1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include "fs/fs_subr.h" 69 #include <sys/zfs_ctldir.h> 70 #include <sys/zfs_fuid.h> 71 #include <sys/dnlc.h> 72 #include <sys/zfs_rlock.h> 73 #include <sys/extdirent.h> 74 #include <sys/kidmap.h> 75 #include <sys/cred_impl.h> 76 #include <sys/attr.h> 77 78 /* 79 * Programming rules. 80 * 81 * Each vnode op performs some logical unit of work. To do this, the ZPL must 82 * properly lock its in-core state, create a DMU transaction, do the work, 83 * record this work in the intent log (ZIL), commit the DMU transaction, 84 * and wait for the intent log to commit if it is a synchronous operation. 85 * Moreover, the vnode ops must work in both normal and log replay context. 86 * The ordering of events is important to avoid deadlocks and references 87 * to freed memory. The example below illustrates the following Big Rules: 88 * 89 * (1) A check must be made in each zfs thread for a mounted file system. 90 * This is done avoiding races using ZFS_ENTER(zfsvfs). 91 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 92 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 93 * can return EIO from the calling function. 94 * 95 * (2) VN_RELE() should always be the last thing except for zil_commit() 96 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 97 * First, if it's the last reference, the vnode/znode 98 * can be freed, so the zp may point to freed memory. Second, the last 99 * reference will call zfs_zinactive(), which may induce a lot of work -- 100 * pushing cached pages (which acquires range locks) and syncing out 101 * cached atime changes. Third, zfs_zinactive() may require a new tx, 102 * which could deadlock the system if you were already holding one. 103 * 104 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 105 * as they can span dmu_tx_assign() calls. 106 * 107 * (4) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 108 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 109 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 110 * This is critical because we don't want to block while holding locks. 111 * Note, in particular, that if a lock is sometimes acquired before 112 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 113 * use a non-blocking assign can deadlock the system. The scenario: 114 * 115 * Thread A has grabbed a lock before calling dmu_tx_assign(). 116 * Thread B is in an already-assigned tx, and blocks for this lock. 117 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 118 * forever, because the previous txg can't quiesce until B's tx commits. 119 * 120 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 121 * then drop all locks, call dmu_tx_wait(), and try again. 122 * 123 * (5) If the operation succeeded, generate the intent log entry for it 124 * before dropping locks. This ensures that the ordering of events 125 * in the intent log matches the order in which they actually occurred. 126 * 127 * (6) At the end of each vnode op, the DMU tx must always commit, 128 * regardless of whether there were any errors. 129 * 130 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 131 * to ensure that synchronous semantics are provided when necessary. 132 * 133 * In general, this is how things should be ordered in each vnode op: 134 * 135 * ZFS_ENTER(zfsvfs); // exit if unmounted 136 * top: 137 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 138 * rw_enter(...); // grab any other locks you need 139 * tx = dmu_tx_create(...); // get DMU tx 140 * dmu_tx_hold_*(); // hold each object you might modify 141 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 142 * if (error) { 143 * rw_exit(...); // drop locks 144 * zfs_dirent_unlock(dl); // unlock directory entry 145 * VN_RELE(...); // release held vnodes 146 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 147 * dmu_tx_wait(tx); 148 * dmu_tx_abort(tx); 149 * goto top; 150 * } 151 * dmu_tx_abort(tx); // abort DMU tx 152 * ZFS_EXIT(zfsvfs); // finished in zfs 153 * return (error); // really out of space 154 * } 155 * error = do_real_work(); // do whatever this VOP does 156 * if (error == 0) 157 * zfs_log_*(...); // on success, make ZIL entry 158 * dmu_tx_commit(tx); // commit DMU tx -- error or not 159 * rw_exit(...); // drop locks 160 * zfs_dirent_unlock(dl); // unlock directory entry 161 * VN_RELE(...); // release held vnodes 162 * zil_commit(zilog, seq, foid); // synchronous when necessary 163 * ZFS_EXIT(zfsvfs); // finished in zfs 164 * return (error); // done, report error 165 */ 166 167 /* ARGSUSED */ 168 static int 169 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 170 { 171 znode_t *zp = VTOZ(*vpp); 172 173 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 174 ((flag & FAPPEND) == 0)) { 175 return (EPERM); 176 } 177 178 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 179 ZTOV(zp)->v_type == VREG && 180 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 181 zp->z_phys->zp_size > 0) 182 if (fs_vscan(*vpp, cr, 0) != 0) 183 return (EACCES); 184 185 /* Keep a count of the synchronous opens in the znode */ 186 if (flag & (FSYNC | FDSYNC)) 187 atomic_inc_32(&zp->z_sync_cnt); 188 189 return (0); 190 } 191 192 /* ARGSUSED */ 193 static int 194 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 195 caller_context_t *ct) 196 { 197 znode_t *zp = VTOZ(vp); 198 199 /* Decrement the synchronous opens in the znode */ 200 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 201 atomic_dec_32(&zp->z_sync_cnt); 202 203 /* 204 * Clean up any locks held by this process on the vp. 205 */ 206 cleanlocks(vp, ddi_get_pid(), 0); 207 cleanshares(vp, ddi_get_pid()); 208 209 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 210 ZTOV(zp)->v_type == VREG && 211 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 212 zp->z_phys->zp_size > 0) 213 VERIFY(fs_vscan(vp, cr, 1) == 0); 214 215 return (0); 216 } 217 218 /* 219 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 220 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 221 */ 222 static int 223 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 224 { 225 znode_t *zp = VTOZ(vp); 226 uint64_t noff = (uint64_t)*off; /* new offset */ 227 uint64_t file_sz; 228 int error; 229 boolean_t hole; 230 231 file_sz = zp->z_phys->zp_size; 232 if (noff >= file_sz) { 233 return (ENXIO); 234 } 235 236 if (cmd == _FIO_SEEK_HOLE) 237 hole = B_TRUE; 238 else 239 hole = B_FALSE; 240 241 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 242 243 /* end of file? */ 244 if ((error == ESRCH) || (noff > file_sz)) { 245 /* 246 * Handle the virtual hole at the end of file. 247 */ 248 if (hole) { 249 *off = file_sz; 250 return (0); 251 } 252 return (ENXIO); 253 } 254 255 if (noff < *off) 256 return (error); 257 *off = noff; 258 return (error); 259 } 260 261 /* ARGSUSED */ 262 static int 263 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 264 int *rvalp, caller_context_t *ct) 265 { 266 offset_t off; 267 int error; 268 zfsvfs_t *zfsvfs; 269 znode_t *zp; 270 271 switch (com) { 272 case _FIOFFS: 273 return (zfs_sync(vp->v_vfsp, 0, cred)); 274 275 /* 276 * The following two ioctls are used by bfu. Faking out, 277 * necessary to avoid bfu errors. 278 */ 279 case _FIOGDIO: 280 case _FIOSDIO: 281 return (0); 282 283 case _FIO_SEEK_DATA: 284 case _FIO_SEEK_HOLE: 285 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 286 return (EFAULT); 287 288 zp = VTOZ(vp); 289 zfsvfs = zp->z_zfsvfs; 290 ZFS_ENTER(zfsvfs); 291 ZFS_VERIFY_ZP(zp); 292 293 /* offset parameter is in/out */ 294 error = zfs_holey(vp, com, &off); 295 ZFS_EXIT(zfsvfs); 296 if (error) 297 return (error); 298 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 299 return (EFAULT); 300 return (0); 301 } 302 return (ENOTTY); 303 } 304 305 /* 306 * When a file is memory mapped, we must keep the IO data synchronized 307 * between the DMU cache and the memory mapped pages. What this means: 308 * 309 * On Write: If we find a memory mapped page, we write to *both* 310 * the page and the dmu buffer. 311 * 312 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 313 * the file is memory mapped. 314 */ 315 static int 316 mappedwrite(vnode_t *vp, int nbytes, uio_t *uio, dmu_tx_t *tx) 317 { 318 znode_t *zp = VTOZ(vp); 319 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 320 int64_t start, off; 321 int len = nbytes; 322 int error = 0; 323 324 start = uio->uio_loffset; 325 off = start & PAGEOFFSET; 326 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 327 page_t *pp; 328 uint64_t bytes = MIN(PAGESIZE - off, len); 329 uint64_t woff = uio->uio_loffset; 330 331 /* 332 * We don't want a new page to "appear" in the middle of 333 * the file update (because it may not get the write 334 * update data), so we grab a lock to block 335 * zfs_getpage(). 336 */ 337 rw_enter(&zp->z_map_lock, RW_WRITER); 338 if (pp = page_lookup(vp, start, SE_SHARED)) { 339 caddr_t va; 340 341 rw_exit(&zp->z_map_lock); 342 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 343 error = uiomove(va+off, bytes, UIO_WRITE, uio); 344 if (error == 0) { 345 dmu_write(zfsvfs->z_os, zp->z_id, 346 woff, bytes, va+off, tx); 347 } 348 ppmapout(va); 349 page_unlock(pp); 350 } else { 351 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 352 uio, bytes, tx); 353 rw_exit(&zp->z_map_lock); 354 } 355 len -= bytes; 356 off = 0; 357 if (error) 358 break; 359 } 360 return (error); 361 } 362 363 /* 364 * When a file is memory mapped, we must keep the IO data synchronized 365 * between the DMU cache and the memory mapped pages. What this means: 366 * 367 * On Read: We "read" preferentially from memory mapped pages, 368 * else we default from the dmu buffer. 369 * 370 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 371 * the file is memory mapped. 372 */ 373 static int 374 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 375 { 376 znode_t *zp = VTOZ(vp); 377 objset_t *os = zp->z_zfsvfs->z_os; 378 int64_t start, off; 379 int len = nbytes; 380 int error = 0; 381 382 start = uio->uio_loffset; 383 off = start & PAGEOFFSET; 384 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 385 page_t *pp; 386 uint64_t bytes = MIN(PAGESIZE - off, len); 387 388 if (pp = page_lookup(vp, start, SE_SHARED)) { 389 caddr_t va; 390 391 va = ppmapin(pp, PROT_READ, (caddr_t)-1L); 392 error = uiomove(va + off, bytes, UIO_READ, uio); 393 ppmapout(va); 394 page_unlock(pp); 395 } else { 396 error = dmu_read_uio(os, zp->z_id, uio, bytes); 397 } 398 len -= bytes; 399 off = 0; 400 if (error) 401 break; 402 } 403 return (error); 404 } 405 406 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 407 408 /* 409 * Read bytes from specified file into supplied buffer. 410 * 411 * IN: vp - vnode of file to be read from. 412 * uio - structure supplying read location, range info, 413 * and return buffer. 414 * ioflag - SYNC flags; used to provide FRSYNC semantics. 415 * cr - credentials of caller. 416 * ct - caller context 417 * 418 * OUT: uio - updated offset and range, buffer filled. 419 * 420 * RETURN: 0 if success 421 * error code if failure 422 * 423 * Side Effects: 424 * vp - atime updated if byte count > 0 425 */ 426 /* ARGSUSED */ 427 static int 428 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 429 { 430 znode_t *zp = VTOZ(vp); 431 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 432 objset_t *os; 433 ssize_t n, nbytes; 434 int error; 435 rl_t *rl; 436 437 ZFS_ENTER(zfsvfs); 438 ZFS_VERIFY_ZP(zp); 439 os = zfsvfs->z_os; 440 441 if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) { 442 ZFS_EXIT(zfsvfs); 443 return (EACCES); 444 } 445 446 /* 447 * Validate file offset 448 */ 449 if (uio->uio_loffset < (offset_t)0) { 450 ZFS_EXIT(zfsvfs); 451 return (EINVAL); 452 } 453 454 /* 455 * Fasttrack empty reads 456 */ 457 if (uio->uio_resid == 0) { 458 ZFS_EXIT(zfsvfs); 459 return (0); 460 } 461 462 /* 463 * Check for mandatory locks 464 */ 465 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 466 if (error = chklock(vp, FREAD, 467 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 468 ZFS_EXIT(zfsvfs); 469 return (error); 470 } 471 } 472 473 /* 474 * If we're in FRSYNC mode, sync out this znode before reading it. 475 */ 476 if (ioflag & FRSYNC) 477 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 478 479 /* 480 * Lock the range against changes. 481 */ 482 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 483 484 /* 485 * If we are reading past end-of-file we can skip 486 * to the end; but we might still need to set atime. 487 */ 488 if (uio->uio_loffset >= zp->z_phys->zp_size) { 489 error = 0; 490 goto out; 491 } 492 493 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 494 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 495 496 while (n > 0) { 497 nbytes = MIN(n, zfs_read_chunk_size - 498 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 499 500 if (vn_has_cached_data(vp)) 501 error = mappedread(vp, nbytes, uio); 502 else 503 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 504 if (error) 505 break; 506 507 n -= nbytes; 508 } 509 510 out: 511 zfs_range_unlock(rl); 512 513 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 514 ZFS_EXIT(zfsvfs); 515 return (error); 516 } 517 518 /* 519 * Fault in the pages of the first n bytes specified by the uio structure. 520 * 1 byte in each page is touched and the uio struct is unmodified. 521 * Any error will exit this routine as this is only a best 522 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 523 */ 524 static void 525 zfs_prefault_write(ssize_t n, struct uio *uio) 526 { 527 struct iovec *iov; 528 ulong_t cnt, incr; 529 caddr_t p; 530 uint8_t tmp; 531 532 iov = uio->uio_iov; 533 534 while (n) { 535 cnt = MIN(iov->iov_len, n); 536 if (cnt == 0) { 537 /* empty iov entry */ 538 iov++; 539 continue; 540 } 541 n -= cnt; 542 /* 543 * touch each page in this segment. 544 */ 545 p = iov->iov_base; 546 while (cnt) { 547 switch (uio->uio_segflg) { 548 case UIO_USERSPACE: 549 case UIO_USERISPACE: 550 if (fuword8(p, &tmp)) 551 return; 552 break; 553 case UIO_SYSSPACE: 554 if (kcopy(p, &tmp, 1)) 555 return; 556 break; 557 } 558 incr = MIN(cnt, PAGESIZE); 559 p += incr; 560 cnt -= incr; 561 } 562 /* 563 * touch the last byte in case it straddles a page. 564 */ 565 p--; 566 switch (uio->uio_segflg) { 567 case UIO_USERSPACE: 568 case UIO_USERISPACE: 569 if (fuword8(p, &tmp)) 570 return; 571 break; 572 case UIO_SYSSPACE: 573 if (kcopy(p, &tmp, 1)) 574 return; 575 break; 576 } 577 iov++; 578 } 579 } 580 581 /* 582 * Write the bytes to a file. 583 * 584 * IN: vp - vnode of file to be written to. 585 * uio - structure supplying write location, range info, 586 * and data buffer. 587 * ioflag - FAPPEND flag set if in append mode. 588 * cr - credentials of caller. 589 * ct - caller context (NFS/CIFS fem monitor only) 590 * 591 * OUT: uio - updated offset and range. 592 * 593 * RETURN: 0 if success 594 * error code if failure 595 * 596 * Timestamps: 597 * vp - ctime|mtime updated if byte count > 0 598 */ 599 /* ARGSUSED */ 600 static int 601 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 602 { 603 znode_t *zp = VTOZ(vp); 604 rlim64_t limit = uio->uio_llimit; 605 ssize_t start_resid = uio->uio_resid; 606 ssize_t tx_bytes; 607 uint64_t end_size; 608 dmu_tx_t *tx; 609 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 610 zilog_t *zilog; 611 offset_t woff; 612 ssize_t n, nbytes; 613 rl_t *rl; 614 int max_blksz = zfsvfs->z_max_blksz; 615 uint64_t pflags; 616 int error; 617 618 /* 619 * Fasttrack empty write 620 */ 621 n = start_resid; 622 if (n == 0) 623 return (0); 624 625 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 626 limit = MAXOFFSET_T; 627 628 ZFS_ENTER(zfsvfs); 629 ZFS_VERIFY_ZP(zp); 630 631 /* 632 * If immutable or not appending then return EPERM 633 */ 634 pflags = zp->z_phys->zp_flags; 635 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 636 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 637 (uio->uio_loffset < zp->z_phys->zp_size))) { 638 ZFS_EXIT(zfsvfs); 639 return (EPERM); 640 } 641 642 zilog = zfsvfs->z_log; 643 644 /* 645 * Pre-fault the pages to ensure slow (eg NFS) pages 646 * don't hold up txg. 647 */ 648 zfs_prefault_write(n, uio); 649 650 /* 651 * If in append mode, set the io offset pointer to eof. 652 */ 653 if (ioflag & FAPPEND) { 654 /* 655 * Range lock for a file append: 656 * The value for the start of range will be determined by 657 * zfs_range_lock() (to guarantee append semantics). 