xref: /titanic_41/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision 8f514e743bde41fe7e0ca48510a6d4c40ca51c23)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /* Portions Copyright 2007 Jeremy Teo */
26 /* Portions Copyright 2010 Robert Milkowski */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/vnode.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/kmem.h>
40 #include <sys/taskq.h>
41 #include <sys/uio.h>
42 #include <sys/vmsystm.h>
43 #include <sys/atomic.h>
44 #include <sys/vm.h>
45 #include <vm/seg_vn.h>
46 #include <vm/pvn.h>
47 #include <vm/as.h>
48 #include <vm/kpm.h>
49 #include <vm/seg_kpm.h>
50 #include <sys/mman.h>
51 #include <sys/pathname.h>
52 #include <sys/cmn_err.h>
53 #include <sys/errno.h>
54 #include <sys/unistd.h>
55 #include <sys/zfs_dir.h>
56 #include <sys/zfs_acl.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/dmu.h>
60 #include <sys/dmu_objset.h>
61 #include <sys/spa.h>
62 #include <sys/txg.h>
63 #include <sys/dbuf.h>
64 #include <sys/zap.h>
65 #include <sys/sa.h>
66 #include <sys/dirent.h>
67 #include <sys/policy.h>
68 #include <sys/sunddi.h>
69 #include <sys/filio.h>
70 #include <sys/sid.h>
71 #include "fs/fs_subr.h"
72 #include <sys/zfs_ctldir.h>
73 #include <sys/zfs_fuid.h>
74 #include <sys/zfs_sa.h>
75 #include <sys/dnlc.h>
76 #include <sys/zfs_rlock.h>
77 #include <sys/extdirent.h>
78 #include <sys/kidmap.h>
79 #include <sys/cred.h>
80 #include <sys/attr.h>
81 
82 /*
83  * Programming rules.
84  *
85  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
86  * properly lock its in-core state, create a DMU transaction, do the work,
87  * record this work in the intent log (ZIL), commit the DMU transaction,
88  * and wait for the intent log to commit if it is a synchronous operation.
89  * Moreover, the vnode ops must work in both normal and log replay context.
90  * The ordering of events is important to avoid deadlocks and references
91  * to freed memory.  The example below illustrates the following Big Rules:
92  *
93  *  (1) A check must be made in each zfs thread for a mounted file system.
94  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
95  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
96  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
97  *      can return EIO from the calling function.
98  *
99  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
100  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
101  *	First, if it's the last reference, the vnode/znode
102  *	can be freed, so the zp may point to freed memory.  Second, the last
103  *	reference will call zfs_zinactive(), which may induce a lot of work --
104  *	pushing cached pages (which acquires range locks) and syncing out
105  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
106  *	which could deadlock the system if you were already holding one.
107  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
108  *
109  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
110  *	as they can span dmu_tx_assign() calls.
111  *
112  *  (4)	Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
113  *	This is critical because we don't want to block while holding locks.
114  *	Note, in particular, that if a lock is sometimes acquired before
115  *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
116  *	use a non-blocking assign can deadlock the system.  The scenario:
117  *
118  *	Thread A has grabbed a lock before calling dmu_tx_assign().
119  *	Thread B is in an already-assigned tx, and blocks for this lock.
120  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
121  *	forever, because the previous txg can't quiesce until B's tx commits.
122  *
123  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
124  *	then drop all locks, call dmu_tx_wait(), and try again.
125  *
126  *  (5)	If the operation succeeded, generate the intent log entry for it
127  *	before dropping locks.  This ensures that the ordering of events
128  *	in the intent log matches the order in which they actually occurred.
129  *      During ZIL replay the zfs_log_* functions will update the sequence
130  *	number to indicate the zil transaction has replayed.
131  *
132  *  (6)	At the end of each vnode op, the DMU tx must always commit,
133  *	regardless of whether there were any errors.
134  *
135  *  (7)	After dropping all locks, invoke zil_commit(zilog, seq, foid)
136  *	to ensure that synchronous semantics are provided when necessary.
137  *
138  * In general, this is how things should be ordered in each vnode op:
139  *
140  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
141  * top:
142  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
143  *	rw_enter(...);			// grab any other locks you need
144  *	tx = dmu_tx_create(...);	// get DMU tx
145  *	dmu_tx_hold_*();		// hold each object you might modify
146  *	error = dmu_tx_assign(tx, TXG_NOWAIT);	// try to assign
147  *	if (error) {
148  *		rw_exit(...);		// drop locks
149  *		zfs_dirent_unlock(dl);	// unlock directory entry
150  *		VN_RELE(...);		// release held vnodes
151  *		if (error == ERESTART) {
152  *			dmu_tx_wait(tx);
153  *			dmu_tx_abort(tx);
154  *			goto top;
155  *		}
156  *		dmu_tx_abort(tx);	// abort DMU tx
157  *		ZFS_EXIT(zfsvfs);	// finished in zfs
158  *		return (error);		// really out of space
159  *	}
160  *	error = do_real_work();		// do whatever this VOP does
161  *	if (error == 0)
162  *		zfs_log_*(...);		// on success, make ZIL entry
163  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
164  *	rw_exit(...);			// drop locks
165  *	zfs_dirent_unlock(dl);		// unlock directory entry
166  *	VN_RELE(...);			// release held vnodes
167  *	zil_commit(zilog, seq, foid);	// synchronous when necessary
168  *	ZFS_EXIT(zfsvfs);		// finished in zfs
169  *	return (error);			// done, report error
170  */
171 
172 /* ARGSUSED */
173 static int
174 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
175 {
176 	znode_t	*zp = VTOZ(*vpp);
177 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
178 
179 	ZFS_ENTER(zfsvfs);
180 	ZFS_VERIFY_ZP(zp);
181 
182 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
183 	    ((flag & FAPPEND) == 0)) {
184 		ZFS_EXIT(zfsvfs);
185 		return (EPERM);
186 	}
187 
188 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
189 	    ZTOV(zp)->v_type == VREG &&
190 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
191 		if (fs_vscan(*vpp, cr, 0) != 0) {
192 			ZFS_EXIT(zfsvfs);
193 			return (EACCES);
194 		}
195 	}
196 
197 	/* Keep a count of the synchronous opens in the znode */
198 	if (flag & (FSYNC | FDSYNC))
199 		atomic_inc_32(&zp->z_sync_cnt);
200 
201 	ZFS_EXIT(zfsvfs);
202 	return (0);
203 }
204 
205 /* ARGSUSED */
206 static int
207 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
208     caller_context_t *ct)
209 {
210 	znode_t	*zp = VTOZ(vp);
211 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
212 
213 	/*
214 	 * Clean up any locks held by this process on the vp.
215 	 */
216 	cleanlocks(vp, ddi_get_pid(), 0);
217 	cleanshares(vp, ddi_get_pid());
218 
219 	ZFS_ENTER(zfsvfs);
220 	ZFS_VERIFY_ZP(zp);
221 
222 	/* Decrement the synchronous opens in the znode */
223 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
224 		atomic_dec_32(&zp->z_sync_cnt);
225 
226 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
227 	    ZTOV(zp)->v_type == VREG &&
228 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
229 		VERIFY(fs_vscan(vp, cr, 1) == 0);
230 
231 	ZFS_EXIT(zfsvfs);
232 	return (0);
233 }
234 
235 /*
236  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
237  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
238  */
239 static int
240 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
241 {
242 	znode_t	*zp = VTOZ(vp);
243 	uint64_t noff = (uint64_t)*off; /* new offset */
244 	uint64_t file_sz;
245 	int error;
246 	boolean_t hole;
247 
248 	file_sz = zp->z_size;
249 	if (noff >= file_sz)  {
250 		return (ENXIO);
251 	}
252 
253 	if (cmd == _FIO_SEEK_HOLE)
254 		hole = B_TRUE;
255 	else
256 		hole = B_FALSE;
257 
258 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
259 
260 	/* end of file? */
261 	if ((error == ESRCH) || (noff > file_sz)) {
262 		/*
263 		 * Handle the virtual hole at the end of file.
264 		 */
265 		if (hole) {
266 			*off = file_sz;
267 			return (0);
268 		}
269 		return (ENXIO);
270 	}
271 
272 	if (noff < *off)
273 		return (error);
274 	*off = noff;
275 	return (error);
276 }
277 
278 /* ARGSUSED */
279 static int
280 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
281     int *rvalp, caller_context_t *ct)
282 {
283 	offset_t off;
284 	int error;
285 	zfsvfs_t *zfsvfs;
286 	znode_t *zp;
287 
288 	switch (com) {
289 	case _FIOFFS:
290 		return (zfs_sync(vp->v_vfsp, 0, cred));
291 
292 		/*
293 		 * The following two ioctls are used by bfu.  Faking out,
294 		 * necessary to avoid bfu errors.
295 		 */
296 	case _FIOGDIO:
297 	case _FIOSDIO:
298 		return (0);
299 
300 	case _FIO_SEEK_DATA:
301 	case _FIO_SEEK_HOLE:
302 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
303 			return (EFAULT);
304 
305 		zp = VTOZ(vp);
306 		zfsvfs = zp->z_zfsvfs;
307 		ZFS_ENTER(zfsvfs);
308 		ZFS_VERIFY_ZP(zp);
309 
310 		/* offset parameter is in/out */
311 		error = zfs_holey(vp, com, &off);
312 		ZFS_EXIT(zfsvfs);
313 		if (error)
314 			return (error);
315 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
316 			return (EFAULT);
317 		return (0);
318 	}
319 	return (ENOTTY);
320 }
321 
322 /*
323  * Utility functions to map and unmap a single physical page.  These
324  * are used to manage the mappable copies of ZFS file data, and therefore
325  * do not update ref/mod bits.
326  */
327 caddr_t
328 zfs_map_page(page_t *pp, enum seg_rw rw)
329 {
330 	if (kpm_enable)
331 		return (hat_kpm_mapin(pp, 0));
332 	ASSERT(rw == S_READ || rw == S_WRITE);
333 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
334 	    (caddr_t)-1));
335 }
336 
337 void
338 zfs_unmap_page(page_t *pp, caddr_t addr)
339 {
340 	if (kpm_enable) {
341 		hat_kpm_mapout(pp, 0, addr);
342 	} else {
343 		ppmapout(addr);
344 	}
345 }
346 
347 /*
348  * When a file is memory mapped, we must keep the IO data synchronized
349  * between the DMU cache and the memory mapped pages.  What this means:
350  *
351  * On Write:	If we find a memory mapped page, we write to *both*
352  *		the page and the dmu buffer.
