1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013, 2014 by Delphix. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* Portions Copyright 2007 Jeremy Teo */ 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <vm/kpm.h> 51 #include <vm/seg_kpm.h> 52 #include <sys/mman.h> 53 #include <sys/pathname.h> 54 #include <sys/cmn_err.h> 55 #include <sys/errno.h> 56 #include <sys/unistd.h> 57 #include <sys/zfs_dir.h> 58 #include <sys/zfs_acl.h> 59 #include <sys/zfs_ioctl.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/dmu.h> 62 #include <sys/dmu_objset.h> 63 #include <sys/spa.h> 64 #include <sys/txg.h> 65 #include <sys/dbuf.h> 66 #include <sys/zap.h> 67 #include <sys/sa.h> 68 #include <sys/dirent.h> 69 #include <sys/policy.h> 70 #include <sys/sunddi.h> 71 #include <sys/filio.h> 72 #include <sys/sid.h> 73 #include "fs/fs_subr.h" 74 #include <sys/zfs_ctldir.h> 75 #include <sys/zfs_fuid.h> 76 #include <sys/zfs_sa.h> 77 #include <sys/dnlc.h> 78 #include <sys/zfs_rlock.h> 79 #include <sys/extdirent.h> 80 #include <sys/kidmap.h> 81 #include <sys/cred.h> 82 #include <sys/attr.h> 83 #include <sys/zfs_events.h> 84 #include <sys/fs/zev.h> 85 86 /* 87 * Programming rules. 88 * 89 * Each vnode op performs some logical unit of work. To do this, the ZPL must 90 * properly lock its in-core state, create a DMU transaction, do the work, 91 * record this work in the intent log (ZIL), commit the DMU transaction, 92 * and wait for the intent log to commit if it is a synchronous operation. 93 * Moreover, the vnode ops must work in both normal and log replay context. 94 * The ordering of events is important to avoid deadlocks and references 95 * to freed memory. The example below illustrates the following Big Rules: 96 * 97 * (1) A check must be made in each zfs thread for a mounted file system. 98 * This is done avoiding races using ZFS_ENTER(zfsvfs). 99 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 100 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 101 * can return EIO from the calling function. 102 * 103 * (2) VN_RELE() should always be the last thing except for zil_commit() 104 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 105 * First, if it's the last reference, the vnode/znode 106 * can be freed, so the zp may point to freed memory. Second, the last 107 * reference will call zfs_zinactive(), which may induce a lot of work -- 108 * pushing cached pages (which acquires range locks) and syncing out 109 * cached atime changes. Third, zfs_zinactive() may require a new tx, 110 * which could deadlock the system if you were already holding one. 111 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 112 * 113 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 114 * as they can span dmu_tx_assign() calls. 115 * 116 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 117 * dmu_tx_assign(). This is critical because we don't want to block 118 * while holding locks. 119 * 120 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 121 * reduces lock contention and CPU usage when we must wait (note that if 122 * throughput is constrained by the storage, nearly every transaction 123 * must wait). 124 * 125 * Note, in particular, that if a lock is sometimes acquired before 126 * the tx assigns, and sometimes after (e.g. z_lock), then failing 127 * to use a non-blocking assign can deadlock the system. The scenario: 128 * 129 * Thread A has grabbed a lock before calling dmu_tx_assign(). 130 * Thread B is in an already-assigned tx, and blocks for this lock. 131 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 132 * forever, because the previous txg can't quiesce until B's tx commits. 133 * 134 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 135 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 136 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, 137 * to indicate that this operation has already called dmu_tx_wait(). 138 * This will ensure that we don't retry forever, waiting a short bit 139 * each time. 140 * 141 * (5) If the operation succeeded, generate the intent log entry for it 142 * before dropping locks. This ensures that the ordering of events 143 * in the intent log matches the order in which they actually occurred. 144 * During ZIL replay the zfs_log_* functions will update the sequence 145 * number to indicate the zil transaction has replayed. 146 * 147 * (6) At the end of each vnode op, the DMU tx must always commit, 148 * regardless of whether there were any errors. 149 * 150 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 151 * to ensure that synchronous semantics are provided when necessary. 152 * 153 * In general, this is how things should be ordered in each vnode op: 154 * 155 * ZFS_ENTER(zfsvfs); // exit if unmounted 156 * top: 157 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 158 * rw_enter(...); // grab any other locks you need 159 * tx = dmu_tx_create(...); // get DMU tx 160 * dmu_tx_hold_*(); // hold each object you might modify 161 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 162 * if (error) { 163 * rw_exit(...); // drop locks 164 * zfs_dirent_unlock(dl); // unlock directory entry 165 * VN_RELE(...); // release held vnodes 166 * if (error == ERESTART) { 167 * waited = B_TRUE; 168 * dmu_tx_wait(tx); 169 * dmu_tx_abort(tx); 170 * goto top; 171 * } 172 * dmu_tx_abort(tx); // abort DMU tx 173 * ZFS_EXIT(zfsvfs); // finished in zfs 174 * return (error); // really out of space 175 * } 176 * error = do_real_work(); // do whatever this VOP does 177 * if (error == 0) 178 * zfs_log_*(...); // on success, make ZIL entry 179 * dmu_tx_commit(tx); // commit DMU tx -- error or not 180 * rw_exit(...); // drop locks 181 * zfs_dirent_unlock(dl); // unlock directory entry 182 * VN_RELE(...); // release held vnodes 183 * zil_commit(zilog, foid); // synchronous when necessary 184 * ZFS_EXIT(zfsvfs); // finished in zfs 185 * return (error); // done, report error 186 */ 187 188 /* ARGSUSED */ 189 static int 190 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 191 { 192 znode_t *zp = VTOZ(*vpp); 193 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 194 195 ZFS_ENTER(zfsvfs); 196 ZFS_VERIFY_ZP(zp); 197 198 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 199 ((flag & FAPPEND) == 0)) { 200 ZFS_EXIT(zfsvfs); 201 return (SET_ERROR(EPERM)); 202 } 203 204 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 205 ZTOV(zp)->v_type == VREG && 206 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 207 if (fs_vscan(*vpp, cr, 0) != 0) { 208 ZFS_EXIT(zfsvfs); 209 return (SET_ERROR(EACCES)); 210 } 211 } 212 213 /* Keep a count of the synchronous opens in the znode */ 214 if (flag & (FSYNC | FDSYNC)) 215 atomic_inc_32(&zp->z_sync_cnt); 216 217 ZFS_EXIT(zfsvfs); 218 return (0); 219 } 220 221 /* ARGSUSED */ 222 static int 223 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 224 caller_context_t *ct) 225 { 226 znode_t *zp = VTOZ(vp); 227 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 228 229 /* 230 * Clean up any locks held by this process on the vp. 231 */ 232 cleanlocks(vp, ddi_get_pid(), 0); 233 cleanshares(vp, ddi_get_pid()); 234 235 ZFS_ENTER(zfsvfs); 236 ZFS_VERIFY_ZP(zp); 237 238 /* Decrement the synchronous opens in the znode */ 239 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 240 atomic_dec_32(&zp->z_sync_cnt); 241 242 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 243 ZTOV(zp)->v_type == VREG && 244 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 245 VERIFY(fs_vscan(vp, cr, 1) == 0); 246 247 if (ZTOV(zp)->v_type == VREG && zp->z_new_content) { 248 zp->z_new_content = 0; 249 rw_enter(&rz_zev_rwlock, RW_READER); 250 if (rz_zev_callbacks && 251 rz_zev_callbacks->rz_zev_znode_close_after_update) 252 rz_zev_callbacks->rz_zev_znode_close_after_update(zp); 253 rw_exit(&rz_zev_rwlock); 254 } 255 256 ZFS_EXIT(zfsvfs); 257 return (0); 258 } 259 260 /* 261 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 262 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 263 */ 264 static int 265 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 266 { 267 znode_t *zp = VTOZ(vp); 268 uint64_t noff = (uint64_t)*off; /* new offset */ 269 uint64_t file_sz; 270 int error; 271 boolean_t hole; 272 273 file_sz = zp->z_size; 274 if (noff >= file_sz) { 275 return (SET_ERROR(ENXIO)); 276 } 277 278 if (cmd == _FIO_SEEK_HOLE) 279 hole = B_TRUE; 280 else 281 hole = B_FALSE; 282 283 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 284 285 /* end of file? */ 286 if ((error == ESRCH) || (noff > file_sz)) { 287 /* 288 * Handle the virtual hole at the end of file. 289 */ 290 if (hole) { 291 *off = file_sz; 292 return (0); 293 } 294 return (SET_ERROR(ENXIO)); 295 } 296 297 if (noff < *off) 298 return (error); 299 *off = noff; 300 return (error); 301 } 302 303 /* ARGSUSED */ 304 static int 305 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 306 int *rvalp, caller_context_t *ct) 307 { 308 offset_t off; 309 int error; 310 zfsvfs_t *zfsvfs; 311 znode_t *zp; 312 313 switch (com) { 314 case _FIOFFS: 315 return (zfs_sync(vp->v_vfsp, 0, cred)); 316 317 /* 318 * The following two ioctls are used by bfu. Faking out, 319 * necessary to avoid bfu errors. 320 */ 321 case _FIOGDIO: 322 case _FIOSDIO: 323 return (0); 324 325 case _FIO_SEEK_DATA: 326 case _FIO_SEEK_HOLE: 327 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 328 return (SET_ERROR(EFAULT)); 329 330 zp = VTOZ(vp); 331 zfsvfs = zp->z_zfsvfs; 332 ZFS_ENTER(zfsvfs); 333 ZFS_VERIFY_ZP(zp); 334 335 /* offset parameter is in/out */ 336 error = zfs_holey(vp, com, &off); 337 ZFS_EXIT(zfsvfs); 338 if (error) 339 return (error); 340 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 341 return (SET_ERROR(EFAULT)); 342 return (0); 343 } 344 return (SET_ERROR(ENOTTY)); 345 } 346 347 /* 348 * Utility functions to map and unmap a single physical page. These 349 * are used to manage the mappable copies of ZFS file data, and therefore 350 * do not update ref/mod bits. 351 */ 352 caddr_t 353 zfs_map_page(page_t *pp, enum seg_rw rw) 354 { 355 if (kpm_enable) 356 return (hat_kpm_mapin(pp, 0)); 357 ASSERT(rw == S_READ || rw == S_WRITE); 358 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 359 (caddr_t)-1)); 360 } 361 362 void 363 zfs_unmap_page(page_t *pp, caddr_t addr) 364 { 365 if (kpm_enable) { 366 hat_kpm_mapout(pp, 0, addr); 367 } else { 368 ppmapout(addr); 369 } 370 } 371 372 /* 373 * When a file is memory mapped, we must keep the IO data synchronized 374 * between the DMU cache and the memory mapped pages. What this means: 375 * 376 * On Write: If we find a memory mapped page, we write to *both* 377 * the page and the dmu buffer. 378 */ 379 static void 380 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 381 { 382 int64_t off; 383 384 off = start & PAGEOFFSET; 385 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 386 page_t *pp; 387 uint64_t nbytes = MIN(PAGESIZE - off, len); 388 389 if (pp = page_lookup(vp, start, SE_SHARED)) { 390 caddr_t va; 391 392 va = zfs_map_page(pp, S_WRITE); 393 (void) dmu_read(os, oid, start+off, nbytes, va+off, 394 DMU_READ_PREFETCH); 395 zfs_unmap_page(pp, va); 396 page_unlock(pp); 397 } 398 len -= nbytes; 399 off = 0; 400 } 401 } 402 403 /* 404 * When a file is memory mapped, we must keep the IO data synchronized 405 * between the DMU cache and the memory mapped pages. What this means: 406 * 407 * On Read: We "read" preferentially from memory mapped pages, 408 * else we default from the dmu buffer. 409 * 410 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 411 * the file is memory mapped. 412 */ 413 static int 414 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 415 { 416 znode_t *zp = VTOZ(vp); 417 objset_t *os = zp->z_zfsvfs->z_os; 418 int64_t start, off; 419 int len = nbytes; 420 int error = 0; 421 422 start = uio->uio_loffset; 423 off = start & PAGEOFFSET; 424 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 425 page_t *pp; 426 uint64_t bytes = MIN(PAGESIZE - off, len); 427 428 if (pp = page_lookup(vp, start, SE_SHARED)) { 429 caddr_t va; 430 431 va = zfs_map_page(pp, S_READ); 432 error = uiomove(va + off, bytes, UIO_READ, uio); 433 zfs_unmap_page(pp, va); 434 page_unlock(pp); 435 } else { 436 error = dmu_read_uio(os, zp->z_id, uio, bytes); 437 } 438 len -= bytes; 439 off = 0; 440 if (error) 441 break; 442 } 443 return (error); 444 } 445 446 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 447 448 /* 449 * Read bytes from specified file into supplied buffer. 450 * 451 * IN: vp - vnode of file to be read from. 452 * uio - structure supplying read location, range info, 453 * and return buffer. 454 * ioflag - SYNC flags; used to provide FRSYNC semantics. 455 * cr - credentials of caller. 456 * ct - caller context 457 * 458 * OUT: uio - updated offset and range, buffer filled. 459 * 460 * RETURN: 0 on success, error code on failure. 461 * 462 * Side Effects: 463 * vp - atime updated if byte count > 0 464 */ 465 /* ARGSUSED */ 466 static int 467 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 468 { 469 znode_t *zp = VTOZ(vp); 470 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 471 objset_t *os; 472 ssize_t n, nbytes; 473 int error = 0; 474 rl_t *rl; 475 xuio_t *xuio = NULL; 476 477 ZFS_ENTER(zfsvfs); 478 ZFS_VERIFY_ZP(zp); 479 os = zfsvfs->z_os; 480 481 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 482 ZFS_EXIT(zfsvfs); 483 return (SET_ERROR(EACCES)); 484 } 485 486 /* 487 * Validate file offset 488 */ 489 if (uio->uio_loffset < (offset_t)0) { 490 ZFS_EXIT(zfsvfs); 491 return (SET_ERROR(EINVAL)); 492 } 493 494 /* 495 * Fasttrack empty reads 496 */ 497 if (uio->uio_resid == 0) { 498 ZFS_EXIT(zfsvfs); 499 return (0); 500 } 501 502 /* 503 * Check for mandatory locks 504 */ 505 if (MANDMODE(zp->z_mode)) { 506 if (error = chklock(vp, FREAD, 507 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 508 ZFS_EXIT(zfsvfs); 509 return (error); 510 } 511 } 512 513 /* 514 * If we're in FRSYNC mode, sync out this znode before reading it. 515 */ 516 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 517 zil_commit(zfsvfs->z_log, zp->z_id); 518 519 /* 520 * Lock the range against changes. 521 */ 522 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 523 524 /* 525 * If we are reading past end-of-file we can skip 526 * to the end; but we might still need to set atime. 527 */ 528 if (uio->uio_loffset >= zp->z_size) { 529 error = 0; 530 goto out; 531 } 532 533 ASSERT(uio->uio_loffset < zp->z_size); 534 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 535 536 if ((uio->uio_extflg == UIO_XUIO) && 537 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 538 int nblk; 539 int blksz = zp->z_blksz; 540 uint64_t offset = uio->uio_loffset; 541 542 xuio = (xuio_t *)uio; 543 if ((ISP2(blksz))) { 544 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 545 blksz)) / blksz; 546 } else { 547 ASSERT(offset + n <= blksz); 548 nblk = 1; 549 } 550 (void) dmu_xuio_init(xuio, nblk); 551 552 if (vn_has_cached_data(vp)) { 553 /* 554 * For simplicity, we always allocate a full buffer 555 * even if we only expect to read a portion of a block. 556 */ 557 while (--nblk >= 0) { 558 (void) dmu_xuio_add(xuio, 559 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 560 blksz), 0, blksz); 561 } 562 } 563 } 564 565 while (n > 0) { 566 nbytes = MIN(n, zfs_read_chunk_size - 567 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 568 569 if (vn_has_cached_data(vp)) 570 error = mappedread(vp, nbytes, uio); 571 else 572 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 573 if (error) { 574 /* convert checksum errors into IO errors */ 575 if (error == ECKSUM) 576 error = SET_ERROR(EIO); 577 break; 578 } 579 580 n -= nbytes; 581 } 582 out: 583 zfs_range_unlock(rl); 584 585 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 586 ZFS_EXIT(zfsvfs); 587 return (error); 588 } 589 590 /* 591 * Write the bytes to a file. 592 * 593 * IN: vp - vnode of file to be written to. 594 * uio - structure supplying write location, range info, 595 * and data buffer. 596 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 597 * set if in append mode. 598 * cr - credentials of caller. 599 * ct - caller context (NFS/CIFS fem monitor only) 600 * 601 * OUT: uio - updated offset and range. 602 * 603 * RETURN: 0 on success, error code on failure. 604 * 605 * Timestamps: 606 * vp - ctime|mtime updated if byte count > 0 607 */ 608 609 /* ARGSUSED */ 610 static int 611 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 612 { 613 znode_t *zp = VTOZ(vp); 614 rlim64_t limit = uio->uio_llimit; 615 ssize_t start_resid = uio->uio_resid; 616 ssize_t tx_bytes; 617 uint64_t end_size; 618 dmu_tx_t *tx; 619 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 620 zilog_t *zilog; 621 offset_t woff; 622 ssize_t n, nbytes; 623 rl_t *rl; 624 int max_blksz = zfsvfs->z_max_blksz; 625 int error = 0; 626 arc_buf_t *abuf; 627 iovec_t *aiov = NULL; 628 xuio_t *xuio = NULL; 629 int i_iov = 0; 630 int iovcnt = uio->uio_iovcnt; 631 iovec_t *iovp = uio->uio_iov; 632 int write_eof; 633 int count = 0; 634 sa_bulk_attr_t bulk[4]; 635 uint64_t mtime[2], ctime[2]; 636 ssize_t lock_off, lock_len; 637 638 /* 639 * Fasttrack empty write 640 */ 641 n = start_resid; 642 if (n == 0) 643 return (0); 644 645 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 646 limit = MAXOFFSET_T; 647 648 ZFS_ENTER(zfsvfs); 649 ZFS_VERIFY_ZP(zp); 650 651 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 652 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 653 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 654 &zp->z_size, 8); 655 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 656 &zp->z_pflags, 8); 657 658 /* 659 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 660 * callers might not be able to detect properly that we are read-only, 661 * so check it explicitly here. 662 */ 663 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 664 ZFS_EXIT(zfsvfs); 665 return (SET_ERROR(EROFS)); 666 } 667 668 /* 669 * If immutable or not appending then return EPERM 670 */ 671 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 672 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 673 (uio->uio_loffset < zp->z_size))) { 674 ZFS_EXIT(zfsvfs); 675 return (SET_ERROR(EPERM)); 676 } 677 678 zilog = zfsvfs->z_log; 679 680 /* 681 * Validate file offset 682 */ 683 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 684 if (woff < 0) { 685 ZFS_EXIT(zfsvfs); 686 return (SET_ERROR(EINVAL)); 687 } 688 689 /* 690 * Check for mandatory locks before calling zfs_range_lock() 691 * in order to prevent a deadlock with locks set via fcntl(). 