658 * If this write will cause the block size to increase, 659 * zfs_range_lock() will lock the entire file, so we must 660 * later reduce the range after we grow the block size. 661 */ 662 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 663 if (rl->r_len == UINT64_MAX) { 664 /* overlocked, zp_size can't change */ 665 woff = uio->uio_loffset = zp->z_phys->zp_size; 666 } else { 667 woff = uio->uio_loffset = rl->r_off; 668 } 669 } else { 670 woff = uio->uio_loffset; 671 /* 672 * Validate file offset 673 */ 674 if (woff < 0) { 675 ZFS_EXIT(zfsvfs); 676 return (EINVAL); 677 } 678 679 /* 680 * If we need to grow the block size then zfs_range_lock() 681 * will lock a wider range than we request here. 682 * Later after growing the block size we reduce the range. 683 */ 684 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 685 } 686 687 if (woff >= limit) { 688 zfs_range_unlock(rl); 689 ZFS_EXIT(zfsvfs); 690 return (EFBIG); 691 } 692 693 if ((woff + n) > limit || woff > (limit - n)) 694 n = limit - woff; 695 696 /* 697 * Check for mandatory locks 698 */ 699 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 700 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 701 zfs_range_unlock(rl); 702 ZFS_EXIT(zfsvfs); 703 return (error); 704 } 705 end_size = MAX(zp->z_phys->zp_size, woff + n); 706 707 /* 708 * Write the file in reasonable size chunks. Each chunk is written 709 * in a separate transaction; this keeps the intent log records small 710 * and allows us to do more fine-grained space accounting. 711 */ 712 while (n > 0) { 713 /* 714 * Start a transaction. 715 */ 716 woff = uio->uio_loffset; 717 tx = dmu_tx_create(zfsvfs->z_os); 718 dmu_tx_hold_bonus(tx, zp->z_id); 719 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 720 error = dmu_tx_assign(tx, zfsvfs->z_assign); 721 if (error) { 722 if (error == ERESTART && 723 zfsvfs->z_assign == TXG_NOWAIT) { 724 dmu_tx_wait(tx); 725 dmu_tx_abort(tx); 726 continue; 727 } 728 dmu_tx_abort(tx); 729 break; 730 } 731 732 /* 733 * If zfs_range_lock() over-locked we grow the blocksize 734 * and then reduce the lock range. This will only happen 735 * on the first iteration since zfs_range_reduce() will 736 * shrink down r_len to the appropriate size. 737 */ 738 if (rl->r_len == UINT64_MAX) { 739 uint64_t new_blksz; 740 741 if (zp->z_blksz > max_blksz) { 742 ASSERT(!ISP2(zp->z_blksz)); 743 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 744 } else { 745 new_blksz = MIN(end_size, max_blksz); 746 } 747 zfs_grow_blocksize(zp, new_blksz, tx); 748 zfs_range_reduce(rl, woff, n); 749 } 750 751 /* 752 * XXX - should we really limit each write to z_max_blksz? 753 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 754 */ 755 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 756 rw_enter(&zp->z_map_lock, RW_READER); 757 758 tx_bytes = uio->uio_resid; 759 if (vn_has_cached_data(vp)) { 760 rw_exit(&zp->z_map_lock); 761 error = mappedwrite(vp, nbytes, uio, tx); 762 } else { 763 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 764 uio, nbytes, tx); 765 rw_exit(&zp->z_map_lock); 766 } 767 tx_bytes -= uio->uio_resid; 768 769 /* 770 * If we made no progress, we're done. If we made even 771 * partial progress, update the znode and ZIL accordingly. 772 */ 773 if (tx_bytes == 0) { 774 dmu_tx_commit(tx); 775 ASSERT(error != 0); 776 break; 777 } 778 779 /* 780 * Clear Set-UID/Set-GID bits on successful write if not 781 * privileged and at least one of the excute bits is set. 782 * 783 * It would be nice to to this after all writes have 784 * been done, but that would still expose the ISUID/ISGID 785 * to another app after the partial write is committed. 786 * 787 * Note: we don't call zfs_fuid_map_id() here because 788 * user 0 is not an ephemeral uid. 789 */ 790 mutex_enter(&zp->z_acl_lock); 791 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 792 (S_IXUSR >> 6))) != 0 && 793 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 794 secpolicy_vnode_setid_retain(cr, 795 (zp->z_phys->zp_mode & S_ISUID) != 0 && 796 zp->z_phys->zp_uid == 0) != 0) { 797 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 798 } 799 mutex_exit(&zp->z_acl_lock); 800 801 /* 802 * Update time stamp. NOTE: This marks the bonus buffer as 803 * dirty, so we don't have to do it again for zp_size. 804 */ 805 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 806 807 /* 808 * Update the file size (zp_size) if it has changed; 809 * account for possible concurrent updates. 810 */ 811 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 812 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 813 uio->uio_loffset); 814 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 815 dmu_tx_commit(tx); 816 817 if (error != 0) 818 break; 819 ASSERT(tx_bytes == nbytes); 820 n -= nbytes; 821 } 822 823 zfs_range_unlock(rl); 824 825 /* 826 * If we're in replay mode, or we made no progress, return error. 827 * Otherwise, it's at least a partial write, so it's successful. 828 */ 829 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 830 ZFS_EXIT(zfsvfs); 831 return (error); 832 } 833 834 if (ioflag & (FSYNC | FDSYNC)) 835 zil_commit(zilog, zp->z_last_itx, zp->z_id); 836 837 ZFS_EXIT(zfsvfs); 838 return (0); 839 } 840 841 void 842 zfs_get_done(dmu_buf_t *db, void *vzgd) 843 { 844 zgd_t *zgd = (zgd_t *)vzgd; 845 rl_t *rl = zgd->zgd_rl; 846 vnode_t *vp = ZTOV(rl->r_zp); 847 848 dmu_buf_rele(db, vzgd); 849 zfs_range_unlock(rl); 850 VN_RELE(vp); 851 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 852 kmem_free(zgd, sizeof (zgd_t)); 853 } 854 855 /* 856 * Get data to generate a TX_WRITE intent log record. 857 */ 858 int 859 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 860 { 861 zfsvfs_t *zfsvfs = arg; 862 objset_t *os = zfsvfs->z_os; 863 znode_t *zp; 864 uint64_t off = lr->lr_offset; 865 dmu_buf_t *db; 866 rl_t *rl; 867 zgd_t *zgd; 868 int dlen = lr->lr_length; /* length of user data */ 869 int error = 0; 870 871 ASSERT(zio); 872 ASSERT(dlen != 0); 873 874 /* 875 * Nothing to do if the file has been removed 876 */ 877 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 878 return (ENOENT); 879 if (zp->z_unlinked) { 880 VN_RELE(ZTOV(zp)); 881 return (ENOENT); 882 } 883 884 /* 885 * Write records come in two flavors: immediate and indirect. 886 * For small writes it's cheaper to store the data with the 887 * log record (immediate); for large writes it's cheaper to 888 * sync the data and get a pointer to it (indirect) so that 889 * we don't have to write the data twice. 890 */ 891 if (buf != NULL) { /* immediate write */ 892 rl = zfs_range_lock(zp, off, dlen, RL_READER); 893 /* test for truncation needs to be done while range locked */ 894 if (off >= zp->z_phys->zp_size) { 895 error = ENOENT; 896 goto out; 897 } 898 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf)); 899 } else { /* indirect write */ 900 uint64_t boff; /* block starting offset */ 901 902 /* 903 * Have to lock the whole block to ensure when it's 904 * written out and it's checksum is being calculated 905 * that no one can change the data. We need to re-check 906 * blocksize after we get the lock in case it's changed! 907 */ 908 for (;;) { 909 if (ISP2(zp->z_blksz)) { 910 boff = P2ALIGN_TYPED(off, zp->z_blksz, 911 uint64_t); 912 } else { 913 boff = 0; 914 } 915 dlen = zp->z_blksz; 916 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 917 if (zp->z_blksz == dlen) 918 break; 919 zfs_range_unlock(rl); 920 } 921 /* test for truncation needs to be done while range locked */ 922 if (off >= zp->z_phys->zp_size) { 923 error = ENOENT; 924 goto out; 925 } 926 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 927 zgd->zgd_rl = rl; 928 zgd->zgd_zilog = zfsvfs->z_log; 929 zgd->zgd_bp = &lr->lr_blkptr; 930 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db)); 931 ASSERT(boff == db->db_offset); 932 lr->lr_blkoff = off - boff; 933 error = dmu_sync(zio, db, &lr->lr_blkptr, 934 lr->lr_common.lrc_txg, zfs_get_done, zgd); 935 ASSERT((error && error != EINPROGRESS) || 936 lr->lr_length <= zp->z_blksz); 937 if (error == 0) 938 zil_add_block(zfsvfs->z_log, &lr->lr_blkptr); 939 /* 940 * If we get EINPROGRESS, then we need to wait for a 941 * write IO initiated by dmu_sync() to complete before 942 * we can release this dbuf. We will finish everything 943 * up in the zfs_get_done() callback. 944 */ 945 if (error == EINPROGRESS) 946 return (0); 947 dmu_buf_rele(db, zgd); 948 kmem_free(zgd, sizeof (zgd_t)); 949 } 950 out: 951 zfs_range_unlock(rl); 952 VN_RELE(ZTOV(zp)); 953 return (error); 954 } 955 956 /*ARGSUSED*/ 957 static int 958 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 959 caller_context_t *ct) 960 { 961 znode_t *zp = VTOZ(vp); 962 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 963 int error; 964 965 ZFS_ENTER(zfsvfs); 966 ZFS_VERIFY_ZP(zp); 967 968 if (flag & V_ACE_MASK) 969 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 970 else 971 error = zfs_zaccess_rwx(zp, mode, flag, cr); 972 973 ZFS_EXIT(zfsvfs); 974 return (error); 975 } 976 977 /* 978 * Lookup an entry in a directory, or an extended attribute directory. 979 * If it exists, return a held vnode reference for it. 980 * 981 * IN: dvp - vnode of directory to search. 982 * nm - name of entry to lookup. 983 * pnp - full pathname to lookup [UNUSED]. 984 * flags - LOOKUP_XATTR set if looking for an attribute. 985 * rdir - root directory vnode [UNUSED]. 986 * cr - credentials of caller. 987 * ct - caller context 988 * direntflags - directory lookup flags 989 * realpnp - returned pathname. 990 * 991 * OUT: vpp - vnode of located entry, NULL if not found. 992 * 993 * RETURN: 0 if success 994 * error code if failure 995 * 996 * Timestamps: 997 * NA 998 */ 999 /* ARGSUSED */ 1000 static int 1001 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1002 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1003 int *direntflags, pathname_t *realpnp) 1004 { 1005 znode_t *zdp = VTOZ(dvp); 1006 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1007 int error; 1008 1009 ZFS_ENTER(zfsvfs); 1010 ZFS_VERIFY_ZP(zdp); 1011 1012 *vpp = NULL; 1013 1014 if (flags & LOOKUP_XATTR) { 1015 /* 1016 * If the xattr property is off, refuse the lookup request. 1017 */ 1018 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1019 ZFS_EXIT(zfsvfs); 1020 return (EINVAL); 1021 } 1022 1023 /* 1024 * We don't allow recursive attributes.. 1025 * Maybe someday we will. 1026 */ 1027 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1028 ZFS_EXIT(zfsvfs); 1029 return (EINVAL); 1030 } 1031 1032 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1033 ZFS_EXIT(zfsvfs); 1034 return (error); 1035 } 1036 1037 /* 1038 * Do we have permission to get into attribute directory? 1039 */ 1040 1041 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1042 B_FALSE, cr)) { 1043 VN_RELE(*vpp); 1044 *vpp = NULL; 1045 } 1046 1047 ZFS_EXIT(zfsvfs); 1048 return (error); 1049 } 1050 1051 if (dvp->v_type != VDIR) { 1052 ZFS_EXIT(zfsvfs); 1053 return (ENOTDIR); 1054 } 1055 1056 /* 1057 * Check accessibility of directory. 1058 */ 1059 1060 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1061 ZFS_EXIT(zfsvfs); 1062 return (error); 1063 } 1064 1065 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1066 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1067 ZFS_EXIT(zfsvfs); 1068 return (EILSEQ); 1069 } 1070 1071 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1072 if (error == 0) { 1073 /* 1074 * Convert device special files 1075 */ 1076 if (IS_DEVVP(*vpp)) { 1077 vnode_t *svp; 1078 1079 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1080 VN_RELE(*vpp); 1081 if (svp == NULL) 1082 error = ENOSYS; 1083 else 1084 *vpp = svp; 1085 } 1086 } 1087 1088 ZFS_EXIT(zfsvfs); 1089 return (error); 1090 } 1091 1092 /* 1093 * Attempt to create a new entry in a directory. If the entry 1094 * already exists, truncate the file if permissible, else return 1095 * an error. Return the vp of the created or trunc'd file. 1096 * 1097 * IN: dvp - vnode of directory to put new file entry in. 1098 * name - name of new file entry. 1099 * vap - attributes of new file. 1100 * excl - flag indicating exclusive or non-exclusive mode. 1101 * mode - mode to open file with. 1102 * cr - credentials of caller. 1103 * flag - large file flag [UNUSED]. 1104 * ct - caller context 1105 * vsecp - ACL to be set 1106 * 1107 * OUT: vpp - vnode of created or trunc'd entry. 1108 * 1109 * RETURN: 0 if success 1110 * error code if failure 1111 * 1112 * Timestamps: 1113 * dvp - ctime|mtime updated if new entry created 1114 * vp - ctime|mtime always, atime if new 1115 */ 1116 1117 /* ARGSUSED */ 1118 static int 1119 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1120 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1121 vsecattr_t *vsecp) 1122 { 1123 znode_t *zp, *dzp = VTOZ(dvp); 1124 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1125 zilog_t *zilog; 1126 objset_t *os; 1127 zfs_dirlock_t *dl; 1128 dmu_tx_t *tx; 1129 int error; 1130 zfs_acl_t *aclp = NULL; 1131 zfs_fuid_info_t *fuidp = NULL; 1132 1133 /* 1134 * If we have an ephemeral id, ACL, or XVATTR then 1135 * make sure file system is at proper version 1136 */ 1137 1138 if (zfsvfs->z_use_fuids == B_FALSE && 1139 (vsecp || (vap->va_mask & AT_XVATTR) || 1140 IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr)))) 1141 return (EINVAL); 1142 1143 ZFS_ENTER(zfsvfs); 1144 ZFS_VERIFY_ZP(dzp); 1145 os = zfsvfs->z_os; 1146 zilog = zfsvfs->z_log; 1147 1148 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1149 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1150 ZFS_EXIT(zfsvfs); 1151 return (EILSEQ); 1152 } 1153 1154 if (vap->va_mask & AT_XVATTR) { 1155 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1156 crgetuid(cr), cr, vap->va_type)) != 0) { 1157 ZFS_EXIT(zfsvfs); 1158 return (error); 1159 } 1160 } 1161 top: 1162 *vpp = NULL; 1163 1164 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1165 vap->va_mode &= ~VSVTX; 1166 1167 if (*name == '\0') { 1168 /* 1169 * Null component name refers to the directory itself. 1170 */ 1171 VN_HOLD(dvp); 1172 zp = dzp; 1173 dl = NULL; 1174 error = 0; 1175 } else { 1176 /* possible VN_HOLD(zp) */ 1177 int zflg = 0; 1178 1179 if (flag & FIGNORECASE) 1180 zflg |= ZCILOOK; 1181 1182 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1183 NULL, NULL); 1184 if (error) { 1185 if (strcmp(name, "..") == 0) 1186 error = EISDIR; 1187 ZFS_EXIT(zfsvfs); 1188 if (aclp) 1189 zfs_acl_free(aclp); 1190 return (error); 1191 } 1192 } 1193 if (vsecp && aclp == NULL) { 1194 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1195 if (error) { 1196 ZFS_EXIT(zfsvfs); 1197 if (dl) 1198 zfs_dirent_unlock(dl); 1199 return (error); 1200 } 1201 } 1202 1203 if (zp == NULL) { 1204 uint64_t txtype; 1205 1206 /* 1207 * Create a new file object and update the directory 1208 * to reference it. 1209 */ 1210 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1211 goto out; 1212 } 1213 1214 /* 1215 * We only support the creation of regular files in 1216 * extended attribute directories. 