353  */
354 static void
355 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
356 {
357 	int64_t	off;
358 
359 	off = start & PAGEOFFSET;
360 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
361 		page_t *pp;
362 		uint64_t nbytes = MIN(PAGESIZE - off, len);
363 
364 		if (pp = page_lookup(vp, start, SE_SHARED)) {
365 			caddr_t va;
366 
367 			va = zfs_map_page(pp, S_WRITE);
368 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
369 			    DMU_READ_PREFETCH);
370 			zfs_unmap_page(pp, va);
371 			page_unlock(pp);
372 		}
373 		len -= nbytes;
374 		off = 0;
375 	}
376 }
377 
378 /*
379  * When a file is memory mapped, we must keep the IO data synchronized
380  * between the DMU cache and the memory mapped pages.  What this means:
381  *
382  * On Read:	We "read" preferentially from memory mapped pages,
383  *		else we default from the dmu buffer.
384  *
385  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
386  *	the file is memory mapped.
387  */
388 static int
389 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
390 {
391 	znode_t *zp = VTOZ(vp);
392 	objset_t *os = zp->z_zfsvfs->z_os;
393 	int64_t	start, off;
394 	int len = nbytes;
395 	int error = 0;
396 
397 	start = uio->uio_loffset;
398 	off = start & PAGEOFFSET;
399 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
400 		page_t *pp;
401 		uint64_t bytes = MIN(PAGESIZE - off, len);
402 
403 		if (pp = page_lookup(vp, start, SE_SHARED)) {
404 			caddr_t va;
405 
406 			va = zfs_map_page(pp, S_READ);
407 			error = uiomove(va + off, bytes, UIO_READ, uio);
408 			zfs_unmap_page(pp, va);
409 			page_unlock(pp);
410 		} else {
411 			error = dmu_read_uio(os, zp->z_id, uio, bytes);
412 		}
413 		len -= bytes;
414 		off = 0;
415 		if (error)
416 			break;
417 	}
418 	return (error);
419 }
420 
421 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
422 
423 /*
424  * Read bytes from specified file into supplied buffer.
425  *
426  *	IN:	vp	- vnode of file to be read from.
427  *		uio	- structure supplying read location, range info,
428  *			  and return buffer.
429  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
430  *		cr	- credentials of caller.
431  *		ct	- caller context
432  *
433  *	OUT:	uio	- updated offset and range, buffer filled.
434  *
435  *	RETURN:	0 if success
436  *		error code if failure
437  *
438  * Side Effects:
439  *	vp - atime updated if byte count > 0
440  */
441 /* ARGSUSED */
442 static int
443 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
444 {
445 	znode_t		*zp = VTOZ(vp);
446 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
447 	objset_t	*os;
448 	ssize_t		n, nbytes;
449 	int		error;
450 	rl_t		*rl;
451 	xuio_t		*xuio = NULL;
452 
453 	ZFS_ENTER(zfsvfs);
454 	ZFS_VERIFY_ZP(zp);
455 	os = zfsvfs->z_os;
456 
457 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
458 		ZFS_EXIT(zfsvfs);
459 		return (EACCES);
460 	}
461 
462 	/*
463 	 * Validate file offset
464 	 */
465 	if (uio->uio_loffset < (offset_t)0) {
466 		ZFS_EXIT(zfsvfs);
467 		return (EINVAL);
468 	}
469 
470 	/*
471 	 * Fasttrack empty reads
472 	 */
473 	if (uio->uio_resid == 0) {
474 		ZFS_EXIT(zfsvfs);
475 		return (0);
476 	}
477 
478 	/*
479 	 * Check for mandatory locks
480 	 */
481 	if (MANDMODE(zp->z_mode)) {
482 		if (error = chklock(vp, FREAD,
483 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
484 			ZFS_EXIT(zfsvfs);
485 			return (error);
486 		}
487 	}
488 
489 	/*
490 	 * If we're in FRSYNC mode, sync out this znode before reading it.
491 	 */
492 	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
493 		zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
494 
495 	/*
496 	 * Lock the range against changes.
497 	 */
498 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
499 
500 	/*
501 	 * If we are reading past end-of-file we can skip
502 	 * to the end; but we might still need to set atime.
503 	 */
504 	if (uio->uio_loffset >= zp->z_size) {
505 		error = 0;
506 		goto out;
507 	}
508 
509 	ASSERT(uio->uio_loffset < zp->z_size);
510 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
511 
512 	if ((uio->uio_extflg == UIO_XUIO) &&
513 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
514 		int nblk;
515 		int blksz = zp->z_blksz;
516 		uint64_t offset = uio->uio_loffset;
517 
518 		xuio = (xuio_t *)uio;
519 		if ((ISP2(blksz))) {
520 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
521 			    blksz)) / blksz;
522 		} else {
523 			ASSERT(offset + n <= blksz);
524 			nblk = 1;
525 		}
526 		(void) dmu_xuio_init(xuio, nblk);
527 
528 		if (vn_has_cached_data(vp)) {
529 			/*
530 			 * For simplicity, we always allocate a full buffer
531 			 * even if we only expect to read a portion of a block.
532 			 */
533 			while (--nblk >= 0) {
534 				(void) dmu_xuio_add(xuio,
535 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
536 				    blksz), 0, blksz);
537 			}
538 		}
539 	}
540 
541 	while (n > 0) {
542 		nbytes = MIN(n, zfs_read_chunk_size -
543 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
544 
545 		if (vn_has_cached_data(vp))
546 			error = mappedread(vp, nbytes, uio);
547 		else
548 			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
549 		if (error) {
550 			/* convert checksum errors into IO errors */
551 			if (error == ECKSUM)
552 				error = EIO;
553 			break;
554 		}
555 
556 		n -= nbytes;
557 	}
558 out:
559 	zfs_range_unlock(rl);
560 
561 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
562 	ZFS_EXIT(zfsvfs);
563 	return (error);
564 }
565 
566 /*
567  * Write the bytes to a file.
568  *
569  *	IN:	vp	- vnode of file to be written to.
570  *		uio	- structure supplying write location, range info,
571  *			  and data buffer.
572  *		ioflag	- FAPPEND flag set if in append mode.
573  *		cr	- credentials of caller.
574  *		ct	- caller context (NFS/CIFS fem monitor only)
575  *
576  *	OUT:	uio	- updated offset and range.
577  *
578  *	RETURN:	0 if success
579  *		error code if failure
580  *
581  * Timestamps:
582  *	vp - ctime|mtime updated if byte count > 0
583  */
584 
585 /* ARGSUSED */
586 static int
587 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
588 {
589 	znode_t		*zp = VTOZ(vp);
590 	rlim64_t	limit = uio->uio_llimit;
591 	ssize_t		start_resid = uio->uio_resid;
592 	ssize_t		tx_bytes;
593 	uint64_t	end_size;
594 	dmu_tx_t	*tx;
595 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
596 	zilog_t		*zilog;
597 	offset_t	woff;
598 	ssize_t		n, nbytes;
599 	rl_t		*rl;
600 	int		max_blksz = zfsvfs->z_max_blksz;
601 	int		error;
602 	arc_buf_t	*abuf;
603 	iovec_t		*aiov;
604 	xuio_t		*xuio = NULL;
605 	int		i_iov = 0;
606 	int		iovcnt = uio->uio_iovcnt;
607 	iovec_t		*iovp = uio->uio_iov;
608 	int		write_eof;
609 	int		count = 0;
610 	sa_bulk_attr_t	bulk[4];
611 	uint64_t	mtime[2], ctime[2];
612 
613 	/*
614 	 * Fasttrack empty write
615 	 */
616 	n = start_resid;
617 	if (n == 0)
618 		return (0);
619 
620 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
621 		limit = MAXOFFSET_T;
622 
623 	ZFS_ENTER(zfsvfs);
624 	ZFS_VERIFY_ZP(zp);
625 
626 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
627 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
628 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
629 	    &zp->z_size, 8);
630 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
631 	    &zp->z_pflags, 8);
632 
633 	/*
634 	 * If immutable or not appending then return EPERM
635 	 */
636 	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
637 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
638 	    (uio->uio_loffset < zp->z_size))) {
639 		ZFS_EXIT(zfsvfs);
640 		return (EPERM);
641 	}
642 
643 	zilog = zfsvfs->z_log;
644 
645 	/*
646 	 * Validate file offset
647 	 */
648 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
649 	if (woff < 0) {
650 		ZFS_EXIT(zfsvfs);
651 		return (EINVAL);
652 	}
653 
654 	/*
655 	 * Check for mandatory locks before calling zfs_range_lock()
656 	 * in order to prevent a deadlock with locks set via fcntl().
657 	 */
658 	if (MANDMODE((mode_t)zp->z_mode) &&
659 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
660 		ZFS_EXIT(zfsvfs);
661 		return (error);
662 	}
663 
664 	/*
665 	 * Pre-fault the pages to ensure slow (eg NFS) pages
666 	 * don't hold up txg.
667 	 * Skip this if uio contains loaned arc_buf.
668 	 */
669 	if ((uio->uio_extflg == UIO_XUIO) &&
670 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
671 		xuio = (xuio_t *)uio;
672 	else
673 		uio_prefaultpages(n, uio);
674 
675 	/*
676 	 * If in append mode, set the io offset pointer to eof.
677 	 */
678 	if (ioflag & FAPPEND) {
679 		/*
680 		 * Obtain an appending range lock to guarantee file append
681 		 * semantics.  We reset the write offset once we have the lock.
682 		 */
683 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
684 		woff = rl->r_off;
685 		if (rl->r_len == UINT64_MAX) {
686 			/*
687 			 * We overlocked the file because this write will cause
688 			 * the file block size to increase.
689 			 * Note that zp_size cannot change with this lock held.
690 			 */
691 			woff = zp->z_size;
692 		}
693 		uio->uio_loffset = woff;
694 	} else {
695 		/*
696 		 * Note that if the file block size will change as a result of
697 		 * this write, then this range lock will lock the entire file
698 		 * so that we can re-write the block safely.
