IN:	vp	- vnode seeking within
4365  *		ooff	- old file offset
4366  *		noffp	- pointer to new file offset
4367  *		ct	- caller context
4368  *
4369  *	RETURN:	0 on success, EINVAL if new offset invalid.
4370  */
4371 /* ARGSUSED */
4372 static int
4373 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4374     caller_context_t *ct)
4375 {
4376 	if (vp->v_type == VDIR)
4377 		return (0);
4378 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4379 }
4380 
4381 /*
4382  * Pre-filter the generic locking function to trap attempts to place
4383  * a mandatory lock on a memory mapped file.
4384  */
4385 static int
4386 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4387     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4388 {
4389 	znode_t *zp = VTOZ(vp);
4390 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4391 
4392 	ZFS_ENTER(zfsvfs);
4393 	ZFS_VERIFY_ZP(zp);
4394 
4395 	/*
4396 	 * We are following the UFS semantics with respect to mapcnt
4397 	 * here: If we see that the file is mapped already, then we will
4398 	 * return an error, but we don't worry about races between this
4399 	 * function and zfs_map().
4400 	 */
4401 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4402 		ZFS_EXIT(zfsvfs);
4403 		return (SET_ERROR(EAGAIN));
4404 	}
4405 	ZFS_EXIT(zfsvfs);
4406 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4407 }
4408 
4409 /*
4410  * If we can't find a page in the cache, we will create a new page
4411  * and fill it with file data.  For efficiency, we may try to fill
4412  * multiple pages at once (klustering) to fill up the supplied page
4413  * list.  Note that the pages to be filled are held with an exclusive
4414  * lock to prevent access by other threads while they are being filled.
4415  */
4416 static int
4417 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4418     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4419 {
4420 	znode_t *zp = VTOZ(vp);
4421 	page_t *pp, *cur_pp;
4422 	objset_t *os = zp->z_zfsvfs->z_os;
4423 	u_offset_t io_off, total;
4424 	size_t io_len;
4425 	int err;
4426 
4427 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4428 		/*
4429 		 * We only have a single page, don't bother klustering
4430 		 */
4431 		io_off = off;
4432 		io_len = PAGESIZE;
4433 		pp = page_create_va(vp, io_off, io_len,
4434 		    PG_EXCL | PG_WAIT, seg, addr);
4435 	} else {
4436 		/*
4437 		 * Try to find enough pages to fill the page list
4438 		 */
4439 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4440 		    &io_len, off, plsz, 0);
4441 	}
4442 	if (pp == NULL) {
4443 		/*
4444 		 * The page already exists, nothing to do here.
4445 		 */
4446 		*pl = NULL;
4447 		return (0);
4448 	}
4449 
4450 	/*
4451 	 * Fill the pages in the kluster.
4452 	 */
4453 	cur_pp = pp;
4454 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4455 		caddr_t va;
4456 
4457 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4458 		va = zfs_map_page(cur_pp, S_WRITE);
4459 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4460 		    DMU_READ_PREFETCH);
4461 		zfs_unmap_page(cur_pp, va);
4462 		if (err) {
4463 			/* On error, toss the entire kluster */
4464 			pvn_read_done(pp, B_ERROR);
4465 			/* convert checksum errors into IO errors */
4466 			if (err == ECKSUM)
4467 				err = SET_ERROR(EIO);
4468 			return (err);
4469 		}
4470 		cur_pp = cur_pp->p_next;
4471 	}
4472 
4473 	/*
4474 	 * Fill in the page list array from the kluster starting
4475 	 * from the desired offset `off'.
4476 	 * NOTE: the page list will always be null terminated.
4477 	 */
4478 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4479 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4480 
4481 	return (0);
4482 }
4483 
4484 /*
4485  * Return pointers to the pages for the file region [off, off + len]
4486  * in the pl array.  If plsz is greater than len, this function may
4487  * also return page pointers from after the specified region
4488  * (i.e. the region [off, off + plsz]).  These additional pages are
4489  * only returned if they are already in the cache, or were created as
4490  * part of a klustered read.