1217 */ 1218 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1219 (vap->va_type != VREG)) { 1220 error = EINVAL; 1221 goto out; 1222 } 1223 1224 tx = dmu_tx_create(os); 1225 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1226 if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(crgetuid(cr)) || 1227 IS_EPHEMERAL(crgetgid(cr))) { 1228 if (zfsvfs->z_fuid_obj == 0) { 1229 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1230 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1231 FUID_SIZE_ESTIMATE(zfsvfs)); 1232 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 1233 FALSE, NULL); 1234 } else { 1235 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1236 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1237 FUID_SIZE_ESTIMATE(zfsvfs)); 1238 } 1239 } 1240 dmu_tx_hold_bonus(tx, dzp->z_id); 1241 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1242 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) { 1243 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1244 0, SPA_MAXBLOCKSIZE); 1245 } 1246 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1247 if (error) { 1248 zfs_dirent_unlock(dl); 1249 if (error == ERESTART && 1250 zfsvfs->z_assign == TXG_NOWAIT) { 1251 dmu_tx_wait(tx); 1252 dmu_tx_abort(tx); 1253 goto top; 1254 } 1255 dmu_tx_abort(tx); 1256 ZFS_EXIT(zfsvfs); 1257 if (aclp) 1258 zfs_acl_free(aclp); 1259 return (error); 1260 } 1261 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1262 (void) zfs_link_create(dl, zp, tx, ZNEW); 1263 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1264 if (flag & FIGNORECASE) 1265 txtype |= TX_CI; 1266 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1267 vsecp, fuidp, vap); 1268 if (fuidp) 1269 zfs_fuid_info_free(fuidp); 1270 dmu_tx_commit(tx); 1271 } else { 1272 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1273 1274 /* 1275 * A directory entry already exists for this name. 1276 */ 1277 /* 1278 * Can't truncate an existing file if in exclusive mode. 1279 */ 1280 if (excl == EXCL) { 1281 error = EEXIST; 1282 goto out; 1283 } 1284 /* 1285 * Can't open a directory for writing. 1286 */ 1287 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1288 error = EISDIR; 1289 goto out; 1290 } 1291 /* 1292 * Verify requested access to file. 1293 */ 1294 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1295 goto out; 1296 } 1297 1298 mutex_enter(&dzp->z_lock); 1299 dzp->z_seq++; 1300 mutex_exit(&dzp->z_lock); 1301 1302 /* 1303 * Truncate regular files if requested. 1304 */ 1305 if ((ZTOV(zp)->v_type == VREG) && 1306 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1307 /* we can't hold any locks when calling zfs_freesp() */ 1308 zfs_dirent_unlock(dl); 1309 dl = NULL; 1310 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1311 if (error == 0) { 1312 vnevent_create(ZTOV(zp), ct); 1313 } 1314 } 1315 } 1316 out: 1317 1318 if (dl) 1319 zfs_dirent_unlock(dl); 1320 1321 if (error) { 1322 if (zp) 1323 VN_RELE(ZTOV(zp)); 1324 } else { 1325 *vpp = ZTOV(zp); 1326 /* 1327 * If vnode is for a device return a specfs vnode instead. 1328 */ 1329 if (IS_DEVVP(*vpp)) { 1330 struct vnode *svp; 1331 1332 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1333 VN_RELE(*vpp); 1334 if (svp == NULL) { 1335 error = ENOSYS; 1336 } 1337 *vpp = svp; 1338 } 1339 } 1340 if (aclp) 1341 zfs_acl_free(aclp); 1342 1343 ZFS_EXIT(zfsvfs); 1344 return (error); 1345 } 1346 1347 /* 1348 * Remove an entry from a directory. 1349 * 1350 * IN: dvp - vnode of directory to remove entry from. 1351 * name - name of entry to remove. 1352 * cr - credentials of caller. 1353 * ct - caller context 1354 * flags - case flags 1355 * 1356 * RETURN: 0 if success 1357 * error code if failure 1358 * 1359 * Timestamps: 1360 * dvp - ctime|mtime 1361 * vp - ctime (if nlink > 0) 1362 */ 1363 /*ARGSUSED*/ 1364 static int 1365 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1366 int flags) 1367 { 1368 znode_t *zp, *dzp = VTOZ(dvp); 1369 znode_t *xzp = NULL; 1370 vnode_t *vp; 1371 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1372 zilog_t *zilog; 1373 uint64_t acl_obj, xattr_obj; 1374 zfs_dirlock_t *dl; 1375 dmu_tx_t *tx; 1376 boolean_t may_delete_now, delete_now = FALSE; 1377 boolean_t unlinked, toobig = FALSE; 1378 uint64_t txtype; 1379 pathname_t *realnmp = NULL; 1380 pathname_t realnm; 1381 int error; 1382 int zflg = ZEXISTS; 1383 1384 ZFS_ENTER(zfsvfs); 1385 ZFS_VERIFY_ZP(dzp); 1386 zilog = zfsvfs->z_log; 1387 1388 if (flags & FIGNORECASE) { 1389 zflg |= ZCILOOK; 1390 pn_alloc(&realnm); 1391 realnmp = &realnm; 1392 } 1393 1394 top: 1395 /* 1396 * Attempt to lock directory; fail if entry doesn't exist. 1397 */ 1398 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1399 NULL, realnmp)) { 1400 if (realnmp) 1401 pn_free(realnmp); 1402 ZFS_EXIT(zfsvfs); 1403 return (error); 1404 } 1405 1406 vp = ZTOV(zp); 1407 1408 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1409 goto out; 1410 } 1411 1412 /* 1413 * Need to use rmdir for removing directories. 1414 */ 1415 if (vp->v_type == VDIR) { 1416 error = EPERM; 1417 goto out; 1418 } 1419 1420 vnevent_remove(vp, dvp, name, ct); 1421 1422 if (realnmp) 1423 dnlc_remove(dvp, realnmp->pn_buf); 1424 else 1425 dnlc_remove(dvp, name); 1426 1427 mutex_enter(&vp->v_lock); 1428 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1429 mutex_exit(&vp->v_lock); 1430 1431 /* 1432 * We may delete the znode now, or we may put it in the unlinked set; 1433 * it depends on whether we're the last link, and on whether there are 1434 * other holds on the vnode. So we dmu_tx_hold() the right things to 1435 * allow for either case. 1436 */ 1437 tx = dmu_tx_create(zfsvfs->z_os); 1438 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1439 dmu_tx_hold_bonus(tx, zp->z_id); 1440 if (may_delete_now) { 1441 toobig = 1442 zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1443 /* if the file is too big, only hold_free a token amount */ 1444 dmu_tx_hold_free(tx, zp->z_id, 0, 1445 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1446 } 1447 1448 /* are there any extended attributes? */ 1449 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1450 /* XXX - do we need this if we are deleting? */ 1451 dmu_tx_hold_bonus(tx, xattr_obj); 1452 } 1453 1454 /* are there any additional acls */ 1455 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1456 may_delete_now) 1457 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1458 1459 /* charge as an update -- would be nice not to charge at all */ 1460 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1461 1462 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1463 if (error) { 1464 zfs_dirent_unlock(dl); 1465 VN_RELE(vp); 1466 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1467 dmu_tx_wait(tx); 1468 dmu_tx_abort(tx); 1469 goto top; 1470 } 1471 if (realnmp) 1472 pn_free(realnmp); 1473 dmu_tx_abort(tx); 1474 ZFS_EXIT(zfsvfs); 1475 return (error); 1476 } 1477 1478 /* 1479 * Remove the directory entry. 1480 */ 1481 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1482 1483 if (error) { 1484 dmu_tx_commit(tx); 1485 goto out; 1486 } 1487 1488 if (unlinked) { 1489 mutex_enter(&vp->v_lock); 1490 delete_now = may_delete_now && !toobig && 1491 vp->v_count == 1 && !vn_has_cached_data(vp) && 1492 zp->z_phys->zp_xattr == xattr_obj && 1493 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1494 mutex_exit(&vp->v_lock); 1495 } 1496 1497 if (delete_now) { 1498 if (zp->z_phys->zp_xattr) { 1499 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1500 ASSERT3U(error, ==, 0); 1501 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1502 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1503 mutex_enter(&xzp->z_lock); 1504 xzp->z_unlinked = 1; 1505 xzp->z_phys->zp_links = 0; 1506 mutex_exit(&xzp->z_lock); 1507 zfs_unlinked_add(xzp, tx); 1508 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1509 } 1510 mutex_enter(&zp->z_lock); 1511 mutex_enter(&vp->v_lock); 1512 vp->v_count--; 1513 ASSERT3U(vp->v_count, ==, 0); 1514 mutex_exit(&vp->v_lock); 1515 mutex_exit(&zp->z_lock); 1516 zfs_znode_delete(zp, tx); 1517 } else if (unlinked) { 1518 zfs_unlinked_add(zp, tx); 1519 } 1520 1521 txtype = TX_REMOVE; 1522 if (flags & FIGNORECASE) 1523 txtype |= TX_CI; 1524 zfs_log_remove(zilog, tx, txtype, dzp, name); 1525 1526 dmu_tx_commit(tx); 1527 out: 1528 if (realnmp) 1529 pn_free(realnmp); 1530 1531 zfs_dirent_unlock(dl); 1532 1533 if (!delete_now) { 1534 VN_RELE(vp); 1535 } else if (xzp) { 1536 /* this rele is delayed to prevent nesting transactions */ 1537 VN_RELE(ZTOV(xzp)); 1538 } 1539 1540 ZFS_EXIT(zfsvfs); 1541 return (error); 1542 } 1543 1544 /* 1545 * Create a new directory and insert it into dvp using the name 1546 * provided. Return a pointer to the inserted directory. 1547 * 1548 * IN: dvp - vnode of directory to add subdir to. 1549 * dirname - name of new directory. 1550 * vap - attributes of new directory. 1551 * cr - credentials of caller. 1552 * ct - caller context 1553 * vsecp - ACL to be set 1554 * 1555 * OUT: vpp - vnode of created directory. 1556 * 1557 * RETURN: 0 if success 1558 * error code if failure 1559 * 1560 * Timestamps: 1561 * dvp - ctime|mtime updated 1562 * vp - ctime|mtime|atime updated 1563 */ 1564 /*ARGSUSED*/ 1565 static int 1566 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1567 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1568 { 1569 znode_t *zp, *dzp = VTOZ(dvp); 1570 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1571 zilog_t *zilog; 1572 zfs_dirlock_t *dl; 1573 uint64_t txtype; 1574 dmu_tx_t *tx; 1575 int error; 1576 zfs_acl_t *aclp = NULL; 1577 zfs_fuid_info_t *fuidp = NULL; 1578 int zf = ZNEW; 1579 1580 ASSERT(vap->va_type == VDIR); 1581 1582 /* 1583 * If we have an ephemeral id, ACL, or XVATTR then 1584 * make sure file system is at proper version 1585 */ 1586 1587 if (zfsvfs->z_use_fuids == B_FALSE && 1588 (vsecp || (vap->va_mask & AT_XVATTR) || IS_EPHEMERAL(crgetuid(cr))|| 1589 IS_EPHEMERAL(crgetgid(cr)))) 1590 return (EINVAL); 1591 1592 ZFS_ENTER(zfsvfs); 1593 ZFS_VERIFY_ZP(dzp); 1594 zilog = zfsvfs->z_log; 1595 1596 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1597 ZFS_EXIT(zfsvfs); 1598 return (EINVAL); 1599 } 1600 1601 if (zfsvfs->z_utf8 && u8_validate(dirname, 1602 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1603 ZFS_EXIT(zfsvfs); 1604 return (EILSEQ); 1605 } 1606 if (flags & FIGNORECASE) 1607 zf |= ZCILOOK; 1608 1609 if (vap->va_mask & AT_XVATTR) 1610 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1611 crgetuid(cr), cr, vap->va_type)) != 0) { 1612 ZFS_EXIT(zfsvfs); 1613 return (error); 1614 } 1615 1616 /* 1617 * First make sure the new directory doesn't exist. 1618 */ 1619 top: 1620 *vpp = NULL; 1621 1622 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1623 NULL, NULL)) { 1624 ZFS_EXIT(zfsvfs); 1625 return (error); 1626 } 1627 1628 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1629 zfs_dirent_unlock(dl); 1630 ZFS_EXIT(zfsvfs); 1631 return (error); 1632 } 1633 1634 if (vsecp && aclp == NULL) { 1635 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1636 if (error) { 1637 zfs_dirent_unlock(dl); 1638 ZFS_EXIT(zfsvfs); 1639 return (error); 1640 } 1641 } 1642 /* 1643 * Add a new entry to the directory. 1644 */ 1645 tx = dmu_tx_create(zfsvfs->z_os); 1646 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1647 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1648 if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(crgetuid(cr)) || 1649 IS_EPHEMERAL(crgetgid(cr))) { 1650 if (zfsvfs->z_fuid_obj == 0) { 1651 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1652 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1653 FUID_SIZE_ESTIMATE(zfsvfs)); 1654 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 1655 } else { 1656 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1657 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1658 FUID_SIZE_ESTIMATE(zfsvfs)); 1659 } 1660 } 1661 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) 1662 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1663 0, SPA_MAXBLOCKSIZE); 1664 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1665 if (error) { 1666 zfs_dirent_unlock(dl); 1667 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1668 dmu_tx_wait(tx); 1669 dmu_tx_abort(tx); 1670 goto top; 1671 } 1672 dmu_tx_abort(tx); 1673 ZFS_EXIT(zfsvfs); 1674 if (aclp) 1675 zfs_acl_free(aclp); 1676 return (error); 1677 } 1678 1679 /* 1680 * Create new node. 1681 */ 1682 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1683 1684 if (aclp) 1685 zfs_acl_free(aclp); 1686 1687 /* 1688 * Now put new name in parent dir. 1689 */ 1690 (void) zfs_link_create(dl, zp, tx, ZNEW); 1691 1692 *vpp = ZTOV(zp); 1693 1694 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1695 if (flags & FIGNORECASE) 1696 txtype |= TX_CI; 1697 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, fuidp, vap); 1698 1699 if (fuidp) 1700 zfs_fuid_info_free(fuidp); 1701 dmu_tx_commit(tx); 1702 1703 zfs_dirent_unlock(dl); 1704 1705 ZFS_EXIT(zfsvfs); 1706 return (0); 1707 } 1708 1709 /* 1710 * Remove a directory subdir entry. If the current working 1711 * directory is the same as the subdir to be removed, the 1712 * remove will fail. 1713 * 1714 * IN: dvp - vnode of directory to remove from. 1715 * name - name of directory to be removed. 1716 * cwd - vnode of current working directory. 1717 * cr - credentials of caller. 1718 * ct - caller context 1719 * flags - case flags 1720 * 1721 * RETURN: 0 if success 1722 * error code if failure 1723 * 1724 * Timestamps: 1725 * dvp - ctime|mtime updated 1726 */ 1727 /*ARGSUSED*/ 1728 static int 1729 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1730 caller_context_t *ct, int flags) 1731 { 1732 znode_t *dzp = VTOZ(dvp); 1733 znode_t *zp; 1734 vnode_t *vp; 1735 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1736 zilog_t *zilog; 1737 zfs_dirlock_t *dl; 1738 dmu_tx_t *tx; 1739 int error; 1740 int zflg = ZEXISTS; 1741 1742 ZFS_ENTER(zfsvfs); 1743 ZFS_VERIFY_ZP(dzp); 1744 zilog = zfsvfs->z_log; 1745 1746 if (flags & FIGNORECASE) 1747 zflg |= ZCILOOK; 1748 top: 1749 zp = NULL; 1750 1751 /* 1752 * Attempt to lock directory; fail if entry doesn't exist. 1753 */ 1754 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1755 NULL, NULL)) { 1756 ZFS_EXIT(zfsvfs); 1757 return (error); 1758 } 1759 1760 vp = ZTOV(zp); 1761 1762 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1763 goto out; 1764 } 1765 1766 if (vp->v_type != VDIR) { 1767 error = ENOTDIR; 1768 goto out; 1769 } 1770 1771 if (vp == cwd) { 1772 error = EINVAL; 1773 goto out; 1774 } 1775 1776 vnevent_rmdir(vp, dvp, name, ct); 1777 1778 /* 1779 * Grab a lock on the directory to make sure that noone is 1780 * trying to add (or lookup) entries while we are removing it. 1781 */ 1782 rw_enter(&zp->z_name_lock, RW_WRITER); 1783 1784 /* 1785 * Grab a lock on the parent pointer to make sure we play well 1786 * with the treewalk and directory rename code. 1787 */ 1788 rw_enter(&zp->z_parent_lock, RW_WRITER); 1789 1790 tx = dmu_tx_create(zfsvfs->z_os); 1791 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1792 dmu_tx_hold_bonus(tx, zp->z_id); 1793 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1794 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1795 if (error) { 1796 rw_exit(&zp->z_parent_lock); 1797 rw_exit(&zp->z_name_lock); 1798 zfs_dirent_unlock(dl); 1799 VN_RELE(vp); 1800 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1801 dmu_tx_wait(tx); 1802 dmu_tx_abort(tx); 1803 goto top; 1804 } 1805 dmu_tx_abort(tx); 1806 ZFS_EXIT(zfsvfs); 1807 return (error); 1808 } 1809 1810 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1811 1812 if (error == 0) { 1813 uint64_t txtype = TX_RMDIR; 1814 if (flags & FIGNORECASE) 1815 txtype |= TX_CI; 1816 zfs_log_remove(zilog, tx, txtype, dzp, name); 1817 } 1818 1819 dmu_tx_commit(tx); 1820 1821 rw_exit(&zp->z_parent_lock); 1822 rw_exit(&zp->z_name_lock); 1823 out: 1824 zfs_dirent_unlock(dl); 1825 1826 VN_RELE(vp); 1827 1828 ZFS_EXIT(zfsvfs); 1829 return (error); 1830 } 1831 1832 /* 1833 * Read as many directory entries as will fit into the provided 1834 * buffer from the given directory cursor position (specified in 1835 * the uio structure. 