699 		 */
700 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
701 	}
702 
703 	if (woff >= limit) {
704 		zfs_range_unlock(rl);
705 		ZFS_EXIT(zfsvfs);
706 		return (EFBIG);
707 	}
708 
709 	if ((woff + n) > limit || woff > (limit - n))
710 		n = limit - woff;
711 
712 	/* Will this write extend the file length? */
713 	write_eof = (woff + n > zp->z_size);
714 
715 	end_size = MAX(zp->z_size, woff + n);
716 
717 	/*
718 	 * Write the file in reasonable size chunks.  Each chunk is written
719 	 * in a separate transaction; this keeps the intent log records small
720 	 * and allows us to do more fine-grained space accounting.
721 	 */
722 	while (n > 0) {
723 		abuf = NULL;
724 		woff = uio->uio_loffset;
725 again:
726 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
727 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
728 			if (abuf != NULL)
729 				dmu_return_arcbuf(abuf);
730 			error = EDQUOT;
731 			break;
732 		}
733 
734 		if (xuio && abuf == NULL) {
735 			ASSERT(i_iov < iovcnt);
736 			aiov = &iovp[i_iov];
737 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
738 			dmu_xuio_clear(xuio, i_iov);
739 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
740 			    iovec_t *, aiov, arc_buf_t *, abuf);
741 			ASSERT((aiov->iov_base == abuf->b_data) ||
742 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
743 			    aiov->iov_len == arc_buf_size(abuf)));
744 			i_iov++;
745 		} else if (abuf == NULL && n >= max_blksz &&
746 		    woff >= zp->z_size &&
747 		    P2PHASE(woff, max_blksz) == 0 &&
748 		    zp->z_blksz == max_blksz) {
749 			/*
750 			 * This write covers a full block.  "Borrow" a buffer
751 			 * from the dmu so that we can fill it before we enter
752 			 * a transaction.  This avoids the possibility of
753 			 * holding up the transaction if the data copy hangs
754 			 * up on a pagefault (e.g., from an NFS server mapping).
755 			 */
756 			size_t cbytes;
757 
758 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
759 			    max_blksz);
760 			ASSERT(abuf != NULL);
761 			ASSERT(arc_buf_size(abuf) == max_blksz);
762 			if (error = uiocopy(abuf->b_data, max_blksz,
763 			    UIO_WRITE, uio, &cbytes)) {
764 				dmu_return_arcbuf(abuf);
765 				break;
766 			}
767 			ASSERT(cbytes == max_blksz);
768 		}
769 
770 		/*
771 		 * Start a transaction.
772 		 */
773 		tx = dmu_tx_create(zfsvfs->z_os);
774 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
775 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
776 		zfs_sa_upgrade_txholds(tx, zp);
777 		error = dmu_tx_assign(tx, TXG_NOWAIT);
778 		if (error) {
779 			if (error == ERESTART) {
780 				dmu_tx_wait(tx);
781 				dmu_tx_abort(tx);
782 				goto again;
783 			}
784 			dmu_tx_abort(tx);
785 			if (abuf != NULL)
786 				dmu_return_arcbuf(abuf);
787 			break;
788 		}
789 
790 		/*
791 		 * If zfs_range_lock() over-locked we grow the blocksize
792 		 * and then reduce the lock range.  This will only happen
793 		 * on the first iteration since zfs_range_reduce() will
794 		 * shrink down r_len to the appropriate size.
795 		 */
796 		if (rl->r_len == UINT64_MAX) {
797 			uint64_t new_blksz;
798 
799 			if (zp->z_blksz > max_blksz) {
800 				ASSERT(!ISP2(zp->z_blksz));
801 				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
802 			} else {
803 				new_blksz = MIN(end_size, max_blksz);
804 			}
805 			zfs_grow_blocksize(zp, new_blksz, tx);
806 			zfs_range_reduce(rl, woff, n);
807 		}
808 
809 		/*
810 		 * XXX - should we really limit each write to z_max_blksz?
811 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
812 		 */
813 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
814 
815 		if (abuf == NULL) {
816 			tx_bytes = uio->uio_resid;
817 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
818 			    uio, nbytes, tx);
819 			tx_bytes -= uio->uio_resid;
820 		} else {
821 			tx_bytes = nbytes;
822 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
823 			/*
824 			 * If this is not a full block write, but we are
825 			 * extending the file past EOF and this data starts
826 			 * block-aligned, use assign_arcbuf().  Otherwise,
827 			 * write via dmu_write().
828 			 */
829 			if (tx_bytes < max_blksz && (!write_eof ||
830 			    aiov->iov_base != abuf->b_data)) {
831 				ASSERT(xuio);
832 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
833 				    aiov->iov_len, aiov->iov_base, tx);
834 				dmu_return_arcbuf(abuf);
835 				xuio_stat_wbuf_copied();
836 			} else {
837 				ASSERT(xuio || tx_bytes == max_blksz);
838 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
839 				    woff, abuf, tx);
840 			}
841 			ASSERT(tx_bytes <= uio->uio_resid);
842 			uioskip(uio, tx_bytes);
843 		}
844 		if (tx_bytes && vn_has_cached_data(vp)) {
845 			update_pages(vp, woff,
846 			    tx_bytes, zfsvfs->z_os, zp->z_id);
847 		}
848 
849 		/*
850 		 * If we made no progress, we're done.  If we made even
851 		 * partial progress, update the znode and ZIL accordingly.
852 		 */
853 		if (tx_bytes == 0) {
854 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
855 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
856 			dmu_tx_commit(tx);
857 			ASSERT(error != 0);
858 			break;
859 		}
860 
861 		/*
862 		 * Clear Set-UID/Set-GID bits on successful write if not
863 		 * privileged and at least one of the excute bits is set.
864 		 *
865 		 * It would be nice to to this after all writes have
866 		 * been done, but that would still expose the ISUID/ISGID
867 		 * to another app after the partial write is committed.
868 		 *
869 		 */
870 		mutex_enter(&zp->z_acl_lock);
871 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
872 		    (S_IXUSR >> 6))) != 0 &&
873 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
874 		    secpolicy_vnode_setid_retain(cr,
875 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
876 			uint64_t newmode;
877 			zp->z_mode &= ~(S_ISUID | S_ISGID);
878 			newmode = zp->z_mode;
879 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
880 			    (void *)&newmode, sizeof (uint64_t), tx);
881 		}
882 		mutex_exit(&zp->z_acl_lock);
883 
884 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
885 		    B_TRUE);
886 
887 		/*
888 		 * Update the file size (zp_size) if it has changed;
889 		 * account for possible concurrent updates.
890 		 */
891 		while ((end_size = zp->z_size) < uio->uio_loffset) {
892 			(void) atomic_cas_64(&zp->z_size, end_size,
893 			    uio->uio_loffset);
894 			ASSERT(error == 0);
895 		}
896 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
897 
898 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
899 		dmu_tx_commit(tx);
900 
901 		if (error != 0)
902 			break;
903 		ASSERT(tx_bytes == nbytes);
904 		n -= nbytes;
905 	}
906 
907 	zfs_range_unlock(rl);
908 
909 	/*
910 	 * If we're in replay mode, or we made no progress, return error.
911 	 * Otherwise, it's at least a partial write, so it's successful.
912 	 */
913 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
914 		ZFS_EXIT(zfsvfs);
915 		return (error);
916 	}
917 
918 	if (ioflag & (FSYNC | FDSYNC) ||
919 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
920 		zil_commit(zilog, zp->z_last_itx, zp->z_id);
921 
922 	ZFS_EXIT(zfsvfs);
923 	return (0);
924 }
925 
926 void
927 zfs_get_done(zgd_t *zgd, int error)
928 {
929 	znode_t *zp = zgd->zgd_private;
930 	objset_t *os = zp->z_zfsvfs->z_os;
931 
932 	if (zgd->zgd_db)
933 		dmu_buf_rele(zgd->zgd_db, zgd);
934 
935 	zfs_range_unlock(zgd->zgd_rl);
936 
937 	/*
938 	 * Release the vnode asynchronously as we currently have the
939 	 * txg stopped from syncing.
940 	 */
941 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
942 
943 	if (error == 0 && zgd->zgd_bp)
944 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
945 
946 	kmem_free(zgd, sizeof (zgd_t));
947 }
948 
949 #ifdef DEBUG
950 static int zil_fault_io = 0;
951 #endif
952 
953 /*
954  * Get data to generate a TX_WRITE intent log record.
955  */
956 int
957 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
958 {
959 	zfsvfs_t *zfsvfs = arg;
960 	objset_t *os = zfsvfs->z_os;
961 	znode_t *zp;
962 	uint64_t object = lr->lr_foid;
963 	uint64_t offset = lr->lr_offset;
964 	uint64_t size = lr->lr_length;
965 	blkptr_t *bp = &lr->lr_blkptr;
966 	dmu_buf_t *db;
967 	zgd_t *zgd;
968 	int error = 0;
969 
970 	ASSERT(zio != NULL);
971 	ASSERT(size != 0);
972 
973 	/*
974 	 * Nothing to do if the file has been removed
975 	 */
976 	if (zfs_zget(zfsvfs, object, &zp) != 0)
977 		return (ENOENT);
978 	if (zp->z_unlinked) {
979 		/*
980 		 * Release the vnode asynchronously as we currently have the
981 		 * txg stopped from syncing.
982 		 */
983 		VN_RELE_ASYNC(ZTOV(zp),
984 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
985 		return (ENOENT);
986 	}
987 
988 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
989 	zgd->zgd_zilog = zfsvfs->z_log;
990 	zgd->zgd_private = zp;
991 
992 	/*
993 	 * Write records come in two flavors: immediate and indirect.
994 	 * For small writes it's cheaper to store the data with the
995 	 * log record (immediate); for large writes it's cheaper to
996 	 * sync the data and get a pointer to it (indirect) so that
997 	 * we don't have to write the data twice.