4491  *
4492  *	IN:	vp	- vnode of file to get data from.
4493  *		off	- position in file to get data from.
4494  *		len	- amount of data to retrieve.
4495  *		plsz	- length of provided page list.
4496  *		seg	- segment to obtain pages for.
4497  *		addr	- virtual address of fault.
4498  *		rw	- mode of created pages.
4499  *		cr	- credentials of caller.
4500  *		ct	- caller context.
4501  *
4502  *	OUT:	protp	- protection mode of created pages.
4503  *		pl	- list of pages created.
4504  *
4505  *	RETURN:	0 on success, error code on failure.
4506  *
4507  * Timestamps:
4508  *	vp - atime updated
4509  */
4510 /* ARGSUSED */
4511 static int
4512 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4513     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4514     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4515 {
4516 	znode_t		*zp = VTOZ(vp);
4517 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4518 	page_t		**pl0 = pl;
4519 	int		err = 0;
4520 
4521 	/* we do our own caching, faultahead is unnecessary */
4522 	if (pl == NULL)
4523 		return (0);
4524 	else if (len > plsz)
4525 		len = plsz;
4526 	else
4527 		len = P2ROUNDUP(len, PAGESIZE);
4528 	ASSERT(plsz >= len);
4529 
4530 	ZFS_ENTER(zfsvfs);
4531 	ZFS_VERIFY_ZP(zp);
4532 
4533 	if (protp)
4534 		*protp = PROT_ALL;
4535 
4536 	/*
4537 	 * Loop through the requested range [off, off + len) looking
4538 	 * for pages.  If we don't find a page, we will need to create
4539 	 * a new page and fill it with data from the file.
4540 	 */
4541 	while (len > 0) {
4542 		if (*pl = page_lookup(vp, off, SE_SHARED))
4543 			*(pl+1) = NULL;
4544 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4545 			goto out;
4546 		while (*pl) {
4547 			ASSERT3U((*pl)->p_offset, ==, off);
4548 			off += PAGESIZE;
4549 			addr += PAGESIZE;
4550 			if (len > 0) {
4551 				ASSERT3U(len, >=, PAGESIZE);
4552 				len -= PAGESIZE;
4553 			}
4554 			ASSERT3U(plsz, >=, PAGESIZE);
4555 			plsz -= PAGESIZE;
4556 			pl++;
4557 		}
4558 	}
4559 
4560 	/*
4561 	 * Fill out the page array with any pages already in the cache.
4562 	 */
4563 	while (plsz > 0 &&
4564 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4565 			off += PAGESIZE;
4566 			plsz -= PAGESIZE;
4567 	}
4568 out:
4569 	if (err) {
4570 		/*
4571 		 * Release any pages we have previously locked.
4572 		 */
4573 		while (pl > pl0)
4574 			page_unlock(*--pl);
4575 	} else {
4576 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4577 	}
4578 
4579 	*pl = NULL;
4580 
4581 	ZFS_EXIT(zfsvfs);
4582 	return (err);
4583 }
4584 
4585 /*
4586  * Request a memory map for a section of a file.  This code interacts
4587  * with common code and the VM system as follows:
4588  *
4589  * - common code calls mmap(), which ends up in smmap_common()
4590  * - this calls VOP_MAP(), which takes you into (say) zfs
4591  * - zfs_map() calls as_map(), passing segvn_create() as the callback
4592  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4593  * - zfs_addmap() updates z_mapcnt
4594  */
4595 /*ARGSUSED*/
4596 static int
4597 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4598     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4599     caller_context_t *ct)
4600 {
4601 	znode_t *zp = VTOZ(vp);
4602 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4603 	segvn_crargs_t	vn_a;
4604 	int		error;
4605 
4606 	ZFS_ENTER(zfsvfs);
4607 	ZFS_VERIFY_ZP(zp);
4608 
4609 	if ((prot & PROT_WRITE) && (zp->z_pflags &
4610 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4611 		ZFS_EXIT(zfsvfs);
4612 		return (SET_ERROR(EPERM));
4613 	}
4614 
4615 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4616 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4617 		ZFS_EXIT(zfsvfs);
4618 		return (SET_ERROR(EACCES));
4619 	}
4620 
4621 	if (vp->v_flag & VNOMAP) {
4622 		ZFS_EXIT(zfsvfs);
4623 		return (SET_ERROR(ENOSYS));
4624 	}
4625 
4626 	if (off < 0 || len > MAXOFFSET_T - off) {
4627 		ZFS_EXIT(zfsvfs);
4628 		return (SET_ERROR(ENXIO));
4629 	}
4630 
4631 	if (vp->v_type != VREG) {
4632 		ZFS_EXIT(zfsvfs);
4633 		return (SET_ERROR(ENODEV));
4634 	}
4635 
4636 	/*
4637 	 * If file is locked, disallow mapping.