692 */ 693 if (MANDMODE((mode_t)zp->z_mode) && 694 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 695 ZFS_EXIT(zfsvfs); 696 return (error); 697 } 698 699 /* 700 * Pre-fault the pages to ensure slow (eg NFS) pages 701 * don't hold up txg. 702 * Skip this if uio contains loaned arc_buf. 703 */ 704 if ((uio->uio_extflg == UIO_XUIO) && 705 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 706 xuio = (xuio_t *)uio; 707 else 708 uio_prefaultpages(MIN(n, max_blksz), uio); 709 710 /* 711 * If in append mode, set the io offset pointer to eof. 712 */ 713 if (ioflag & FAPPEND) { 714 /* 715 * Obtain an appending range lock to guarantee file append 716 * semantics. We reset the write offset once we have the lock. 717 */ 718 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 719 woff = rl->r_off; 720 if (rl->r_len == UINT64_MAX) { 721 /* 722 * We overlocked the file because this write will cause 723 * the file block size to increase. 724 * Note that zp_size cannot change with this lock held. 725 */ 726 woff = zp->z_size; 727 } 728 uio->uio_loffset = woff; 729 } else { 730 /* 731 * Note that if the file block size will change as a result of 732 * this write, then this range lock will lock the entire file 733 * so that we can re-write the block safely. 734 */ 735 736 /* 737 * If in zev mode, lock offsets are quantized to 1MB chunks 738 * so that we can calculate level 1 checksums later on. 739 */ 740 if (rz_zev_active()) { 741 /* start of this megabyte */ 742 lock_off = P2ALIGN(woff, ZEV_L1_SIZE); 743 /* full megabytes */ 744 lock_len = n + (woff - lock_off); 745 lock_len = P2ROUNDUP(lock_len, ZEV_L1_SIZE); 746 } else { 747 lock_off = woff; 748 lock_len = n; 749 } 750 751 rl = zfs_range_lock(zp, lock_off, lock_len, RL_WRITER); 752 } 753 754 if (woff >= limit) { 755 zfs_range_unlock(rl); 756 ZFS_EXIT(zfsvfs); 757 return (SET_ERROR(EFBIG)); 758 } 759 760 if ((woff + n) > limit || woff > (limit - n)) 761 n = limit - woff; 762 763 /* Will this write extend the file length? */ 764 write_eof = (woff + n > zp->z_size); 765 766 end_size = MAX(zp->z_size, woff + n); 767 768 /* 769 * Write the file in reasonable size chunks. Each chunk is written 770 * in a separate transaction; this keeps the intent log records small 771 * and allows us to do more fine-grained space accounting. 772 */ 773 while (n > 0) { 774 abuf = NULL; 775 woff = uio->uio_loffset; 776 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 777 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 778 if (abuf != NULL) 779 dmu_return_arcbuf(abuf); 780 error = SET_ERROR(EDQUOT); 781 break; 782 } 783 784 if (xuio && abuf == NULL) { 785 ASSERT(i_iov < iovcnt); 786 aiov = &iovp[i_iov]; 787 abuf = dmu_xuio_arcbuf(xuio, i_iov); 788 dmu_xuio_clear(xuio, i_iov); 789 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 790 iovec_t *, aiov, arc_buf_t *, abuf); 791 ASSERT((aiov->iov_base == abuf->b_data) || 792 ((char *)aiov->iov_base - (char *)abuf->b_data + 793 aiov->iov_len == arc_buf_size(abuf))); 794 i_iov++; 795 } else if (abuf == NULL && n >= max_blksz && 796 woff >= zp->z_size && 797 P2PHASE(woff, max_blksz) == 0 && 798 zp->z_blksz == max_blksz) { 799 /* 800 * This write covers a full block. "Borrow" a buffer 801 * from the dmu so that we can fill it before we enter 802 * a transaction. This avoids the possibility of 803 * holding up the transaction if the data copy hangs 804 * up on a pagefault (e.g., from an NFS server mapping). 805 */ 806 size_t cbytes; 807 808 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 809 max_blksz); 810 ASSERT(abuf != NULL); 811 ASSERT(arc_buf_size(abuf) == max_blksz); 812 if (error = uiocopy(abuf->b_data, max_blksz, 813 UIO_WRITE, uio, &cbytes)) { 814 dmu_return_arcbuf(abuf); 815 break; 816 } 817 ASSERT(cbytes == max_blksz); 818 } 819 820 /* 821 * Start a transaction. 822 */ 823 tx = dmu_tx_create(zfsvfs->z_os); 824 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 825 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 826 zfs_sa_upgrade_txholds(tx, zp); 827 error = dmu_tx_assign(tx, TXG_WAIT); 828 if (error) { 829 dmu_tx_abort(tx); 830 if (abuf != NULL) 831 dmu_return_arcbuf(abuf); 832 break; 833 } 834 835 /* 836 * If zfs_range_lock() over-locked we grow the blocksize 837 * and then reduce the lock range. This will only happen 838 * on the first iteration since zfs_range_reduce() will 839 * shrink down r_len to the appropriate size. 840 */ 841 if (rl->r_len == UINT64_MAX) { 842 uint64_t new_blksz; 843 844 if (zp->z_blksz > max_blksz) { 845 ASSERT(!ISP2(zp->z_blksz)); 846 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 847 } else { 848 new_blksz = MIN(end_size, max_blksz); 849 } 850 zfs_grow_blocksize(zp, new_blksz, tx); 851 zfs_range_reduce(rl, woff, n); 852 } 853 854 /* 855 * XXX - should we really limit each write to z_max_blksz? 856 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 857 */ 858 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 859 860 if (abuf == NULL) { 861 tx_bytes = uio->uio_resid; 862 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 863 uio, nbytes, tx); 864 tx_bytes -= uio->uio_resid; 865 } else { 866 tx_bytes = nbytes; 867 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 868 /* 869 * If this is not a full block write, but we are 870 * extending the file past EOF and this data starts 871 * block-aligned, use assign_arcbuf(). Otherwise, 872 * write via dmu_write(). 873 */ 874 if (tx_bytes < max_blksz && (!write_eof || 875 aiov->iov_base != abuf->b_data)) { 876 ASSERT(xuio); 877 dmu_write(zfsvfs->z_os, zp->z_id, woff, 878 aiov->iov_len, aiov->iov_base, tx); 879 dmu_return_arcbuf(abuf); 880 xuio_stat_wbuf_copied(); 881 } else { 882 ASSERT(xuio || tx_bytes == max_blksz); 883 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 884 woff, abuf, tx); 885 } 886 ASSERT(tx_bytes <= uio->uio_resid); 887 uioskip(uio, tx_bytes); 888 } 889 if (tx_bytes && vn_has_cached_data(vp)) { 890 update_pages(vp, woff, 891 tx_bytes, zfsvfs->z_os, zp->z_id); 892 } 893 894 /* 895 * If we made no progress, we're done. If we made even 896 * partial progress, update the znode and ZIL accordingly. 897 */ 898 if (tx_bytes == 0) { 899 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 900 (void *)&zp->z_size, sizeof (uint64_t), tx); 901 dmu_tx_commit(tx); 902 ASSERT(error != 0); 903 break; 904 } 905 906 /* 907 * Clear Set-UID/Set-GID bits on successful write if not 908 * privileged and at least one of the excute bits is set. 909 * 910 * It would be nice to to this after all writes have 911 * been done, but that would still expose the ISUID/ISGID 912 * to another app after the partial write is committed. 913 * 914 * Note: we don't call zfs_fuid_map_id() here because 915 * user 0 is not an ephemeral uid. 916 */ 917 mutex_enter(&zp->z_acl_lock); 918 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 919 (S_IXUSR >> 6))) != 0 && 920 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 921 secpolicy_vnode_setid_retain(cr, 922 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 923 uint64_t newmode; 924 zp->z_mode &= ~(S_ISUID | S_ISGID); 925 newmode = zp->z_mode; 926 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 927 (void *)&newmode, sizeof (uint64_t), tx); 928 } 929 mutex_exit(&zp->z_acl_lock); 930 931 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 932 B_TRUE); 933 934 /* 935 * Update the file size (zp_size) if it has changed; 936 * account for possible concurrent updates. 937 */ 938 while ((end_size = zp->z_size) < uio->uio_loffset) { 939 (void) atomic_cas_64(&zp->z_size, end_size, 940 uio->uio_loffset); 941 ASSERT(error == 0); 942 } 943 /* 944 * If we are replaying and eof is non zero then force 945 * the file size to the specified eof. Note, there's no 946 * concurrency during replay. 947 */ 948 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 949 zp->z_size = zfsvfs->z_replay_eof; 950 951 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 952 953 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 954 dmu_tx_commit(tx); 955 956 if (error != 0) 957 break; 958 ASSERT(tx_bytes == nbytes); 959 n -= nbytes; 960 961 if (!xuio && n > 0) 962 uio_prefaultpages(MIN(n, max_blksz), uio); 963 } 964 965 zfs_range_unlock(rl); 966 967 /* 968 * If we're in replay mode, or we made no progress, return error. 969 * Otherwise, it's at least a partial write, so it's successful. 970 */ 971 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 972 ZFS_EXIT(zfsvfs); 973 return (error); 974 } 975 976 if (ioflag & (FSYNC | FDSYNC) || 977 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 978 zil_commit(zilog, zp->z_id); 979 980 ZFS_EXIT(zfsvfs); 981 return (0); 982 } 983 984 void 985 zfs_get_done(zgd_t *zgd, int error) 986 { 987 znode_t *zp = zgd->zgd_private; 988 objset_t *os = zp->z_zfsvfs->z_os; 989 990 if (zgd->zgd_db) 991 dmu_buf_rele(zgd->zgd_db, zgd); 992 993 zfs_range_unlock(zgd->zgd_rl); 994 995 /* 996 * Release the vnode asynchronously as we currently have the 997 * txg stopped from syncing. 998 */ 999 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1000 1001 if (error == 0 && zgd->zgd_bp) 1002 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1003 1004 kmem_free(zgd, sizeof (zgd_t)); 1005 } 1006 1007 #ifdef DEBUG 1008 static int zil_fault_io = 0; 1009 #endif 1010 1011 /* 1012 * Get data to generate a TX_WRITE intent log record. 1013 */ 1014 int 1015 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1016 { 1017 zfsvfs_t *zfsvfs = arg; 1018 objset_t *os = zfsvfs->z_os; 1019 znode_t *zp; 1020 uint64_t object = lr->lr_foid; 1021 uint64_t offset = lr->lr_offset; 1022 uint64_t size = lr->lr_length; 1023 blkptr_t *bp = &lr->lr_blkptr; 1024 dmu_buf_t *db; 1025 zgd_t *zgd; 1026 int error = 0; 1027 1028 ASSERT(zio != NULL); 1029 ASSERT(size != 0); 1030 1031 /* 1032 * Nothing to do if the file has been removed 1033 */ 1034 if (zfs_zget(zfsvfs, object, &zp) != 0) 1035 return (SET_ERROR(ENOENT)); 1036 if (zp->z_unlinked) { 1037 /* 1038 * Release the vnode asynchronously as we currently have the 1039 * txg stopped from syncing. 1040 */ 1041 VN_RELE_ASYNC(ZTOV(zp), 1042 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1043 return (SET_ERROR(ENOENT)); 1044 } 1045 1046 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1047 zgd->zgd_zilog = zfsvfs->z_log; 1048 zgd->zgd_private = zp; 1049 1050 /* 1051 * Write records come in two flavors: immediate and indirect. 1052 * For small writes it's cheaper to store the data with the 1053 * log record (immediate); for large writes it's cheaper to 1054 * sync the data and get a pointer to it (indirect) so that 1055 * we don't have to write the data twice. 1056 */ 1057 if (buf != NULL) { /* immediate write */ 1058 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1059 /* test for truncation needs to be done while range locked */ 1060 if (offset >= zp->z_size) { 1061 error = SET_ERROR(ENOENT); 1062 } else { 1063 error = dmu_read(os, object, offset, size, buf, 1064 DMU_READ_NO_PREFETCH); 1065 } 1066 ASSERT(error == 0 || error == ENOENT); 1067 } else { /* indirect write */ 1068 /* 1069 * Have to lock the whole block to ensure when it's 1070 * written out and it's checksum is being calculated 1071 * that no one can change the data. We need to re-check 1072 * blocksize after we get the lock in case it's changed! 1073 */ 1074 for (;;) { 1075 uint64_t blkoff; 1076 size = zp->z_blksz; 1077 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1078 offset -= blkoff; 1079 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1080 RL_READER); 1081 if (zp->z_blksz == size) 1082 break; 1083 offset += blkoff; 1084 zfs_range_unlock(zgd->zgd_rl); 1085 } 1086 /* test for truncation needs to be done while range locked */ 1087 if (lr->lr_offset >= zp->z_size) 1088 error = SET_ERROR(ENOENT); 1089 #ifdef DEBUG 1090 if (zil_fault_io) { 1091 error = SET_ERROR(EIO); 1092 zil_fault_io = 0; 1093 } 1094 #endif 1095 if (error == 0) 1096 error = dmu_buf_hold(os, object, offset, zgd, &db, 1097 DMU_READ_NO_PREFETCH); 1098 1099 if (error == 0) { 1100 blkptr_t *obp = dmu_buf_get_blkptr(db); 1101 if (obp) { 1102 ASSERT(BP_IS_HOLE(bp)); 1103 *bp = *obp; 1104 } 1105 1106 zgd->zgd_db = db; 1107 zgd->zgd_bp = bp; 1108 1109 ASSERT(db->db_offset == offset); 1110 ASSERT(db->db_size == size); 1111 1112 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1113 zfs_get_done, zgd); 1114 ASSERT(error || lr->lr_length <= zp->z_blksz); 1115 1116 /* 1117 * On success, we need to wait for the write I/O 1118 * initiated by dmu_sync() to complete before we can 1119 * release this dbuf. We will finish everything up 1120 * in the zfs_get_done() callback. 1121 */ 1122 if (error == 0) 1123 return (0); 1124 1125 if (error == EALREADY) { 1126 lr->lr_common.lrc_txtype = TX_WRITE2; 1127 error = 0; 1128 } 1129 } 1130 } 1131 1132 zfs_get_done(zgd, error); 1133 1134 return (error); 1135 } 1136 1137 /*ARGSUSED*/ 1138 static int 1139 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1140 caller_context_t *ct) 1141 { 1142 znode_t *zp = VTOZ(vp); 1143 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1144 int error; 1145 1146 ZFS_ENTER(zfsvfs); 1147 ZFS_VERIFY_ZP(zp); 1148 1149 if (flag & V_ACE_MASK) 1150 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1151 else 1152 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1153 1154 ZFS_EXIT(zfsvfs); 1155 return (error); 1156 } 1157 1158 /* 1159 * If vnode is for a device return a specfs vnode instead. 1160 */ 1161 static int 1162 specvp_check(vnode_t **vpp, cred_t *cr) 1163 { 1164 int error = 0; 1165 1166 if (IS_DEVVP(*vpp)) { 1167 struct vnode *svp; 1168 1169 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1170 VN_RELE(*vpp); 1171 if (svp == NULL) 1172 error = SET_ERROR(ENOSYS); 1173 *vpp = svp; 1174 } 1175 return (error); 1176 } 1177 1178 1179 /* 1180 * Lookup an entry in a directory, or an extended attribute directory. 1181 * If it exists, return a held vnode reference for it. 1182 * 1183 * IN: dvp - vnode of directory to search. 1184 * nm - name of entry to lookup. 1185 * pnp - full pathname to lookup [UNUSED]. 1186 * flags - LOOKUP_XATTR set if looking for an attribute. 1187 * rdir - root directory vnode [UNUSED]. 1188 * cr - credentials of caller. 1189 * ct - caller context 1190 * direntflags - directory lookup flags 1191 * realpnp - returned pathname. 1192 * 1193 * OUT: vpp - vnode of located entry, NULL if not found. 1194 * 1195 * RETURN: 0 on success, error code on failure. 1196 * 1197 * Timestamps: 1198 * NA 1199 */ 1200 /* ARGSUSED */ 1201 static int 1202 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1203 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1204 int *direntflags, pathname_t *realpnp) 1205 { 1206 znode_t *zdp = VTOZ(dvp); 1207 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1208 int error = 0; 1209 1210 /* fast path */ 1211 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1212 1213 if (dvp->v_type != VDIR) { 1214 return (SET_ERROR(ENOTDIR)); 1215 } else if (zdp->z_sa_hdl == NULL) { 1216 return (SET_ERROR(EIO)); 1217 } 1218 1219 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1220 error = zfs_fastaccesschk_execute(zdp, cr); 1221 if (!error) { 1222 *vpp = dvp; 1223 VN_HOLD(*vpp); 1224 return (0); 1225 } 1226 return (error); 1227 } else { 1228 vnode_t *tvp = dnlc_lookup(dvp, nm); 1229 1230 if (tvp) { 1231 error = zfs_fastaccesschk_execute(zdp, cr); 1232 if (error) { 1233 VN_RELE(tvp); 1234 return (error); 1235 } 1236 if (tvp == DNLC_NO_VNODE) { 1237 VN_RELE(tvp); 1238 return (SET_ERROR(ENOENT)); 1239 } else { 1240 *vpp = tvp; 1241 return (specvp_check(vpp, cr)); 1242 } 1243 } 1244 } 1245 } 1246 1247 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1248 1249 ZFS_ENTER(zfsvfs); 1250 ZFS_VERIFY_ZP(zdp); 1251 1252 *vpp = NULL; 1253 1254 if (flags & LOOKUP_XATTR) { 1255 /* 1256 * If the xattr property is off, refuse the lookup request. 1257 */ 1258 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1259 ZFS_EXIT(zfsvfs); 1260 return (SET_ERROR(EINVAL)); 1261 } 1262 1263 /* 1264 * We don't allow recursive attributes.. 1265 * Maybe someday we will. 1266 */ 1267 if (zdp->z_pflags & ZFS_XATTR) { 1268 ZFS_EXIT(zfsvfs); 1269 return (SET_ERROR(EINVAL)); 1270 } 1271 1272 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1273 ZFS_EXIT(zfsvfs); 1274 return (error); 1275 } 1276 1277 /* 1278 * Do we have permission to get into attribute directory? 1279 */ 1280 1281 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1282 B_FALSE, cr)) { 1283 VN_RELE(*vpp); 1284 *vpp = NULL; 1285 } 1286 1287 ZFS_EXIT(zfsvfs); 1288 return (error); 1289 } 1290 1291 if (dvp->v_type != VDIR) { 1292 ZFS_EXIT(zfsvfs); 1293 return (SET_ERROR(ENOTDIR)); 1294 } 1295 1296 /* 1297 * Check accessibility of directory. 1298 */ 1299 1300 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1301 ZFS_EXIT(zfsvfs); 1302 return (error); 1303 } 1304 1305 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1306 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1307 ZFS_EXIT(zfsvfs); 1308 return (SET_ERROR(EILSEQ)); 1309 } 1310 1311 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1312 if (error == 0) 1313 error = specvp_check(vpp, cr); 1314 1315 ZFS_EXIT(zfsvfs); 1316 return (error); 1317 } 1318 1319 /* 1320 * Attempt to create a new entry in a directory. If the entry 1321 * already exists, truncate the file if permissible, else return 1322 * an error. Return the vp of the created or trunc'd file. 1323 * 1324 * IN: dvp - vnode of directory to put new file entry in. 1325 * name - name of new file entry. 1326 * vap - attributes of new file. 1327 * excl - flag indicating exclusive or non-exclusive mode. 1328 * mode - mode to open file with. 1329 * cr - credentials of caller. 1330 * flag - large file flag [UNUSED]. 1331 * ct - caller context 1332 * vsecp - ACL to be set 1333 * 1334 * OUT: vpp - vnode of created or trunc'd entry. 1335 * 1336 * RETURN: 0 on success, error code on failure. 