1836 * 1837 * IN: vp - vnode of directory to read. 1838 * uio - structure supplying read location, range info, 1839 * and return buffer. 1840 * cr - credentials of caller. 1841 * ct - caller context 1842 * flags - case flags 1843 * 1844 * OUT: uio - updated offset and range, buffer filled. 1845 * eofp - set to true if end-of-file detected. 1846 * 1847 * RETURN: 0 if success 1848 * error code if failure 1849 * 1850 * Timestamps: 1851 * vp - atime updated 1852 * 1853 * Note that the low 4 bits of the cookie returned by zap is always zero. 1854 * This allows us to use the low range for "special" directory entries: 1855 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1856 * we use the offset 2 for the '.zfs' directory. 1857 */ 1858 /* ARGSUSED */ 1859 static int 1860 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 1861 caller_context_t *ct, int flags) 1862 { 1863 znode_t *zp = VTOZ(vp); 1864 iovec_t *iovp; 1865 edirent_t *eodp; 1866 dirent64_t *odp; 1867 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1868 objset_t *os; 1869 caddr_t outbuf; 1870 size_t bufsize; 1871 zap_cursor_t zc; 1872 zap_attribute_t zap; 1873 uint_t bytes_wanted; 1874 uint64_t offset; /* must be unsigned; checks for < 1 */ 1875 int local_eof; 1876 int outcount; 1877 int error; 1878 uint8_t prefetch; 1879 boolean_t check_sysattrs; 1880 1881 ZFS_ENTER(zfsvfs); 1882 ZFS_VERIFY_ZP(zp); 1883 1884 /* 1885 * If we are not given an eof variable, 1886 * use a local one. 1887 */ 1888 if (eofp == NULL) 1889 eofp = &local_eof; 1890 1891 /* 1892 * Check for valid iov_len. 1893 */ 1894 if (uio->uio_iov->iov_len <= 0) { 1895 ZFS_EXIT(zfsvfs); 1896 return (EINVAL); 1897 } 1898 1899 /* 1900 * Quit if directory has been removed (posix) 1901 */ 1902 if ((*eofp = zp->z_unlinked) != 0) { 1903 ZFS_EXIT(zfsvfs); 1904 return (0); 1905 } 1906 1907 error = 0; 1908 os = zfsvfs->z_os; 1909 offset = uio->uio_loffset; 1910 prefetch = zp->z_zn_prefetch; 1911 1912 /* 1913 * Initialize the iterator cursor. 1914 */ 1915 if (offset <= 3) { 1916 /* 1917 * Start iteration from the beginning of the directory. 1918 */ 1919 zap_cursor_init(&zc, os, zp->z_id); 1920 } else { 1921 /* 1922 * The offset is a serialized cursor. 1923 */ 1924 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1925 } 1926 1927 /* 1928 * Get space to change directory entries into fs independent format. 1929 */ 1930 iovp = uio->uio_iov; 1931 bytes_wanted = iovp->iov_len; 1932 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1933 bufsize = bytes_wanted; 1934 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1935 odp = (struct dirent64 *)outbuf; 1936 } else { 1937 bufsize = bytes_wanted; 1938 odp = (struct dirent64 *)iovp->iov_base; 1939 } 1940 eodp = (struct edirent *)odp; 1941 1942 /* 1943 * If this VFS supports system attributes; and we're looking at an 1944 * extended attribute directory; and we care about normalization 1945 * conflicts on this vfs; then we must check for normalization 1946 * conflicts with the sysattr name space. 1947 */ 1948 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) && 1949 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 1950 (flags & V_RDDIR_ENTFLAGS); 1951 1952 /* 1953 * Transform to file-system independent format 1954 */ 1955 outcount = 0; 1956 while (outcount < bytes_wanted) { 1957 ino64_t objnum; 1958 ushort_t reclen; 1959 off64_t *next; 1960 1961 /* 1962 * Special case `.', `..', and `.zfs'. 1963 */ 1964 if (offset == 0) { 1965 (void) strcpy(zap.za_name, "."); 1966 zap.za_normalization_conflict = 0; 1967 objnum = zp->z_id; 1968 } else if (offset == 1) { 1969 (void) strcpy(zap.za_name, ".."); 1970 zap.za_normalization_conflict = 0; 1971 objnum = zp->z_phys->zp_parent; 1972 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1973 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1974 zap.za_normalization_conflict = 0; 1975 objnum = ZFSCTL_INO_ROOT; 1976 } else { 1977 /* 1978 * Grab next entry. 1979 */ 1980 if (error = zap_cursor_retrieve(&zc, &zap)) { 1981 if ((*eofp = (error == ENOENT)) != 0) 1982 break; 1983 else 1984 goto update; 1985 } 1986 1987 if (zap.za_integer_length != 8 || 1988 zap.za_num_integers != 1) { 1989 cmn_err(CE_WARN, "zap_readdir: bad directory " 1990 "entry, obj = %lld, offset = %lld\n", 1991 (u_longlong_t)zp->z_id, 1992 (u_longlong_t)offset); 1993 error = ENXIO; 1994 goto update; 1995 } 1996 1997 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 1998 /* 1999 * MacOS X can extract the object type here such as: 2000 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2001 */ 2002 2003 if (check_sysattrs && !zap.za_normalization_conflict) { 2004 zap.za_normalization_conflict = 2005 xattr_sysattr_casechk(zap.za_name); 2006 } 2007 } 2008 2009 if (flags & V_RDDIR_ENTFLAGS) 2010 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2011 else 2012 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2013 2014 /* 2015 * Will this entry fit in the buffer? 2016 */ 2017 if (outcount + reclen > bufsize) { 2018 /* 2019 * Did we manage to fit anything in the buffer? 2020 */ 2021 if (!outcount) { 2022 error = EINVAL; 2023 goto update; 2024 } 2025 break; 2026 } 2027 if (flags & V_RDDIR_ENTFLAGS) { 2028 /* 2029 * Add extended flag entry: 2030 */ 2031 eodp->ed_ino = objnum; 2032 eodp->ed_reclen = reclen; 2033 /* NOTE: ed_off is the offset for the *next* entry */ 2034 next = &(eodp->ed_off); 2035 eodp->ed_eflags = zap.za_normalization_conflict ? 2036 ED_CASE_CONFLICT : 0; 2037 (void) strncpy(eodp->ed_name, zap.za_name, 2038 EDIRENT_NAMELEN(reclen)); 2039 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2040 } else { 2041 /* 2042 * Add normal entry: 2043 */ 2044 odp->d_ino = objnum; 2045 odp->d_reclen = reclen; 2046 /* NOTE: d_off is the offset for the *next* entry */ 2047 next = &(odp->d_off); 2048 (void) strncpy(odp->d_name, zap.za_name, 2049 DIRENT64_NAMELEN(reclen)); 2050 odp = (dirent64_t *)((intptr_t)odp + reclen); 2051 } 2052 outcount += reclen; 2053 2054 ASSERT(outcount <= bufsize); 2055 2056 /* Prefetch znode */ 2057 if (prefetch) 2058 dmu_prefetch(os, objnum, 0, 0); 2059 2060 /* 2061 * Move to the next entry, fill in the previous offset. 2062 */ 2063 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2064 zap_cursor_advance(&zc); 2065 offset = zap_cursor_serialize(&zc); 2066 } else { 2067 offset += 1; 2068 } 2069 *next = offset; 2070 } 2071 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2072 2073 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2074 iovp->iov_base += outcount; 2075 iovp->iov_len -= outcount; 2076 uio->uio_resid -= outcount; 2077 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2078 /* 2079 * Reset the pointer. 2080 */ 2081 offset = uio->uio_loffset; 2082 } 2083 2084 update: 2085 zap_cursor_fini(&zc); 2086 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2087 kmem_free(outbuf, bufsize); 2088 2089 if (error == ENOENT) 2090 error = 0; 2091 2092 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2093 2094 uio->uio_loffset = offset; 2095 ZFS_EXIT(zfsvfs); 2096 return (error); 2097 } 2098 2099 ulong_t zfs_fsync_sync_cnt = 4; 2100 2101 static int 2102 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2103 { 2104 znode_t *zp = VTOZ(vp); 2105 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2106 2107 /* 2108 * Regardless of whether this is required for standards conformance, 2109 * this is the logical behavior when fsync() is called on a file with 2110 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2111 * going to be pushed out as part of the zil_commit(). 2112 */ 2113 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2114 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2115 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2116 2117 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2118 2119 ZFS_ENTER(zfsvfs); 2120 ZFS_VERIFY_ZP(zp); 2121 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2122 ZFS_EXIT(zfsvfs); 2123 return (0); 2124 } 2125 2126 2127 /* 2128 * Get the requested file attributes and place them in the provided 2129 * vattr structure. 2130 * 2131 * IN: vp - vnode of file. 2132 * vap - va_mask identifies requested attributes. 2133 * If AT_XVATTR set, then optional attrs are requested 2134 * flags - ATTR_NOACLCHECK (CIFS server context) 2135 * cr - credentials of caller. 2136 * ct - caller context 2137 * 2138 * OUT: vap - attribute values. 2139 * 2140 * RETURN: 0 (always succeeds) 2141 */ 2142 /* ARGSUSED */ 2143 static int 2144 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2145 caller_context_t *ct) 2146 { 2147 znode_t *zp = VTOZ(vp); 2148 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2149 znode_phys_t *pzp; 2150 int error = 0; 2151 uint64_t links; 2152 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2153 xoptattr_t *xoap = NULL; 2154 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2155 2156 ZFS_ENTER(zfsvfs); 2157 ZFS_VERIFY_ZP(zp); 2158 pzp = zp->z_phys; 2159 2160 mutex_enter(&zp->z_lock); 2161 2162 /* 2163 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2164 * Also, if we are the owner don't bother, since owner should 2165 * always be allowed to read basic attributes of file. 2166 */ 2167 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2168 (pzp->zp_uid != crgetuid(cr))) { 2169 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2170 skipaclchk, cr)) { 2171 mutex_exit(&zp->z_lock); 2172 ZFS_EXIT(zfsvfs); 2173 return (error); 2174 } 2175 } 2176 2177 /* 2178 * Return all attributes. It's cheaper to provide the answer 2179 * than to determine whether we were asked the question. 2180 */ 2181 2182 vap->va_type = vp->v_type; 2183 vap->va_mode = pzp->zp_mode & MODEMASK; 2184 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2185 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2186 vap->va_nodeid = zp->z_id; 2187 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2188 links = pzp->zp_links + 1; 2189 else 2190 links = pzp->zp_links; 2191 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2192 vap->va_size = pzp->zp_size; 2193 vap->va_rdev = vp->v_rdev; 2194 vap->va_seq = zp->z_seq; 2195 2196 /* 2197 * Add in any requested optional attributes and the create time. 2198 * Also set the corresponding bits in the returned attribute bitmap. 2199 */ 2200 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2201 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2202 xoap->xoa_archive = 2203 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2204 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2205 } 2206 2207 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2208 xoap->xoa_readonly = 2209 ((pzp->zp_flags & ZFS_READONLY) != 0); 2210 XVA_SET_RTN(xvap, XAT_READONLY); 2211 } 2212 2213 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2214 xoap->xoa_system = 2215 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2216 XVA_SET_RTN(xvap, XAT_SYSTEM); 2217 } 2218 2219 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2220 xoap->xoa_hidden = 2221 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2222 XVA_SET_RTN(xvap, XAT_HIDDEN); 2223 } 2224 2225 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2226 xoap->xoa_nounlink = 2227 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2228 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2229 } 2230 2231 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2232 xoap->xoa_immutable = 2233 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2234 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2235 } 2236 2237 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2238 xoap->xoa_appendonly = 2239 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2240 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2241 } 2242 2243 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2244 xoap->xoa_nodump = 2245 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2246 XVA_SET_RTN(xvap, XAT_NODUMP); 2247 } 2248 2249 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2250 xoap->xoa_opaque = 2251 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2252 XVA_SET_RTN(xvap, XAT_OPAQUE); 2253 } 2254 2255 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2256 xoap->xoa_av_quarantined = 2257 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2258 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2259 } 2260 2261 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2262 xoap->xoa_av_modified = 2263 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2264 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2265 } 2266 2267 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2268 vp->v_type == VREG && 2269 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2270 size_t len; 2271 dmu_object_info_t doi; 2272 2273 /* 2274 * Only VREG files have anti-virus scanstamps, so we 2275 * won't conflict with symlinks in the bonus buffer. 2276 */ 2277 dmu_object_info_from_db(zp->z_dbuf, &doi); 2278 len = sizeof (xoap->xoa_av_scanstamp) + 2279 sizeof (znode_phys_t); 2280 if (len <= doi.doi_bonus_size) { 2281 /* 2282 * pzp points to the start of the 2283 * znode_phys_t. pzp + 1 points to the 2284 * first byte after the znode_phys_t. 2285 */ 2286 (void) memcpy(xoap->xoa_av_scanstamp, 2287 pzp + 1, 2288 sizeof (xoap->xoa_av_scanstamp)); 2289 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2290 } 2291 } 2292 2293 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2294 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2295 XVA_SET_RTN(xvap, XAT_CREATETIME); 2296 } 2297 } 2298 2299 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2300 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2301 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2302 2303 mutex_exit(&zp->z_lock); 2304 2305 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 2306 2307 if (zp->z_blksz == 0) { 2308 /* 2309 * Block size hasn't been set; suggest maximal I/O transfers. 2310 */ 2311 vap->va_blksize = zfsvfs->z_max_blksz; 2312 } 2313 2314 ZFS_EXIT(zfsvfs); 2315 return (0); 2316 } 2317 2318 /* 2319 * Set the file attributes to the values contained in the 2320 * vattr structure. 2321 * 2322 * IN: vp - vnode of file to be modified. 2323 * vap - new attribute values. 2324 * If AT_XVATTR set, then optional attrs are being set 2325 * flags - ATTR_UTIME set if non-default time values provided. 2326 * - ATTR_NOACLCHECK (CIFS context only). 2327 * cr - credentials of caller. 2328 * ct - caller context 2329 * 2330 * RETURN: 0 if success 2331 * error code if failure 2332 * 2333 * Timestamps: 2334 * vp - ctime updated, mtime updated if size changed. 