4638 	 */
4639 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4640 		ZFS_EXIT(zfsvfs);
4641 		return (SET_ERROR(EAGAIN));
4642 	}
4643 
4644 	as_rangelock(as);
4645 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4646 	if (error != 0) {
4647 		as_rangeunlock(as);
4648 		ZFS_EXIT(zfsvfs);
4649 		return (error);
4650 	}
4651 
4652 	vn_a.vp = vp;
4653 	vn_a.offset = (u_offset_t)off;
4654 	vn_a.type = flags & MAP_TYPE;
4655 	vn_a.prot = prot;
4656 	vn_a.maxprot = maxprot;
4657 	vn_a.cred = cr;
4658 	vn_a.amp = NULL;
4659 	vn_a.flags = flags & ~MAP_TYPE;
4660 	vn_a.szc = 0;
4661 	vn_a.lgrp_mem_policy_flags = 0;
4662 
4663 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4664 
4665 	as_rangeunlock(as);
4666 	ZFS_EXIT(zfsvfs);
4667 	return (error);
4668 }
4669 
4670 /* ARGSUSED */
4671 static int
4672 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4673     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4674     caller_context_t *ct)
4675 {
4676 	uint64_t pages = btopr(len);
4677 
4678 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4679 	return (0);
4680 }
4681 
4682 /*
4683  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4684  * more accurate mtime for the associated file.  Since we don't have a way of
4685  * detecting when the data was actually modified, we have to resort to
4686  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4687  * last page is pushed.  The problem occurs when the msync() call is omitted,
4688  * which by far the most common case:
4689  *
4690  * 	open()
4691  * 	mmap()
4692  * 	<modify memory>
4693  * 	munmap()
4694  * 	close()
4695  * 	<time lapse>
4696  * 	putpage() via fsflush
4697  *
4698  * If we wait until fsflush to come along, we can have a modification time that
4699  * is some arbitrary point in the future.  In order to prevent this in the
4700  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4701  * torn down.
4702  */
4703 /* ARGSUSED */
4704 static int
4705 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4706     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4707     caller_context_t *ct)
4708 {
4709 	uint64_t pages = btopr(len);
4710 
4711 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4712 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4713 
4714 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4715 	    vn_has_cached_data(vp))
4716 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4717 
4718 	return (0);
4719 }
4720 
4721 /*
4722  * Free or allocate space in a file.  Currently, this function only
4723  * supports the `F_FREESP' command.  However, this command is somewhat
4724  * misnamed, as its functionality includes the ability to allocate as
4725  * well as free space.
4726  *
4727  *	IN:	vp	- vnode of file to free data in.
4728  *		cmd	- action to take (only F_FREESP supported).
4729  *		bfp	- section of file to free/alloc.
4730  *		flag	- current file open mode flags.
4731  *		offset	- current file offset.
4732  *		cr	- credentials of caller [UNUSED].
4733  *		ct	- caller context.