1337 * 1338 * Timestamps: 1339 * dvp - ctime|mtime updated if new entry created 1340 * vp - ctime|mtime always, atime if new 1341 */ 1342 1343 /* ARGSUSED */ 1344 static int 1345 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1346 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1347 vsecattr_t *vsecp) 1348 { 1349 znode_t *zp, *dzp = VTOZ(dvp); 1350 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1351 zilog_t *zilog; 1352 objset_t *os; 1353 zfs_dirlock_t *dl; 1354 dmu_tx_t *tx; 1355 int error; 1356 ksid_t *ksid; 1357 uid_t uid; 1358 gid_t gid = crgetgid(cr); 1359 zfs_acl_ids_t acl_ids; 1360 boolean_t fuid_dirtied; 1361 boolean_t have_acl = B_FALSE; 1362 boolean_t waited = B_FALSE; 1363 1364 /* 1365 * If we have an ephemeral id, ACL, or XVATTR then 1366 * make sure file system is at proper version 1367 */ 1368 1369 ksid = crgetsid(cr, KSID_OWNER); 1370 if (ksid) 1371 uid = ksid_getid(ksid); 1372 else 1373 uid = crgetuid(cr); 1374 1375 if (zfsvfs->z_use_fuids == B_FALSE && 1376 (vsecp || (vap->va_mask & AT_XVATTR) || 1377 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1378 return (SET_ERROR(EINVAL)); 1379 1380 ZFS_ENTER(zfsvfs); 1381 ZFS_VERIFY_ZP(dzp); 1382 os = zfsvfs->z_os; 1383 zilog = zfsvfs->z_log; 1384 1385 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1386 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1387 ZFS_EXIT(zfsvfs); 1388 return (SET_ERROR(EILSEQ)); 1389 } 1390 1391 if (vap->va_mask & AT_XVATTR) { 1392 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1393 crgetuid(cr), cr, vap->va_type)) != 0) { 1394 ZFS_EXIT(zfsvfs); 1395 return (error); 1396 } 1397 } 1398 top: 1399 *vpp = NULL; 1400 1401 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1402 vap->va_mode &= ~VSVTX; 1403 1404 if (*name == '\0') { 1405 /* 1406 * Null component name refers to the directory itself. 1407 */ 1408 VN_HOLD(dvp); 1409 zp = dzp; 1410 dl = NULL; 1411 error = 0; 1412 } else { 1413 /* possible VN_HOLD(zp) */ 1414 int zflg = 0; 1415 1416 if (flag & FIGNORECASE) 1417 zflg |= ZCILOOK; 1418 1419 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1420 NULL, NULL); 1421 if (error) { 1422 if (have_acl) 1423 zfs_acl_ids_free(&acl_ids); 1424 if (strcmp(name, "..") == 0) 1425 error = SET_ERROR(EISDIR); 1426 ZFS_EXIT(zfsvfs); 1427 return (error); 1428 } 1429 } 1430 1431 if (zp == NULL) { 1432 uint64_t txtype; 1433 1434 /* 1435 * Create a new file object and update the directory 1436 * to reference it. 1437 */ 1438 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1439 if (have_acl) 1440 zfs_acl_ids_free(&acl_ids); 1441 goto out; 1442 } 1443 1444 /* 1445 * We only support the creation of regular files in 1446 * extended attribute directories. 1447 */ 1448 1449 if ((dzp->z_pflags & ZFS_XATTR) && 1450 (vap->va_type != VREG)) { 1451 if (have_acl) 1452 zfs_acl_ids_free(&acl_ids); 1453 error = SET_ERROR(EINVAL); 1454 goto out; 1455 } 1456 1457 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1458 cr, vsecp, &acl_ids)) != 0) 1459 goto out; 1460 have_acl = B_TRUE; 1461 1462 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1463 zfs_acl_ids_free(&acl_ids); 1464 error = SET_ERROR(EDQUOT); 1465 goto out; 1466 } 1467 1468 tx = dmu_tx_create(os); 1469 1470 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1471 ZFS_SA_BASE_ATTR_SIZE); 1472 1473 fuid_dirtied = zfsvfs->z_fuid_dirty; 1474 if (fuid_dirtied) 1475 zfs_fuid_txhold(zfsvfs, tx); 1476 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1477 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1478 if (!zfsvfs->z_use_sa && 1479 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1480 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1481 0, acl_ids.z_aclp->z_acl_bytes); 1482 } 1483 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1484 if (error) { 1485 zfs_dirent_unlock(dl); 1486 if (error == ERESTART) { 1487 waited = B_TRUE; 1488 dmu_tx_wait(tx); 1489 dmu_tx_abort(tx); 1490 goto top; 1491 } 1492 zfs_acl_ids_free(&acl_ids); 1493 dmu_tx_abort(tx); 1494 ZFS_EXIT(zfsvfs); 1495 return (error); 1496 } 1497 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1498 1499 if (fuid_dirtied) 1500 zfs_fuid_sync(zfsvfs, tx); 1501 1502 (void) zfs_link_create(dl, zp, tx, ZNEW); 1503 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1504 if (flag & FIGNORECASE) 1505 txtype |= TX_CI; 1506 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1507 vsecp, acl_ids.z_fuidp, vap); 1508 zfs_acl_ids_free(&acl_ids); 1509 dmu_tx_commit(tx); 1510 } else { 1511 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1512 1513 if (have_acl) 1514 zfs_acl_ids_free(&acl_ids); 1515 have_acl = B_FALSE; 1516 1517 /* 1518 * A directory entry already exists for this name. 1519 */ 1520 /* 1521 * Can't truncate an existing file if in exclusive mode. 1522 */ 1523 if (excl == EXCL) { 1524 error = SET_ERROR(EEXIST); 1525 goto out; 1526 } 1527 /* 1528 * Can't open a directory for writing. 1529 */ 1530 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1531 error = SET_ERROR(EISDIR); 1532 goto out; 1533 } 1534 /* 1535 * Verify requested access to file. 1536 */ 1537 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1538 goto out; 1539 } 1540 1541 mutex_enter(&dzp->z_lock); 1542 dzp->z_seq++; 1543 mutex_exit(&dzp->z_lock); 1544 1545 /* 1546 * Truncate regular files if requested. 1547 */ 1548 if ((ZTOV(zp)->v_type == VREG) && 1549 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1550 /* we can't hold any locks when calling zfs_freesp() */ 1551 zfs_dirent_unlock(dl); 1552 dl = NULL; 1553 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1554 if (error == 0) { 1555 vnevent_create(ZTOV(zp), ct); 1556 } 1557 } 1558 } 1559 out: 1560 1561 if (dl) 1562 zfs_dirent_unlock(dl); 1563 1564 if (error) { 1565 if (zp) 1566 VN_RELE(ZTOV(zp)); 1567 } else { 1568 *vpp = ZTOV(zp); 1569 error = specvp_check(vpp, cr); 1570 } 1571 1572 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1573 zil_commit(zilog, 0); 1574 1575 ZFS_EXIT(zfsvfs); 1576 return (error); 1577 } 1578 1579 /* 1580 * Remove an entry from a directory. 1581 * 1582 * IN: dvp - vnode of directory to remove entry from. 1583 * name - name of entry to remove. 1584 * cr - credentials of caller. 1585 * ct - caller context 1586 * flags - case flags 1587 * 1588 * RETURN: 0 on success, error code on failure. 1589 * 1590 * Timestamps: 1591 * dvp - ctime|mtime 1592 * vp - ctime (if nlink > 0) 1593 */ 1594 1595 uint64_t null_xattr = 0; 1596 1597 /*ARGSUSED*/ 1598 static int 1599 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1600 int flags) 1601 { 1602 znode_t *zp, *dzp = VTOZ(dvp); 1603 znode_t *xzp; 1604 vnode_t *vp; 1605 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1606 zilog_t *zilog; 1607 uint64_t acl_obj, xattr_obj; 1608 uint64_t xattr_obj_unlinked = 0; 1609 uint64_t obj = 0; 1610 zfs_dirlock_t *dl; 1611 dmu_tx_t *tx; 1612 boolean_t may_delete_now, delete_now = FALSE; 1613 boolean_t unlinked, toobig = FALSE; 1614 uint64_t txtype; 1615 pathname_t *realnmp = NULL; 1616 pathname_t realnm; 1617 int error; 1618 int zflg = ZEXISTS; 1619 boolean_t waited = B_FALSE; 1620 1621 ZFS_ENTER(zfsvfs); 1622 ZFS_VERIFY_ZP(dzp); 1623 zilog = zfsvfs->z_log; 1624 1625 if (flags & FIGNORECASE) { 1626 zflg |= ZCILOOK; 1627 pn_alloc(&realnm); 1628 realnmp = &realnm; 1629 } 1630 1631 top: 1632 xattr_obj = 0; 1633 xzp = NULL; 1634 /* 1635 * Attempt to lock directory; fail if entry doesn't exist. 1636 */ 1637 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1638 NULL, realnmp)) { 1639 if (realnmp) 1640 pn_free(realnmp); 1641 ZFS_EXIT(zfsvfs); 1642 return (error); 1643 } 1644 1645 vp = ZTOV(zp); 1646 1647 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1648 goto out; 1649 } 1650 1651 /* 1652 * Need to use rmdir for removing directories. 1653 */ 1654 if (vp->v_type == VDIR) { 1655 error = SET_ERROR(EPERM); 1656 goto out; 1657 } 1658 1659 vnevent_remove(vp, dvp, name, ct); 1660 1661 if (realnmp) 1662 dnlc_remove(dvp, realnmp->pn_buf); 1663 else 1664 dnlc_remove(dvp, name); 1665 1666 mutex_enter(&vp->v_lock); 1667 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1668 mutex_exit(&vp->v_lock); 1669 1670 /* 1671 * We may delete the znode now, or we may put it in the unlinked set; 1672 * it depends on whether we're the last link, and on whether there are 1673 * other holds on the vnode. So we dmu_tx_hold() the right things to 1674 * allow for either case. 1675 */ 1676 obj = zp->z_id; 1677 tx = dmu_tx_create(zfsvfs->z_os); 1678 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1679 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1680 zfs_sa_upgrade_txholds(tx, zp); 1681 zfs_sa_upgrade_txholds(tx, dzp); 1682 if (may_delete_now) { 1683 toobig = 1684 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1685 /* if the file is too big, only hold_free a token amount */ 1686 dmu_tx_hold_free(tx, zp->z_id, 0, 1687 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1688 } 1689 1690 /* are there any extended attributes? */ 1691 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1692 &xattr_obj, sizeof (xattr_obj)); 1693 if (error == 0 && xattr_obj) { 1694 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1695 ASSERT0(error); 1696 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1697 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1698 } 1699 1700 mutex_enter(&zp->z_lock); 1701 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1702 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1703 mutex_exit(&zp->z_lock); 1704 1705 /* charge as an update -- would be nice not to charge at all */ 1706 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1707 1708 /* 1709 * Mark this transaction as typically resulting in a net free of 1710 * space, unless object removal will be delayed indefinitely 1711 * (due to active holds on the vnode due to the file being open). 1712 */ 1713 if (may_delete_now) 1714 dmu_tx_mark_netfree(tx); 1715 1716 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1717 if (error) { 1718 zfs_dirent_unlock(dl); 1719 VN_RELE(vp); 1720 if (xzp) 1721 VN_RELE(ZTOV(xzp)); 1722 if (error == ERESTART) { 1723 waited = B_TRUE; 1724 dmu_tx_wait(tx); 1725 dmu_tx_abort(tx); 1726 goto top; 1727 } 1728 if (realnmp) 1729 pn_free(realnmp); 1730 dmu_tx_abort(tx); 1731 ZFS_EXIT(zfsvfs); 1732 return (error); 1733 } 1734 1735 /* 1736 * Remove the directory entry. 1737 */ 1738 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1739 1740 if (error) { 1741 dmu_tx_commit(tx); 1742 goto out; 1743 } 1744 1745 if (unlinked) { 1746 /* 1747 * Hold z_lock so that we can make sure that the ACL obj 1748 * hasn't changed. Could have been deleted due to 1749 * zfs_sa_upgrade(). 1750 */ 1751 mutex_enter(&zp->z_lock); 1752 mutex_enter(&vp->v_lock); 1753 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1754 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1755 delete_now = may_delete_now && !toobig && 1756 vp->v_count == 1 && !vn_has_cached_data(vp) && 1757 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1758 acl_obj; 1759 mutex_exit(&vp->v_lock); 1760 } 1761 1762 txtype = TX_REMOVE; 1763 if (flags & FIGNORECASE) 1764 txtype |= TX_CI; 1765 rw_enter(&rz_zev_rwlock, RW_READER); 1766 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_remove) 1767 rz_zev_callbacks->rz_zev_znode_remove(dzp, zp, tx, 1768 name, txtype); 1769 rw_exit(&rz_zev_rwlock); 1770 1771 if (delete_now) { 1772 if (xattr_obj_unlinked) { 1773 ASSERT3U(xzp->z_links, ==, 2); 1774 mutex_enter(&xzp->z_lock); 1775 xzp->z_unlinked = 1; 1776 xzp->z_links = 0; 1777 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1778 &xzp->z_links, sizeof (xzp->z_links), tx); 1779 ASSERT3U(error, ==, 0); 1780 mutex_exit(&xzp->z_lock); 1781 zfs_unlinked_add(xzp, tx); 1782 1783 if (zp->z_is_sa) 1784 error = sa_remove(zp->z_sa_hdl, 1785 SA_ZPL_XATTR(zfsvfs), tx); 1786 else 1787 error = sa_update(zp->z_sa_hdl, 1788 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1789 sizeof (uint64_t), tx); 1790 ASSERT0(error); 1791 } 1792 mutex_enter(&vp->v_lock); 1793 vp->v_count--; 1794 ASSERT0(vp->v_count); 1795 mutex_exit(&vp->v_lock); 1796 mutex_exit(&zp->z_lock); 1797 zfs_znode_delete(zp, tx); 1798 } else if (unlinked) { 1799 mutex_exit(&zp->z_lock); 1800 zfs_unlinked_add(zp, tx); 1801 } 1802 1803 txtype = TX_REMOVE; 1804 if (flags & FIGNORECASE) 1805 txtype |= TX_CI; 1806 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1807 1808 dmu_tx_commit(tx); 1809 out: 1810 if (realnmp) 1811 pn_free(realnmp); 1812 1813 zfs_dirent_unlock(dl); 1814 1815 if (!delete_now) 1816 VN_RELE(vp); 1817 if (xzp) 1818 VN_RELE(ZTOV(xzp)); 1819 1820 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1821 zil_commit(zilog, 0); 1822 1823 ZFS_EXIT(zfsvfs); 1824 return (error); 1825 } 1826 1827 /* 1828 * Create a new directory and insert it into dvp using the name 1829 * provided. Return a pointer to the inserted directory. 1830 * 1831 * IN: dvp - vnode of directory to add subdir to. 1832 * dirname - name of new directory. 1833 * vap - attributes of new directory. 1834 * cr - credentials of caller. 1835 * ct - caller context 1836 * flags - case flags 1837 * vsecp - ACL to be set 1838 * 1839 * OUT: vpp - vnode of created directory. 1840 * 1841 * RETURN: 0 on success, error code on failure. 1842 * 1843 * Timestamps: 1844 * dvp - ctime|mtime updated 1845 * vp - ctime|mtime|atime updated 1846 */ 1847 /*ARGSUSED*/ 1848 static int 1849 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1850 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1851 { 1852 znode_t *zp, *dzp = VTOZ(dvp); 1853 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1854 zilog_t *zilog; 1855 zfs_dirlock_t *dl; 1856 uint64_t txtype; 1857 dmu_tx_t *tx; 1858 int error; 1859 int zf = ZNEW; 1860 ksid_t *ksid; 1861 uid_t uid; 1862 gid_t gid = crgetgid(cr); 1863 zfs_acl_ids_t acl_ids; 1864 boolean_t fuid_dirtied; 1865 boolean_t waited = B_FALSE; 1866 1867 ASSERT(vap->va_type == VDIR); 1868 1869 /* 1870 * If we have an ephemeral id, ACL, or XVATTR then 1871 * make sure file system is at proper version 1872 */ 1873 1874 ksid = crgetsid(cr, KSID_OWNER); 1875 if (ksid) 1876 uid = ksid_getid(ksid); 1877 else 1878 uid = crgetuid(cr); 1879 if (zfsvfs->z_use_fuids == B_FALSE && 1880 (vsecp || (vap->va_mask & AT_XVATTR) || 1881 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1882 return (SET_ERROR(EINVAL)); 1883 1884 ZFS_ENTER(zfsvfs); 1885 ZFS_VERIFY_ZP(dzp); 1886 zilog = zfsvfs->z_log; 1887 1888 if (dzp->z_pflags & ZFS_XATTR) { 1889 ZFS_EXIT(zfsvfs); 1890 return (SET_ERROR(EINVAL)); 1891 } 1892 1893 if (zfsvfs->z_utf8 && u8_validate(dirname, 1894 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1895 ZFS_EXIT(zfsvfs); 1896 return (SET_ERROR(EILSEQ)); 1897 } 1898 if (flags & FIGNORECASE) 1899 zf |= ZCILOOK; 1900 1901 if (vap->va_mask & AT_XVATTR) { 1902 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1903 crgetuid(cr), cr, vap->va_type)) != 0) { 1904 ZFS_EXIT(zfsvfs); 1905 return (error); 1906 } 1907 } 1908 1909 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1910 vsecp, &acl_ids)) != 0) { 1911 ZFS_EXIT(zfsvfs); 1912 return (error); 1913 } 1914 /* 1915 * First make sure the new directory doesn't exist. 1916 * 1917 * Existence is checked first to make sure we don't return 1918 * EACCES instead of EEXIST which can cause some applications 1919 * to fail. 1920 */ 1921 top: 1922 *vpp = NULL; 1923 1924 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1925 NULL, NULL)) { 1926 zfs_acl_ids_free(&acl_ids); 1927 ZFS_EXIT(zfsvfs); 1928 return (error); 1929 } 1930 1931 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1932 zfs_acl_ids_free(&acl_ids); 1933 zfs_dirent_unlock(dl); 1934 ZFS_EXIT(zfsvfs); 1935 return (error); 1936 } 1937 1938 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1939 zfs_acl_ids_free(&acl_ids); 1940 zfs_dirent_unlock(dl); 1941 ZFS_EXIT(zfsvfs); 1942 return (SET_ERROR(EDQUOT)); 1943 } 1944 1945 /* 1946 * Add a new entry to the directory. 1947 */ 1948 tx = dmu_tx_create(zfsvfs->z_os); 1949 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1950 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1951 fuid_dirtied = zfsvfs->z_fuid_dirty; 1952 if (fuid_dirtied) 1953 zfs_fuid_txhold(zfsvfs, tx); 1954 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1955 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1956 acl_ids.z_aclp->z_acl_bytes); 1957 } 1958 1959 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1960 ZFS_SA_BASE_ATTR_SIZE); 1961 1962 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1963 if (error) { 1964 zfs_dirent_unlock(dl); 1965 if (error == ERESTART) { 1966 waited = B_TRUE; 1967 dmu_tx_wait(tx); 1968 dmu_tx_abort(tx); 1969 goto top; 1970 } 1971 zfs_acl_ids_free(&acl_ids); 1972 dmu_tx_abort(tx); 1973 ZFS_EXIT(zfsvfs); 1974 return (error); 1975 } 1976 1977 /* 1978 * Create new node. 1979 */ 1980 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1981 1982 if (fuid_dirtied) 1983 zfs_fuid_sync(zfsvfs, tx); 1984 1985 /* 1986 * Now put new name in parent dir. 1987 */ 1988 (void) zfs_link_create(dl, zp, tx, ZNEW); 1989 1990 *vpp = ZTOV(zp); 1991 1992 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1993 if (flags & FIGNORECASE) 1994 txtype |= TX_CI; 1995 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1996 acl_ids.z_fuidp, vap); 1997 1998 zfs_acl_ids_free(&acl_ids); 1999 2000 dmu_tx_commit(tx); 2001 2002 zfs_dirent_unlock(dl); 2003 2004 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2005 zil_commit(zilog, 0); 2006 2007 ZFS_EXIT(zfsvfs); 2008 return (0); 2009 } 2010 2011 /* 2012 * Remove a directory subdir entry. If the current working 2013 * directory is the same as the subdir to be removed, the 2014 * remove will fail. 2015 * 2016 * IN: dvp - vnode of directory to remove from. 2017 * name - name of directory to be removed. 2018 * cwd - vnode of current working directory. 2019 * cr - credentials of caller. 2020 * ct - caller context 2021 * flags - case flags 2022 * 2023 * RETURN: 0 on success, error code on failure. 2024 * 2025 * Timestamps: 2026 * dvp - ctime|mtime updated 2027 */ 2028 /*ARGSUSED*/ 2029 static int 2030 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2031 caller_context_t *ct, int flags) 2032 { 2033 znode_t *dzp = VTOZ(dvp); 2034 znode_t *zp; 2035 vnode_t *vp; 2036 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2037 zilog_t *zilog; 2038 zfs_dirlock_t *dl; 2039 dmu_tx_t *tx; 2040 int error; 2041 int zflg = ZEXISTS; 2042 boolean_t waited = B_FALSE; 2043 2044 ZFS_ENTER(zfsvfs); 2045 ZFS_VERIFY_ZP(dzp); 2046 zilog = zfsvfs->z_log; 2047 2048 if (flags & FIGNORECASE) 2049 zflg |= ZCILOOK; 2050 top: 2051 zp = NULL; 2052 2053 /* 2054 * Attempt to lock directory; fail if entry doesn't exist. 