2335 */ 2336 /* ARGSUSED */ 2337 static int 2338 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2339 caller_context_t *ct) 2340 { 2341 znode_t *zp = VTOZ(vp); 2342 znode_phys_t *pzp; 2343 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2344 zilog_t *zilog; 2345 dmu_tx_t *tx; 2346 vattr_t oldva; 2347 uint_t mask = vap->va_mask; 2348 uint_t saved_mask; 2349 int trim_mask = 0; 2350 uint64_t new_mode; 2351 znode_t *attrzp; 2352 int need_policy = FALSE; 2353 int err; 2354 zfs_fuid_info_t *fuidp = NULL; 2355 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2356 xoptattr_t *xoap; 2357 zfs_acl_t *aclp = NULL; 2358 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2359 2360 if (mask == 0) 2361 return (0); 2362 2363 if (mask & AT_NOSET) 2364 return (EINVAL); 2365 2366 ZFS_ENTER(zfsvfs); 2367 ZFS_VERIFY_ZP(zp); 2368 2369 pzp = zp->z_phys; 2370 zilog = zfsvfs->z_log; 2371 2372 /* 2373 * Make sure that if we have ephemeral uid/gid or xvattr specified 2374 * that file system is at proper version level 2375 */ 2376 2377 if (zfsvfs->z_use_fuids == B_FALSE && 2378 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2379 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2380 (mask & AT_XVATTR))) { 2381 ZFS_EXIT(zfsvfs); 2382 return (EINVAL); 2383 } 2384 2385 if (mask & AT_SIZE && vp->v_type == VDIR) { 2386 ZFS_EXIT(zfsvfs); 2387 return (EISDIR); 2388 } 2389 2390 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2391 ZFS_EXIT(zfsvfs); 2392 return (EINVAL); 2393 } 2394 2395 /* 2396 * If this is an xvattr_t, then get a pointer to the structure of 2397 * optional attributes. If this is NULL, then we have a vattr_t. 2398 */ 2399 xoap = xva_getxoptattr(xvap); 2400 2401 /* 2402 * Immutable files can only alter immutable bit and atime 2403 */ 2404 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2405 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2406 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2407 ZFS_EXIT(zfsvfs); 2408 return (EPERM); 2409 } 2410 2411 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2412 ZFS_EXIT(zfsvfs); 2413 return (EPERM); 2414 } 2415 2416 /* 2417 * Verify timestamps doesn't overflow 32 bits. 2418 * ZFS can handle large timestamps, but 32bit syscalls can't 2419 * handle times greater than 2039. This check should be removed 2420 * once large timestamps are fully supported. 2421 */ 2422 if (mask & (AT_ATIME | AT_MTIME)) { 2423 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2424 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2425 ZFS_EXIT(zfsvfs); 2426 return (EOVERFLOW); 2427 } 2428 } 2429 2430 top: 2431 attrzp = NULL; 2432 2433 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2434 ZFS_EXIT(zfsvfs); 2435 return (EROFS); 2436 } 2437 2438 /* 2439 * First validate permissions 2440 */ 2441 2442 if (mask & AT_SIZE) { 2443 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2444 if (err) { 2445 ZFS_EXIT(zfsvfs); 2446 return (err); 2447 } 2448 /* 2449 * XXX - Note, we are not providing any open 2450 * mode flags here (like FNDELAY), so we may 2451 * block if there are locks present... this 2452 * should be addressed in openat(). 2453 */ 2454 /* XXX - would it be OK to generate a log record here? */ 2455 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2456 if (err) { 2457 ZFS_EXIT(zfsvfs); 2458 return (err); 2459 } 2460 } 2461 2462 if (mask & (AT_ATIME|AT_MTIME) || 2463 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2464 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2465 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2466 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2467 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2468 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2469 skipaclchk, cr); 2470 2471 if (mask & (AT_UID|AT_GID)) { 2472 int idmask = (mask & (AT_UID|AT_GID)); 2473 int take_owner; 2474 int take_group; 2475 2476 /* 2477 * NOTE: even if a new mode is being set, 2478 * we may clear S_ISUID/S_ISGID bits. 2479 */ 2480 2481 if (!(mask & AT_MODE)) 2482 vap->va_mode = pzp->zp_mode; 2483 2484 /* 2485 * Take ownership or chgrp to group we are a member of 2486 */ 2487 2488 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2489 take_group = (mask & AT_GID) && 2490 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2491 2492 /* 2493 * If both AT_UID and AT_GID are set then take_owner and 2494 * take_group must both be set in order to allow taking 2495 * ownership. 2496 * 2497 * Otherwise, send the check through secpolicy_vnode_setattr() 2498 * 2499 */ 2500 2501 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2502 ((idmask == AT_UID) && take_owner) || 2503 ((idmask == AT_GID) && take_group)) { 2504 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2505 skipaclchk, cr) == 0) { 2506 /* 2507 * Remove setuid/setgid for non-privileged users 2508 */ 2509 secpolicy_setid_clear(vap, cr); 2510 trim_mask = (mask & (AT_UID|AT_GID)); 2511 } else { 2512 need_policy = TRUE; 2513 } 2514 } else { 2515 need_policy = TRUE; 2516 } 2517 } 2518 2519 mutex_enter(&zp->z_lock); 2520 oldva.va_mode = pzp->zp_mode; 2521 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2522 if (mask & AT_XVATTR) { 2523 if ((need_policy == FALSE) && 2524 (XVA_ISSET_REQ(xvap, XAT_APPENDONLY) && 2525 xoap->xoa_appendonly != 2526 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) || 2527 (XVA_ISSET_REQ(xvap, XAT_NOUNLINK) && 2528 xoap->xoa_nounlink != 2529 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) || 2530 (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE) && 2531 xoap->xoa_immutable != 2532 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) || 2533 (XVA_ISSET_REQ(xvap, XAT_NODUMP) && 2534 xoap->xoa_nodump != 2535 ((pzp->zp_flags & ZFS_NODUMP) != 0)) || 2536 (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED) && 2537 xoap->xoa_av_modified != 2538 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) || 2539 ((XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED) && 2540 ((vp->v_type != VREG && xoap->xoa_av_quarantined) || 2541 xoap->xoa_av_quarantined != 2542 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)))) || 2543 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) || 2544 (XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2545 need_policy = TRUE; 2546 } 2547 } 2548 2549 mutex_exit(&zp->z_lock); 2550 2551 if (mask & AT_MODE) { 2552 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2553 err = secpolicy_setid_setsticky_clear(vp, vap, 2554 &oldva, cr); 2555 if (err) { 2556 ZFS_EXIT(zfsvfs); 2557 return (err); 2558 } 2559 trim_mask |= AT_MODE; 2560 } else { 2561 need_policy = TRUE; 2562 } 2563 } 2564 2565 if (need_policy) { 2566 /* 2567 * If trim_mask is set then take ownership 2568 * has been granted or write_acl is present and user 2569 * has the ability to modify mode. In that case remove 2570 * UID|GID and or MODE from mask so that 2571 * secpolicy_vnode_setattr() doesn't revoke it. 2572 */ 2573 2574 if (trim_mask) { 2575 saved_mask = vap->va_mask; 2576 vap->va_mask &= ~trim_mask; 2577 } 2578 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2579 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2580 if (err) { 2581 ZFS_EXIT(zfsvfs); 2582 return (err); 2583 } 2584 2585 if (trim_mask) 2586 vap->va_mask |= saved_mask; 2587 } 2588 2589 /* 2590 * secpolicy_vnode_setattr, or take ownership may have 2591 * changed va_mask 2592 */ 2593 mask = vap->va_mask; 2594 2595 tx = dmu_tx_create(zfsvfs->z_os); 2596 dmu_tx_hold_bonus(tx, zp->z_id); 2597 if (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2598 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid))) { 2599 if (zfsvfs->z_fuid_obj == 0) { 2600 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2601 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2602 FUID_SIZE_ESTIMATE(zfsvfs)); 2603 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 2604 } else { 2605 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 2606 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 2607 FUID_SIZE_ESTIMATE(zfsvfs)); 2608 } 2609 } 2610 2611 if (mask & AT_MODE) { 2612 uint64_t pmode = pzp->zp_mode; 2613 2614 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2615 2616 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) { 2617 dmu_tx_abort(tx); 2618 ZFS_EXIT(zfsvfs); 2619 return (err); 2620 } 2621 if (pzp->zp_acl.z_acl_extern_obj) { 2622 /* Are we upgrading ACL from old V0 format to new V1 */ 2623 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2624 pzp->zp_acl.z_acl_version == 2625 ZFS_ACL_VERSION_INITIAL) { 2626 dmu_tx_hold_free(tx, 2627 pzp->zp_acl.z_acl_extern_obj, 0, 2628 DMU_OBJECT_END); 2629 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2630 0, aclp->z_acl_bytes); 2631 } else { 2632 dmu_tx_hold_write(tx, 2633 pzp->zp_acl.z_acl_extern_obj, 0, 2634 aclp->z_acl_bytes); 2635 } 2636 } else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2637 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2638 0, aclp->z_acl_bytes); 2639 } 2640 } 2641 2642 if ((mask & (AT_UID | AT_GID)) && pzp->zp_xattr != 0) { 2643 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2644 if (err) { 2645 dmu_tx_abort(tx); 2646 ZFS_EXIT(zfsvfs); 2647 if (aclp) 2648 zfs_acl_free(aclp); 2649 return (err); 2650 } 2651 dmu_tx_hold_bonus(tx, attrzp->z_id); 2652 } 2653 2654 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2655 if (err) { 2656 if (attrzp) 2657 VN_RELE(ZTOV(attrzp)); 2658 2659 if (aclp) { 2660 zfs_acl_free(aclp); 2661 aclp = NULL; 2662 } 2663 2664 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2665 dmu_tx_wait(tx); 2666 dmu_tx_abort(tx); 2667 goto top; 2668 } 2669 dmu_tx_abort(tx); 2670 ZFS_EXIT(zfsvfs); 2671 return (err); 2672 } 2673 2674 dmu_buf_will_dirty(zp->z_dbuf, tx); 2675 2676 /* 2677 * Set each attribute requested. 2678 * We group settings according to the locks they need to acquire. 2679 * 2680 * Note: you cannot set ctime directly, although it will be 2681 * updated as a side-effect of calling this function. 2682 */ 2683 2684 mutex_enter(&zp->z_lock); 2685 2686 if (mask & AT_MODE) { 2687 mutex_enter(&zp->z_acl_lock); 2688 zp->z_phys->zp_mode = new_mode; 2689 err = zfs_aclset_common(zp, aclp, cr, &fuidp, tx); 2690 ASSERT3U(err, ==, 0); 2691 mutex_exit(&zp->z_acl_lock); 2692 } 2693 2694 if (attrzp) 2695 mutex_enter(&attrzp->z_lock); 2696 2697 if (mask & AT_UID) { 2698 pzp->zp_uid = zfs_fuid_create(zfsvfs, 2699 vap->va_uid, cr, ZFS_OWNER, tx, &fuidp); 2700 if (attrzp) { 2701 attrzp->z_phys->zp_uid = zfs_fuid_create(zfsvfs, 2702 vap->va_uid, cr, ZFS_OWNER, tx, &fuidp); 2703 } 2704 } 2705 2706 if (mask & AT_GID) { 2707 pzp->zp_gid = zfs_fuid_create(zfsvfs, vap->va_gid, 2708 cr, ZFS_GROUP, tx, &fuidp); 2709 if (attrzp) 2710 attrzp->z_phys->zp_gid = zfs_fuid_create(zfsvfs, 2711 vap->va_gid, cr, ZFS_GROUP, tx, &fuidp); 2712 } 2713 2714 if (aclp) 2715 zfs_acl_free(aclp); 2716 2717 if (attrzp) 2718 mutex_exit(&attrzp->z_lock); 2719 2720 if (mask & AT_ATIME) 2721 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2722 2723 if (mask & AT_MTIME) 2724 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2725 2726 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 2727 if (mask & AT_SIZE) 2728 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2729 else if (mask != 0) 2730 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2731 /* 2732 * Do this after setting timestamps to prevent timestamp 2733 * update from toggling bit 2734 */ 2735 2736 if (xoap && (mask & AT_XVATTR)) { 2737 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 2738 size_t len; 2739 dmu_object_info_t doi; 2740 2741 ASSERT(vp->v_type == VREG); 2742 2743 /* Grow the bonus buffer if necessary. */ 2744 dmu_object_info_from_db(zp->z_dbuf, &doi); 2745 len = sizeof (xoap->xoa_av_scanstamp) + 2746 sizeof (znode_phys_t); 2747 if (len > doi.doi_bonus_size) 2748 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 2749 } 2750 zfs_xvattr_set(zp, xvap); 2751 } 2752 2753 if (mask != 0) 2754 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2755 2756 if (fuidp) 2757 zfs_fuid_info_free(fuidp); 2758 mutex_exit(&zp->z_lock); 2759 2760 if (attrzp) 2761 VN_RELE(ZTOV(attrzp)); 2762 2763 dmu_tx_commit(tx); 2764 2765 ZFS_EXIT(zfsvfs); 2766 return (err); 2767 } 2768 2769 typedef struct zfs_zlock { 2770 krwlock_t *zl_rwlock; /* lock we acquired */ 2771 znode_t *zl_znode; /* znode we held */ 2772 struct zfs_zlock *zl_next; /* next in list */ 2773 } zfs_zlock_t; 2774 2775 /* 2776 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2777 */ 2778 static void 2779 zfs_rename_unlock(zfs_zlock_t **zlpp) 2780 { 2781 zfs_zlock_t *zl; 2782 2783 while ((zl = *zlpp) != NULL) { 2784 if (zl->zl_znode != NULL) 2785 VN_RELE(ZTOV(zl->zl_znode)); 2786 rw_exit(zl->zl_rwlock); 2787 *zlpp = zl->zl_next; 2788 kmem_free(zl, sizeof (*zl)); 2789 } 2790 } 2791 2792 /* 2793 * Search back through the directory tree, using the ".." entries. 2794 * Lock each directory in the chain to prevent concurrent renames. 2795 * Fail any attempt to move a directory into one of its own descendants. 2796 * XXX - z_parent_lock can overlap with map or grow locks 2797 */ 2798 static int 2799 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2800 { 2801 zfs_zlock_t *zl; 2802 znode_t *zp = tdzp; 2803 uint64_t rootid = zp->z_zfsvfs->z_root; 2804 uint64_t *oidp = &zp->z_id; 2805 krwlock_t *rwlp = &szp->z_parent_lock; 2806 krw_t rw = RW_WRITER; 2807 2808 /* 2809 * First pass write-locks szp and compares to zp->z_id. 2810 * Later passes read-lock zp and compare to zp->z_parent. 2811 */ 2812 do { 2813 if (!rw_tryenter(rwlp, rw)) { 2814 /* 2815 * Another thread is renaming in this path. 2816 * Note that if we are a WRITER, we don't have any 2817 * parent_locks held yet. 2818 */ 2819 if (rw == RW_READER && zp->z_id > szp->z_id) { 2820 /* 2821 * Drop our locks and restart 2822 */ 2823 zfs_rename_unlock(&zl); 2824 *zlpp = NULL; 2825 zp = tdzp; 2826 oidp = &zp->z_id; 2827 rwlp = &szp->z_parent_lock; 2828 rw = RW_WRITER; 2829 continue; 2830 } else { 2831 /* 2832 * Wait for other thread to drop its locks 2833 */ 2834 rw_enter(rwlp, rw); 2835 } 2836 } 2837 2838 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2839 zl->zl_rwlock = rwlp; 2840 zl->zl_znode = NULL; 2841 zl->zl_next = *zlpp; 2842 *zlpp = zl; 2843 2844 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2845 return (EINVAL); 2846 2847 if (*oidp == rootid) /* We've hit the top */ 2848 return (0); 2849 2850 if (rw == RW_READER) { /* i.e. not the first pass */ 2851 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2852 if (error) 2853 return (error); 2854 zl->zl_znode = zp; 2855 } 2856 oidp = &zp->z_phys->zp_parent; 2857 rwlp = &zp->z_parent_lock; 2858 rw = RW_READER; 2859 2860 } while (zp->z_id != sdzp->z_id); 2861 2862 return (0); 2863 } 2864 2865 /* 2866 * Move an entry from the provided source directory to the target 2867 * directory. Change the entry name as indicated. 2868 * 2869 * IN: sdvp - Source directory containing the "old entry". 2870 * snm - Old entry name. 2871 * tdvp - Target directory to contain the "new entry". 2872 * tnm - New entry name. 2873 * cr - credentials of caller. 2874 * ct - caller context 2875 * flags - case flags 2876 * 2877 * RETURN: 0 if success 2878 * error code if failure 2879 * 2880 * Timestamps: 2881 * sdvp,tdvp - ctime|mtime updated 2882 */ 2883 /*ARGSUSED*/ 2884 static int 2885 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 2886 caller_context_t *ct, int flags) 2887 { 2888 znode_t *tdzp, *szp, *tzp; 2889 znode_t *sdzp = VTOZ(sdvp); 2890 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2891 zilog_t *zilog; 2892 vnode_t *realvp; 2893 zfs_dirlock_t *sdl, *tdl; 2894 dmu_tx_t *tx; 2895 zfs_zlock_t *zl; 2896 int cmp, serr, terr; 2897 int error = 0; 2898 int zflg = 0; 2899 2900 ZFS_ENTER(zfsvfs); 2901 ZFS_VERIFY_ZP(sdzp); 2902 zilog = zfsvfs->z_log; 2903 2904 /* 2905 * Make sure we have the real vp for the target directory. 