4734  *
4735  *	RETURN:	0 on success, error code on failure.
4736  *
4737  * Timestamps:
4738  *	vp - ctime|mtime updated
4739  */
4740 /* ARGSUSED */
4741 static int
4742 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4743     offset_t offset, cred_t *cr, caller_context_t *ct)
4744 {
4745 	znode_t		*zp = VTOZ(vp);
4746 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4747 	uint64_t	off, len;
4748 	int		error;
4749 
4750 	ZFS_ENTER(zfsvfs);
4751 	ZFS_VERIFY_ZP(zp);
4752 
4753 	if (cmd != F_FREESP) {
4754 		ZFS_EXIT(zfsvfs);
4755 		return (SET_ERROR(EINVAL));
4756 	}
4757 
4758 	if (error = convoff(vp, bfp, 0, offset)) {
4759 		ZFS_EXIT(zfsvfs);
4760 		return (error);
4761 	}
4762 
4763 	if (bfp->l_len < 0) {
4764 		ZFS_EXIT(zfsvfs);
4765 		return (SET_ERROR(EINVAL));
4766 	}
4767 
4768 	off = bfp->l_start;
4769 	len = bfp->l_len; /* 0 means from off to end of file */
4770 
4771 	error = zfs_freesp(zp, off, len, flag, TRUE);
4772 
4773 	ZFS_EXIT(zfsvfs);
4774 	return (error);
4775 }
4776 
4777 /*ARGSUSED*/
4778 static int
4779 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4780 {
4781 	znode_t		*zp = VTOZ(vp);
4782 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4783 	uint32_t	gen;
4784 	uint64_t	gen64;
4785 	uint64_t	object = zp->z_id;
4786 	zfid_short_t	*zfid;
4787 	int		size, i, error;
4788 
4789 	ZFS_ENTER(zfsvfs);
4790 	ZFS_VERIFY_ZP(zp);
4791 
4792 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4793 	    &gen64, sizeof (uint64_t))) != 0) {
4794 		ZFS_EXIT(zfsvfs);
4795 		return (error);
4796 	}
4797 
4798 	gen = (uint32_t)gen64;
4799 
4800 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4801 	if (fidp->fid_len < size) {
4802 		fidp->fid_len = size;
4803 		ZFS_EXIT(zfsvfs);
4804 		return (SET_ERROR(ENOSPC));
4805 	}
4806 
4807 	zfid = (zfid_short_t *)fidp;
4808 
4809 	zfid->zf_len = size;
4810 
4811 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4812 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4813 
4814 	/* Must have a non-zero generation number to distinguish from .zfs */
4815 	if (gen == 0)
4816 		gen = 1;
4817 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4818 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4819 
4820 	if (size == LONG_FID_LEN) {
4821 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4822 		zfid_long_t	*zlfid;
4823 
4824 		zlfid = (zfid_long_t *)fidp;
4825 
4826 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4827 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4828 
4829 		/* XXX - this should be the generation number for the objset */
4830 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4831 			zlfid->zf_setgen[i] = 0;
4832 	}
4833 
4834 	ZFS_EXIT(zfsvfs);
4835 	return (0);
4836 }
4837 
4838 static int
4839 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4840     caller_context_t *ct)
4841 {
4842 	znode_t		*zp, *xzp;
4843 	zfsvfs_t	*zfsvfs;
4844 	zfs_dirlock_t	*dl;
4845 	int		error;
4846 
4847 	switch (cmd) {
4848 	case _PC_LINK_MAX:
4849 		*valp = ULONG_MAX;
4850 		return (0);
4851 
4852 	case _PC_FILESIZEBITS:
4853 		*valp = 64;
4854 		return (0);
4855 
4856 	case _PC_XATTR_EXISTS:
4857 		zp = VTOZ(vp);
4858 		zfsvfs = zp->z_zfsvfs;
4859 		ZFS_ENTER(zfsvfs);
4860 		ZFS_VERIFY_ZP(zp);
4861 		*valp = 0;
4862 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4863 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4864 		if (error == 0) {
4865 			zfs_dirent_unlock(dl);
4866 			if (!zfs_dirempty(xzp))
4867 				*valp = 1;
4868 			VN_RELE(ZTOV(xzp));
4869 		} else if (error == ENOENT) {
4870 			/*
4871 			 * If there aren't extended attributes, it's the
4872 			 * same as having zero of them.