2055 */ 2056 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2057 NULL, NULL)) { 2058 ZFS_EXIT(zfsvfs); 2059 return (error); 2060 } 2061 2062 vp = ZTOV(zp); 2063 2064 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2065 goto out; 2066 } 2067 2068 if (vp->v_type != VDIR) { 2069 error = SET_ERROR(ENOTDIR); 2070 goto out; 2071 } 2072 2073 if (vp == cwd) { 2074 error = SET_ERROR(EINVAL); 2075 goto out; 2076 } 2077 2078 vnevent_rmdir(vp, dvp, name, ct); 2079 2080 /* 2081 * Grab a lock on the directory to make sure that noone is 2082 * trying to add (or lookup) entries while we are removing it. 2083 */ 2084 rw_enter(&zp->z_name_lock, RW_WRITER); 2085 2086 /* 2087 * Grab a lock on the parent pointer to make sure we play well 2088 * with the treewalk and directory rename code. 2089 */ 2090 rw_enter(&zp->z_parent_lock, RW_WRITER); 2091 2092 tx = dmu_tx_create(zfsvfs->z_os); 2093 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2094 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2095 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2096 zfs_sa_upgrade_txholds(tx, zp); 2097 zfs_sa_upgrade_txholds(tx, dzp); 2098 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 2099 if (error) { 2100 rw_exit(&zp->z_parent_lock); 2101 rw_exit(&zp->z_name_lock); 2102 zfs_dirent_unlock(dl); 2103 VN_RELE(vp); 2104 if (error == ERESTART) { 2105 waited = B_TRUE; 2106 dmu_tx_wait(tx); 2107 dmu_tx_abort(tx); 2108 goto top; 2109 } 2110 dmu_tx_abort(tx); 2111 ZFS_EXIT(zfsvfs); 2112 return (error); 2113 } 2114 2115 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2116 2117 if (error == 0) { 2118 uint64_t txtype = TX_RMDIR; 2119 if (flags & FIGNORECASE) 2120 txtype |= TX_CI; 2121 2122 rw_enter(&rz_zev_rwlock, RW_READER); 2123 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_remove) 2124 rz_zev_callbacks->rz_zev_znode_remove(dzp, zp, tx, 2125 name, txtype); 2126 rw_exit(&rz_zev_rwlock); 2127 2128 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2129 } 2130 2131 dmu_tx_commit(tx); 2132 2133 rw_exit(&zp->z_parent_lock); 2134 rw_exit(&zp->z_name_lock); 2135 out: 2136 zfs_dirent_unlock(dl); 2137 2138 VN_RELE(vp); 2139 2140 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2141 zil_commit(zilog, 0); 2142 2143 ZFS_EXIT(zfsvfs); 2144 return (error); 2145 } 2146 2147 /* 2148 * Read as many directory entries as will fit into the provided 2149 * buffer from the given directory cursor position (specified in 2150 * the uio structure). 2151 * 2152 * IN: vp - vnode of directory to read. 2153 * uio - structure supplying read location, range info, 2154 * and return buffer. 2155 * cr - credentials of caller. 2156 * ct - caller context 2157 * flags - case flags 2158 * 2159 * OUT: uio - updated offset and range, buffer filled. 2160 * eofp - set to true if end-of-file detected. 2161 * 2162 * RETURN: 0 on success, error code on failure. 2163 * 2164 * Timestamps: 2165 * vp - atime updated 2166 * 2167 * Note that the low 4 bits of the cookie returned by zap is always zero. 2168 * This allows us to use the low range for "special" directory entries: 2169 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2170 * we use the offset 2 for the '.zfs' directory. 2171 */ 2172 /* ARGSUSED */ 2173 static int 2174 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2175 caller_context_t *ct, int flags) 2176 { 2177 znode_t *zp = VTOZ(vp); 2178 iovec_t *iovp; 2179 edirent_t *eodp; 2180 dirent64_t *odp; 2181 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2182 objset_t *os; 2183 caddr_t outbuf; 2184 size_t bufsize; 2185 zap_cursor_t zc; 2186 zap_attribute_t zap; 2187 uint_t bytes_wanted; 2188 uint64_t offset; /* must be unsigned; checks for < 1 */ 2189 uint64_t parent; 2190 int local_eof; 2191 int outcount; 2192 int error; 2193 uint8_t prefetch; 2194 boolean_t check_sysattrs; 2195 2196 ZFS_ENTER(zfsvfs); 2197 ZFS_VERIFY_ZP(zp); 2198 2199 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2200 &parent, sizeof (parent))) != 0) { 2201 ZFS_EXIT(zfsvfs); 2202 return (error); 2203 } 2204 2205 /* 2206 * If we are not given an eof variable, 2207 * use a local one. 2208 */ 2209 if (eofp == NULL) 2210 eofp = &local_eof; 2211 2212 /* 2213 * Check for valid iov_len. 2214 */ 2215 if (uio->uio_iov->iov_len <= 0) { 2216 ZFS_EXIT(zfsvfs); 2217 return (SET_ERROR(EINVAL)); 2218 } 2219 2220 /* 2221 * Quit if directory has been removed (posix) 2222 */ 2223 if ((*eofp = zp->z_unlinked) != 0) { 2224 ZFS_EXIT(zfsvfs); 2225 return (0); 2226 } 2227 2228 error = 0; 2229 os = zfsvfs->z_os; 2230 offset = uio->uio_loffset; 2231 prefetch = zp->z_zn_prefetch; 2232 2233 /* 2234 * Initialize the iterator cursor. 2235 */ 2236 if (offset <= 3) { 2237 /* 2238 * Start iteration from the beginning of the directory. 2239 */ 2240 zap_cursor_init(&zc, os, zp->z_id); 2241 } else { 2242 /* 2243 * The offset is a serialized cursor. 2244 */ 2245 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2246 } 2247 2248 /* 2249 * Get space to change directory entries into fs independent format. 2250 */ 2251 iovp = uio->uio_iov; 2252 bytes_wanted = iovp->iov_len; 2253 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2254 bufsize = bytes_wanted; 2255 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2256 odp = (struct dirent64 *)outbuf; 2257 } else { 2258 bufsize = bytes_wanted; 2259 outbuf = NULL; 2260 odp = (struct dirent64 *)iovp->iov_base; 2261 } 2262 eodp = (struct edirent *)odp; 2263 2264 /* 2265 * If this VFS supports the system attribute view interface; and 2266 * we're looking at an extended attribute directory; and we care 2267 * about normalization conflicts on this vfs; then we must check 2268 * for normalization conflicts with the sysattr name space. 2269 */ 2270 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2271 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2272 (flags & V_RDDIR_ENTFLAGS); 2273 2274 /* 2275 * Transform to file-system independent format 2276 */ 2277 outcount = 0; 2278 while (outcount < bytes_wanted) { 2279 ino64_t objnum; 2280 ushort_t reclen; 2281 off64_t *next = NULL; 2282 2283 /* 2284 * Special case `.', `..', and `.zfs'. 2285 */ 2286 if (offset == 0) { 2287 (void) strcpy(zap.za_name, "."); 2288 zap.za_normalization_conflict = 0; 2289 objnum = zp->z_id; 2290 } else if (offset == 1) { 2291 (void) strcpy(zap.za_name, ".."); 2292 zap.za_normalization_conflict = 0; 2293 objnum = parent; 2294 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2295 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2296 zap.za_normalization_conflict = 0; 2297 objnum = ZFSCTL_INO_ROOT; 2298 } else { 2299 /* 2300 * Grab next entry. 2301 */ 2302 if (error = zap_cursor_retrieve(&zc, &zap)) { 2303 if ((*eofp = (error == ENOENT)) != 0) 2304 break; 2305 else 2306 goto update; 2307 } 2308 2309 if (zap.za_integer_length != 8 || 2310 zap.za_num_integers != 1) { 2311 cmn_err(CE_WARN, "zap_readdir: bad directory " 2312 "entry, obj = %lld, offset = %lld\n", 2313 (u_longlong_t)zp->z_id, 2314 (u_longlong_t)offset); 2315 error = SET_ERROR(ENXIO); 2316 goto update; 2317 } 2318 2319 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2320 /* 2321 * MacOS X can extract the object type here such as: 2322 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2323 */ 2324 2325 if (check_sysattrs && !zap.za_normalization_conflict) { 2326 zap.za_normalization_conflict = 2327 xattr_sysattr_casechk(zap.za_name); 2328 } 2329 } 2330 2331 if (flags & V_RDDIR_ACCFILTER) { 2332 /* 2333 * If we have no access at all, don't include 2334 * this entry in the returned information 2335 */ 2336 znode_t *ezp; 2337 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2338 goto skip_entry; 2339 if (!zfs_has_access(ezp, cr)) { 2340 VN_RELE(ZTOV(ezp)); 2341 goto skip_entry; 2342 } 2343 VN_RELE(ZTOV(ezp)); 2344 } 2345 2346 if (flags & V_RDDIR_ENTFLAGS) 2347 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2348 else 2349 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2350 2351 /* 2352 * Will this entry fit in the buffer? 2353 */ 2354 if (outcount + reclen > bufsize) { 2355 /* 2356 * Did we manage to fit anything in the buffer? 2357 */ 2358 if (!outcount) { 2359 error = SET_ERROR(EINVAL); 2360 goto update; 2361 } 2362 break; 2363 } 2364 if (flags & V_RDDIR_ENTFLAGS) { 2365 /* 2366 * Add extended flag entry: 2367 */ 2368 eodp->ed_ino = objnum; 2369 eodp->ed_reclen = reclen; 2370 /* NOTE: ed_off is the offset for the *next* entry */ 2371 next = &(eodp->ed_off); 2372 eodp->ed_eflags = zap.za_normalization_conflict ? 2373 ED_CASE_CONFLICT : 0; 2374 (void) strncpy(eodp->ed_name, zap.za_name, 2375 EDIRENT_NAMELEN(reclen)); 2376 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2377 } else { 2378 /* 2379 * Add normal entry: 2380 */ 2381 odp->d_ino = objnum; 2382 odp->d_reclen = reclen; 2383 /* NOTE: d_off is the offset for the *next* entry */ 2384 next = &(odp->d_off); 2385 (void) strncpy(odp->d_name, zap.za_name, 2386 DIRENT64_NAMELEN(reclen)); 2387 odp = (dirent64_t *)((intptr_t)odp + reclen); 2388 } 2389 outcount += reclen; 2390 2391 ASSERT(outcount <= bufsize); 2392 2393 /* Prefetch znode */ 2394 if (prefetch) 2395 dmu_prefetch(os, objnum, 0, 0); 2396 2397 skip_entry: 2398 /* 2399 * Move to the next entry, fill in the previous offset. 2400 */ 2401 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2402 zap_cursor_advance(&zc); 2403 offset = zap_cursor_serialize(&zc); 2404 } else { 2405 offset += 1; 2406 } 2407 if (next) 2408 *next = offset; 2409 } 2410 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2411 2412 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2413 iovp->iov_base += outcount; 2414 iovp->iov_len -= outcount; 2415 uio->uio_resid -= outcount; 2416 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2417 /* 2418 * Reset the pointer. 2419 */ 2420 offset = uio->uio_loffset; 2421 } 2422 2423 update: 2424 zap_cursor_fini(&zc); 2425 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2426 kmem_free(outbuf, bufsize); 2427 2428 if (error == ENOENT) 2429 error = 0; 2430 2431 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2432 2433 uio->uio_loffset = offset; 2434 ZFS_EXIT(zfsvfs); 2435 return (error); 2436 } 2437 2438 ulong_t zfs_fsync_sync_cnt = 4; 2439 2440 static int 2441 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2442 { 2443 znode_t *zp = VTOZ(vp); 2444 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2445 2446 /* 2447 * Regardless of whether this is required for standards conformance, 2448 * this is the logical behavior when fsync() is called on a file with 2449 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2450 * going to be pushed out as part of the zil_commit(). 2451 */ 2452 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2453 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2454 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2455 2456 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2457 2458 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2459 ZFS_ENTER(zfsvfs); 2460 ZFS_VERIFY_ZP(zp); 2461 zil_commit(zfsvfs->z_log, zp->z_id); 2462 ZFS_EXIT(zfsvfs); 2463 } 2464 return (0); 2465 } 2466 2467 2468 /* 2469 * Get the requested file attributes and place them in the provided 2470 * vattr structure. 2471 * 2472 * IN: vp - vnode of file. 2473 * vap - va_mask identifies requested attributes. 2474 * If AT_XVATTR set, then optional attrs are requested 2475 * flags - ATTR_NOACLCHECK (CIFS server context) 2476 * cr - credentials of caller. 2477 * ct - caller context 2478 * 2479 * OUT: vap - attribute values. 2480 * 2481 * RETURN: 0 (always succeeds). 2482 */ 2483 /* ARGSUSED */ 2484 static int 2485 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2486 caller_context_t *ct) 2487 { 2488 znode_t *zp = VTOZ(vp); 2489 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2490 int error = 0; 2491 uint64_t links; 2492 uint64_t mtime[2], ctime[2]; 2493 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2494 xoptattr_t *xoap = NULL; 2495 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2496 sa_bulk_attr_t bulk[2]; 2497 int count = 0; 2498 2499 ZFS_ENTER(zfsvfs); 2500 ZFS_VERIFY_ZP(zp); 2501 2502 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2503 2504 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2505 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2506 2507 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2508 ZFS_EXIT(zfsvfs); 2509 return (error); 2510 } 2511 2512 /* 2513 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2514 * Also, if we are the owner don't bother, since owner should 2515 * always be allowed to read basic attributes of file. 2516 */ 2517 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2518 (vap->va_uid != crgetuid(cr))) { 2519 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2520 skipaclchk, cr)) { 2521 ZFS_EXIT(zfsvfs); 2522 return (error); 2523 } 2524 } 2525 2526 /* 2527 * Return all attributes. It's cheaper to provide the answer 2528 * than to determine whether we were asked the question. 2529 */ 2530 2531 mutex_enter(&zp->z_lock); 2532 vap->va_type = vp->v_type; 2533 vap->va_mode = zp->z_mode & MODEMASK; 2534 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2535 vap->va_nodeid = zp->z_id; 2536 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2537 links = zp->z_links + 1; 2538 else 2539 links = zp->z_links; 2540 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2541 vap->va_size = zp->z_size; 2542 vap->va_rdev = vp->v_rdev; 2543 vap->va_seq = zp->z_seq; 2544 2545 /* 2546 * Add in any requested optional attributes and the create time. 2547 * Also set the corresponding bits in the returned attribute bitmap. 2548 */ 2549 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2550 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2551 xoap->xoa_archive = 2552 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2553 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2554 } 2555 2556 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2557 xoap->xoa_readonly = 2558 ((zp->z_pflags & ZFS_READONLY) != 0); 2559 XVA_SET_RTN(xvap, XAT_READONLY); 2560 } 2561 2562 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2563 xoap->xoa_system = 2564 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2565 XVA_SET_RTN(xvap, XAT_SYSTEM); 2566 } 2567 2568 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2569 xoap->xoa_hidden = 2570 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2571 XVA_SET_RTN(xvap, XAT_HIDDEN); 2572 } 2573 2574 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2575 xoap->xoa_nounlink = 2576 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2577 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2578 } 2579 2580 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2581 xoap->xoa_immutable = 2582 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2583 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2584 } 2585 2586 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2587 xoap->xoa_appendonly = 2588 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2589 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2590 } 2591 2592 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2593 xoap->xoa_nodump = 2594 ((zp->z_pflags & ZFS_NODUMP) != 0); 2595 XVA_SET_RTN(xvap, XAT_NODUMP); 2596 } 2597 2598 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2599 xoap->xoa_opaque = 2600 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2601 XVA_SET_RTN(xvap, XAT_OPAQUE); 2602 } 2603 2604 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2605 xoap->xoa_av_quarantined = 2606 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2607 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2608 } 2609 2610 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2611 xoap->xoa_av_modified = 2612 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2613 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2614 } 2615 2616 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2617 vp->v_type == VREG) { 2618 zfs_sa_get_scanstamp(zp, xvap); 2619 } 2620 2621 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2622 uint64_t times[2]; 2623 2624 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2625 times, sizeof (times)); 2626 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2627 XVA_SET_RTN(xvap, XAT_CREATETIME); 2628 } 2629 2630 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2631 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2632 XVA_SET_RTN(xvap, XAT_REPARSE); 2633 } 2634 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2635 xoap->xoa_generation = zp->z_gen; 2636 XVA_SET_RTN(xvap, XAT_GEN); 2637 } 2638 2639 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2640 xoap->xoa_offline = 2641 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2642 XVA_SET_RTN(xvap, XAT_OFFLINE); 2643 } 2644 2645 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2646 xoap->xoa_sparse = 2647 ((zp->z_pflags & ZFS_SPARSE) != 0); 2648 XVA_SET_RTN(xvap, XAT_SPARSE); 2649 } 2650 } 2651 2652 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2653 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2654 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2655 2656 mutex_exit(&zp->z_lock); 2657 2658 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2659 2660 if (zp->z_blksz == 0) { 2661 /* 2662 * Block size hasn't been set; suggest maximal I/O transfers. 2663 */ 2664 vap->va_blksize = zfsvfs->z_max_blksz; 2665 } 2666 2667 ZFS_EXIT(zfsvfs); 2668 return (0); 2669 } 2670 2671 /* 2672 * Set the file attributes to the values contained in the 2673 * vattr structure. 2674 * 2675 * IN: vp - vnode of file to be modified. 2676 * vap - new attribute values. 2677 * If AT_XVATTR set, then optional attrs are being set 2678 * flags - ATTR_UTIME set if non-default time values provided. 2679 * - ATTR_NOACLCHECK (CIFS context only). 2680 * cr - credentials of caller. 2681 * ct - caller context 2682 * 2683 * RETURN: 0 on success, error code on failure. 2684 * 2685 * Timestamps: 2686 * vp - ctime updated, mtime updated if size changed. 2687 */ 2688 /* ARGSUSED */ 2689 static int 2690 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2691 caller_context_t *ct) 2692 { 2693 znode_t *zp = VTOZ(vp); 2694 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2695 zilog_t *zilog; 2696 dmu_tx_t *tx; 2697 vattr_t oldva; 2698 xvattr_t tmpxvattr; 2699 uint_t mask = vap->va_mask; 2700 uint_t saved_mask = 0; 2701 int trim_mask = 0; 2702 uint64_t new_mode; 2703 uint64_t new_uid, new_gid; 2704 uint64_t xattr_obj; 2705 uint64_t mtime[2], ctime[2]; 2706 znode_t *attrzp; 2707 int need_policy = FALSE; 2708 int err, err2; 2709 zfs_fuid_info_t *fuidp = NULL; 2710 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2711 xoptattr_t *xoap; 2712 zfs_acl_t *aclp; 2713 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2714 boolean_t fuid_dirtied = B_FALSE; 2715 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2716 int count = 0, xattr_count = 0; 2717 2718 if (mask == 0) 2719 return (0); 2720 2721 if (mask & AT_NOSET) 2722 return (SET_ERROR(EINVAL)); 2723 2724 ZFS_ENTER(zfsvfs); 2725 ZFS_VERIFY_ZP(zp); 2726 2727 zilog = zfsvfs->z_log; 2728 2729 /* 2730 * Make sure that if we have ephemeral uid/gid or xvattr specified 2731 * that file system is at proper version level 2732 */ 2733 2734 if (zfsvfs->z_use_fuids == B_FALSE && 2735 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2736 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2737 (mask & AT_XVATTR))) { 2738 ZFS_EXIT(zfsvfs); 2739 return (SET_ERROR(EINVAL)); 2740 } 2741 2742 if (mask & AT_SIZE && vp->v_type == VDIR) { 2743 ZFS_EXIT(zfsvfs); 2744 return (SET_ERROR(EISDIR)); 2745 } 2746 2747 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2748 ZFS_EXIT(zfsvfs); 2749 return (SET_ERROR(EINVAL)); 2750 } 2751 2752 /* 2753 * If this is an xvattr_t, then get a pointer to the structure of 2754 * optional attributes. If this is NULL, then we have a vattr_t. 2755 */ 2756 xoap = xva_getxoptattr(xvap); 2757 2758 xva_init(&tmpxvattr); 2759 2760 /* 2761 * Immutable files can only alter immutable bit and atime 2762 */ 2763 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2764 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2765 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2766 ZFS_EXIT(zfsvfs); 2767 return (SET_ERROR(EPERM)); 2768 } 2769 2770 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2771 ZFS_EXIT(zfsvfs); 2772 return (SET_ERROR(EPERM)); 2773 } 2774 2775 /* 2776 * Verify timestamps doesn't overflow 32 bits. 2777 * ZFS can handle large timestamps, but 32bit syscalls can't 2778 * handle times greater than 2039. This check should be removed 2779 * once large timestamps are fully supported. 