998 	 */
999 	if (buf != NULL) { /* immediate write */
1000 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1001 		/* test for truncation needs to be done while range locked */
1002 		if (offset >= zp->z_size) {
1003 			error = ENOENT;
1004 		} else {
1005 			error = dmu_read(os, object, offset, size, buf,
1006 			    DMU_READ_NO_PREFETCH);
1007 		}
1008 		ASSERT(error == 0 || error == ENOENT);
1009 	} else { /* indirect write */
1010 		/*
1011 		 * Have to lock the whole block to ensure when it's
1012 		 * written out and it's checksum is being calculated
1013 		 * that no one can change the data. We need to re-check
1014 		 * blocksize after we get the lock in case it's changed!
1015 		 */
1016 		for (;;) {
1017 			uint64_t blkoff;
1018 			size = zp->z_blksz;
1019 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1020 			offset -= blkoff;
1021 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1022 			    RL_READER);
1023 			if (zp->z_blksz == size)
1024 				break;
1025 			offset += blkoff;
1026 			zfs_range_unlock(zgd->zgd_rl);
1027 		}
1028 		/* test for truncation needs to be done while range locked */
1029 		if (lr->lr_offset >= zp->z_size)
1030 			error = ENOENT;
1031 #ifdef DEBUG
1032 		if (zil_fault_io) {
1033 			error = EIO;
1034 			zil_fault_io = 0;
1035 		}
1036 #endif
1037 		if (error == 0)
1038 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1039 			    DMU_READ_NO_PREFETCH);
1040 
1041 		if (error == 0) {
1042 			zgd->zgd_db = db;
1043 			zgd->zgd_bp = bp;
1044 
1045 			ASSERT(db->db_offset == offset);
1046 			ASSERT(db->db_size == size);
1047 
1048 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1049 			    zfs_get_done, zgd);
1050 			ASSERT(error || lr->lr_length <= zp->z_blksz);
1051 
1052 			/*
1053 			 * On success, we need to wait for the write I/O
1054 			 * initiated by dmu_sync() to complete before we can
1055 			 * release this dbuf.  We will finish everything up
1056 			 * in the zfs_get_done() callback.
1057 			 */
1058 			if (error == 0)
1059 				return (0);
1060 
1061 			if (error == EALREADY) {
1062 				lr->lr_common.lrc_txtype = TX_WRITE2;
1063 				error = 0;
1064 			}
1065 		}
1066 	}
1067 
1068 	zfs_get_done(zgd, error);
1069 
1070 	return (error);
1071 }
1072 
1073 /*ARGSUSED*/
1074 static int
1075 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1076     caller_context_t *ct)
1077 {
1078 	znode_t *zp = VTOZ(vp);
1079 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1080 	int error;
1081 
1082 	ZFS_ENTER(zfsvfs);
1083 	ZFS_VERIFY_ZP(zp);
1084 
1085 	if (flag & V_ACE_MASK)
1086 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1087 	else
1088 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1089 
1090 	ZFS_EXIT(zfsvfs);
1091 	return (error);
1092 }
1093 
1094 /*
1095  * If vnode is for a device return a specfs vnode instead.
1096  */
1097 static int
1098 specvp_check(vnode_t **vpp, cred_t *cr)
1099 {
1100 	int error = 0;
1101 
1102 	if (IS_DEVVP(*vpp)) {
1103 		struct vnode *svp;
1104 
1105 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1106 		VN_RELE(*vpp);
1107 		if (svp == NULL)
1108 			error = ENOSYS;
1109 		*vpp = svp;
1110 	}
1111 	return (error);
1112 }
1113 
1114 
1115 /*
1116  * Lookup an entry in a directory, or an extended attribute directory.
1117  * If it exists, return a held vnode reference for it.
1118  *
1119  *	IN:	dvp	- vnode of directory to search.
1120  *		nm	- name of entry to lookup.
1121  *		pnp	- full pathname to lookup [UNUSED].
1122  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1123  *		rdir	- root directory vnode [UNUSED].
1124  *		cr	- credentials of caller.
1125  *		ct	- caller context
1126  *		direntflags - directory lookup flags
1127  *		realpnp - returned pathname.
1128  *
1129  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1130  *
1131  *	RETURN:	0 if success
1132  *		error code if failure
1133  *
1134  * Timestamps:
1135  *	NA
1136  */
1137 /* ARGSUSED */
1138 static int
1139 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1140     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1141     int *direntflags, pathname_t *realpnp)
1142 {
1143 	znode_t *zdp = VTOZ(dvp);
1144 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1145 	int	error = 0;
1146 
1147 	/* fast path */
1148 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1149 
1150 		if (dvp->v_type != VDIR) {
1151 			return (ENOTDIR);
1152 		} else if (zdp->z_sa_hdl == NULL) {
1153 			return (EIO);
1154 		}
1155 
1156 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1157 			error = zfs_fastaccesschk_execute(zdp, cr);
1158 			if (!error) {
1159 				*vpp = dvp;
1160 				VN_HOLD(*vpp);
1161 				return (0);
1162 			}
1163 			return (error);
1164 		} else {
1165 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1166 
1167 			if (tvp) {
1168 				error = zfs_fastaccesschk_execute(zdp, cr);
1169 				if (error) {
1170 					VN_RELE(tvp);
1171 					return (error);
1172 				}
1173 				if (tvp == DNLC_NO_VNODE) {
1174 					VN_RELE(tvp);
1175 					return (ENOENT);
1176 				} else {
1177 					*vpp = tvp;
1178 					return (specvp_check(vpp, cr));
1179 				}
1180 			}
1181 		}
1182 	}
1183 
1184 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1185 
1186 	ZFS_ENTER(zfsvfs);
1187 	ZFS_VERIFY_ZP(zdp);
1188 
1189 	*vpp = NULL;
1190 
1191 	if (flags & LOOKUP_XATTR) {
1192 		/*
1193 		 * If the xattr property is off, refuse the lookup request.
1194 		 */
1195 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1196 			ZFS_EXIT(zfsvfs);
1197 			return (EINVAL);
1198 		}
1199 
1200 		/*
1201 		 * We don't allow recursive attributes..
1202 		 * Maybe someday we will.
1203 		 */
1204 		if (zdp->z_pflags & ZFS_XATTR) {
1205 			ZFS_EXIT(zfsvfs);
1206 			return (EINVAL);
1207 		}
1208 
1209 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1210 			ZFS_EXIT(zfsvfs);
1211 			return (error);
1212 		}
1213 
1214 		/*
1215 		 * Do we have permission to get into attribute directory?
1216 		 */
1217 
1218 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1219 		    B_FALSE, cr)) {
1220 			VN_RELE(*vpp);
1221 			*vpp = NULL;
1222 		}
1223 
1224 		ZFS_EXIT(zfsvfs);
1225 		return (error);
1226 	}
1227 
1228 	if (dvp->v_type != VDIR) {
1229 		ZFS_EXIT(zfsvfs);
1230 		return (ENOTDIR);
1231 	}
1232 
1233 	/*
1234 	 * Check accessibility of directory.
1235 	 */
1236 
1237 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1238 		ZFS_EXIT(zfsvfs);
1239 		return (error);
1240 	}
1241 
1242 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1243 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1244 		ZFS_EXIT(zfsvfs);
1245 		return (EILSEQ);
1246 	}
1247 
1248 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1249 	if (error == 0)
1250 		error = specvp_check(vpp, cr);
1251 
1252 	ZFS_EXIT(zfsvfs);
1253 	return (error);
1254 }
1255 
1256 /*
1257  * Attempt to create a new entry in a directory.  If the entry
1258  * already exists, truncate the file if permissible, else return
1259  * an error.  Return the vp of the created or trunc'd file.
1260  *
1261  *	IN:	dvp	- vnode of directory to put new file entry in.
1262  *		name	- name of new file entry.
1263  *		vap	- attributes of new file.
1264  *		excl	- flag indicating exclusive or non-exclusive mode.
1265  *		mode	- mode to open file with.
1266  *		cr	- credentials of caller.
1267  *		flag	- large file flag [UNUSED].
1268  *		ct	- caller context
1269  *		vsecp 	- ACL to be set
1270  *
1271  *	OUT:	vpp	- vnode of created or trunc'd entry.
1272  *
1273  *	RETURN:	0 if success
1274  *		error code if failure
1275  *
1276  * Timestamps:
1277  *	dvp - ctime|mtime updated if new entry created
1278  *	 vp - ctime|mtime always, atime if new
1279  */
1280 
1281 /* ARGSUSED */
1282 static int
1283 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1284     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1285     vsecattr_t *vsecp)
1286 {
1287 	znode_t		*zp, *dzp = VTOZ(dvp);
1288 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1289 	zilog_t		*zilog;
1290 	objset_t	*os;
1291 	zfs_dirlock_t	*dl;
1292 	dmu_tx_t	*tx;
1293 	int		error;
1294 	ksid_t		*ksid;
1295 	uid_t		uid;
1296 	gid_t		gid = crgetgid(cr);
1297 	zfs_acl_ids_t   acl_ids;
1298 	boolean_t	fuid_dirtied;
1299 	boolean_t	have_acl = B_FALSE;
1300 
1301 	/*
1302 	 * If we have an ephemeral id, ACL, or XVATTR then
1303 	 * make sure file system is at proper version
1304 	 */
1305 
1306 	ksid = crgetsid(cr, KSID_OWNER);
1307 	if (ksid)
1308 		uid = ksid_getid(ksid);
1309 	else
1310 		uid = crgetuid(cr);
1311 
1312 	if (zfsvfs->z_use_fuids == B_FALSE &&
1313 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1314 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1315 		return (EINVAL);
1316 
1317 	ZFS_ENTER(zfsvfs);
1318 	ZFS_VERIFY_ZP(dzp);
1319 	os = zfsvfs->z_os;
1320 	zilog = zfsvfs->z_log;
1321 
1322 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1323 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1324 		ZFS_EXIT(zfsvfs);
1325 		return (EILSEQ);
1326 	}
1327 
1328 	if (vap->va_mask & AT_XVATTR) {
1329 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1330 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1331 			ZFS_EXIT(zfsvfs);
1332 			return (error);
1333 		}
1334 	}
1335 top:
1336 	*vpp = NULL;
1337 
1338 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1339 		vap->va_mode &= ~VSVTX;
1340 
1341 	if (*name == '\0') {
1342 		/*
1343 		 * Null component name refers to the directory itself.