4873 			 */
4874 			error = 0;
4875 		}
4876 		ZFS_EXIT(zfsvfs);
4877 		return (error);
4878 
4879 	case _PC_SATTR_ENABLED:
4880 	case _PC_SATTR_EXISTS:
4881 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4882 		    (vp->v_type == VREG || vp->v_type == VDIR);
4883 		return (0);
4884 
4885 	case _PC_ACCESS_FILTERING:
4886 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4887 		    vp->v_type == VDIR;
4888 		return (0);
4889 
4890 	case _PC_ACL_ENABLED:
4891 		*valp = _ACL_ACE_ENABLED;
4892 		return (0);
4893 
4894 	case _PC_MIN_HOLE_SIZE:
4895 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4896 		return (0);
4897 
4898 	case _PC_TIMESTAMP_RESOLUTION:
4899 		/* nanosecond timestamp resolution */
4900 		*valp = 1L;
4901 		return (0);
4902 
4903 	default:
4904 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4905 	}
4906 }
4907 
4908 /*ARGSUSED*/
4909 static int
4910 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4911     caller_context_t *ct)
4912 {
4913 	znode_t *zp = VTOZ(vp);
4914 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4915 	int error;
4916 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4917 
4918 	ZFS_ENTER(zfsvfs);
4919 	ZFS_VERIFY_ZP(zp);
4920 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4921 	ZFS_EXIT(zfsvfs);
4922 
4923 	return (error);
4924 }
4925 
4926 /*ARGSUSED*/
4927 static int
4928 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4929     caller_context_t *ct)
4930 {
4931 	znode_t *zp = VTOZ(vp);
4932 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4933 	int error;
4934 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4935 	zilog_t	*zilog = zfsvfs->z_log;
4936 
4937 	ZFS_ENTER(zfsvfs);
4938 	ZFS_VERIFY_ZP(zp);
4939 
4940 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4941 
4942 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4943 		zil_commit(zilog, 0);
4944 
4945 	ZFS_EXIT(zfsvfs);
4946 	return (error);
4947 }
4948 
4949 /*
4950  * The smallest read we may consider to loan out an arcbuf.
4951  * This must be a power of 2.
4952  */
4953 int zcr_blksz_min = (1 << 10);	/* 1K */
4954 /*
4955  * If set to less than the file block size, allow loaning out of an
4956  * arcbuf for a partial block read.  This must be a power of 2.
4957  */
4958 int zcr_blksz_max = (1 << 17);	/* 128K */
4959 
4960 /*ARGSUSED*/
4961 static int
4962 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4963     caller_context_t *ct)
4964 {
4965 	znode_t	*zp = VTOZ(vp);
4966 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4967 	int max_blksz = zfsvfs->z_max_blksz;
4968 	uio_t *uio = &xuio->xu_uio;
4969 	ssize_t size = uio->uio_resid;
4970 	offset_t offset = uio->uio_loffset;
4971 	int blksz;
4972 	int fullblk, i;
4973 	arc_buf_t *abuf;
4974 	ssize_t maxsize;
4975 	int preamble, postamble;
4976 
4977 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4978 		return (SET_ERROR(EINVAL));
4979 
4980 	ZFS_ENTER(zfsvfs);
4981 	ZFS_VERIFY_ZP(zp);
4982 	switch (ioflag) {
4983 	case UIO_WRITE:
4984 		/*
4985 		 * Loan out an arc_buf for write if write size is bigger than
4986 		 * max_blksz, and the file's block size is also max_blksz.