2906 */ 2907 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 2908 tdvp = realvp; 2909 2910 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2911 ZFS_EXIT(zfsvfs); 2912 return (EXDEV); 2913 } 2914 2915 tdzp = VTOZ(tdvp); 2916 ZFS_VERIFY_ZP(tdzp); 2917 if (zfsvfs->z_utf8 && u8_validate(tnm, 2918 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 2919 ZFS_EXIT(zfsvfs); 2920 return (EILSEQ); 2921 } 2922 2923 if (flags & FIGNORECASE) 2924 zflg |= ZCILOOK; 2925 2926 top: 2927 szp = NULL; 2928 tzp = NULL; 2929 zl = NULL; 2930 2931 /* 2932 * This is to prevent the creation of links into attribute space 2933 * by renaming a linked file into/outof an attribute directory. 2934 * See the comment in zfs_link() for why this is considered bad. 2935 */ 2936 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2937 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2938 ZFS_EXIT(zfsvfs); 2939 return (EINVAL); 2940 } 2941 2942 /* 2943 * Lock source and target directory entries. To prevent deadlock, 2944 * a lock ordering must be defined. We lock the directory with 2945 * the smallest object id first, or if it's a tie, the one with 2946 * the lexically first name. 2947 */ 2948 if (sdzp->z_id < tdzp->z_id) { 2949 cmp = -1; 2950 } else if (sdzp->z_id > tdzp->z_id) { 2951 cmp = 1; 2952 } else { 2953 /* 2954 * First compare the two name arguments without 2955 * considering any case folding. 2956 */ 2957 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 2958 2959 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 2960 ASSERT(error == 0 || !zfsvfs->z_utf8); 2961 if (cmp == 0) { 2962 /* 2963 * POSIX: "If the old argument and the new argument 2964 * both refer to links to the same existing file, 2965 * the rename() function shall return successfully 2966 * and perform no other action." 2967 */ 2968 ZFS_EXIT(zfsvfs); 2969 return (0); 2970 } 2971 /* 2972 * If the file system is case-folding, then we may 2973 * have some more checking to do. A case-folding file 2974 * system is either supporting mixed case sensitivity 2975 * access or is completely case-insensitive. Note 2976 * that the file system is always case preserving. 2977 * 2978 * In mixed sensitivity mode case sensitive behavior 2979 * is the default. FIGNORECASE must be used to 2980 * explicitly request case insensitive behavior. 2981 * 2982 * If the source and target names provided differ only 2983 * by case (e.g., a request to rename 'tim' to 'Tim'), 2984 * we will treat this as a special case in the 2985 * case-insensitive mode: as long as the source name 2986 * is an exact match, we will allow this to proceed as 2987 * a name-change request. 2988 */ 2989 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 2990 (zfsvfs->z_case == ZFS_CASE_MIXED && 2991 flags & FIGNORECASE)) && 2992 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 2993 &error) == 0) { 2994 /* 2995 * case preserving rename request, require exact 2996 * name matches 2997 */ 2998 zflg |= ZCIEXACT; 2999 zflg &= ~ZCILOOK; 3000 } 3001 } 3002 3003 if (cmp < 0) { 3004 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3005 ZEXISTS | zflg, NULL, NULL); 3006 terr = zfs_dirent_lock(&tdl, 3007 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3008 } else { 3009 terr = zfs_dirent_lock(&tdl, 3010 tdzp, tnm, &tzp, zflg, NULL, NULL); 3011 serr = zfs_dirent_lock(&sdl, 3012 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3013 NULL, NULL); 3014 } 3015 3016 if (serr) { 3017 /* 3018 * Source entry invalid or not there. 3019 */ 3020 if (!terr) { 3021 zfs_dirent_unlock(tdl); 3022 if (tzp) 3023 VN_RELE(ZTOV(tzp)); 3024 } 3025 if (strcmp(snm, "..") == 0) 3026 serr = EINVAL; 3027 ZFS_EXIT(zfsvfs); 3028 return (serr); 3029 } 3030 if (terr) { 3031 zfs_dirent_unlock(sdl); 3032 VN_RELE(ZTOV(szp)); 3033 if (strcmp(tnm, "..") == 0) 3034 terr = EINVAL; 3035 ZFS_EXIT(zfsvfs); 3036 return (terr); 3037 } 3038 3039 /* 3040 * Must have write access at the source to remove the old entry 3041 * and write access at the target to create the new entry. 3042 * Note that if target and source are the same, this can be 3043 * done in a single check. 3044 */ 3045 3046 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3047 goto out; 3048 3049 if (ZTOV(szp)->v_type == VDIR) { 3050 /* 3051 * Check to make sure rename is valid. 3052 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3053 */ 3054 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3055 goto out; 3056 } 3057 3058 /* 3059 * Does target exist? 3060 */ 3061 if (tzp) { 3062 /* 3063 * Source and target must be the same type. 3064 */ 3065 if (ZTOV(szp)->v_type == VDIR) { 3066 if (ZTOV(tzp)->v_type != VDIR) { 3067 error = ENOTDIR; 3068 goto out; 3069 } 3070 } else { 3071 if (ZTOV(tzp)->v_type == VDIR) { 3072 error = EISDIR; 3073 goto out; 3074 } 3075 } 3076 /* 3077 * POSIX dictates that when the source and target 3078 * entries refer to the same file object, rename 3079 * must do nothing and exit without error. 3080 */ 3081 if (szp->z_id == tzp->z_id) { 3082 error = 0; 3083 goto out; 3084 } 3085 } 3086 3087 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3088 if (tzp) 3089 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3090 3091 /* 3092 * notify the target directory if it is not the same 3093 * as source directory. 3094 */ 3095 if (tdvp != sdvp) { 3096 vnevent_rename_dest_dir(tdvp, ct); 3097 } 3098 3099 tx = dmu_tx_create(zfsvfs->z_os); 3100 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3101 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3102 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3103 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3104 if (sdzp != tdzp) 3105 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3106 if (tzp) 3107 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3108 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3109 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3110 if (error) { 3111 if (zl != NULL) 3112 zfs_rename_unlock(&zl); 3113 zfs_dirent_unlock(sdl); 3114 zfs_dirent_unlock(tdl); 3115 VN_RELE(ZTOV(szp)); 3116 if (tzp) 3117 VN_RELE(ZTOV(tzp)); 3118 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3119 dmu_tx_wait(tx); 3120 dmu_tx_abort(tx); 3121 goto top; 3122 } 3123 dmu_tx_abort(tx); 3124 ZFS_EXIT(zfsvfs); 3125 return (error); 3126 } 3127 3128 if (tzp) /* Attempt to remove the existing target */ 3129 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3130 3131 if (error == 0) { 3132 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3133 if (error == 0) { 3134 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3135 3136 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3137 ASSERT(error == 0); 3138 3139 zfs_log_rename(zilog, tx, 3140 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3141 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3142 3143 /* Update path information for the target vnode */ 3144 vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm)); 3145 } 3146 } 3147 3148 dmu_tx_commit(tx); 3149 out: 3150 if (zl != NULL) 3151 zfs_rename_unlock(&zl); 3152 3153 zfs_dirent_unlock(sdl); 3154 zfs_dirent_unlock(tdl); 3155 3156 VN_RELE(ZTOV(szp)); 3157 if (tzp) 3158 VN_RELE(ZTOV(tzp)); 3159 3160 ZFS_EXIT(zfsvfs); 3161 return (error); 3162 } 3163 3164 /* 3165 * Insert the indicated symbolic reference entry into the directory. 3166 * 3167 * IN: dvp - Directory to contain new symbolic link. 3168 * link - Name for new symlink entry. 3169 * vap - Attributes of new entry. 3170 * target - Target path of new symlink. 3171 * cr - credentials of caller. 3172 * ct - caller context 3173 * flags - case flags 3174 * 3175 * RETURN: 0 if success 3176 * error code if failure 3177 * 3178 * Timestamps: 3179 * dvp - ctime|mtime updated 3180 */ 3181 /*ARGSUSED*/ 3182 static int 3183 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3184 caller_context_t *ct, int flags) 3185 { 3186 znode_t *zp, *dzp = VTOZ(dvp); 3187 zfs_dirlock_t *dl; 3188 dmu_tx_t *tx; 3189 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3190 zilog_t *zilog; 3191 int len = strlen(link); 3192 int error; 3193 int zflg = ZNEW; 3194 zfs_fuid_info_t *fuidp = NULL; 3195 3196 ASSERT(vap->va_type == VLNK); 3197 3198 ZFS_ENTER(zfsvfs); 3199 ZFS_VERIFY_ZP(dzp); 3200 zilog = zfsvfs->z_log; 3201 3202 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3203 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3204 ZFS_EXIT(zfsvfs); 3205 return (EILSEQ); 3206 } 3207 if (flags & FIGNORECASE) 3208 zflg |= ZCILOOK; 3209 top: 3210 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3211 ZFS_EXIT(zfsvfs); 3212 return (error); 3213 } 3214 3215 if (len > MAXPATHLEN) { 3216 ZFS_EXIT(zfsvfs); 3217 return (ENAMETOOLONG); 3218 } 3219 3220 /* 3221 * Attempt to lock directory; fail if entry already exists. 3222 */ 3223 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3224 if (error) { 3225 ZFS_EXIT(zfsvfs); 3226 return (error); 3227 } 3228 3229 tx = dmu_tx_create(zfsvfs->z_os); 3230 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3231 dmu_tx_hold_bonus(tx, dzp->z_id); 3232 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3233 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 3234 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3235 if (IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr))) { 3236 if (zfsvfs->z_fuid_obj == 0) { 3237 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 3238 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3239 FUID_SIZE_ESTIMATE(zfsvfs)); 3240 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 3241 } else { 3242 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 3243 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 3244 FUID_SIZE_ESTIMATE(zfsvfs)); 3245 } 3246 } 3247 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3248 if (error) { 3249 zfs_dirent_unlock(dl); 3250 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3251 dmu_tx_wait(tx); 3252 dmu_tx_abort(tx); 3253 goto top; 3254 } 3255 dmu_tx_abort(tx); 3256 ZFS_EXIT(zfsvfs); 3257 return (error); 3258 } 3259 3260 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3261 3262 /* 3263 * Create a new object for the symlink. 3264 * Put the link content into bonus buffer if it will fit; 3265 * otherwise, store it just like any other file data. 3266 */ 3267 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3268 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, NULL, &fuidp); 3269 if (len != 0) 3270 bcopy(link, zp->z_phys + 1, len); 3271 } else { 3272 dmu_buf_t *dbp; 3273 3274 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, NULL, &fuidp); 3275 /* 3276 * Nothing can access the znode yet so no locking needed 3277 * for growing the znode's blocksize. 3278 */ 3279 zfs_grow_blocksize(zp, len, tx); 3280 3281 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3282 zp->z_id, 0, FTAG, &dbp)); 3283 dmu_buf_will_dirty(dbp, tx); 3284 3285 ASSERT3U(len, <=, dbp->db_size); 3286 bcopy(link, dbp->db_data, len); 3287 dmu_buf_rele(dbp, FTAG); 3288 } 3289 zp->z_phys->zp_size = len; 3290 3291 /* 3292 * Insert the new object into the directory. 3293 */ 3294 (void) zfs_link_create(dl, zp, tx, ZNEW); 3295 out: 3296 if (error == 0) { 3297 uint64_t txtype = TX_SYMLINK; 3298 if (flags & FIGNORECASE) 3299 txtype |= TX_CI; 3300 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3301 } 3302 if (fuidp) 3303 zfs_fuid_info_free(fuidp); 3304 3305 dmu_tx_commit(tx); 3306 3307 zfs_dirent_unlock(dl); 3308 3309 VN_RELE(ZTOV(zp)); 3310 3311 ZFS_EXIT(zfsvfs); 3312 return (error); 3313 } 3314 3315 /* 3316 * Return, in the buffer contained in the provided uio structure, 3317 * the symbolic path referred to by vp. 3318 * 3319 * IN: vp - vnode of symbolic link. 3320 * uoip - structure to contain the link path. 3321 * cr - credentials of caller. 3322 * ct - caller context 3323 * 3324 * OUT: uio - structure to contain the link path. 3325 * 3326 * RETURN: 0 if success 3327 * error code if failure 3328 * 3329 * Timestamps: 3330 * vp - atime updated 3331 */ 3332 /* ARGSUSED */ 3333 static int 3334 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3335 { 3336 znode_t *zp = VTOZ(vp); 3337 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3338 size_t bufsz; 3339 int error; 3340 3341 ZFS_ENTER(zfsvfs); 3342 ZFS_VERIFY_ZP(zp); 3343 3344 bufsz = (size_t)zp->z_phys->zp_size; 3345 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3346 error = uiomove(zp->z_phys + 1, 3347 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3348 } else { 3349 dmu_buf_t *dbp; 3350 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3351 if (error) { 3352 ZFS_EXIT(zfsvfs); 3353 return (error); 3354 } 3355 error = uiomove(dbp->db_data, 3356 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3357 dmu_buf_rele(dbp, FTAG); 3358 } 3359 3360 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3361 ZFS_EXIT(zfsvfs); 3362 return (error); 3363 } 3364 3365 /* 3366 * Insert a new entry into directory tdvp referencing svp. 3367 * 3368 * IN: tdvp - Directory to contain new entry. 3369 * svp - vnode of new entry. 3370 * name - name of new entry. 3371 * cr - credentials of caller. 3372 * ct - caller context 3373 * 3374 * RETURN: 0 if success 3375 * error code if failure 3376 * 3377 * Timestamps: 3378 * tdvp - ctime|mtime updated 3379 * svp - ctime updated 3380 */ 3381 /* ARGSUSED */ 3382 static int 3383 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3384 caller_context_t *ct, int flags) 3385 { 3386 znode_t *dzp = VTOZ(tdvp); 3387 znode_t *tzp, *szp; 3388 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3389 zilog_t *zilog; 3390 zfs_dirlock_t *dl; 3391 dmu_tx_t *tx; 3392 vnode_t *realvp; 3393 int error; 3394 int zf = ZNEW; 3395 uid_t owner; 3396 3397 ASSERT(tdvp->v_type == VDIR); 3398 3399 ZFS_ENTER(zfsvfs); 3400 ZFS_VERIFY_ZP(dzp); 3401 zilog = zfsvfs->z_log; 3402 3403 if (VOP_REALVP(svp, &realvp, ct) == 0) 3404 svp = realvp; 3405 3406 if (svp->v_vfsp != tdvp->v_vfsp) { 3407 ZFS_EXIT(zfsvfs); 3408 return (EXDEV); 3409 } 3410 szp = VTOZ(svp); 3411 ZFS_VERIFY_ZP(szp); 3412 3413 if (zfsvfs->z_utf8 && u8_validate(name, 3414 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3415 ZFS_EXIT(zfsvfs); 3416 return (EILSEQ); 3417 } 3418 if (flags & FIGNORECASE) 3419 zf |= ZCILOOK; 3420 3421 top: 3422 /* 3423 * We do not support links between attributes and non-attributes 3424 * because of the potential security risk of creating links 3425 * into "normal" file space in order to circumvent restrictions 3426 * imposed in attribute space. 3427 */ 3428 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3429 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3430 ZFS_EXIT(zfsvfs); 3431 return (EINVAL); 3432 } 3433 3434 /* 3435 * POSIX dictates that we return EPERM here. 3436 * Better choices include ENOTSUP or EISDIR. 3437 */ 3438 if (svp->v_type == VDIR) { 3439 ZFS_EXIT(zfsvfs); 3440 return (EPERM); 3441 } 3442 3443 owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER); 3444 if (owner != crgetuid(cr) && 3445 secpolicy_basic_link(cr) != 0) { 3446 ZFS_EXIT(zfsvfs); 3447 return (EPERM); 3448 } 3449 3450 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3451 ZFS_EXIT(zfsvfs); 3452 return (error); 3453 } 3454 3455 /* 3456 * Attempt to lock directory; fail if entry already exists. 3457 */ 3458 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3459 if (error) { 3460 ZFS_EXIT(zfsvfs); 3461 return (error); 3462 } 3463 3464 tx = dmu_tx_create(zfsvfs->z_os); 3465 dmu_tx_hold_bonus(tx, szp->z_id); 3466 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3467 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3468 if (error) { 3469 zfs_dirent_unlock(dl); 3470 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3471 dmu_tx_wait(tx); 3472 dmu_tx_abort(tx); 3473 goto top; 3474 } 3475 dmu_tx_abort(tx); 3476 ZFS_EXIT(zfsvfs); 3477 return (error); 3478 } 3479 3480 error = zfs_link_create(dl, szp, tx, 0); 3481 3482 if (error == 0) { 3483 uint64_t txtype = TX_LINK; 3484 if (flags & FIGNORECASE) 3485 txtype |= TX_CI; 3486 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3487 } 3488 3489 dmu_tx_commit(tx); 3490 3491 zfs_dirent_unlock(dl); 3492 3493 if (error == 0) { 3494 vnevent_link(svp, ct); 3495 } 3496 3497 ZFS_EXIT(zfsvfs); 3498 return (error); 3499 } 3500 3501 /* 3502 * zfs_null_putapage() is used when the file system has been force 3503 * unmounted. It just drops the pages. 