1344 		 */
1345 		VN_HOLD(dvp);
1346 		zp = dzp;
1347 		dl = NULL;
1348 		error = 0;
1349 	} else {
1350 		/* possible VN_HOLD(zp) */
1351 		int zflg = 0;
1352 
1353 		if (flag & FIGNORECASE)
1354 			zflg |= ZCILOOK;
1355 
1356 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1357 		    NULL, NULL);
1358 		if (error) {
1359 			if (strcmp(name, "..") == 0)
1360 				error = EISDIR;
1361 			ZFS_EXIT(zfsvfs);
1362 			return (error);
1363 		}
1364 	}
1365 
1366 	if (zp == NULL) {
1367 		uint64_t txtype;
1368 
1369 		/*
1370 		 * Create a new file object and update the directory
1371 		 * to reference it.
1372 		 */
1373 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1374 			goto out;
1375 		}
1376 
1377 		/*
1378 		 * We only support the creation of regular files in
1379 		 * extended attribute directories.
1380 		 */
1381 
1382 		if ((dzp->z_pflags & ZFS_XATTR) &&
1383 		    (vap->va_type != VREG)) {
1384 			error = EINVAL;
1385 			goto out;
1386 		}
1387 
1388 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1389 		    cr, vsecp, &acl_ids)) != 0)
1390 			goto out;
1391 		have_acl = B_TRUE;
1392 
1393 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1394 			zfs_acl_ids_free(&acl_ids);
1395 			error = EDQUOT;
1396 			goto out;
1397 		}
1398 
1399 		tx = dmu_tx_create(os);
1400 
1401 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1402 		    ZFS_SA_BASE_ATTR_SIZE);
1403 
1404 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1405 		if (fuid_dirtied)
1406 			zfs_fuid_txhold(zfsvfs, tx);
1407 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1408 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1409 		if (!zfsvfs->z_use_sa &&
1410 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1411 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1412 			    0, acl_ids.z_aclp->z_acl_bytes);
1413 		}
1414 		error = dmu_tx_assign(tx, TXG_NOWAIT);
1415 		if (error) {
1416 			zfs_dirent_unlock(dl);
1417 			if (error == ERESTART) {
1418 				dmu_tx_wait(tx);
1419 				dmu_tx_abort(tx);
1420 				goto top;
1421 			}
1422 			zfs_acl_ids_free(&acl_ids);
1423 			dmu_tx_abort(tx);
1424 			ZFS_EXIT(zfsvfs);
1425 			return (error);
1426 		}
1427 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1428 
1429 		if (fuid_dirtied)
1430 			zfs_fuid_sync(zfsvfs, tx);
1431 
1432 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1433 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1434 		if (flag & FIGNORECASE)
1435 			txtype |= TX_CI;
1436 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1437 		    vsecp, acl_ids.z_fuidp, vap);
1438 		zfs_acl_ids_free(&acl_ids);
1439 		dmu_tx_commit(tx);
1440 	} else {
1441 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1442 
1443 		/*
1444 		 * A directory entry already exists for this name.
1445 		 */
1446 		/*
1447 		 * Can't truncate an existing file if in exclusive mode.
1448 		 */
1449 		if (excl == EXCL) {
1450 			error = EEXIST;
1451 			goto out;
1452 		}
1453 		/*
1454 		 * Can't open a directory for writing.
1455 		 */
1456 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1457 			error = EISDIR;
1458 			goto out;
1459 		}
1460 		/*
1461 		 * Verify requested access to file.
1462 		 */
1463 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1464 			goto out;
1465 		}
1466 
1467 		mutex_enter(&dzp->z_lock);
1468 		dzp->z_seq++;
1469 		mutex_exit(&dzp->z_lock);
1470 
1471 		/*
1472 		 * Truncate regular files if requested.
1473 		 */
1474 		if ((ZTOV(zp)->v_type == VREG) &&
1475 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1476 			/* we can't hold any locks when calling zfs_freesp() */
1477 			zfs_dirent_unlock(dl);
1478 			dl = NULL;
1479 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1480 			if (error == 0) {
1481 				vnevent_create(ZTOV(zp), ct);
1482 			}
1483 		}
1484 	}
1485 out:
1486 
1487 	if (dl)
1488 		zfs_dirent_unlock(dl);
1489 
1490 	if (error) {
1491 		if (zp)
1492 			VN_RELE(ZTOV(zp));
1493 	} else {
1494 		*vpp = ZTOV(zp);
1495 		error = specvp_check(vpp, cr);
1496 	}
1497 
1498 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1499 		zil_commit(zilog, UINT64_MAX, 0);
1500 
1501 	ZFS_EXIT(zfsvfs);
1502 	return (error);
1503 }
1504 
1505 /*
1506  * Remove an entry from a directory.
1507  *
1508  *	IN:	dvp	- vnode of directory to remove entry from.
1509  *		name	- name of entry to remove.
1510  *		cr	- credentials of caller.
1511  *		ct	- caller context
1512  *		flags	- case flags
1513  *
1514  *	RETURN:	0 if success
1515  *		error code if failure
1516  *
1517  * Timestamps:
1518  *	dvp - ctime|mtime
1519  *	 vp - ctime (if nlink > 0)
1520  */
1521 
1522 uint64_t null_xattr = 0;
1523 
1524 /*ARGSUSED*/
1525 static int
1526 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1527     int flags)
1528 {
1529 	znode_t		*zp, *dzp = VTOZ(dvp);
1530 	znode_t		*xzp = NULL;
1531 	vnode_t		*vp;
1532 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1533 	zilog_t		*zilog;
1534 	uint64_t	acl_obj, xattr_obj = 0;
1535 	uint64_t 	xattr_obj_unlinked = 0;
1536 	zfs_dirlock_t	*dl;
1537 	dmu_tx_t	*tx;
1538 	boolean_t	may_delete_now, delete_now = FALSE;
1539 	boolean_t	unlinked, toobig = FALSE;
1540 	uint64_t	txtype;
1541 	pathname_t	*realnmp = NULL;
1542 	pathname_t	realnm;
1543 	int		error;
1544 	int		zflg = ZEXISTS;
1545 
1546 	ZFS_ENTER(zfsvfs);
1547 	ZFS_VERIFY_ZP(dzp);
1548 	zilog = zfsvfs->z_log;
1549 
1550 	if (flags & FIGNORECASE) {
1551 		zflg |= ZCILOOK;
1552 		pn_alloc(&realnm);
1553 		realnmp = &realnm;
1554 	}
1555 
1556 top:
1557 	/*
1558 	 * Attempt to lock directory; fail if entry doesn't exist.
1559 	 */
1560 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1561 	    NULL, realnmp)) {
1562 		if (realnmp)
1563 			pn_free(realnmp);
1564 		ZFS_EXIT(zfsvfs);
1565 		return (error);
1566 	}
1567 
1568 	vp = ZTOV(zp);
1569 
1570 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1571 		goto out;
1572 	}
1573 
1574 	/*
1575 	 * Need to use rmdir for removing directories.
1576 	 */
1577 	if (vp->v_type == VDIR) {
1578 		error = EPERM;
1579 		goto out;
1580 	}
1581 
1582 	vnevent_remove(vp, dvp, name, ct);
1583 
1584 	if (realnmp)
1585 		dnlc_remove(dvp, realnmp->pn_buf);
1586 	else
1587 		dnlc_remove(dvp, name);
1588 
1589 	mutex_enter(&vp->v_lock);
1590 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1591 	mutex_exit(&vp->v_lock);
1592 
1593 	/*
1594 	 * We may delete the znode now, or we may put it in the unlinked set;
1595 	 * it depends on whether we're the last link, and on whether there are
1596 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1597 	 * allow for either case.
1598 	 */
1599 	tx = dmu_tx_create(zfsvfs->z_os);
1600 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1601 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1602 	zfs_sa_upgrade_txholds(tx, zp);
1603 	zfs_sa_upgrade_txholds(tx, dzp);
1604 	if (may_delete_now) {
1605 		toobig =
1606 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1607 		/* if the file is too big, only hold_free a token amount */
1608 		dmu_tx_hold_free(tx, zp->z_id, 0,
1609 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1610 	}
1611 
1612 	/* are there any extended attributes? */
1613 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1614 	    &xattr_obj, sizeof (xattr_obj));
1615 	if (xattr_obj) {
1616 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1617 		ASSERT3U(error, ==, 0);
1618 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1619 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1620 	}
1621 
1622 	/* are there any additional acls */
1623 	if ((acl_obj = ZFS_EXTERNAL_ACL(zp)) != 0 && may_delete_now)
1624 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1625 
1626 	/* charge as an update -- would be nice not to charge at all */
1627 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1628 
1629 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1630 	if (error) {
1631 		zfs_dirent_unlock(dl);
1632 		VN_RELE(vp);
1633 		if (error == ERESTART) {
1634 			dmu_tx_wait(tx);
1635 			dmu_tx_abort(tx);
1636 			goto top;
1637 		}
1638 		if (realnmp)
1639 			pn_free(realnmp);
1640 		dmu_tx_abort(tx);
1641 		ZFS_EXIT(zfsvfs);
1642 		return (error);
1643 	}
1644 
1645 	/*
1646 	 * Remove the directory entry.