4987 		 */
4988 		blksz = max_blksz;
4989 		if (size < blksz || zp->z_blksz != blksz) {
4990 			ZFS_EXIT(zfsvfs);
4991 			return (SET_ERROR(EINVAL));
4992 		}
4993 		/*
4994 		 * Caller requests buffers for write before knowing where the
4995 		 * write offset might be (e.g. NFS TCP write).
4996 		 */
4997 		if (offset == -1) {
4998 			preamble = 0;
4999 		} else {
5000 			preamble = P2PHASE(offset, blksz);
5001 			if (preamble) {
5002 				preamble = blksz - preamble;
5003 				size -= preamble;
5004 			}
5005 		}
5006 
5007 		postamble = P2PHASE(size, blksz);
5008 		size -= postamble;
5009 
5010 		fullblk = size / blksz;
5011 		(void) dmu_xuio_init(xuio,
5012 		    (preamble != 0) + fullblk + (postamble != 0));
5013 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5014 		    int, postamble, int,
5015 		    (preamble != 0) + fullblk + (postamble != 0));
5016 
5017 		/*
5018 		 * Have to fix iov base/len for partial buffers.  They
5019 		 * currently represent full arc_buf's.
5020 		 */
5021 		if (preamble) {
5022 			/* data begins in the middle of the arc_buf */
5023 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5024 			    blksz);
5025 			ASSERT(abuf);
5026 			(void) dmu_xuio_add(xuio, abuf,
5027 			    blksz - preamble, preamble);
5028 		}
5029 
5030 		for (i = 0; i < fullblk; i++) {
5031 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5032 			    blksz);
5033 			ASSERT(abuf);
5034 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5035 		}
5036 
5037 		if (postamble) {
5038 			/* data ends in the middle of the arc_buf */
5039 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5040 			    blksz);
5041 			ASSERT(abuf);
5042 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5043 		}
5044 		break;
5045 	case UIO_READ:
5046 		/*
5047 		 * Loan out an arc_buf for read if the read size is larger than
5048 		 * the current file block size.  Block alignment is not
5049 		 * considered.  Partial arc_buf will be loaned out for read.
5050 		 */
5051 		blksz = zp->z_blksz;
5052 		if (blksz < zcr_blksz_min)
5053 			blksz = zcr_blksz_min;
5054 		if (blksz > zcr_blksz_max)
5055 			blksz = zcr_blksz_max;
5056 		/* avoid potential complexity of dealing with it */
5057 		if (blksz > max_blksz) {
5058 			ZFS_EXIT(zfsvfs);
5059 			return (SET_ERROR(EINVAL));
5060 		}
5061 
5062 		maxsize = zp->z_size - uio->uio_loffset;
5063 		if (size > maxsize)
5064 			size = maxsize;
5065 
5066 		if (size < blksz || vn_has_cached_data(vp)) {
5067 			ZFS_EXIT(zfsvfs);
5068 			return (SET_ERROR(EINVAL));
5069 		}
5070 		break;
5071 	default:
5072 		ZFS_EXIT(zfsvfs);
5073 		return (SET_ERROR(EINVAL));
5074 	}
5075 
5076 	uio->uio_extflg = UIO_XUIO;
5077 	XUIO_XUZC_RW(xuio) = ioflag;
5078 	ZFS_EXIT(zfsvfs);
5079 	return (0);
5080 }
5081 
5082 /*ARGSUSED*/
5083 static int
5084 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5085 {
5086 	int i;
5087 	arc_buf_t *abuf;
5088 	int ioflag = XUIO_XUZC_RW(xuio);
5089 
5090 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5091 
5092 	i = dmu_xuio_cnt(xuio);
5093 	while (i-- > 0) {
5094 		abuf = dmu_xuio_arcbuf(xuio, i);
5095 		/*
5096 		 * if abuf == NULL, it must be a write buffer
5097 		 * that has been returned in zfs_write().