2780 */ 2781 if (mask & (AT_ATIME | AT_MTIME)) { 2782 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2783 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2784 ZFS_EXIT(zfsvfs); 2785 return (SET_ERROR(EOVERFLOW)); 2786 } 2787 } 2788 2789 top: 2790 attrzp = NULL; 2791 aclp = NULL; 2792 2793 /* Can this be moved to before the top label? */ 2794 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2795 ZFS_EXIT(zfsvfs); 2796 return (SET_ERROR(EROFS)); 2797 } 2798 2799 /* 2800 * First validate permissions 2801 */ 2802 2803 if (mask & AT_SIZE) { 2804 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2805 if (err) { 2806 ZFS_EXIT(zfsvfs); 2807 return (err); 2808 } 2809 /* 2810 * XXX - Note, we are not providing any open 2811 * mode flags here (like FNDELAY), so we may 2812 * block if there are locks present... this 2813 * should be addressed in openat(). 2814 */ 2815 /* XXX - would it be OK to generate a log record here? */ 2816 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2817 if (err) { 2818 ZFS_EXIT(zfsvfs); 2819 return (err); 2820 } 2821 2822 if (vap->va_size == 0) 2823 vnevent_truncate(ZTOV(zp), ct); 2824 } 2825 2826 if (mask & (AT_ATIME|AT_MTIME) || 2827 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2828 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2829 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2830 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2831 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2832 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2833 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2834 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2835 skipaclchk, cr); 2836 } 2837 2838 if (mask & (AT_UID|AT_GID)) { 2839 int idmask = (mask & (AT_UID|AT_GID)); 2840 int take_owner; 2841 int take_group; 2842 2843 /* 2844 * NOTE: even if a new mode is being set, 2845 * we may clear S_ISUID/S_ISGID bits. 2846 */ 2847 2848 if (!(mask & AT_MODE)) 2849 vap->va_mode = zp->z_mode; 2850 2851 /* 2852 * Take ownership or chgrp to group we are a member of 2853 */ 2854 2855 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2856 take_group = (mask & AT_GID) && 2857 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2858 2859 /* 2860 * If both AT_UID and AT_GID are set then take_owner and 2861 * take_group must both be set in order to allow taking 2862 * ownership. 2863 * 2864 * Otherwise, send the check through secpolicy_vnode_setattr() 2865 * 2866 */ 2867 2868 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2869 ((idmask == AT_UID) && take_owner) || 2870 ((idmask == AT_GID) && take_group)) { 2871 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2872 skipaclchk, cr) == 0) { 2873 /* 2874 * Remove setuid/setgid for non-privileged users 2875 */ 2876 secpolicy_setid_clear(vap, cr); 2877 trim_mask = (mask & (AT_UID|AT_GID)); 2878 } else { 2879 need_policy = TRUE; 2880 } 2881 } else { 2882 need_policy = TRUE; 2883 } 2884 } 2885 2886 mutex_enter(&zp->z_lock); 2887 oldva.va_mode = zp->z_mode; 2888 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2889 if (mask & AT_XVATTR) { 2890 /* 2891 * Update xvattr mask to include only those attributes 2892 * that are actually changing. 2893 * 2894 * the bits will be restored prior to actually setting 2895 * the attributes so the caller thinks they were set. 2896 */ 2897 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2898 if (xoap->xoa_appendonly != 2899 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2900 need_policy = TRUE; 2901 } else { 2902 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2903 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2904 } 2905 } 2906 2907 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2908 if (xoap->xoa_nounlink != 2909 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2910 need_policy = TRUE; 2911 } else { 2912 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2913 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2914 } 2915 } 2916 2917 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2918 if (xoap->xoa_immutable != 2919 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2920 need_policy = TRUE; 2921 } else { 2922 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2923 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2924 } 2925 } 2926 2927 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2928 if (xoap->xoa_nodump != 2929 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2930 need_policy = TRUE; 2931 } else { 2932 XVA_CLR_REQ(xvap, XAT_NODUMP); 2933 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2934 } 2935 } 2936 2937 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2938 if (xoap->xoa_av_modified != 2939 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2940 need_policy = TRUE; 2941 } else { 2942 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2943 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2944 } 2945 } 2946 2947 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2948 if ((vp->v_type != VREG && 2949 xoap->xoa_av_quarantined) || 2950 xoap->xoa_av_quarantined != 2951 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2952 need_policy = TRUE; 2953 } else { 2954 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2955 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2956 } 2957 } 2958 2959 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2960 mutex_exit(&zp->z_lock); 2961 ZFS_EXIT(zfsvfs); 2962 return (SET_ERROR(EPERM)); 2963 } 2964 2965 if (need_policy == FALSE && 2966 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2967 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2968 need_policy = TRUE; 2969 } 2970 } 2971 2972 mutex_exit(&zp->z_lock); 2973 2974 if (mask & AT_MODE) { 2975 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2976 err = secpolicy_setid_setsticky_clear(vp, vap, 2977 &oldva, cr); 2978 if (err) { 2979 ZFS_EXIT(zfsvfs); 2980 return (err); 2981 } 2982 trim_mask |= AT_MODE; 2983 } else { 2984 need_policy = TRUE; 2985 } 2986 } 2987 2988 if (need_policy) { 2989 /* 2990 * If trim_mask is set then take ownership 2991 * has been granted or write_acl is present and user 2992 * has the ability to modify mode. In that case remove 2993 * UID|GID and or MODE from mask so that 2994 * secpolicy_vnode_setattr() doesn't revoke it. 2995 */ 2996 2997 if (trim_mask) { 2998 saved_mask = vap->va_mask; 2999 vap->va_mask &= ~trim_mask; 3000 } 3001 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3002 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3003 if (err) { 3004 ZFS_EXIT(zfsvfs); 3005 return (err); 3006 } 3007 3008 if (trim_mask) 3009 vap->va_mask |= saved_mask; 3010 } 3011 3012 /* 3013 * secpolicy_vnode_setattr, or take ownership may have 3014 * changed va_mask 3015 */ 3016 mask = vap->va_mask; 3017 3018 if ((mask & (AT_UID | AT_GID))) { 3019 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3020 &xattr_obj, sizeof (xattr_obj)); 3021 3022 if (err == 0 && xattr_obj) { 3023 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3024 if (err) 3025 goto out2; 3026 } 3027 if (mask & AT_UID) { 3028 new_uid = zfs_fuid_create(zfsvfs, 3029 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3030 if (new_uid != zp->z_uid && 3031 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 3032 if (attrzp) 3033 VN_RELE(ZTOV(attrzp)); 3034 err = SET_ERROR(EDQUOT); 3035 goto out2; 3036 } 3037 } 3038 3039 if (mask & AT_GID) { 3040 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3041 cr, ZFS_GROUP, &fuidp); 3042 if (new_gid != zp->z_gid && 3043 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 3044 if (attrzp) 3045 VN_RELE(ZTOV(attrzp)); 3046 err = SET_ERROR(EDQUOT); 3047 goto out2; 3048 } 3049 } 3050 } 3051 tx = dmu_tx_create(zfsvfs->z_os); 3052 3053 if (mask & AT_MODE) { 3054 uint64_t pmode = zp->z_mode; 3055 uint64_t acl_obj; 3056 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3057 3058 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3059 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3060 err = SET_ERROR(EPERM); 3061 goto out; 3062 } 3063 3064 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3065 goto out; 3066 3067 mutex_enter(&zp->z_lock); 3068 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3069 /* 3070 * Are we upgrading ACL from old V0 format 3071 * to V1 format? 3072 */ 3073 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3074 zfs_znode_acl_version(zp) == 3075 ZFS_ACL_VERSION_INITIAL) { 3076 dmu_tx_hold_free(tx, acl_obj, 0, 3077 DMU_OBJECT_END); 3078 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3079 0, aclp->z_acl_bytes); 3080 } else { 3081 dmu_tx_hold_write(tx, acl_obj, 0, 3082 aclp->z_acl_bytes); 3083 } 3084 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3085 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3086 0, aclp->z_acl_bytes); 3087 } 3088 mutex_exit(&zp->z_lock); 3089 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3090 } else { 3091 if ((mask & AT_XVATTR) && 3092 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3093 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3094 else 3095 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3096 } 3097 3098 if (attrzp) { 3099 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3100 } 3101 3102 fuid_dirtied = zfsvfs->z_fuid_dirty; 3103 if (fuid_dirtied) 3104 zfs_fuid_txhold(zfsvfs, tx); 3105 3106 zfs_sa_upgrade_txholds(tx, zp); 3107 3108 err = dmu_tx_assign(tx, TXG_WAIT); 3109 if (err) 3110 goto out; 3111 3112 count = 0; 3113 /* 3114 * Set each attribute requested. 3115 * We group settings according to the locks they need to acquire. 3116 * 3117 * Note: you cannot set ctime directly, although it will be 3118 * updated as a side-effect of calling this function. 3119 */ 3120 3121 3122 if (mask & (AT_UID|AT_GID|AT_MODE)) 3123 mutex_enter(&zp->z_acl_lock); 3124 mutex_enter(&zp->z_lock); 3125 3126 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3127 &zp->z_pflags, sizeof (zp->z_pflags)); 3128 3129 if (attrzp) { 3130 if (mask & (AT_UID|AT_GID|AT_MODE)) 3131 mutex_enter(&attrzp->z_acl_lock); 3132 mutex_enter(&attrzp->z_lock); 3133 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3134 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3135 sizeof (attrzp->z_pflags)); 3136 } 3137 3138 if (mask & (AT_UID|AT_GID)) { 3139 3140 if (mask & AT_UID) { 3141 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3142 &new_uid, sizeof (new_uid)); 3143 zp->z_uid = new_uid; 3144 if (attrzp) { 3145 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3146 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3147 sizeof (new_uid)); 3148 attrzp->z_uid = new_uid; 3149 } 3150 } 3151 3152 if (mask & AT_GID) { 3153 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3154 NULL, &new_gid, sizeof (new_gid)); 3155 zp->z_gid = new_gid; 3156 if (attrzp) { 3157 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3158 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3159 sizeof (new_gid)); 3160 attrzp->z_gid = new_gid; 3161 } 3162 } 3163 if (!(mask & AT_MODE)) { 3164 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3165 NULL, &new_mode, sizeof (new_mode)); 3166 new_mode = zp->z_mode; 3167 } 3168 err = zfs_acl_chown_setattr(zp); 3169 ASSERT(err == 0); 3170 if (attrzp) { 3171 err = zfs_acl_chown_setattr(attrzp); 3172 ASSERT(err == 0); 3173 } 3174 } 3175 3176 if (mask & AT_MODE) { 3177 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3178 &new_mode, sizeof (new_mode)); 3179 zp->z_mode = new_mode; 3180 ASSERT3U((uintptr_t)aclp, !=, NULL); 3181 err = zfs_aclset_common(zp, aclp, cr, tx); 3182 ASSERT0(err); 3183 if (zp->z_acl_cached) 3184 zfs_acl_free(zp->z_acl_cached); 3185 zp->z_acl_cached = aclp; 3186 aclp = NULL; 3187 } 3188 3189 3190 if (mask & AT_ATIME) { 3191 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3192 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3193 &zp->z_atime, sizeof (zp->z_atime)); 3194 } 3195 3196 if (mask & AT_MTIME) { 3197 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3198 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3199 mtime, sizeof (mtime)); 3200 } 3201 3202 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3203 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3204 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3205 NULL, mtime, sizeof (mtime)); 3206 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3207 &ctime, sizeof (ctime)); 3208 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3209 B_TRUE); 3210 } else if (mask != 0) { 3211 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3212 &ctime, sizeof (ctime)); 3213 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3214 B_TRUE); 3215 if (attrzp) { 3216 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3217 SA_ZPL_CTIME(zfsvfs), NULL, 3218 &ctime, sizeof (ctime)); 3219 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3220 mtime, ctime, B_TRUE); 3221 } 3222 } 3223 /* 3224 * Do this after setting timestamps to prevent timestamp 3225 * update from toggling bit 3226 */ 3227 3228 if (xoap && (mask & AT_XVATTR)) { 3229 3230 /* 3231 * restore trimmed off masks 3232 * so that return masks can be set for caller. 3233 */ 3234 3235 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3236 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3237 } 3238 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3239 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3240 } 3241 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3242 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3243 } 3244 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3245 XVA_SET_REQ(xvap, XAT_NODUMP); 3246 } 3247 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3248 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3249 } 3250 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3251 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3252 } 3253 3254 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3255 ASSERT(vp->v_type == VREG); 3256 3257 zfs_xvattr_set(zp, xvap, tx); 3258 } 3259 3260 if (fuid_dirtied) 3261 zfs_fuid_sync(zfsvfs, tx); 3262 3263 if (mask != 0) 3264 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3265 3266 mutex_exit(&zp->z_lock); 3267 if (mask & (AT_UID|AT_GID|AT_MODE)) 3268 mutex_exit(&zp->z_acl_lock); 3269 3270 if (attrzp) { 3271 if (mask & (AT_UID|AT_GID|AT_MODE)) 3272 mutex_exit(&attrzp->z_acl_lock); 3273 mutex_exit(&attrzp->z_lock); 3274 } 3275 out: 3276 if (err == 0 && attrzp) { 3277 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3278 xattr_count, tx); 3279 ASSERT(err2 == 0); 3280 } 3281 3282 if (attrzp) 3283 VN_RELE(ZTOV(attrzp)); 3284 3285 if (aclp) 3286 zfs_acl_free(aclp); 3287 3288 if (fuidp) { 3289 zfs_fuid_info_free(fuidp); 3290 fuidp = NULL; 3291 } 3292 3293 if (err) { 3294 dmu_tx_abort(tx); 3295 if (err == ERESTART) 3296 goto top; 3297 } else { 3298 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3299 rw_enter(&rz_zev_rwlock, RW_READER); 3300 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_setattr) 3301 rz_zev_callbacks->rz_zev_znode_setattr(zp, tx); 3302 rw_exit(&rz_zev_rwlock); 3303 dmu_tx_commit(tx); 3304 } 3305 3306 out2: 3307 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3308 zil_commit(zilog, 0); 3309 3310 ZFS_EXIT(zfsvfs); 3311 return (err); 3312 } 3313 3314 typedef struct zfs_zlock { 3315 krwlock_t *zl_rwlock; /* lock we acquired */ 3316 znode_t *zl_znode; /* znode we held */ 3317 struct zfs_zlock *zl_next; /* next in list */ 3318 } zfs_zlock_t; 3319 3320 /* 3321 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3322 */ 3323 static void 3324 zfs_rename_unlock(zfs_zlock_t **zlpp) 3325 { 3326 zfs_zlock_t *zl; 3327 3328 while ((zl = *zlpp) != NULL) { 3329 if (zl->zl_znode != NULL) 3330 VN_RELE(ZTOV(zl->zl_znode)); 3331 rw_exit(zl->zl_rwlock); 3332 *zlpp = zl->zl_next; 3333 kmem_free(zl, sizeof (*zl)); 3334 } 3335 } 3336 3337 /* 3338 * Search back through the directory tree, using the ".." entries. 3339 * Lock each directory in the chain to prevent concurrent renames. 3340 * Fail any attempt to move a directory into one of its own descendants. 3341 * XXX - z_parent_lock can overlap with map or grow locks 3342 */ 3343 static int 3344 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3345 { 3346 zfs_zlock_t *zl; 3347 znode_t *zp = tdzp; 3348 uint64_t rootid = zp->z_zfsvfs->z_root; 3349 uint64_t oidp = zp->z_id; 3350 krwlock_t *rwlp = &szp->z_parent_lock; 3351 krw_t rw = RW_WRITER; 3352 3353 /* 3354 * First pass write-locks szp and compares to zp->z_id. 3355 * Later passes read-lock zp and compare to zp->z_parent. 3356 */ 3357 do { 3358 if (!rw_tryenter(rwlp, rw)) { 3359 /* 3360 * Another thread is renaming in this path. 3361 * Note that if we are a WRITER, we don't have any 3362 * parent_locks held yet. 3363 */ 3364 if (rw == RW_READER && zp->z_id > szp->z_id) { 3365 /* 3366 * Drop our locks and restart 3367 */ 3368 zfs_rename_unlock(&zl); 3369 *zlpp = NULL; 3370 zp = tdzp; 3371 oidp = zp->z_id; 3372 rwlp = &szp->z_parent_lock; 3373 rw = RW_WRITER; 3374 continue; 3375 } else { 3376 /* 3377 * Wait for other thread to drop its locks 3378 */ 3379 rw_enter(rwlp, rw); 3380 } 3381 } 3382 3383 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3384 zl->zl_rwlock = rwlp; 3385 zl->zl_znode = NULL; 3386 zl->zl_next = *zlpp; 3387 *zlpp = zl; 3388 3389 if (oidp == szp->z_id) /* We're a descendant of szp */ 3390 return (SET_ERROR(EINVAL)); 3391 3392 if (oidp == rootid) /* We've hit the top */ 3393 return (0); 3394 3395 if (rw == RW_READER) { /* i.e. not the first pass */ 3396 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3397 if (error) 3398 return (error); 3399 zl->zl_znode = zp; 3400 } 3401 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3402 &oidp, sizeof (oidp)); 3403 rwlp = &zp->z_parent_lock; 3404 rw = RW_READER; 3405 3406 } while (zp->z_id != sdzp->z_id); 3407 3408 return (0); 3409 } 3410 3411 /* 3412 * Move an entry from the provided source directory to the target 3413 * directory. Change the entry name as indicated. 