1647 	 */
1648 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1649 
1650 	if (error) {
1651 		dmu_tx_commit(tx);
1652 		goto out;
1653 	}
1654 
1655 	if (unlinked) {
1656 
1657 		mutex_enter(&vp->v_lock);
1658 
1659 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1660 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1661 		delete_now = may_delete_now && !toobig &&
1662 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1663 		    xattr_obj == xattr_obj_unlinked && ZFS_EXTERNAL_ACL(zp) ==
1664 		    acl_obj;
1665 		mutex_exit(&vp->v_lock);
1666 	}
1667 
1668 	if (delete_now) {
1669 		if (xattr_obj_unlinked) {
1670 			ASSERT3U(xzp->z_links, ==, 2);
1671 			mutex_enter(&xzp->z_lock);
1672 			xzp->z_unlinked = 1;
1673 			xzp->z_links = 0;
1674 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1675 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1676 			ASSERT3U(error,  ==,  0);
1677 			mutex_exit(&xzp->z_lock);
1678 			zfs_unlinked_add(xzp, tx);
1679 			if (zp->z_is_sa)
1680 				error = sa_remove(zp->z_sa_hdl,
1681 				    SA_ZPL_XATTR(zfsvfs), tx);
1682 			else
1683 				error = sa_update(zp->z_sa_hdl,
1684 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1685 				    sizeof (uint64_t), tx);
1686 			ASSERT3U(error, ==, 0);
1687 		}
1688 		mutex_enter(&zp->z_lock);
1689 		mutex_enter(&vp->v_lock);
1690 		vp->v_count--;
1691 		ASSERT3U(vp->v_count, ==, 0);
1692 		mutex_exit(&vp->v_lock);
1693 		mutex_exit(&zp->z_lock);
1694 		zfs_znode_delete(zp, tx);
1695 	} else if (unlinked) {
1696 		zfs_unlinked_add(zp, tx);
1697 	}
1698 
1699 	txtype = TX_REMOVE;
1700 	if (flags & FIGNORECASE)
1701 		txtype |= TX_CI;
1702 	zfs_log_remove(zilog, tx, txtype, dzp, name);
1703 
1704 	dmu_tx_commit(tx);
1705 out:
1706 	if (realnmp)
1707 		pn_free(realnmp);
1708 
1709 	zfs_dirent_unlock(dl);
1710 
1711 	if (!delete_now)
1712 		VN_RELE(vp);
1713 	if (xzp)
1714 		VN_RELE(ZTOV(xzp));
1715 
1716 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1717 		zil_commit(zilog, UINT64_MAX, 0);
1718 
1719 	ZFS_EXIT(zfsvfs);
1720 	return (error);
1721 }
1722 
1723 /*
1724  * Create a new directory and insert it into dvp using the name
1725  * provided.  Return a pointer to the inserted directory.
1726  *
1727  *	IN:	dvp	- vnode of directory to add subdir to.
1728  *		dirname	- name of new directory.
1729  *		vap	- attributes of new directory.
1730  *		cr	- credentials of caller.
1731  *		ct	- caller context
1732  *		vsecp	- ACL to be set
1733  *
1734  *	OUT:	vpp	- vnode of created directory.
1735  *
1736  *	RETURN:	0 if success
1737  *		error code if failure
1738  *
1739  * Timestamps:
1740  *	dvp - ctime|mtime updated
1741  *	 vp - ctime|mtime|atime updated
1742  */
1743 /*ARGSUSED*/
1744 static int
1745 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1746     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1747 {
1748 	znode_t		*zp, *dzp = VTOZ(dvp);
1749 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1750 	zilog_t		*zilog;
1751 	zfs_dirlock_t	*dl;
1752 	uint64_t	txtype;
1753 	dmu_tx_t	*tx;
1754 	int		error;
1755 	int		zf = ZNEW;
1756 	ksid_t		*ksid;
1757 	uid_t		uid;
1758 	gid_t		gid = crgetgid(cr);
1759 	zfs_acl_ids_t   acl_ids;
1760 	boolean_t	fuid_dirtied;
1761 
1762 	ASSERT(vap->va_type == VDIR);
1763 
1764 	/*
1765 	 * If we have an ephemeral id, ACL, or XVATTR then
1766 	 * make sure file system is at proper version
1767 	 */
1768 
1769 	ksid = crgetsid(cr, KSID_OWNER);
1770 	if (ksid)
1771 		uid = ksid_getid(ksid);
1772 	else
1773 		uid = crgetuid(cr);
1774 	if (zfsvfs->z_use_fuids == B_FALSE &&
1775 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1776 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1777 		return (EINVAL);
1778 
1779 	ZFS_ENTER(zfsvfs);
1780 	ZFS_VERIFY_ZP(dzp);
1781 	zilog = zfsvfs->z_log;
1782 
1783 	if (dzp->z_pflags & ZFS_XATTR) {
1784 		ZFS_EXIT(zfsvfs);
1785 		return (EINVAL);
1786 	}
1787 
1788 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1789 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1790 		ZFS_EXIT(zfsvfs);
1791 		return (EILSEQ);
1792 	}
1793 	if (flags & FIGNORECASE)
1794 		zf |= ZCILOOK;
1795 
1796 	if (vap->va_mask & AT_XVATTR) {
1797 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1798 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1799 			ZFS_EXIT(zfsvfs);
1800 			return (error);
1801 		}
1802 	}
1803 
1804 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1805 	    vsecp, &acl_ids)) != 0) {
1806 		ZFS_EXIT(zfsvfs);
1807 		return (error);
1808 	}
1809 	/*
1810 	 * First make sure the new directory doesn't exist.
1811 	 *
1812 	 * Existence is checked first to make sure we don't return
1813 	 * EACCES instead of EEXIST which can cause some applications
1814 	 * to fail.
1815 	 */
1816 top:
1817 	*vpp = NULL;
1818 
1819 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1820 	    NULL, NULL)) {
1821 		zfs_acl_ids_free(&acl_ids);
1822 		ZFS_EXIT(zfsvfs);
1823 		return (error);
1824 	}
1825 
1826 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1827 		zfs_acl_ids_free(&acl_ids);
1828 		zfs_dirent_unlock(dl);
1829 		ZFS_EXIT(zfsvfs);
1830 		return (error);
1831 	}
1832 
1833 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1834 		zfs_acl_ids_free(&acl_ids);
1835 		zfs_dirent_unlock(dl);
1836 		ZFS_EXIT(zfsvfs);
1837 		return (EDQUOT);
1838 	}
1839 
1840 	/*
1841 	 * Add a new entry to the directory.
1842 	 */
1843 	tx = dmu_tx_create(zfsvfs->z_os);
1844 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1845 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1846 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1847 	if (fuid_dirtied)
1848 		zfs_fuid_txhold(zfsvfs, tx);
1849 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1850 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1851 		    acl_ids.z_aclp->z_acl_bytes);
1852 	}
1853 
1854 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1855 	    ZFS_SA_BASE_ATTR_SIZE);
1856 
1857 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1858 	if (error) {
1859 		zfs_dirent_unlock(dl);
1860 		if (error == ERESTART) {
1861 			dmu_tx_wait(tx);
1862 			dmu_tx_abort(tx);
1863 			goto top;
1864 		}
1865 		zfs_acl_ids_free(&acl_ids);
1866 		dmu_tx_abort(tx);
1867 		ZFS_EXIT(zfsvfs);
1868 		return (error);
1869 	}
1870 
1871 	/*
1872 	 * Create new node.
1873 	 */
1874 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1875 
1876 	if (fuid_dirtied)
1877 		zfs_fuid_sync(zfsvfs, tx);
1878 
1879 	/*
1880 	 * Now put new name in parent dir.
1881 	 */
1882 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1883 
1884 	*vpp = ZTOV(zp);
1885 
1886 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1887 	if (flags & FIGNORECASE)
1888 		txtype |= TX_CI;
1889 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1890 	    acl_ids.z_fuidp, vap);
1891 
1892 	zfs_acl_ids_free(&acl_ids);
1893 
1894 	dmu_tx_commit(tx);
1895 
1896 	zfs_dirent_unlock(dl);
1897 
1898 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1899 		zil_commit(zilog, UINT64_MAX, 0);
1900 
1901 	ZFS_EXIT(zfsvfs);
1902 	return (0);
1903 }
1904 
1905 /*
1906  * Remove a directory subdir entry.  If the current working
1907  * directory is the same as the subdir to be removed, the
1908  * remove will fail.
1909  *
1910  *	IN:	dvp	- vnode of directory to remove from.
1911  *		name	- name of directory to be removed.
1912  *		cwd	- vnode of current working directory.
1913  *		cr	- credentials of caller.
1914  *		ct	- caller context
1915  *		flags	- case flags
1916  *
1917  *	RETURN:	0 if success
1918  *		error code if failure
1919  *
1920  * Timestamps:
1921  *	dvp - ctime|mtime updated
1922  */
1923 /*ARGSUSED*/
1924 static int
1925 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1926     caller_context_t *ct, int flags)
1927 {
1928 	znode_t		*dzp = VTOZ(dvp);
1929 	znode_t		*zp;
1930 	vnode_t		*vp;
1931 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1932 	zilog_t		*zilog;
1933 	zfs_dirlock_t	*dl;
1934 	dmu_tx_t	*tx;
1935 	int		error;
1936 	int		zflg = ZEXISTS;
1937 
1938 	ZFS_ENTER(zfsvfs);
1939 	ZFS_VERIFY_ZP(dzp);
1940 	zilog = zfsvfs->z_log;
1941 
1942 	if (flags & FIGNORECASE)
1943 		zflg |= ZCILOOK;
1944 top:
1945 	zp = NULL;
1946 
1947 	/*
1948 	 * Attempt to lock directory; fail if entry doesn't exist.
1949 	 */
1950 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1951 	    NULL, NULL)) {
1952 		ZFS_EXIT(zfsvfs);
1953 		return (error);
1954 	}
1955 
1956 	vp = ZTOV(zp);
1957 
1958 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1959 		goto out;
1960 	}
1961 
1962 	if (vp->v_type != VDIR) {
1963 		error = ENOTDIR;
1964 		goto out;
1965 	}
1966 
1967 	if (vp == cwd) {
1968 		error = EINVAL;
1969 		goto out;
1970 	}
1971 
1972 	vnevent_rmdir(vp, dvp, name, ct);
1973 
1974 	/*
1975 	 * Grab a lock on the directory to make sure that noone is
1976 	 * trying to add (or lookup) entries while we are removing it.
1977 	 */
1978 	rw_enter(&zp->z_name_lock, RW_WRITER);
1979 
1980 	/*
1981 	 * Grab a lock on the parent pointer to make sure we play well
1982 	 * with the treewalk and directory rename code.