5098 		 */
5099 		if (abuf)
5100 			dmu_return_arcbuf(abuf);
5101 		ASSERT(abuf || ioflag == UIO_WRITE);
5102 	}
5103 
5104 	dmu_xuio_fini(xuio);
5105 	return (0);
5106 }
5107 
5108 /*
5109  * Predeclare these here so that the compiler assumes that
5110  * this is an "old style" function declaration that does
5111  * not include arguments => we won't get type mismatch errors
5112  * in the initializations that follow.
5113  */
5114 static int zfs_inval();
5115 static int zfs_isdir();
5116 
5117 static int
5118 zfs_inval()
5119 {
5120 	return (SET_ERROR(EINVAL));
5121 }
5122 
5123 static int
5124 zfs_isdir()
5125 {
5126 	return (SET_ERROR(EISDIR));
5127 }
5128 /*
5129  * Directory vnode operations template
5130  */
5131 vnodeops_t *zfs_dvnodeops;
5132 const fs_operation_def_t zfs_dvnodeops_template[] = {
5133 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5134 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5135 	VOPNAME_READ,		{ .error = zfs_isdir },
5136 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5137 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5138 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5139 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5140 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5141 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5142 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5143 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5144 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5145 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5146 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5147 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5148 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5149 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5150 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5151 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5152 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5153 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5154 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5155 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5156 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5157 	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
5158 	NULL,			NULL
5159 };
5160 
5161 /*
5162  * Regular file vnode operations template
5163  */
5164 vnodeops_t *zfs_fvnodeops;
5165 const fs_operation_def_t zfs_fvnodeops_template[] = {
5166 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5167 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5168 	VOPNAME_READ,		{ .vop_read = zfs_read },
5169 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5170 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5171 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5172 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5173 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5174 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5175 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5176 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5177 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5178 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5179 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5180 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5181 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5182 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5183 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5184 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5185 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5186 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5187 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5188 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5189 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5190 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5191 	VOPNAME_REQZCBUF, 	{ .vop_reqzcbuf = zfs_reqzcbuf },
5192 	VOPNAME_RETZCBUF, 	{ .vop_retzcbuf = zfs_retzcbuf },
5193 	NULL,			NULL
5194 };
5195 
5196 /*
5197  * Symbolic link vnode operations template
5198  */
5199 vnodeops_t *zfs_symvnodeops;
5200 const fs_operation_def_t zfs_symvnodeops_template[] = {
5201 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5202 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5203 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5204 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5205 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5206 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5207 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5208 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5209 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5210 	NULL,			NULL
5211 };
5212 
5213 /*
5214  * special share hidden files vnode operations template
5215  */
5216 vnodeops_t *zfs_sharevnodeops;
5217 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5218 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5219 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5220 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5221 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5222 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5223 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5224 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5225 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5226 	NULL,			NULL
5227 };
5228 
5229 /*
5230  * Extended attribute directory vnode operations template
5231  *
5232  * This template is identical to the directory vnodes
5233  * operation template except for restricted operations:
5234  *	VOP_MKDIR()
5235  *	VOP_SYMLINK()
5236  *
5237  * Note that there are other restrictions embedded in:
5238  *	zfs_create()	- restrict type to VREG
5239  *	zfs_link()	- no links into/out of attribute space
5240  *	zfs_rename()	- no moves into/out of attribute space
5241  */
5242 vnodeops_t *zfs_xdvnodeops;
5243 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5244 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5245 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5246 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5247 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5248 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5249 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5250 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5251 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5252 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5253 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5254 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5255 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5256 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5257 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5258 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5259 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5260 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5261 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5262 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5263 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5264 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5265 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5266 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5267 	NULL,			NULL
5268 };
5269 
5270 /*
5271  * Error vnode operations template
5272  */
5273 vnodeops_t *zfs_evnodeops;
5274 const fs_operation_def_t zfs_evnodeops_template[] = {
5275 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5276 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5277 	NULL,			NULL
5278 };
5279