3414 * 3415 * IN: sdvp - Source directory containing the "old entry". 3416 * snm - Old entry name. 3417 * tdvp - Target directory to contain the "new entry". 3418 * tnm - New entry name. 3419 * cr - credentials of caller. 3420 * ct - caller context 3421 * flags - case flags 3422 * 3423 * RETURN: 0 on success, error code on failure. 3424 * 3425 * Timestamps: 3426 * sdvp,tdvp - ctime|mtime updated 3427 */ 3428 /*ARGSUSED*/ 3429 static int 3430 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3431 caller_context_t *ct, int flags) 3432 { 3433 znode_t *tdzp, *szp, *tzp; 3434 znode_t *sdzp = VTOZ(sdvp); 3435 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3436 zilog_t *zilog; 3437 vnode_t *realvp; 3438 zfs_dirlock_t *sdl, *tdl; 3439 dmu_tx_t *tx; 3440 zfs_zlock_t *zl; 3441 int cmp, serr, terr; 3442 int error = 0; 3443 int zflg = 0; 3444 boolean_t waited = B_FALSE; 3445 3446 ZFS_ENTER(zfsvfs); 3447 ZFS_VERIFY_ZP(sdzp); 3448 zilog = zfsvfs->z_log; 3449 3450 /* 3451 * Make sure we have the real vp for the target directory. 3452 */ 3453 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3454 tdvp = realvp; 3455 3456 tdzp = VTOZ(tdvp); 3457 ZFS_VERIFY_ZP(tdzp); 3458 3459 /* 3460 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3461 * ctldir appear to have the same v_vfsp. 3462 */ 3463 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3464 ZFS_EXIT(zfsvfs); 3465 return (SET_ERROR(EXDEV)); 3466 } 3467 3468 if (zfsvfs->z_utf8 && u8_validate(tnm, 3469 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3470 ZFS_EXIT(zfsvfs); 3471 return (SET_ERROR(EILSEQ)); 3472 } 3473 3474 if (flags & FIGNORECASE) 3475 zflg |= ZCILOOK; 3476 3477 top: 3478 szp = NULL; 3479 tzp = NULL; 3480 zl = NULL; 3481 3482 /* 3483 * This is to prevent the creation of links into attribute space 3484 * by renaming a linked file into/outof an attribute directory. 3485 * See the comment in zfs_link() for why this is considered bad. 3486 */ 3487 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3488 ZFS_EXIT(zfsvfs); 3489 return (SET_ERROR(EINVAL)); 3490 } 3491 3492 /* 3493 * Lock source and target directory entries. To prevent deadlock, 3494 * a lock ordering must be defined. We lock the directory with 3495 * the smallest object id first, or if it's a tie, the one with 3496 * the lexically first name. 3497 */ 3498 if (sdzp->z_id < tdzp->z_id) { 3499 cmp = -1; 3500 } else if (sdzp->z_id > tdzp->z_id) { 3501 cmp = 1; 3502 } else { 3503 /* 3504 * First compare the two name arguments without 3505 * considering any case folding. 3506 */ 3507 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3508 3509 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3510 ASSERT(error == 0 || !zfsvfs->z_utf8); 3511 if (cmp == 0) { 3512 /* 3513 * POSIX: "If the old argument and the new argument 3514 * both refer to links to the same existing file, 3515 * the rename() function shall return successfully 3516 * and perform no other action." 3517 */ 3518 ZFS_EXIT(zfsvfs); 3519 return (0); 3520 } 3521 /* 3522 * If the file system is case-folding, then we may 3523 * have some more checking to do. A case-folding file 3524 * system is either supporting mixed case sensitivity 3525 * access or is completely case-insensitive. Note 3526 * that the file system is always case preserving. 3527 * 3528 * In mixed sensitivity mode case sensitive behavior 3529 * is the default. FIGNORECASE must be used to 3530 * explicitly request case insensitive behavior. 3531 * 3532 * If the source and target names provided differ only 3533 * by case (e.g., a request to rename 'tim' to 'Tim'), 3534 * we will treat this as a special case in the 3535 * case-insensitive mode: as long as the source name 3536 * is an exact match, we will allow this to proceed as 3537 * a name-change request. 3538 */ 3539 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3540 (zfsvfs->z_case == ZFS_CASE_MIXED && 3541 flags & FIGNORECASE)) && 3542 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3543 &error) == 0) { 3544 /* 3545 * case preserving rename request, require exact 3546 * name matches 3547 */ 3548 zflg |= ZCIEXACT; 3549 zflg &= ~ZCILOOK; 3550 } 3551 } 3552 3553 /* 3554 * If the source and destination directories are the same, we should 3555 * grab the z_name_lock of that directory only once. 3556 */ 3557 if (sdzp == tdzp) { 3558 zflg |= ZHAVELOCK; 3559 rw_enter(&sdzp->z_name_lock, RW_READER); 3560 } 3561 3562 if (cmp < 0) { 3563 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3564 ZEXISTS | zflg, NULL, NULL); 3565 terr = zfs_dirent_lock(&tdl, 3566 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3567 } else { 3568 terr = zfs_dirent_lock(&tdl, 3569 tdzp, tnm, &tzp, zflg, NULL, NULL); 3570 serr = zfs_dirent_lock(&sdl, 3571 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3572 NULL, NULL); 3573 } 3574 3575 if (serr) { 3576 /* 3577 * Source entry invalid or not there. 3578 */ 3579 if (!terr) { 3580 zfs_dirent_unlock(tdl); 3581 if (tzp) 3582 VN_RELE(ZTOV(tzp)); 3583 } 3584 3585 if (sdzp == tdzp) 3586 rw_exit(&sdzp->z_name_lock); 3587 3588 if (strcmp(snm, "..") == 0) 3589 serr = SET_ERROR(EINVAL); 3590 ZFS_EXIT(zfsvfs); 3591 return (serr); 3592 } 3593 if (terr) { 3594 zfs_dirent_unlock(sdl); 3595 VN_RELE(ZTOV(szp)); 3596 3597 if (sdzp == tdzp) 3598 rw_exit(&sdzp->z_name_lock); 3599 3600 if (strcmp(tnm, "..") == 0) 3601 terr = SET_ERROR(EINVAL); 3602 ZFS_EXIT(zfsvfs); 3603 return (terr); 3604 } 3605 3606 /* 3607 * Must have write access at the source to remove the old entry 3608 * and write access at the target to create the new entry. 3609 * Note that if target and source are the same, this can be 3610 * done in a single check. 3611 */ 3612 3613 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3614 goto out; 3615 3616 if (ZTOV(szp)->v_type == VDIR) { 3617 /* 3618 * Check to make sure rename is valid. 3619 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3620 */ 3621 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3622 goto out; 3623 } 3624 3625 /* 3626 * Does target exist? 3627 */ 3628 if (tzp) { 3629 /* 3630 * Source and target must be the same type. 3631 */ 3632 if (ZTOV(szp)->v_type == VDIR) { 3633 if (ZTOV(tzp)->v_type != VDIR) { 3634 error = SET_ERROR(ENOTDIR); 3635 goto out; 3636 } 3637 } else { 3638 if (ZTOV(tzp)->v_type == VDIR) { 3639 error = SET_ERROR(EISDIR); 3640 goto out; 3641 } 3642 } 3643 /* 3644 * POSIX dictates that when the source and target 3645 * entries refer to the same file object, rename 3646 * must do nothing and exit without error. 3647 */ 3648 if (szp->z_id == tzp->z_id) { 3649 error = 0; 3650 goto out; 3651 } 3652 } 3653 3654 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3655 if (tzp) 3656 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3657 3658 /* 3659 * notify the target directory if it is not the same 3660 * as source directory. 3661 */ 3662 if (tdvp != sdvp) { 3663 vnevent_rename_dest_dir(tdvp, ct); 3664 } 3665 3666 tx = dmu_tx_create(zfsvfs->z_os); 3667 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3668 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3669 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3670 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3671 if (sdzp != tdzp) { 3672 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3673 zfs_sa_upgrade_txholds(tx, tdzp); 3674 } 3675 if (tzp) { 3676 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3677 zfs_sa_upgrade_txholds(tx, tzp); 3678 } 3679 3680 zfs_sa_upgrade_txholds(tx, szp); 3681 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3682 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3683 if (error) { 3684 if (zl != NULL) 3685 zfs_rename_unlock(&zl); 3686 zfs_dirent_unlock(sdl); 3687 zfs_dirent_unlock(tdl); 3688 3689 if (sdzp == tdzp) 3690 rw_exit(&sdzp->z_name_lock); 3691 3692 VN_RELE(ZTOV(szp)); 3693 if (tzp) 3694 VN_RELE(ZTOV(tzp)); 3695 if (error == ERESTART) { 3696 waited = B_TRUE; 3697 dmu_tx_wait(tx); 3698 dmu_tx_abort(tx); 3699 goto top; 3700 } 3701 dmu_tx_abort(tx); 3702 ZFS_EXIT(zfsvfs); 3703 return (error); 3704 } 3705 3706 if (tzp) /* Attempt to remove the existing target */ 3707 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3708 3709 if (error == 0) { 3710 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3711 if (error == 0) { 3712 szp->z_pflags |= ZFS_AV_MODIFIED; 3713 3714 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3715 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3716 ASSERT0(error); 3717 3718 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3719 if (error == 0) { 3720 zfs_log_rename(zilog, tx, TX_RENAME | 3721 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3722 sdl->dl_name, tdzp, tdl->dl_name, szp, tzp); 3723 3724 /* 3725 * Update path information for the target vnode 3726 */ 3727 vn_renamepath(tdvp, ZTOV(szp), tnm, 3728 strlen(tnm)); 3729 } else { 3730 /* 3731 * At this point, we have successfully created 3732 * the target name, but have failed to remove 3733 * the source name. Since the create was done 3734 * with the ZRENAMING flag, there are 3735 * complications; for one, the link count is 3736 * wrong. The easiest way to deal with this 3737 * is to remove the newly created target, and 3738 * return the original error. This must 3739 * succeed; fortunately, it is very unlikely to 3740 * fail, since we just created it. 3741 */ 3742 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3743 ZRENAMING, NULL), ==, 0); 3744 } 3745 } 3746 } 3747 3748 dmu_tx_commit(tx); 3749 out: 3750 if (zl != NULL) 3751 zfs_rename_unlock(&zl); 3752 3753 zfs_dirent_unlock(sdl); 3754 zfs_dirent_unlock(tdl); 3755 3756 if (sdzp == tdzp) 3757 rw_exit(&sdzp->z_name_lock); 3758 3759 3760 VN_RELE(ZTOV(szp)); 3761 if (tzp) 3762 VN_RELE(ZTOV(tzp)); 3763 3764 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3765 zil_commit(zilog, 0); 3766 3767 ZFS_EXIT(zfsvfs); 3768 return (error); 3769 } 3770 3771 /* 3772 * Insert the indicated symbolic reference entry into the directory. 3773 * 3774 * IN: dvp - Directory to contain new symbolic link. 3775 * link - Name for new symlink entry. 3776 * vap - Attributes of new entry. 3777 * cr - credentials of caller. 3778 * ct - caller context 3779 * flags - case flags 3780 * 3781 * RETURN: 0 on success, error code on failure. 3782 * 3783 * Timestamps: 3784 * dvp - ctime|mtime updated 3785 */ 3786 /*ARGSUSED*/ 3787 static int 3788 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3789 caller_context_t *ct, int flags) 3790 { 3791 znode_t *zp, *dzp = VTOZ(dvp); 3792 zfs_dirlock_t *dl; 3793 dmu_tx_t *tx; 3794 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3795 zilog_t *zilog; 3796 uint64_t len = strlen(link); 3797 int error; 3798 int zflg = ZNEW; 3799 zfs_acl_ids_t acl_ids; 3800 boolean_t fuid_dirtied; 3801 uint64_t txtype = TX_SYMLINK; 3802 boolean_t waited = B_FALSE; 3803 3804 ASSERT(vap->va_type == VLNK); 3805 3806 ZFS_ENTER(zfsvfs); 3807 ZFS_VERIFY_ZP(dzp); 3808 zilog = zfsvfs->z_log; 3809 3810 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3811 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3812 ZFS_EXIT(zfsvfs); 3813 return (SET_ERROR(EILSEQ)); 3814 } 3815 if (flags & FIGNORECASE) 3816 zflg |= ZCILOOK; 3817 3818 if (len > MAXPATHLEN) { 3819 ZFS_EXIT(zfsvfs); 3820 return (SET_ERROR(ENAMETOOLONG)); 3821 } 3822 3823 if ((error = zfs_acl_ids_create(dzp, 0, 3824 vap, cr, NULL, &acl_ids)) != 0) { 3825 ZFS_EXIT(zfsvfs); 3826 return (error); 3827 } 3828 top: 3829 /* 3830 * Attempt to lock directory; fail if entry already exists. 3831 */ 3832 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3833 if (error) { 3834 zfs_acl_ids_free(&acl_ids); 3835 ZFS_EXIT(zfsvfs); 3836 return (error); 3837 } 3838 3839 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3840 zfs_acl_ids_free(&acl_ids); 3841 zfs_dirent_unlock(dl); 3842 ZFS_EXIT(zfsvfs); 3843 return (error); 3844 } 3845 3846 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3847 zfs_acl_ids_free(&acl_ids); 3848 zfs_dirent_unlock(dl); 3849 ZFS_EXIT(zfsvfs); 3850 return (SET_ERROR(EDQUOT)); 3851 } 3852 tx = dmu_tx_create(zfsvfs->z_os); 3853 fuid_dirtied = zfsvfs->z_fuid_dirty; 3854 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3855 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3856 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3857 ZFS_SA_BASE_ATTR_SIZE + len); 3858 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3859 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3860 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3861 acl_ids.z_aclp->z_acl_bytes); 3862 } 3863 if (fuid_dirtied) 3864 zfs_fuid_txhold(zfsvfs, tx); 3865 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3866 if (error) { 3867 zfs_dirent_unlock(dl); 3868 if (error == ERESTART) { 3869 waited = B_TRUE; 3870 dmu_tx_wait(tx); 3871 dmu_tx_abort(tx); 3872 goto top; 3873 } 3874 zfs_acl_ids_free(&acl_ids); 3875 dmu_tx_abort(tx); 3876 ZFS_EXIT(zfsvfs); 3877 return (error); 3878 } 3879 3880 /* 3881 * Create a new object for the symlink. 3882 * for version 4 ZPL datsets the symlink will be an SA attribute 3883 */ 3884 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3885 3886 if (fuid_dirtied) 3887 zfs_fuid_sync(zfsvfs, tx); 3888 3889 mutex_enter(&zp->z_lock); 3890 if (zp->z_is_sa) 3891 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3892 link, len, tx); 3893 else 3894 zfs_sa_symlink(zp, link, len, tx); 3895 mutex_exit(&zp->z_lock); 3896 3897 zp->z_size = len; 3898 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3899 &zp->z_size, sizeof (zp->z_size), tx); 3900 /* 3901 * Insert the new object into the directory. 3902 */ 3903 (void) zfs_link_create(dl, zp, tx, ZNEW); 3904 3905 if (flags & FIGNORECASE) 3906 txtype |= TX_CI; 3907 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3908 3909 zfs_acl_ids_free(&acl_ids); 3910 3911 dmu_tx_commit(tx); 3912 3913 zfs_dirent_unlock(dl); 3914 3915 VN_RELE(ZTOV(zp)); 3916 3917 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3918 zil_commit(zilog, 0); 3919 3920 ZFS_EXIT(zfsvfs); 3921 return (error); 3922 } 3923 3924 /* 3925 * Return, in the buffer contained in the provided uio structure, 3926 * the symbolic path referred to by vp. 3927 * 3928 * IN: vp - vnode of symbolic link. 3929 * uio - structure to contain the link path. 3930 * cr - credentials of caller. 3931 * ct - caller context 3932 * 3933 * OUT: uio - structure containing the link path. 3934 * 3935 * RETURN: 0 on success, error code on failure. 3936 * 3937 * Timestamps: 3938 * vp - atime updated 3939 */ 3940 /* ARGSUSED */ 3941 static int 3942 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3943 { 3944 znode_t *zp = VTOZ(vp); 3945 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3946 int error; 3947 3948 ZFS_ENTER(zfsvfs); 3949 ZFS_VERIFY_ZP(zp); 3950 3951 mutex_enter(&zp->z_lock); 3952 if (zp->z_is_sa) 3953 error = sa_lookup_uio(zp->z_sa_hdl, 3954 SA_ZPL_SYMLINK(zfsvfs), uio); 3955 else 3956 error = zfs_sa_readlink(zp, uio); 3957 mutex_exit(&zp->z_lock); 3958 3959 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3960 3961 ZFS_EXIT(zfsvfs); 3962 return (error); 3963 } 3964 3965 /* 3966 * Insert a new entry into directory tdvp referencing svp. 3967 * 3968 * IN: tdvp - Directory to contain new entry. 3969 * svp - vnode of new entry. 3970 * name - name of new entry. 3971 * cr - credentials of caller. 3972 * ct - caller context 3973 * 3974 * RETURN: 0 on success, error code on failure. 3975 * 3976 * Timestamps: 3977 * tdvp - ctime|mtime updated 3978 * svp - ctime updated 3979 */ 3980 /* ARGSUSED */ 3981 static int 3982 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3983 caller_context_t *ct, int flags) 3984 { 3985 znode_t *dzp = VTOZ(tdvp); 3986 znode_t *tzp, *szp; 3987 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3988 zilog_t *zilog; 3989 zfs_dirlock_t *dl; 3990 dmu_tx_t *tx; 3991 vnode_t *realvp; 3992 int error; 3993 int zf = ZNEW; 3994 uint64_t parent; 3995 uid_t owner; 3996 boolean_t waited = B_FALSE; 3997 3998 ASSERT(tdvp->v_type == VDIR); 3999 4000 ZFS_ENTER(zfsvfs); 4001 ZFS_VERIFY_ZP(dzp); 4002 zilog = zfsvfs->z_log; 4003 4004 if (VOP_REALVP(svp, &realvp, ct) == 0) 4005 svp = realvp; 4006 4007 /* 4008 * POSIX dictates that we return EPERM here. 4009 * Better choices include ENOTSUP or EISDIR. 4010 */ 4011 if (svp->v_type == VDIR) { 4012 ZFS_EXIT(zfsvfs); 4013 return (SET_ERROR(EPERM)); 4014 } 4015 4016 szp = VTOZ(svp); 4017 ZFS_VERIFY_ZP(szp); 4018 4019 /* 4020 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4021 * ctldir appear to have the same v_vfsp. 4022 */ 4023 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4024 ZFS_EXIT(zfsvfs); 4025 return (SET_ERROR(EXDEV)); 4026 } 4027 4028 /* Prevent links to .zfs/shares files */ 4029 4030 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4031 &parent, sizeof (uint64_t))) != 0) { 4032 ZFS_EXIT(zfsvfs); 4033 return (error); 4034 } 4035 if (parent == zfsvfs->z_shares_dir) { 4036 ZFS_EXIT(zfsvfs); 4037 return (SET_ERROR(EPERM)); 4038 } 4039 4040 if (zfsvfs->z_utf8 && u8_validate(name, 4041 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4042 ZFS_EXIT(zfsvfs); 4043 return (SET_ERROR(EILSEQ)); 4044 } 4045 if (flags & FIGNORECASE) 4046 zf |= ZCILOOK; 4047 4048 /* 4049 * We do not support links between attributes and non-attributes 4050 * because of the potential security risk of creating links 4051 * into "normal" file space in order to circumvent restrictions 4052 * imposed in attribute space. 4053 */ 4054 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4055 ZFS_EXIT(zfsvfs); 4056 return (SET_ERROR(EINVAL)); 4057 } 4058 4059 4060 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4061 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4062 ZFS_EXIT(zfsvfs); 4063 return (SET_ERROR(EPERM)); 4064 } 4065 4066 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4067 ZFS_EXIT(zfsvfs); 4068 return (error); 4069 } 4070 4071 top: 4072 /* 4073 * Attempt to lock directory; fail if entry already exists. 