1983 	 */
1984 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1985 
1986 	tx = dmu_tx_create(zfsvfs->z_os);
1987 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1988 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1989 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1990 	zfs_sa_upgrade_txholds(tx, zp);
1991 	zfs_sa_upgrade_txholds(tx, dzp);
1992 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1993 	if (error) {
1994 		rw_exit(&zp->z_parent_lock);
1995 		rw_exit(&zp->z_name_lock);
1996 		zfs_dirent_unlock(dl);
1997 		VN_RELE(vp);
1998 		if (error == ERESTART) {
1999 			dmu_tx_wait(tx);
2000 			dmu_tx_abort(tx);
2001 			goto top;
2002 		}
2003 		dmu_tx_abort(tx);
2004 		ZFS_EXIT(zfsvfs);
2005 		return (error);
2006 	}
2007 
2008 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2009 
2010 	if (error == 0) {
2011 		uint64_t txtype = TX_RMDIR;
2012 		if (flags & FIGNORECASE)
2013 			txtype |= TX_CI;
2014 		zfs_log_remove(zilog, tx, txtype, dzp, name);
2015 	}
2016 
2017 	dmu_tx_commit(tx);
2018 
2019 	rw_exit(&zp->z_parent_lock);
2020 	rw_exit(&zp->z_name_lock);
2021 out:
2022 	zfs_dirent_unlock(dl);
2023 
2024 	VN_RELE(vp);
2025 
2026 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2027 		zil_commit(zilog, UINT64_MAX, 0);
2028 
2029 	ZFS_EXIT(zfsvfs);
2030 	return (error);
2031 }
2032 
2033 /*
2034  * Read as many directory entries as will fit into the provided
2035  * buffer from the given directory cursor position (specified in
2036  * the uio structure.
2037  *
2038  *	IN:	vp	- vnode of directory to read.
2039  *		uio	- structure supplying read location, range info,
2040  *			  and return buffer.
2041  *		cr	- credentials of caller.
2042  *		ct	- caller context
2043  *		flags	- case flags
2044  *
2045  *	OUT:	uio	- updated offset and range, buffer filled.
2046  *		eofp	- set to true if end-of-file detected.
2047  *
2048  *	RETURN:	0 if success
2049  *		error code if failure
2050  *
2051  * Timestamps:
2052  *	vp - atime updated
2053  *
2054  * Note that the low 4 bits of the cookie returned by zap is always zero.
2055  * This allows us to use the low range for "special" directory entries:
2056  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2057  * we use the offset 2 for the '.zfs' directory.
2058  */
2059 /* ARGSUSED */
2060 static int
2061 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2062     caller_context_t *ct, int flags)
2063 {
2064 	znode_t		*zp = VTOZ(vp);
2065 	iovec_t		*iovp;
2066 	edirent_t	*eodp;
2067 	dirent64_t	*odp;
2068 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2069 	objset_t	*os;
2070 	caddr_t		outbuf;
2071 	size_t		bufsize;
2072 	zap_cursor_t	zc;
2073 	zap_attribute_t	zap;
2074 	uint_t		bytes_wanted;
2075 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2076 	uint64_t	parent;
2077 	int		local_eof;
2078 	int		outcount;
2079 	int		error;
2080 	uint8_t		prefetch;
2081 	boolean_t	check_sysattrs;
2082 
2083 	ZFS_ENTER(zfsvfs);
2084 	ZFS_VERIFY_ZP(zp);
2085 
2086 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2087 	    &parent, sizeof (parent))) != 0) {
2088 		ZFS_EXIT(zfsvfs);
2089 		return (error);
2090 	}
2091 
2092 	/*
2093 	 * If we are not given an eof variable,
2094 	 * use a local one.
2095 	 */
2096 	if (eofp == NULL)
2097 		eofp = &local_eof;
2098 
2099 	/*
2100 	 * Check for valid iov_len.
2101 	 */
2102 	if (uio->uio_iov->iov_len <= 0) {
2103 		ZFS_EXIT(zfsvfs);
2104 		return (EINVAL);
2105 	}
2106 
2107 	/*
2108 	 * Quit if directory has been removed (posix)
2109 	 */
2110 	if ((*eofp = zp->z_unlinked) != 0) {
2111 		ZFS_EXIT(zfsvfs);
2112 		return (0);
2113 	}
2114 
2115 	error = 0;
2116 	os = zfsvfs->z_os;
2117 	offset = uio->uio_loffset;
2118 	prefetch = zp->z_zn_prefetch;
2119 
2120 	/*
2121 	 * Initialize the iterator cursor.
2122 	 */
2123 	if (offset <= 3) {
2124 		/*
2125 		 * Start iteration from the beginning of the directory.
2126 		 */
2127 		zap_cursor_init(&zc, os, zp->z_id);
2128 	} else {
2129 		/*
2130 		 * The offset is a serialized cursor.
2131 		 */
2132 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2133 	}
2134 
2135 	/*
2136 	 * Get space to change directory entries into fs independent format.
2137 	 */
2138 	iovp = uio->uio_iov;
2139 	bytes_wanted = iovp->iov_len;
2140 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2141 		bufsize = bytes_wanted;
2142 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2143 		odp = (struct dirent64 *)outbuf;
2144 	} else {
2145 		bufsize = bytes_wanted;
2146 		odp = (struct dirent64 *)iovp->iov_base;
2147 	}
2148 	eodp = (struct edirent *)odp;
2149 
2150 	/*
2151 	 * If this VFS supports the system attribute view interface; and
2152 	 * we're looking at an extended attribute directory; and we care
2153 	 * about normalization conflicts on this vfs; then we must check
2154 	 * for normalization conflicts with the sysattr name space.
2155 	 */
2156 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2157 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2158 	    (flags & V_RDDIR_ENTFLAGS);
2159 
2160 	/*
2161 	 * Transform to file-system independent format
2162 	 */
2163 	outcount = 0;
2164 	while (outcount < bytes_wanted) {
2165 		ino64_t objnum;
2166 		ushort_t reclen;
2167 		off64_t *next;
2168 
2169 		/*
2170 		 * Special case `.', `..', and `.zfs'.
2171 		 */
2172 		if (offset == 0) {
2173 			(void) strcpy(zap.za_name, ".");
2174 			zap.za_normalization_conflict = 0;
2175 			objnum = zp->z_id;
2176 		} else if (offset == 1) {
2177 			(void) strcpy(zap.za_name, "..");
2178 			zap.za_normalization_conflict = 0;
2179 			objnum = parent;
2180 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2181 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2182 			zap.za_normalization_conflict = 0;
2183 			objnum = ZFSCTL_INO_ROOT;
2184 		} else {
2185 			/*
2186 			 * Grab next entry.
2187 			 */
2188 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2189 				if ((*eofp = (error == ENOENT)) != 0)
2190 					break;
2191 				else
2192 					goto update;
2193 			}
2194 
2195 			if (zap.za_integer_length != 8 ||
2196 			    zap.za_num_integers != 1) {
2197 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2198 				    "entry, obj = %lld, offset = %lld\n",
2199 				    (u_longlong_t)zp->z_id,
2200 				    (u_longlong_t)offset);
2201 				error = ENXIO;
2202 				goto update;
2203 			}
2204 
2205 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2206 			/*
2207 			 * MacOS X can extract the object type here such as:
2208 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2209 			 */
2210 
2211 			if (check_sysattrs && !zap.za_normalization_conflict) {
2212 				zap.za_normalization_conflict =
2213 				    xattr_sysattr_casechk(zap.za_name);
2214 			}
2215 		}
2216 
2217 		if (flags & V_RDDIR_ACCFILTER) {
2218 			/*
2219 			 * If we have no access at all, don't include
2220 			 * this entry in the returned information
2221 			 */
2222 			znode_t	*ezp;
2223 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2224 				goto skip_entry;
2225 			if (!zfs_has_access(ezp, cr)) {
2226 				VN_RELE(ZTOV(ezp));
2227 				goto skip_entry;
2228 			}
2229 			VN_RELE(ZTOV(ezp));
2230 		}
2231 
2232 		if (flags & V_RDDIR_ENTFLAGS)
2233 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2234 		else
2235 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2236 
2237 		/*
2238 		 * Will this entry fit in the buffer?
2239 		 */
2240 		if (outcount + reclen > bufsize) {
2241 			/*
2242 			 * Did we manage to fit anything in the buffer?
2243 			 */
2244 			if (!outcount) {
2245 				error = EINVAL;
2246 				goto update;
2247 			}
2248 			break;
2249 		}
2250 		if (flags & V_RDDIR_ENTFLAGS) {
2251 			/*
2252 			 * Add extended flag entry:
2253 			 */
2254 			eodp->ed_ino = objnum;
2255 			eodp->ed_reclen = reclen;
2256 			/* NOTE: ed_off is the offset for the *next* entry */
2257 			next = &(eodp->ed_off);
2258 			eodp->ed_eflags = zap.za_normalization_conflict ?
2259 			    ED_CASE_CONFLICT : 0;
2260 			(void) strncpy(eodp->ed_name, zap.za_name,
2261 			    EDIRENT_NAMELEN(reclen));
2262 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2263 		} else {
2264 			/*
2265 			 * Add normal entry:
2266 			 */
2267 			odp->d_ino = objnum;
2268 			odp->d_reclen = reclen;
2269 			/* NOTE: d_off is the offset for the *next* entry */
2270 			next = &(odp->d_off);
2271 			(void) strncpy(odp->d_name, zap.za_name,
2272 			    DIRENT64_NAMELEN(reclen));
2273 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2274 		}
2275 		outcount += reclen;
2276 
2277 		ASSERT(outcount <= bufsize);
2278 
2279 		/* Prefetch znode */
2280 		if (prefetch)
2281 			dmu_prefetch(os, objnum, 0, 0);
2282 
2283 	skip_entry:
2284 		/*
2285 		 * Move to the next entry, fill in the previous offset.
2286 		 */
2287 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2288 			zap_cursor_advance(&zc);
2289 			offset = zap_cursor_serialize(&zc);
2290 		} else {
2291 			offset += 1;
2292 		}
2293 		*next = offset;
2294 	}
2295 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2296 
2297 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2298 		iovp->iov_base += outcount;
2299 		iovp->iov_len -= outcount;
2300 		uio->uio_resid -= outcount;
2301 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2302 		/*
2303 		 * Reset the pointer.
2304 		 */
2305 		offset = uio->uio_loffset;
2306 	}
2307 
2308 update:
2309 	zap_cursor_fini(&zc);
2310 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2311 		kmem_free(outbuf, bufsize);
2312 
2313 	if (error == ENOENT)
2314 		error = 0;
2315 
2316 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2317 
2318 	uio->uio_loffset = offset;
2319 	ZFS_EXIT(zfsvfs);
2320 	return (error);
2321 }
2322 
2323 ulong_t zfs_fsync_sync_cnt = 4;
2324 
2325 static int
2326 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2327 {
2328 	znode_t	*zp = VTOZ(vp);
2329 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2330 
2331 	/*
2332 	 * Regardless of whether this is required for standards conformance,
2333 	 * this is the logical behavior when fsync() is called on a file with
2334 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2335 	 * going to be pushed out as part of the zil_commit().