3504 */ 3505 /* ARGSUSED */ 3506 static int 3507 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3508 size_t *lenp, int flags, cred_t *cr) 3509 { 3510 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3511 return (0); 3512 } 3513 3514 /* 3515 * Push a page out to disk, klustering if possible. 3516 * 3517 * IN: vp - file to push page to. 3518 * pp - page to push. 3519 * flags - additional flags. 3520 * cr - credentials of caller. 3521 * 3522 * OUT: offp - start of range pushed. 3523 * lenp - len of range pushed. 3524 * 3525 * RETURN: 0 if success 3526 * error code if failure 3527 * 3528 * NOTE: callers must have locked the page to be pushed. On 3529 * exit, the page (and all other pages in the kluster) must be 3530 * unlocked. 3531 */ 3532 /* ARGSUSED */ 3533 static int 3534 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3535 size_t *lenp, int flags, cred_t *cr) 3536 { 3537 znode_t *zp = VTOZ(vp); 3538 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3539 zilog_t *zilog = zfsvfs->z_log; 3540 dmu_tx_t *tx; 3541 rl_t *rl; 3542 u_offset_t off, koff; 3543 size_t len, klen; 3544 uint64_t filesz; 3545 int err; 3546 3547 filesz = zp->z_phys->zp_size; 3548 off = pp->p_offset; 3549 len = PAGESIZE; 3550 /* 3551 * If our blocksize is bigger than the page size, try to kluster 3552 * muiltiple pages so that we write a full block (thus avoiding 3553 * a read-modify-write). 3554 */ 3555 if (off < filesz && zp->z_blksz > PAGESIZE) { 3556 if (!ISP2(zp->z_blksz)) { 3557 /* Only one block in the file. */ 3558 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3559 koff = 0; 3560 } else { 3561 klen = zp->z_blksz; 3562 koff = P2ALIGN(off, (u_offset_t)klen); 3563 } 3564 ASSERT(koff <= filesz); 3565 if (koff + klen > filesz) 3566 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 3567 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3568 } 3569 ASSERT3U(btop(len), ==, btopr(len)); 3570 top: 3571 rl = zfs_range_lock(zp, off, len, RL_WRITER); 3572 /* 3573 * Can't push pages past end-of-file. 3574 */ 3575 filesz = zp->z_phys->zp_size; 3576 if (off >= filesz) { 3577 /* ignore all pages */ 3578 err = 0; 3579 goto out; 3580 } else if (off + len > filesz) { 3581 int npages = btopr(filesz - off); 3582 page_t *trunc; 3583 3584 page_list_break(&pp, &trunc, npages); 3585 /* ignore pages past end of file */ 3586 if (trunc) 3587 pvn_write_done(trunc, flags); 3588 len = filesz - off; 3589 } 3590 3591 tx = dmu_tx_create(zfsvfs->z_os); 3592 dmu_tx_hold_write(tx, zp->z_id, off, len); 3593 dmu_tx_hold_bonus(tx, zp->z_id); 3594 err = dmu_tx_assign(tx, zfsvfs->z_assign); 3595 if (err != 0) { 3596 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3597 zfs_range_unlock(rl); 3598 dmu_tx_wait(tx); 3599 dmu_tx_abort(tx); 3600 err = 0; 3601 goto top; 3602 } 3603 dmu_tx_abort(tx); 3604 goto out; 3605 } 3606 3607 if (zp->z_blksz <= PAGESIZE) { 3608 caddr_t va = ppmapin(pp, PROT_READ, (caddr_t)-1); 3609 ASSERT3U(len, <=, PAGESIZE); 3610 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3611 ppmapout(va); 3612 } else { 3613 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3614 } 3615 3616 if (err == 0) { 3617 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3618 zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0); 3619 dmu_tx_commit(tx); 3620 } 3621 3622 out: 3623 zfs_range_unlock(rl); 3624 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3625 if (offp) 3626 *offp = off; 3627 if (lenp) 3628 *lenp = len; 3629 3630 return (err); 3631 } 3632 3633 /* 3634 * Copy the portion of the file indicated from pages into the file. 3635 * The pages are stored in a page list attached to the files vnode. 3636 * 3637 * IN: vp - vnode of file to push page data to. 3638 * off - position in file to put data. 3639 * len - amount of data to write. 3640 * flags - flags to control the operation. 3641 * cr - credentials of caller. 3642 * ct - caller context. 3643 * 3644 * RETURN: 0 if success 3645 * error code if failure 3646 * 3647 * Timestamps: 3648 * vp - ctime|mtime updated 3649 */ 3650 /*ARGSUSED*/ 3651 static int 3652 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 3653 caller_context_t *ct) 3654 { 3655 znode_t *zp = VTOZ(vp); 3656 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3657 page_t *pp; 3658 size_t io_len; 3659 u_offset_t io_off; 3660 uint64_t filesz; 3661 int error = 0; 3662 3663 ZFS_ENTER(zfsvfs); 3664 ZFS_VERIFY_ZP(zp); 3665 3666 if (len == 0) { 3667 /* 3668 * Search the entire vp list for pages >= off. 3669 */ 3670 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 3671 flags, cr); 3672 goto out; 3673 } 3674 3675 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3676 if (off > filesz) { 3677 /* past end of file */ 3678 ZFS_EXIT(zfsvfs); 3679 return (0); 3680 } 3681 3682 len = MIN(len, filesz - off); 3683 3684 for (io_off = off; io_off < off + len; io_off += io_len) { 3685 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 3686 pp = page_lookup(vp, io_off, 3687 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 3688 } else { 3689 pp = page_lookup_nowait(vp, io_off, 3690 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3691 } 3692 3693 if (pp != NULL && pvn_getdirty(pp, flags)) { 3694 int err; 3695 3696 /* 3697 * Found a dirty page to push 3698 */ 3699 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3700 if (err) 3701 error = err; 3702 } else { 3703 io_len = PAGESIZE; 3704 } 3705 } 3706 out: 3707 if ((flags & B_ASYNC) == 0) 3708 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3709 ZFS_EXIT(zfsvfs); 3710 return (error); 3711 } 3712 3713 /*ARGSUSED*/ 3714 void 3715 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 3716 { 3717 znode_t *zp = VTOZ(vp); 3718 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3719 int error; 3720 3721 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 3722 if (zp->z_dbuf == NULL) { 3723 /* 3724 * The fs has been unmounted, or we did a 3725 * suspend/resume and this file no longer exists. 3726 */ 3727 if (vn_has_cached_data(vp)) { 3728 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3729 B_INVAL, cr); 3730 } 3731 3732 mutex_enter(&zp->z_lock); 3733 vp->v_count = 0; /* count arrives as 1 */ 3734 mutex_exit(&zp->z_lock); 3735 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3736 zfs_znode_free(zp); 3737 return; 3738 } 3739 3740 /* 3741 * Attempt to push any data in the page cache. If this fails 3742 * we will get kicked out later in zfs_zinactive(). 3743 */ 3744 if (vn_has_cached_data(vp)) { 3745 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3746 cr); 3747 } 3748 3749 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3750 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3751 3752 dmu_tx_hold_bonus(tx, zp->z_id); 3753 error = dmu_tx_assign(tx, TXG_WAIT); 3754 if (error) { 3755 dmu_tx_abort(tx); 3756 } else { 3757 dmu_buf_will_dirty(zp->z_dbuf, tx); 3758 mutex_enter(&zp->z_lock); 3759 zp->z_atime_dirty = 0; 3760 mutex_exit(&zp->z_lock); 3761 dmu_tx_commit(tx); 3762 } 3763 } 3764 3765 zfs_zinactive(zp); 3766 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3767 } 3768 3769 /* 3770 * Bounds-check the seek operation. 3771 * 3772 * IN: vp - vnode seeking within 3773 * ooff - old file offset 3774 * noffp - pointer to new file offset 3775 * ct - caller context 3776 * 3777 * RETURN: 0 if success 3778 * EINVAL if new offset invalid 3779 */ 3780 /* ARGSUSED */ 3781 static int 3782 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 3783 caller_context_t *ct) 3784 { 3785 if (vp->v_type == VDIR) 3786 return (0); 3787 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3788 } 3789 3790 /* 3791 * Pre-filter the generic locking function to trap attempts to place 3792 * a mandatory lock on a memory mapped file. 3793 */ 3794 static int 3795 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3796 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 3797 { 3798 znode_t *zp = VTOZ(vp); 3799 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3800 int error; 3801 3802 ZFS_ENTER(zfsvfs); 3803 ZFS_VERIFY_ZP(zp); 3804 3805 /* 3806 * We are following the UFS semantics with respect to mapcnt 3807 * here: If we see that the file is mapped already, then we will 3808 * return an error, but we don't worry about races between this 3809 * function and zfs_map(). 3810 */ 3811 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3812 ZFS_EXIT(zfsvfs); 3813 return (EAGAIN); 3814 } 3815 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 3816 ZFS_EXIT(zfsvfs); 3817 return (error); 3818 } 3819 3820 /* 3821 * If we can't find a page in the cache, we will create a new page 3822 * and fill it with file data. For efficiency, we may try to fill 3823 * multiple pages at once (klustering). 3824 */ 3825 static int 3826 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3827 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3828 { 3829 znode_t *zp = VTOZ(vp); 3830 page_t *pp, *cur_pp; 3831 objset_t *os = zp->z_zfsvfs->z_os; 3832 caddr_t va; 3833 u_offset_t io_off, total; 3834 uint64_t oid = zp->z_id; 3835 size_t io_len; 3836 uint64_t filesz; 3837 int err; 3838 3839 /* 3840 * If we are only asking for a single page don't bother klustering. 3841 */ 3842 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3843 if (off >= filesz) 3844 return (EFAULT); 3845 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 3846 io_off = off; 3847 io_len = PAGESIZE; 3848 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3849 } else { 3850 /* 3851 * Try to fill a kluster of pages (a blocks worth). 3852 */ 3853 size_t klen; 3854 u_offset_t koff; 3855 3856 if (!ISP2(zp->z_blksz)) { 3857 /* Only one block in the file. */ 3858 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3859 koff = 0; 3860 } else { 3861 /* 3862 * It would be ideal to align our offset to the 3863 * blocksize but doing so has resulted in some 3864 * strange application crashes. For now, we 3865 * leave the offset as is and only adjust the 3866 * length if we are off the end of the file. 3867 */ 3868 koff = off; 3869 klen = plsz; 3870 } 3871 ASSERT(koff <= filesz); 3872 if (koff + klen > filesz) 3873 klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff; 3874 ASSERT3U(off, >=, koff); 3875 ASSERT3U(off, <, koff + klen); 3876 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3877 &io_len, koff, klen, 0); 3878 } 3879 if (pp == NULL) { 3880 /* 3881 * Some other thread entered the page before us. 3882 * Return to zfs_getpage to retry the lookup. 3883 */ 3884 *pl = NULL; 3885 return (0); 3886 } 3887 3888 /* 3889 * Fill the pages in the kluster. 3890 */ 3891 cur_pp = pp; 3892 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3893 ASSERT3U(io_off, ==, cur_pp->p_offset); 3894 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3895 err = dmu_read(os, oid, io_off, PAGESIZE, va); 3896 ppmapout(va); 3897 if (err) { 3898 /* On error, toss the entire kluster */ 3899 pvn_read_done(pp, B_ERROR); 3900 return (err); 3901 } 3902 cur_pp = cur_pp->p_next; 3903 } 3904 out: 3905 /* 3906 * Fill in the page list array from the kluster. If 3907 * there are too many pages in the kluster, return 3908 * as many pages as possible starting from the desired 3909 * offset `off'. 3910 * NOTE: the page list will always be null terminated. 3911 */ 3912 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3913 3914 return (0); 3915 } 3916 3917 /* 3918 * Return pointers to the pages for the file region [off, off + len] 3919 * in the pl array. If plsz is greater than len, this function may 3920 * also return page pointers from before or after the specified 3921 * region (i.e. some region [off', off' + plsz]). These additional 3922 * pages are only returned if they are already in the cache, or were 3923 * created as part of a klustered read. 3924 * 3925 * IN: vp - vnode of file to get data from. 3926 * off - position in file to get data from. 3927 * len - amount of data to retrieve. 3928 * plsz - length of provided page list. 3929 * seg - segment to obtain pages for. 3930 * addr - virtual address of fault. 3931 * rw - mode of created pages. 3932 * cr - credentials of caller. 3933 * ct - caller context. 3934 * 3935 * OUT: protp - protection mode of created pages. 3936 * pl - list of pages created. 3937 * 3938 * RETURN: 0 if success 3939 * error code if failure 3940 * 3941 * Timestamps: 3942 * vp - atime updated 3943 */ 3944 /* ARGSUSED */ 3945 static int 3946 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3947 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3948 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3949 { 3950 znode_t *zp = VTOZ(vp); 3951 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3952 page_t *pp, **pl0 = pl; 3953 int need_unlock = 0, err = 0; 3954 offset_t orig_off; 3955 3956 ZFS_ENTER(zfsvfs); 3957 ZFS_VERIFY_ZP(zp); 3958 3959 if (protp) 3960 *protp = PROT_ALL; 3961 3962 /* no faultahead (for now) */ 3963 if (pl == NULL) { 3964 ZFS_EXIT(zfsvfs); 3965 return (0); 3966 } 3967 3968 /* can't fault past EOF */ 3969 if (off >= zp->z_phys->zp_size) { 3970 ZFS_EXIT(zfsvfs); 3971 return (EFAULT); 3972 } 3973 orig_off = off; 3974 3975 /* 3976 * If we already own the lock, then we must be page faulting 3977 * in the middle of a write to this file (i.e., we are writing 3978 * to this file using data from a mapped region of the file). 3979 */ 3980 if (rw_owner(&zp->z_map_lock) != curthread) { 3981 rw_enter(&zp->z_map_lock, RW_WRITER); 3982 need_unlock = TRUE; 3983 } 3984 3985 /* 3986 * Loop through the requested range [off, off + len] looking 3987 * for pages. If we don't find a page, we will need to create 3988 * a new page and fill it with data from the file. 3989 */ 3990 while (len > 0) { 3991 if (plsz < PAGESIZE) 3992 break; 3993 if (pp = page_lookup(vp, off, SE_SHARED)) { 3994 *pl++ = pp; 3995 off += PAGESIZE; 3996 addr += PAGESIZE; 3997 len -= PAGESIZE; 3998 plsz -= PAGESIZE; 3999 } else { 4000 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 4001 if (err) 4002 goto out; 4003 /* 4004 * klustering may have changed our region 4005 * to be block aligned. 4006 */ 4007 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 4008 int delta = off - pp->p_offset; 4009 len += delta; 4010 off -= delta; 4011 addr -= delta; 4012 } 4013 while (*pl) { 4014 pl++; 4015 off += PAGESIZE; 4016 addr += PAGESIZE; 4017 plsz -= PAGESIZE; 4018 if (len > PAGESIZE) 4019 len -= PAGESIZE; 4020 else 4021 len = 0; 4022 } 4023 } 4024 } 4025 4026 /* 4027 * Fill out the page array with any pages already in the cache. 4028 */ 4029 while (plsz > 0) { 4030 pp = page_lookup_nowait(vp, off, SE_SHARED); 4031 if (pp == NULL) 4032 break; 4033 *pl++ = pp; 4034 off += PAGESIZE; 4035 plsz -= PAGESIZE; 4036 } 4037 4038 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4039 out: 4040 /* 4041 * We can't grab the range lock for the page as reader which would 4042 * stop truncation as this leads to deadlock. So we need to recheck 4043 * the file size. 4044 */ 4045 if (orig_off >= zp->z_phys->zp_size) 4046 err = EFAULT; 4047 if (err) { 4048 /* 4049 * Release any pages we have previously locked. 