4074 */ 4075 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4076 if (error) { 4077 ZFS_EXIT(zfsvfs); 4078 return (error); 4079 } 4080 4081 tx = dmu_tx_create(zfsvfs->z_os); 4082 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4083 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4084 zfs_sa_upgrade_txholds(tx, szp); 4085 zfs_sa_upgrade_txholds(tx, dzp); 4086 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 4087 if (error) { 4088 zfs_dirent_unlock(dl); 4089 if (error == ERESTART) { 4090 waited = B_TRUE; 4091 dmu_tx_wait(tx); 4092 dmu_tx_abort(tx); 4093 goto top; 4094 } 4095 dmu_tx_abort(tx); 4096 ZFS_EXIT(zfsvfs); 4097 return (error); 4098 } 4099 4100 error = zfs_link_create(dl, szp, tx, 0); 4101 4102 if (error == 0) { 4103 uint64_t txtype = TX_LINK; 4104 if (flags & FIGNORECASE) 4105 txtype |= TX_CI; 4106 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4107 } 4108 4109 dmu_tx_commit(tx); 4110 4111 zfs_dirent_unlock(dl); 4112 4113 if (error == 0) { 4114 vnevent_link(svp, ct); 4115 } 4116 4117 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4118 zil_commit(zilog, 0); 4119 4120 ZFS_EXIT(zfsvfs); 4121 return (error); 4122 } 4123 4124 /* 4125 * zfs_null_putapage() is used when the file system has been force 4126 * unmounted. It just drops the pages. 4127 */ 4128 /* ARGSUSED */ 4129 static int 4130 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4131 size_t *lenp, int flags, cred_t *cr) 4132 { 4133 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4134 return (0); 4135 } 4136 4137 /* 4138 * Push a page out to disk, klustering if possible. 4139 * 4140 * IN: vp - file to push page to. 4141 * pp - page to push. 4142 * flags - additional flags. 4143 * cr - credentials of caller. 4144 * 4145 * OUT: offp - start of range pushed. 4146 * lenp - len of range pushed. 4147 * 4148 * RETURN: 0 on success, error code on failure. 4149 * 4150 * NOTE: callers must have locked the page to be pushed. On 4151 * exit, the page (and all other pages in the kluster) must be 4152 * unlocked. 4153 */ 4154 /* ARGSUSED */ 4155 static int 4156 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4157 size_t *lenp, int flags, cred_t *cr) 4158 { 4159 znode_t *zp = VTOZ(vp); 4160 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4161 dmu_tx_t *tx; 4162 u_offset_t off, koff; 4163 size_t len, klen; 4164 int err; 4165 4166 off = pp->p_offset; 4167 len = PAGESIZE; 4168 /* 4169 * If our blocksize is bigger than the page size, try to kluster 4170 * multiple pages so that we write a full block (thus avoiding 4171 * a read-modify-write). 4172 */ 4173 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4174 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4175 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4176 ASSERT(koff <= zp->z_size); 4177 if (koff + klen > zp->z_size) 4178 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4179 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4180 } 4181 ASSERT3U(btop(len), ==, btopr(len)); 4182 4183 /* 4184 * Can't push pages past end-of-file. 4185 */ 4186 if (off >= zp->z_size) { 4187 /* ignore all pages */ 4188 err = 0; 4189 goto out; 4190 } else if (off + len > zp->z_size) { 4191 int npages = btopr(zp->z_size - off); 4192 page_t *trunc; 4193 4194 page_list_break(&pp, &trunc, npages); 4195 /* ignore pages past end of file */ 4196 if (trunc) 4197 pvn_write_done(trunc, flags); 4198 len = zp->z_size - off; 4199 } 4200 4201 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4202 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4203 err = SET_ERROR(EDQUOT); 4204 goto out; 4205 } 4206 tx = dmu_tx_create(zfsvfs->z_os); 4207 dmu_tx_hold_write(tx, zp->z_id, off, len); 4208 4209 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4210 zfs_sa_upgrade_txholds(tx, zp); 4211 err = dmu_tx_assign(tx, TXG_WAIT); 4212 if (err != 0) { 4213 dmu_tx_abort(tx); 4214 goto out; 4215 } 4216 4217 if (zp->z_blksz <= PAGESIZE) { 4218 caddr_t va = zfs_map_page(pp, S_READ); 4219 ASSERT3U(len, <=, PAGESIZE); 4220 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4221 zfs_unmap_page(pp, va); 4222 } else { 4223 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4224 } 4225 4226 if (err == 0) { 4227 uint64_t mtime[2], ctime[2]; 4228 sa_bulk_attr_t bulk[3]; 4229 int count = 0; 4230 4231 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4232 &mtime, 16); 4233 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4234 &ctime, 16); 4235 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4236 &zp->z_pflags, 8); 4237 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4238 B_TRUE); 4239 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4240 } 4241 dmu_tx_commit(tx); 4242 4243 out: 4244 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4245 if (offp) 4246 *offp = off; 4247 if (lenp) 4248 *lenp = len; 4249 4250 return (err); 4251 } 4252 4253 /* 4254 * Copy the portion of the file indicated from pages into the file. 4255 * The pages are stored in a page list attached to the files vnode. 4256 * 4257 * IN: vp - vnode of file to push page data to. 4258 * off - position in file to put data. 4259 * len - amount of data to write. 4260 * flags - flags to control the operation. 4261 * cr - credentials of caller. 4262 * ct - caller context. 4263 * 4264 * RETURN: 0 on success, error code on failure. 4265 * 4266 * Timestamps: 4267 * vp - ctime|mtime updated 4268 */ 4269 /*ARGSUSED*/ 4270 static int 4271 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4272 caller_context_t *ct) 4273 { 4274 znode_t *zp = VTOZ(vp); 4275 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4276 page_t *pp; 4277 size_t io_len; 4278 u_offset_t io_off; 4279 uint_t blksz; 4280 rl_t *rl; 4281 int error = 0; 4282 4283 ZFS_ENTER(zfsvfs); 4284 ZFS_VERIFY_ZP(zp); 4285 4286 /* 4287 * There's nothing to do if no data is cached. 4288 */ 4289 if (!vn_has_cached_data(vp)) { 4290 ZFS_EXIT(zfsvfs); 4291 return (0); 4292 } 4293 4294 /* 4295 * Align this request to the file block size in case we kluster. 4296 * XXX - this can result in pretty aggresive locking, which can 4297 * impact simultanious read/write access. One option might be 4298 * to break up long requests (len == 0) into block-by-block 4299 * operations to get narrower locking. 4300 */ 4301 blksz = zp->z_blksz; 4302 if (ISP2(blksz)) 4303 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4304 else 4305 io_off = 0; 4306 if (len > 0 && ISP2(blksz)) 4307 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4308 else 4309 io_len = 0; 4310 4311 if (io_len == 0) { 4312 /* 4313 * Search the entire vp list for pages >= io_off. 4314 */ 4315 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4316 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4317 goto out; 4318 } 4319 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4320 4321 if (off > zp->z_size) { 4322 /* past end of file */ 4323 zfs_range_unlock(rl); 4324 ZFS_EXIT(zfsvfs); 4325 return (0); 4326 } 4327 4328 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4329 4330 for (off = io_off; io_off < off + len; io_off += io_len) { 4331 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4332 pp = page_lookup(vp, io_off, 4333 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4334 } else { 4335 pp = page_lookup_nowait(vp, io_off, 4336 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4337 } 4338 4339 if (pp != NULL && pvn_getdirty(pp, flags)) { 4340 int err; 4341 4342 /* 4343 * Found a dirty page to push 4344 */ 4345 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4346 if (err) 4347 error = err; 4348 } else { 4349 io_len = PAGESIZE; 4350 } 4351 } 4352 out: 4353 zfs_range_unlock(rl); 4354 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4355 zil_commit(zfsvfs->z_log, zp->z_id); 4356 ZFS_EXIT(zfsvfs); 4357 return (error); 4358 } 4359 4360 /*ARGSUSED*/ 4361 void 4362 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4363 { 4364 znode_t *zp = VTOZ(vp); 4365 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4366 int error; 4367 4368 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4369 if (zp->z_sa_hdl == NULL) { 4370 /* 4371 * The fs has been unmounted, or we did a 4372 * suspend/resume and this file no longer exists. 4373 */ 4374 if (vn_has_cached_data(vp)) { 4375 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4376 B_INVAL, cr); 4377 } 4378 4379 mutex_enter(&zp->z_lock); 4380 mutex_enter(&vp->v_lock); 4381 ASSERT(vp->v_count == 1); 4382 vp->v_count = 0; 4383 mutex_exit(&vp->v_lock); 4384 mutex_exit(&zp->z_lock); 4385 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4386 zfs_znode_free(zp); 4387 return; 4388 } 4389 4390 /* 4391 * Attempt to push any data in the page cache. If this fails 4392 * we will get kicked out later in zfs_zinactive(). 4393 */ 4394 if (vn_has_cached_data(vp)) { 4395 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4396 cr); 4397 } 4398 4399 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4400 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4401 4402 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4403 zfs_sa_upgrade_txholds(tx, zp); 4404 error = dmu_tx_assign(tx, TXG_WAIT); 4405 if (error) { 4406 dmu_tx_abort(tx); 4407 } else { 4408 mutex_enter(&zp->z_lock); 4409 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4410 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4411 zp->z_atime_dirty = 0; 4412 mutex_exit(&zp->z_lock); 4413 dmu_tx_commit(tx); 4414 } 4415 } 4416 4417 zfs_zinactive(zp); 4418 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4419 } 4420 4421 /* 4422 * Bounds-check the seek operation. 4423 * 4424 * IN: vp - vnode seeking within 4425 * ooff - old file offset 4426 * noffp - pointer to new file offset 4427 * ct - caller context 4428 * 4429 * RETURN: 0 on success, EINVAL if new offset invalid. 4430 */ 4431 /* ARGSUSED */ 4432 static int 4433 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4434 caller_context_t *ct) 4435 { 4436 if (vp->v_type == VDIR) 4437 return (0); 4438 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4439 } 4440 4441 /* 4442 * Pre-filter the generic locking function to trap attempts to place 4443 * a mandatory lock on a memory mapped file. 4444 */ 4445 static int 4446 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4447 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4448 { 4449 znode_t *zp = VTOZ(vp); 4450 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4451 4452 ZFS_ENTER(zfsvfs); 4453 ZFS_VERIFY_ZP(zp); 4454 4455 /* 4456 * We are following the UFS semantics with respect to mapcnt 4457 * here: If we see that the file is mapped already, then we will 4458 * return an error, but we don't worry about races between this 4459 * function and zfs_map(). 4460 */ 4461 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4462 ZFS_EXIT(zfsvfs); 4463 return (SET_ERROR(EAGAIN)); 4464 } 4465 ZFS_EXIT(zfsvfs); 4466 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4467 } 4468 4469 /* 4470 * If we can't find a page in the cache, we will create a new page 4471 * and fill it with file data. For efficiency, we may try to fill 4472 * multiple pages at once (klustering) to fill up the supplied page 4473 * list. Note that the pages to be filled are held with an exclusive 4474 * lock to prevent access by other threads while they are being filled. 4475 */ 4476 static int 4477 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4478 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4479 { 4480 znode_t *zp = VTOZ(vp); 4481 page_t *pp, *cur_pp; 4482 objset_t *os = zp->z_zfsvfs->z_os; 4483 u_offset_t io_off, total; 4484 size_t io_len; 4485 int err; 4486 4487 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4488 /* 4489 * We only have a single page, don't bother klustering 4490 */ 4491 io_off = off; 4492 io_len = PAGESIZE; 4493 pp = page_create_va(vp, io_off, io_len, 4494 PG_EXCL | PG_WAIT, seg, addr); 4495 } else { 4496 /* 4497 * Try to find enough pages to fill the page list 4498 */ 4499 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4500 &io_len, off, plsz, 0); 4501 } 4502 if (pp == NULL) { 4503 /* 4504 * The page already exists, nothing to do here. 4505 */ 4506 *pl = NULL; 4507 return (0); 4508 } 4509 4510 /* 4511 * Fill the pages in the kluster. 4512 */ 4513 cur_pp = pp; 4514 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4515 caddr_t va; 4516 4517 ASSERT3U(io_off, ==, cur_pp->p_offset); 4518 va = zfs_map_page(cur_pp, S_WRITE); 4519 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4520 DMU_READ_PREFETCH); 4521 zfs_unmap_page(cur_pp, va); 4522 if (err) { 4523 /* On error, toss the entire kluster */ 4524 pvn_read_done(pp, B_ERROR); 4525 /* convert checksum errors into IO errors */ 4526 if (err == ECKSUM) 4527 err = SET_ERROR(EIO); 4528 return (err); 4529 } 4530 cur_pp = cur_pp->p_next; 4531 } 4532 4533 /* 4534 * Fill in the page list array from the kluster starting 4535 * from the desired offset `off'. 4536 * NOTE: the page list will always be null terminated. 4537 */ 4538 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4539 ASSERT(pl == NULL || (*pl)->p_offset == off); 4540 4541 return (0); 4542 } 4543 4544 /* 4545 * Return pointers to the pages for the file region [off, off + len] 4546 * in the pl array. If plsz is greater than len, this function may 4547 * also return page pointers from after the specified region 4548 * (i.e. the region [off, off + plsz]). These additional pages are 4549 * only returned if they are already in the cache, or were created as 4550 * part of a klustered read. 4551 * 4552 * IN: vp - vnode of file to get data from. 4553 * off - position in file to get data from. 4554 * len - amount of data to retrieve. 4555 * plsz - length of provided page list. 4556 * seg - segment to obtain pages for. 4557 * addr - virtual address of fault. 4558 * rw - mode of created pages. 4559 * cr - credentials of caller. 4560 * ct - caller context. 4561 * 4562 * OUT: protp - protection mode of created pages. 4563 * pl - list of pages created. 4564 * 4565 * RETURN: 0 on success, error code on failure. 4566 * 4567 * Timestamps: 4568 * vp - atime updated 4569 */ 4570 /* ARGSUSED */ 4571 static int 4572 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4573 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4574 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4575 { 4576 znode_t *zp = VTOZ(vp); 4577 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4578 page_t **pl0 = pl; 4579 int err = 0; 4580 4581 /* we do our own caching, faultahead is unnecessary */ 4582 if (pl == NULL) 4583 return (0); 4584 else if (len > plsz) 4585 len = plsz; 4586 else 4587 len = P2ROUNDUP(len, PAGESIZE); 4588 ASSERT(plsz >= len); 4589 4590 ZFS_ENTER(zfsvfs); 4591 ZFS_VERIFY_ZP(zp); 4592 4593 if (protp) 4594 *protp = PROT_ALL; 4595 4596 /* 4597 * Loop through the requested range [off, off + len) looking 4598 * for pages. If we don't find a page, we will need to create 4599 * a new page and fill it with data from the file. 4600 */ 4601 while (len > 0) { 4602 if (*pl = page_lookup(vp, off, SE_SHARED)) 4603 *(pl+1) = NULL; 4604 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4605 goto out; 4606 while (*pl) { 4607 ASSERT3U((*pl)->p_offset, ==, off); 4608 off += PAGESIZE; 4609 addr += PAGESIZE; 4610 if (len > 0) { 4611 ASSERT3U(len, >=, PAGESIZE); 4612 len -= PAGESIZE; 4613 } 4614 ASSERT3U(plsz, >=, PAGESIZE); 4615 plsz -= PAGESIZE; 4616 pl++; 4617 } 4618 } 4619 4620 /* 4621 * Fill out the page array with any pages already in the cache. 4622 */ 4623 while (plsz > 0 && 4624 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4625 off += PAGESIZE; 4626 plsz -= PAGESIZE; 4627 } 4628 out: 4629 if (err) { 4630 /* 4631 * Release any pages we have previously locked. 4632 */ 4633 while (pl > pl0) 4634 page_unlock(*--pl); 4635 } else { 4636 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4637 } 4638 4639 *pl = NULL; 4640 4641 ZFS_EXIT(zfsvfs); 4642 return (err); 4643 } 4644 4645 /* 4646 * Request a memory map for a section of a file. This code interacts 4647 * with common code and the VM system as follows: 4648 * 4649 * - common code calls mmap(), which ends up in smmap_common() 4650 * - this calls VOP_MAP(), which takes you into (say) zfs 4651 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4652 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4653 * - zfs_addmap() updates z_mapcnt 4654 */ 4655 /*ARGSUSED*/ 4656 static int 4657 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4658 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4659 caller_context_t *ct) 4660 { 4661 znode_t *zp = VTOZ(vp); 4662 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4663 segvn_crargs_t vn_a; 4664 int error; 4665 4666 ZFS_ENTER(zfsvfs); 4667 ZFS_VERIFY_ZP(zp); 4668 4669 if ((prot & PROT_WRITE) && (zp->z_pflags & 4670 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4671 ZFS_EXIT(zfsvfs); 4672 return (SET_ERROR(EPERM)); 4673 } 4674 4675 if ((prot & (PROT_READ | PROT_EXEC)) && 4676 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4677 ZFS_EXIT(zfsvfs); 4678 return (SET_ERROR(EACCES)); 4679 } 4680 4681 if (vp->v_flag & VNOMAP) { 4682 ZFS_EXIT(zfsvfs); 4683 return (SET_ERROR(ENOSYS)); 4684 } 4685 4686 if (off < 0 || len > MAXOFFSET_T - off) { 4687 ZFS_EXIT(zfsvfs); 4688 return (SET_ERROR(ENXIO)); 4689 } 4690 4691 if (vp->v_type != VREG) { 4692 ZFS_EXIT(zfsvfs); 4693 return (SET_ERROR(ENODEV)); 4694 } 4695 4696 /* 4697 * If file is locked, disallow mapping. 4698 */ 4699 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4700 ZFS_EXIT(zfsvfs); 4701 return (SET_ERROR(EAGAIN)); 4702 } 4703 4704 as_rangelock(as); 4705 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4706 if (error != 0) { 4707 as_rangeunlock(as); 4708 ZFS_EXIT(zfsvfs); 4709 return (error); 4710 } 4711 4712 vn_a.vp = vp; 4713 vn_a.offset = (u_offset_t)off; 4714 vn_a.type = flags & MAP_TYPE; 4715 vn_a.prot = prot; 4716 vn_a.maxprot = maxprot; 4717 vn_a.cred = cr; 4718 vn_a.amp = NULL; 4719 vn_a.flags = flags & ~MAP_TYPE; 4720 vn_a.szc = 0; 4721 vn_a.lgrp_mem_policy_flags = 0; 4722 4723 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4724 4725 as_rangeunlock(as); 4726 ZFS_EXIT(zfsvfs); 4727 return (error); 4728 } 4729 4730 /* ARGSUSED */ 4731 static int 4732 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4733 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4734 caller_context_t *ct) 4735 { 4736 uint64_t pages = btopr(len); 4737 4738 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4739 return (0); 4740 } 4741 4742 /* 4743 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4744 * more accurate mtime for the associated file. Since we don't have a way of 4745 * detecting when the data was actually modified, we have to resort to 4746 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4747 * last page is pushed. The problem occurs when the msync() call is omitted, 4748 * which by far the most common case: 4749 * 4750 * open() 4751 * mmap() 4752 * <modify memory> 4753 * munmap() 4754 * close() 4755 * <time lapse> 4756 * putpage() via fsflush 4757 * 4758 * If we wait until fsflush to come along, we can have a modification time that 4759 * is some arbitrary point in the future. In order to prevent this in the 4760 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4761 * torn down. 4762 */ 4763 /* ARGSUSED */ 4764 static int 4765 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4766 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4767 caller_context_t *ct) 4768 { 4769 uint64_t pages = btopr(len); 4770 4771 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4772 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4773 4774 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4775 vn_has_cached_data(vp)) 4776 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4777 4778 return (0); 4779 } 4780 4781 /* 4782 * Free or allocate space in a file. Currently, this function only 4783 * supports the `F_FREESP' command. However, this command is somewhat 4784 * misnamed, as its functionality includes the ability to allocate as 4785 * well as free space. 4786 * 4787 * IN: vp - vnode of file to free data in. 4788 * cmd - action to take (only F_FREESP supported). 4789 * bfp - section of file to free/alloc. 4790 * flag - current file open mode flags. 4791 * offset - current file offset. 4792 * cr - credentials of caller [UNUSED]. 4793 * ct - caller context. 4794 * 4795 * RETURN: 0 on success, error code on failure. 4796 * 4797 * Timestamps: 4798 * vp - ctime|mtime updated 4799 */ 4800 /* ARGSUSED */ 4801 static int 4802 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4803 offset_t offset, cred_t *cr, caller_context_t *ct) 4804 { 4805 znode_t *zp = VTOZ(vp); 4806 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4807 uint64_t off, len; 4808 int error; 4809 4810 ZFS_ENTER(zfsvfs); 4811 ZFS_VERIFY_ZP(zp); 4812 4813 if (cmd != F_FREESP) { 4814 ZFS_EXIT(zfsvfs); 4815 return (SET_ERROR(EINVAL)); 4816 } 4817 4818 /* 4819 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 4820 * callers might not be able to detect properly that we are read-only, 4821 * so check it explicitly here. 4822 */ 4823 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 4824 ZFS_EXIT(zfsvfs); 4825 return (SET_ERROR(EROFS)); 4826 } 4827 4828 if (error = convoff(vp, bfp, 0, offset)) { 4829 ZFS_EXIT(zfsvfs); 4830 return (error); 4831 } 4832 4833 if (bfp->l_len < 0) { 4834 ZFS_EXIT(zfsvfs); 4835 return (SET_ERROR(EINVAL)); 4836 } 4837 4838 off = bfp->l_start; 4839 len = bfp->l_len; /* 0 means from off to end of file */ 4840 4841 error = zfs_freesp(zp, off, len, flag, TRUE); 4842 4843 if (error == 0 && off == 0 && len == 0) 4844 vnevent_truncate(ZTOV(zp), ct); 4845 4846 ZFS_EXIT(zfsvfs); 4847 return (error); 4848 } 4849 4850 /*ARGSUSED*/ 4851 static int 4852 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4853 { 4854 znode_t *zp = VTOZ(vp); 4855 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4856 uint32_t gen; 4857 uint64_t gen64; 4858 uint64_t object = zp->z_id; 4859 zfid_short_t *zfid; 4860 int size, i, error; 4861 4862 ZFS_ENTER(zfsvfs); 4863 ZFS_VERIFY_ZP(zp); 4864 4865 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4866 &gen64, sizeof (uint64_t))) != 0) { 4867 ZFS_EXIT(zfsvfs); 4868 return (error); 4869 } 4870 4871 gen = (uint32_t)gen64; 4872 4873 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4874 if (fidp->fid_len < size) { 4875 fidp->fid_len = size; 4876 ZFS_EXIT(zfsvfs); 4877 return (SET_ERROR(ENOSPC)); 4878 } 4879 4880 zfid = (zfid_short_t *)fidp; 4881 4882 zfid->zf_len = size; 4883 4884 for (i = 0; i < sizeof (zfid->zf_object); i++) 4885 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4886 4887 /* Must have a non-zero generation number to distinguish from .zfs */ 4888 if (gen == 0) 4889 gen = 1; 4890 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4891 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4892 4893 if (size == LONG_FID_LEN) { 4894 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4895 zfid_long_t *zlfid; 4896 4897 zlfid = (zfid_long_t *)fidp; 4898 4899 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4900 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4901 4902 /* XXX - this should be the generation number for the objset */ 4903 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4904 zlfid->zf_setgen[i] = 0; 4905 } 4906 4907 ZFS_EXIT(zfsvfs); 4908 return (0); 4909 } 4910 4911 static int 4912 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4913 caller_context_t *ct) 4914 { 4915 znode_t *zp, *xzp; 4916 zfsvfs_t *zfsvfs; 4917 zfs_dirlock_t *dl; 4918 int error; 4919 4920 switch (cmd) { 4921 case _PC_LINK_MAX: 4922 *valp = ULONG_MAX; 4923 return (0); 4924 4925 case _PC_FILESIZEBITS: 4926 *valp = 64; 4927 return (0); 4928 4929 case _PC_XATTR_EXISTS: 4930 zp = VTOZ(vp); 4931 zfsvfs = zp->z_zfsvfs; 4932 ZFS_ENTER(zfsvfs); 4933 ZFS_VERIFY_ZP(zp); 4934 *valp = 0; 4935 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4936 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4937 if (error == 0) { 4938 zfs_dirent_unlock(dl); 4939 if (!zfs_dirempty(xzp)) 4940 *valp = 1; 4941 VN_RELE(ZTOV(xzp)); 4942 } else if (error == ENOENT) { 4943 /* 4944 * If there aren't extended attributes, it's the 4945 * same as having zero of them. 4946 */ 4947 error = 0; 4948 } 4949 ZFS_EXIT(zfsvfs); 4950 return (error); 4951 4952 case _PC_SATTR_ENABLED: 4953 case _PC_SATTR_EXISTS: 4954 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4955 (vp->v_type == VREG || vp->v_type == VDIR); 4956 return (0); 4957 4958 case _PC_ACCESS_FILTERING: 4959 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4960 vp->v_type == VDIR; 4961 return (0); 4962 4963 case _PC_ACL_ENABLED: 4964 *valp = _ACL_ACE_ENABLED; 4965 return (0); 4966 4967 case _PC_MIN_HOLE_SIZE: 4968 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4969 return (0); 4970 4971 case _PC_TIMESTAMP_RESOLUTION: 4972 /* nanosecond timestamp resolution */ 4973 *valp = 1L; 4974 return (0); 4975 4976 default: 4977 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4978 } 4979 } 4980 4981 /*ARGSUSED*/ 4982 static int 4983 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4984 caller_context_t *ct) 4985 { 4986 znode_t *zp = VTOZ(vp); 4987 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4988 int error; 4989 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4990 4991 ZFS_ENTER(zfsvfs); 4992 ZFS_VERIFY_ZP(zp); 4993 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4994 ZFS_EXIT(zfsvfs); 4995 4996 return (error); 4997 } 4998 4999 /*ARGSUSED*/ 5000 static int 5001 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5002 caller_context_t *ct) 5003 { 5004 znode_t *zp = VTOZ(vp); 5005 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5006 int error; 5007 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5008 zilog_t *zilog = zfsvfs->z_log; 5009 5010 ZFS_ENTER(zfsvfs); 5011 ZFS_VERIFY_ZP(zp); 5012 5013 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5014 5015 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5016 zil_commit(zilog, 0); 5017 5018 ZFS_EXIT(zfsvfs); 5019 return (error); 5020 } 5021 5022 /* 5023 * The smallest read we may consider to loan out an arcbuf. 5024 * This must be a power of 2. 5025 */ 5026 int zcr_blksz_min = (1 << 10); /* 1K */ 5027 /* 5028 * If set to less than the file block size, allow loaning out of an 5029 * arcbuf for a partial block read. This must be a power of 2. 5030 */ 5031 int zcr_blksz_max = (1 << 17); /* 128K */ 5032 5033 /*ARGSUSED*/ 5034 static int 5035 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5036 caller_context_t *ct) 5037 { 5038 znode_t *zp = VTOZ(vp); 5039 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5040 int max_blksz = zfsvfs->z_max_blksz; 5041 uio_t *uio = &xuio->xu_uio; 5042 ssize_t size = uio->uio_resid; 5043 offset_t offset = uio->uio_loffset; 5044 int blksz; 5045 int fullblk, i; 5046 arc_buf_t *abuf; 5047 ssize_t maxsize; 5048 int preamble, postamble; 5049 5050 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5051 return (SET_ERROR(EINVAL)); 5052 5053 ZFS_ENTER(zfsvfs); 5054 ZFS_VERIFY_ZP(zp); 5055 switch (ioflag) { 5056 case UIO_WRITE: 5057 /* 5058 * Loan out an arc_buf for write if write size is bigger than 5059 * max_blksz, and the file's block size is also max_blksz. 5060 */ 5061 blksz = max_blksz; 5062 if (size < blksz || zp->z_blksz != blksz) { 5063 ZFS_EXIT(zfsvfs); 5064 return (SET_ERROR(EINVAL)); 5065 } 5066 /* 5067 * Caller requests buffers for write before knowing where the 5068 * write offset might be (e.g. NFS TCP write). 5069 */ 5070 if (offset == -1) { 5071 preamble = 0; 5072 } else { 5073 preamble = P2PHASE(offset, blksz); 5074 if (preamble) { 5075 preamble = blksz - preamble; 5076 size -= preamble; 5077 } 5078 } 5079 5080 postamble = P2PHASE(size, blksz); 5081 size -= postamble; 5082 5083 fullblk = size / blksz; 5084 (void) dmu_xuio_init(xuio, 5085 (preamble != 0) + fullblk + (postamble != 0)); 5086 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5087 int, postamble, int, 5088 (preamble != 0) + fullblk + (postamble != 0)); 5089 5090 /* 5091 * Have to fix iov base/len for partial buffers. They 5092 * currently represent full arc_buf's. 5093 */ 5094 if (preamble) { 5095 /* data begins in the middle of the arc_buf */ 5096 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5097 blksz); 5098 ASSERT(abuf); 5099 (void) dmu_xuio_add(xuio, abuf, 5100 blksz - preamble, preamble); 5101 } 5102 5103 for (i = 0; i < fullblk; i++) { 5104 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5105 blksz); 5106 ASSERT(abuf); 5107 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5108 } 5109 5110 if (postamble) { 5111 /* data ends in the middle of the arc_buf */ 5112 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5113 blksz); 5114 ASSERT(abuf); 5115 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5116 } 5117 break; 5118 case UIO_READ: 5119 /* 5120 * Loan out an arc_buf for read if the read size is larger than 5121 * the current file block size. Block alignment is not 5122 * considered. Partial arc_buf will be loaned out for read. 5123 */ 5124 blksz = zp->z_blksz; 5125 if (blksz < zcr_blksz_min) 5126 blksz = zcr_blksz_min; 5127 if (blksz > zcr_blksz_max) 5128 blksz = zcr_blksz_max; 5129 /* avoid potential complexity of dealing with it */ 5130 if (blksz > max_blksz) { 5131 ZFS_EXIT(zfsvfs); 5132 return (SET_ERROR(EINVAL)); 5133 } 5134 5135 maxsize = zp->z_size - uio->uio_loffset; 5136 if (size > maxsize) 5137 size = maxsize; 5138 5139 if (size < blksz || vn_has_cached_data(vp)) { 5140 ZFS_EXIT(zfsvfs); 5141 return (SET_ERROR(EINVAL)); 5142 } 5143 break; 5144 default: 5145 ZFS_EXIT(zfsvfs); 5146 return (SET_ERROR(EINVAL)); 5147 } 5148 5149 uio->uio_extflg = UIO_XUIO; 5150 XUIO_XUZC_RW(xuio) = ioflag; 5151 ZFS_EXIT(zfsvfs); 5152 return (0); 5153 } 5154 5155 /*ARGSUSED*/ 5156 static int 5157 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5158 { 5159 int i; 5160 arc_buf_t *abuf; 5161 int ioflag = XUIO_XUZC_RW(xuio); 5162 5163 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5164 5165 i = dmu_xuio_cnt(xuio); 5166 while (i-- > 0) { 5167 abuf = dmu_xuio_arcbuf(xuio, i); 5168 /* 5169 * if abuf == NULL, it must be a write buffer 5170 * that has been returned in zfs_write(). 5171 */ 5172 if (abuf) 5173 dmu_return_arcbuf(abuf); 5174 ASSERT(abuf || ioflag == UIO_WRITE); 5175 } 5176 5177 dmu_xuio_fini(xuio); 5178 return (0); 5179 } 5180 5181 /* 5182 * Predeclare these here so that the compiler assumes that 5183 * this is an "old style" function declaration that does 5184 * not include arguments => we won't get type mismatch errors 5185 * in the initializations that follow. 5186 */ 5187 static int zfs_inval(); 5188 static int zfs_isdir(); 5189 5190 static int 5191 zfs_inval() 5192 { 5193 return (SET_ERROR(EINVAL)); 5194 } 5195 5196 static int 5197 zfs_isdir() 5198 { 5199 return (SET_ERROR(EISDIR)); 5200 } 5201 /* 5202 * Directory vnode operations template 5203 */ 5204 vnodeops_t *zfs_dvnodeops; 5205 const fs_operation_def_t zfs_dvnodeops_template[] = { 5206 VOPNAME_OPEN, { .vop_open = zfs_open }, 5207 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5208 VOPNAME_READ, { .error = zfs_isdir }, 5209 VOPNAME_WRITE, { .error = zfs_isdir }, 5210 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5211 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5212 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5213 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5214 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5215 VOPNAME_CREATE, { .vop_create = zfs_create }, 5216 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5217 VOPNAME_LINK, { .vop_link = zfs_link }, 5218 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5219 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5220 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5221 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5222 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5223 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5224 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5225 VOPNAME_FID, { .vop_fid = zfs_fid }, 5226 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5227 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5228 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5229 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5230 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5231 NULL, NULL 5232 }; 5233 5234 /* 5235 * Regular file vnode operations template 5236 */ 5237 vnodeops_t *zfs_fvnodeops; 5238 const fs_operation_def_t zfs_fvnodeops_template[] = { 5239 VOPNAME_OPEN, { .vop_open = zfs_open }, 5240 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5241 VOPNAME_READ, { .vop_read = zfs_read }, 5242 VOPNAME_WRITE, { .vop_write = zfs_write }, 5243 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5244 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5245 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5246 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5247 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5248 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5249 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5250 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5251 VOPNAME_FID, { .vop_fid = zfs_fid }, 5252 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5253 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5254 VOPNAME_SPACE, { .vop_space = zfs_space }, 5255 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5256 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5257 VOPNAME_MAP, { .vop_map = zfs_map }, 5258 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5259 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5260 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5261 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5262 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5263 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5264 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5265 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5266 NULL, NULL 5267 }; 5268 5269 /* 5270 * Symbolic link vnode operations template 5271 */ 5272 vnodeops_t *zfs_symvnodeops; 5273 const fs_operation_def_t zfs_symvnodeops_template[] = { 5274 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5275 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5276 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5277 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5278 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5279 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5280 VOPNAME_FID, { .vop_fid = zfs_fid }, 5281 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5282 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5283 NULL, NULL 5284 }; 5285 5286 /* 5287 * special share hidden files vnode operations template 5288 */ 5289 vnodeops_t *zfs_sharevnodeops; 5290 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5291 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5292 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5293 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5294 VOPNAME_FID, { .vop_fid = zfs_fid }, 5295 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5296 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5297 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5298 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5299 NULL, NULL 5300 }; 5301 5302 /* 5303 * Extended attribute directory vnode operations template 5304 * 5305 * This template is identical to the directory vnodes 5306 * operation template except for restricted operations: 5307 * VOP_MKDIR() 5308 * VOP_SYMLINK() 5309 * 5310 * Note that there are other restrictions embedded in: 5311 * zfs_create() - restrict type to VREG 5312 * zfs_link() - no links into/out of attribute space 5313 * zfs_rename() - no moves into/out of attribute space 5314 */ 5315 vnodeops_t *zfs_xdvnodeops; 5316 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5317 VOPNAME_OPEN, { .vop_open = zfs_open }, 5318 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5319 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5320 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5321 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5322 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5323 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5324 VOPNAME_CREATE, { .vop_create = zfs_create }, 5325 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5326 VOPNAME_LINK, { .vop_link = zfs_link }, 5327 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5328 VOPNAME_MKDIR, { .error = zfs_inval }, 5329 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5330 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5331 VOPNAME_SYMLINK, { .error = zfs_inval }, 5332 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5333 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5334 VOPNAME_FID, { .vop_fid = zfs_fid }, 5335 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5336 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5337 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5338 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5339 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5340 NULL, NULL 5341 }; 5342 5343 /* 5344 * Error vnode operations template 5345 */ 5346 vnodeops_t *zfs_evnodeops; 5347 const fs_operation_def_t zfs_evnodeops_template[] = { 5348 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5349 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5350 NULL, NULL 5351 }; 5352