4050 */ 4051 while (pl > pl0) 4052 page_unlock(*--pl); 4053 } 4054 4055 *pl = NULL; 4056 4057 if (need_unlock) 4058 rw_exit(&zp->z_map_lock); 4059 4060 ZFS_EXIT(zfsvfs); 4061 return (err); 4062 } 4063 4064 /* 4065 * Request a memory map for a section of a file. This code interacts 4066 * with common code and the VM system as follows: 4067 * 4068 * common code calls mmap(), which ends up in smmap_common() 4069 * 4070 * this calls VOP_MAP(), which takes you into (say) zfs 4071 * 4072 * zfs_map() calls as_map(), passing segvn_create() as the callback 4073 * 4074 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4075 * 4076 * zfs_addmap() updates z_mapcnt 4077 */ 4078 /*ARGSUSED*/ 4079 static int 4080 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4081 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4082 caller_context_t *ct) 4083 { 4084 znode_t *zp = VTOZ(vp); 4085 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4086 segvn_crargs_t vn_a; 4087 int error; 4088 4089 ZFS_ENTER(zfsvfs); 4090 ZFS_VERIFY_ZP(zp); 4091 4092 if ((prot & PROT_WRITE) && 4093 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4094 ZFS_APPENDONLY))) { 4095 ZFS_EXIT(zfsvfs); 4096 return (EPERM); 4097 } 4098 4099 if ((prot & (PROT_READ | PROT_EXEC)) && 4100 (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) { 4101 ZFS_EXIT(zfsvfs); 4102 return (EACCES); 4103 } 4104 4105 if (vp->v_flag & VNOMAP) { 4106 ZFS_EXIT(zfsvfs); 4107 return (ENOSYS); 4108 } 4109 4110 if (off < 0 || len > MAXOFFSET_T - off) { 4111 ZFS_EXIT(zfsvfs); 4112 return (ENXIO); 4113 } 4114 4115 if (vp->v_type != VREG) { 4116 ZFS_EXIT(zfsvfs); 4117 return (ENODEV); 4118 } 4119 4120 /* 4121 * If file is locked, disallow mapping. 4122 */ 4123 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4124 ZFS_EXIT(zfsvfs); 4125 return (EAGAIN); 4126 } 4127 4128 as_rangelock(as); 4129 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4130 if (error != 0) { 4131 as_rangeunlock(as); 4132 ZFS_EXIT(zfsvfs); 4133 return (error); 4134 } 4135 4136 vn_a.vp = vp; 4137 vn_a.offset = (u_offset_t)off; 4138 vn_a.type = flags & MAP_TYPE; 4139 vn_a.prot = prot; 4140 vn_a.maxprot = maxprot; 4141 vn_a.cred = cr; 4142 vn_a.amp = NULL; 4143 vn_a.flags = flags & ~MAP_TYPE; 4144 vn_a.szc = 0; 4145 vn_a.lgrp_mem_policy_flags = 0; 4146 4147 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4148 4149 as_rangeunlock(as); 4150 ZFS_EXIT(zfsvfs); 4151 return (error); 4152 } 4153 4154 /* ARGSUSED */ 4155 static int 4156 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4157 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4158 caller_context_t *ct) 4159 { 4160 uint64_t pages = btopr(len); 4161 4162 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4163 return (0); 4164 } 4165 4166 /* 4167 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4168 * more accurate mtime for the associated file. Since we don't have a way of 4169 * detecting when the data was actually modified, we have to resort to 4170 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4171 * last page is pushed. The problem occurs when the msync() call is omitted, 4172 * which by far the most common case: 4173 * 4174 * open() 4175 * mmap() 4176 * <modify memory> 4177 * munmap() 4178 * close() 4179 * <time lapse> 4180 * putpage() via fsflush 4181 * 4182 * If we wait until fsflush to come along, we can have a modification time that 4183 * is some arbitrary point in the future. In order to prevent this in the 4184 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4185 * torn down. 4186 */ 4187 /* ARGSUSED */ 4188 static int 4189 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4190 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4191 caller_context_t *ct) 4192 { 4193 uint64_t pages = btopr(len); 4194 4195 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4196 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4197 4198 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4199 vn_has_cached_data(vp)) 4200 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4201 4202 return (0); 4203 } 4204 4205 /* 4206 * Free or allocate space in a file. Currently, this function only 4207 * supports the `F_FREESP' command. However, this command is somewhat 4208 * misnamed, as its functionality includes the ability to allocate as 4209 * well as free space. 4210 * 4211 * IN: vp - vnode of file to free data in. 4212 * cmd - action to take (only F_FREESP supported). 4213 * bfp - section of file to free/alloc. 4214 * flag - current file open mode flags. 4215 * offset - current file offset. 4216 * cr - credentials of caller [UNUSED]. 4217 * ct - caller context. 4218 * 4219 * RETURN: 0 if success 4220 * error code if failure 4221 * 4222 * Timestamps: 4223 * vp - ctime|mtime updated 4224 */ 4225 /* ARGSUSED */ 4226 static int 4227 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4228 offset_t offset, cred_t *cr, caller_context_t *ct) 4229 { 4230 znode_t *zp = VTOZ(vp); 4231 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4232 uint64_t off, len; 4233 int error; 4234 4235 ZFS_ENTER(zfsvfs); 4236 ZFS_VERIFY_ZP(zp); 4237 4238 if (cmd != F_FREESP) { 4239 ZFS_EXIT(zfsvfs); 4240 return (EINVAL); 4241 } 4242 4243 if (error = convoff(vp, bfp, 0, offset)) { 4244 ZFS_EXIT(zfsvfs); 4245 return (error); 4246 } 4247 4248 if (bfp->l_len < 0) { 4249 ZFS_EXIT(zfsvfs); 4250 return (EINVAL); 4251 } 4252 4253 off = bfp->l_start; 4254 len = bfp->l_len; /* 0 means from off to end of file */ 4255 4256 error = zfs_freesp(zp, off, len, flag, TRUE); 4257 4258 ZFS_EXIT(zfsvfs); 4259 return (error); 4260 } 4261 4262 /*ARGSUSED*/ 4263 static int 4264 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4265 { 4266 znode_t *zp = VTOZ(vp); 4267 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4268 uint32_t gen; 4269 uint64_t object = zp->z_id; 4270 zfid_short_t *zfid; 4271 int size, i; 4272 4273 ZFS_ENTER(zfsvfs); 4274 ZFS_VERIFY_ZP(zp); 4275 gen = (uint32_t)zp->z_gen; 4276 4277 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4278 if (fidp->fid_len < size) { 4279 fidp->fid_len = size; 4280 ZFS_EXIT(zfsvfs); 4281 return (ENOSPC); 4282 } 4283 4284 zfid = (zfid_short_t *)fidp; 4285 4286 zfid->zf_len = size; 4287 4288 for (i = 0; i < sizeof (zfid->zf_object); i++) 4289 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4290 4291 /* Must have a non-zero generation number to distinguish from .zfs */ 4292 if (gen == 0) 4293 gen = 1; 4294 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4295 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4296 4297 if (size == LONG_FID_LEN) { 4298 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4299 zfid_long_t *zlfid; 4300 4301 zlfid = (zfid_long_t *)fidp; 4302 4303 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4304 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4305 4306 /* XXX - this should be the generation number for the objset */ 4307 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4308 zlfid->zf_setgen[i] = 0; 4309 } 4310 4311 ZFS_EXIT(zfsvfs); 4312 return (0); 4313 } 4314 4315 static int 4316 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4317 caller_context_t *ct) 4318 { 4319 znode_t *zp, *xzp; 4320 zfsvfs_t *zfsvfs; 4321 zfs_dirlock_t *dl; 4322 int error; 4323 4324 switch (cmd) { 4325 case _PC_LINK_MAX: 4326 *valp = ULONG_MAX; 4327 return (0); 4328 4329 case _PC_FILESIZEBITS: 4330 *valp = 64; 4331 return (0); 4332 4333 case _PC_XATTR_EXISTS: 4334 zp = VTOZ(vp); 4335 zfsvfs = zp->z_zfsvfs; 4336 ZFS_ENTER(zfsvfs); 4337 ZFS_VERIFY_ZP(zp); 4338 *valp = 0; 4339 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4340 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4341 if (error == 0) { 4342 zfs_dirent_unlock(dl); 4343 if (!zfs_dirempty(xzp)) 4344 *valp = 1; 4345 VN_RELE(ZTOV(xzp)); 4346 } else if (error == ENOENT) { 4347 /* 4348 * If there aren't extended attributes, it's the 4349 * same as having zero of them. 4350 */ 4351 error = 0; 4352 } 4353 ZFS_EXIT(zfsvfs); 4354 return (error); 4355 4356 case _PC_SATTR_ENABLED: 4357 case _PC_SATTR_EXISTS: 4358 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) && 4359 (vp->v_type == VREG || vp->v_type == VDIR); 4360 return (0); 4361 4362 case _PC_ACL_ENABLED: 4363 *valp = _ACL_ACE_ENABLED; 4364 return (0); 4365 4366 case _PC_MIN_HOLE_SIZE: 4367 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4368 return (0); 4369 4370 default: 4371 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4372 } 4373 } 4374 4375 /*ARGSUSED*/ 4376 static int 4377 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4378 caller_context_t *ct) 4379 { 4380 znode_t *zp = VTOZ(vp); 4381 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4382 int error; 4383 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4384 4385 ZFS_ENTER(zfsvfs); 4386 ZFS_VERIFY_ZP(zp); 4387 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4388 ZFS_EXIT(zfsvfs); 4389 4390 return (error); 4391 } 4392 4393 /*ARGSUSED*/ 4394 static int 4395 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4396 caller_context_t *ct) 4397 { 4398 znode_t *zp = VTOZ(vp); 4399 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4400 int error; 4401 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4402 4403 ZFS_ENTER(zfsvfs); 4404 ZFS_VERIFY_ZP(zp); 4405 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4406 ZFS_EXIT(zfsvfs); 4407 return (error); 4408 } 4409 4410 /* 4411 * Predeclare these here so that the compiler assumes that 4412 * this is an "old style" function declaration that does 4413 * not include arguments => we won't get type mismatch errors 4414 * in the initializations that follow. 4415 */ 4416 static int zfs_inval(); 4417 static int zfs_isdir(); 4418 4419 static int 4420 zfs_inval() 4421 { 4422 return (EINVAL); 4423 } 4424 4425 static int 4426 zfs_isdir() 4427 { 4428 return (EISDIR); 4429 } 4430 /* 4431 * Directory vnode operations template 4432 */ 4433 vnodeops_t *zfs_dvnodeops; 4434 const fs_operation_def_t zfs_dvnodeops_template[] = { 4435 VOPNAME_OPEN, { .vop_open = zfs_open }, 4436 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4437 VOPNAME_READ, { .error = zfs_isdir }, 4438 VOPNAME_WRITE, { .error = zfs_isdir }, 4439 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4440 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4441 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4442 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4443 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4444 VOPNAME_CREATE, { .vop_create = zfs_create }, 4445 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4446 VOPNAME_LINK, { .vop_link = zfs_link }, 4447 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4448 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4449 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4450 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4451 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4452 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4453 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4454 VOPNAME_FID, { .vop_fid = zfs_fid }, 4455 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4456 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4457 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4458 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4459 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4460 NULL, NULL 4461 }; 4462 4463 /* 4464 * Regular file vnode operations template 4465 */ 4466 vnodeops_t *zfs_fvnodeops; 4467 const fs_operation_def_t zfs_fvnodeops_template[] = { 4468 VOPNAME_OPEN, { .vop_open = zfs_open }, 4469 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4470 VOPNAME_READ, { .vop_read = zfs_read }, 4471 VOPNAME_WRITE, { .vop_write = zfs_write }, 4472 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4473 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4474 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4475 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4476 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4477 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4478 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4479 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4480 VOPNAME_FID, { .vop_fid = zfs_fid }, 4481 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4482 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4483 VOPNAME_SPACE, { .vop_space = zfs_space }, 4484 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4485 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4486 VOPNAME_MAP, { .vop_map = zfs_map }, 4487 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4488 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4489 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4490 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4491 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4492 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4493 NULL, NULL 4494 }; 4495 4496 /* 4497 * Symbolic link vnode operations template 4498 */ 4499 vnodeops_t *zfs_symvnodeops; 4500 const fs_operation_def_t zfs_symvnodeops_template[] = { 4501 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4502 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4503 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4504 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4505 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4506 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4507 VOPNAME_FID, { .vop_fid = zfs_fid }, 4508 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4509 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4510 NULL, NULL 4511 }; 4512 4513 /* 4514 * Extended attribute directory vnode operations template 4515 * This template is identical to the directory vnodes 4516 * operation template except for restricted operations: 4517 * VOP_MKDIR() 4518 * VOP_SYMLINK() 4519 * Note that there are other restrictions embedded in: 4520 * zfs_create() - restrict type to VREG 4521 * zfs_link() - no links into/out of attribute space 4522 * zfs_rename() - no moves into/out of attribute space 4523 */ 4524 vnodeops_t *zfs_xdvnodeops; 4525 const fs_operation_def_t zfs_xdvnodeops_template[] = { 4526 VOPNAME_OPEN, { .vop_open = zfs_open }, 4527 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4528 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4529 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4530 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4531 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4532 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4533 VOPNAME_CREATE, { .vop_create = zfs_create }, 4534 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4535 VOPNAME_LINK, { .vop_link = zfs_link }, 4536 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4537 VOPNAME_MKDIR, { .error = zfs_inval }, 4538 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4539 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4540 VOPNAME_SYMLINK, { .error = zfs_inval }, 4541 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4542 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4543 VOPNAME_FID, { .vop_fid = zfs_fid }, 4544 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4545 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4546 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4547 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4548 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4549 NULL, NULL 4550 }; 4551 4552 /* 4553 * Error vnode operations template 4554 */ 4555 vnodeops_t *zfs_evnodeops; 4556 const fs_operation_def_t zfs_evnodeops_template[] = { 4557 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4558 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4559 NULL, NULL 4560 }; 4561