2336 	 */
2337 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2338 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2339 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2340 
2341 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2342 
2343 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2344 		ZFS_ENTER(zfsvfs);
2345 		ZFS_VERIFY_ZP(zp);
2346 		zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
2347 		ZFS_EXIT(zfsvfs);
2348 	}
2349 	return (0);
2350 }
2351 
2352 
2353 /*
2354  * Get the requested file attributes and place them in the provided
2355  * vattr structure.
2356  *
2357  *	IN:	vp	- vnode of file.
2358  *		vap	- va_mask identifies requested attributes.
2359  *			  If AT_XVATTR set, then optional attrs are requested
2360  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2361  *		cr	- credentials of caller.
2362  *		ct	- caller context
2363  *
2364  *	OUT:	vap	- attribute values.
2365  *
2366  *	RETURN:	0 (always succeeds)
2367  */
2368 /* ARGSUSED */
2369 static int
2370 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2371     caller_context_t *ct)
2372 {
2373 	znode_t *zp = VTOZ(vp);
2374 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2375 	int	error = 0;
2376 	uint64_t links;
2377 	uint64_t mtime[2], ctime[2];
2378 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2379 	xoptattr_t *xoap = NULL;
2380 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2381 	sa_bulk_attr_t bulk[2];
2382 	int count = 0;
2383 
2384 	ZFS_ENTER(zfsvfs);
2385 	ZFS_VERIFY_ZP(zp);
2386 
2387 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2388 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2389 
2390 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2391 		ZFS_EXIT(zfsvfs);
2392 		return (error);
2393 	}
2394 
2395 	/*
2396 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2397 	 * Also, if we are the owner don't bother, since owner should
2398 	 * always be allowed to read basic attributes of file.
2399 	 */
2400 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && (zp->z_uid != crgetuid(cr))) {
2401 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2402 		    skipaclchk, cr)) {
2403 			ZFS_EXIT(zfsvfs);
2404 			return (error);
2405 		}
2406 	}
2407 
2408 	/*
2409 	 * Return all attributes.  It's cheaper to provide the answer
2410 	 * than to determine whether we were asked the question.
2411 	 */
2412 
2413 	mutex_enter(&zp->z_lock);
2414 	vap->va_type = vp->v_type;
2415 	vap->va_mode = zp->z_mode & MODEMASK;
2416 	vap->va_uid = zp->z_uid;
2417 	vap->va_gid = zp->z_gid;
2418 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2419 	vap->va_nodeid = zp->z_id;
2420 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2421 		links = zp->z_links + 1;
2422 	else
2423 		links = zp->z_links;
2424 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2425 	vap->va_size = zp->z_size;
2426 	vap->va_rdev = vp->v_rdev;
2427 	vap->va_seq = zp->z_seq;
2428 
2429 	/*
2430 	 * Add in any requested optional attributes and the create time.
2431 	 * Also set the corresponding bits in the returned attribute bitmap.
2432 	 */
2433 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2434 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2435 			xoap->xoa_archive =
2436 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2437 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2438 		}
2439 
2440 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2441 			xoap->xoa_readonly =
2442 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2443 			XVA_SET_RTN(xvap, XAT_READONLY);
2444 		}
2445 
2446 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2447 			xoap->xoa_system =
2448 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2449 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2450 		}
2451 
2452 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2453 			xoap->xoa_hidden =
2454 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2455 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2456 		}
2457 
2458 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2459 			xoap->xoa_nounlink =
2460 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2461 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2462 		}
2463 
2464 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2465 			xoap->xoa_immutable =
2466 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2467 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2468 		}
2469 
2470 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2471 			xoap->xoa_appendonly =
2472 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2473 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2474 		}
2475 
2476 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2477 			xoap->xoa_nodump =
2478 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2479 			XVA_SET_RTN(xvap, XAT_NODUMP);
2480 		}
2481 
2482 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2483 			xoap->xoa_opaque =
2484 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2485 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2486 		}
2487 
2488 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2489 			xoap->xoa_av_quarantined =
2490 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2491 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2492 		}
2493 
2494 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2495 			xoap->xoa_av_modified =
2496 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2497 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2498 		}
2499 
2500 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2501 		    vp->v_type == VREG) {
2502 			zfs_sa_get_scanstamp(zp, xvap);
2503 		}
2504 
2505 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2506 			uint64_t times[2];
2507 
2508 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2509 			    times, sizeof (times));
2510 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2511 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2512 		}
2513 
2514 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2515 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2516 			XVA_SET_RTN(xvap, XAT_REPARSE);
2517 		}
2518 	}
2519 
2520 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2521 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2522 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2523 
2524 	mutex_exit(&zp->z_lock);
2525 
2526 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2527 
2528 	if (zp->z_blksz == 0) {
2529 		/*
2530 		 * Block size hasn't been set; suggest maximal I/O transfers.
2531 		 */
2532 		vap->va_blksize = zfsvfs->z_max_blksz;
2533 	}
2534 
2535 	ZFS_EXIT(zfsvfs);
2536 	return (0);
2537 }
2538 
2539 /*
2540  * Set the file attributes to the values contained in the
2541  * vattr structure.
2542  *
2543  *	IN:	vp	- vnode of file to be modified.
2544  *		vap	- new attribute values.
2545  *			  If AT_XVATTR set, then optional attrs are being set
2546  *		flags	- ATTR_UTIME set if non-default time values provided.
2547  *			- ATTR_NOACLCHECK (CIFS context only).
2548  *		cr	- credentials of caller.
2549  *		ct	- caller context
2550  *
2551  *	RETURN:	0 if success
2552  *		error code if failure
2553  *
2554  * Timestamps:
2555  *	vp - ctime updated, mtime updated if size changed.
2556  */
2557 /* ARGSUSED */
2558 static int
2559 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2560 	caller_context_t *ct)
2561 {
2562 	znode_t		*zp = VTOZ(vp);
2563 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2564 	zilog_t		*zilog;
2565 	dmu_tx_t	*tx;
2566 	vattr_t		oldva;
2567 	xvattr_t	tmpxvattr;
2568 	uint_t		mask = vap->va_mask;
2569 	uint_t		saved_mask;
2570 	int		trim_mask = 0;
2571 	uint64_t	new_mode;
2572 	uint64_t	new_uid, new_gid;
2573 	uint64_t	xattr_obj = 0;
2574 	uint64_t	mtime[2], ctime[2];
2575 	znode_t		*attrzp;
2576 	int		need_policy = FALSE;
2577 	int		err, err2;
2578 	zfs_fuid_info_t *fuidp = NULL;
2579 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2580 	xoptattr_t	*xoap;
2581 	zfs_acl_t	*aclp = NULL;
2582 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2583 	boolean_t	fuid_dirtied = B_FALSE;
2584 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2585 	int		count = 0, xattr_count = 0;
2586 
2587 	if (mask == 0)
2588 		return (0);
2589 
2590 	if (mask & AT_NOSET)
2591 		return (EINVAL);
2592 
2593 	ZFS_ENTER(zfsvfs);
2594 	ZFS_VERIFY_ZP(zp);
2595 
2596 	zilog = zfsvfs->z_log;
2597 
2598 	/*
2599 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2600 	 * that file system is at proper version level
2601 	 */
2602 
2603 	if (zfsvfs->z_use_fuids == B_FALSE &&
2604 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2605 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2606 	    (mask & AT_XVATTR))) {
2607 		ZFS_EXIT(zfsvfs);
2608 		return (EINVAL);
2609 	}
2610 
2611 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2612 		ZFS_EXIT(zfsvfs);
2613 		return (EISDIR);
2614 	}
2615 
2616 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2617 		ZFS_EXIT(zfsvfs);
2618 		return (EINVAL);
2619 	}
2620 
2621 	/*
2622 	 * If this is an xvattr_t, then get a pointer to the structure of
2623 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2624 	 */
2625 	xoap = xva_getxoptattr(xvap);
2626 
2627 	xva_init(&tmpxvattr);
2628 
2629 	/*
2630 	 * Immutable files can only alter immutable bit and atime
2631 	 */
2632 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2633 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2634 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2635 		ZFS_EXIT(zfsvfs);
2636 		return (EPERM);
2637 	}
2638 
2639 	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2640 		ZFS_EXIT(zfsvfs);
2641 		return (EPERM);
2642 	}
2643 
2644 	/*
2645 	 * Verify timestamps doesn't overflow 32 bits.
2646 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2647 	 * handle times greater than 2039.  This check should be removed
2648 	 * once large timestamps are fully supported.
2649 	 */
2650 	if (mask & (AT_ATIME | AT_MTIME)) {
2651 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2652 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2653 			ZFS_EXIT(zfsvfs);
2654 			return (EOVERFLOW);
2655 		}
2656 	}
2657 
2658 top:
2659 	attrzp = NULL;
2660 
2661 	/* Can this be moved to before the top label? */
2662 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2663 		ZFS_EXIT(zfsvfs);
2664 		return (EROFS);
2665 	}
2666 
2667 	/*
2668 	 * First validate permissions
2669 	 */
2670 
2671 	if (mask & AT_SIZE) {
2672 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2673 		if (err) {
2674 			ZFS_EXIT(zfsvfs);
2675 			return (err);
2676 		}
2677 		/*
2678 		 * XXX - Note, we are not providing any open
2679 		 * mode flags here (like FNDELAY), so we may
2680 		 * block if there are locks present... this
2681 		 * should be addressed in openat().
2682 		 */
2683 		/* XXX - would it be OK to generate a log record here? */
2684 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2685 		if (err) {
2686 			ZFS_EXIT(zfsvfs);
2687 			return (err);
2688 		}
2689 	}
2690 
2691 	if (mask & (AT_ATIME|AT_MTIME) ||
2692 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2693 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2694 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2695 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2696 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2697 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2698 		    skipaclchk, cr);
2699 	}
2700 
2701 	if (mask & (AT_UID|AT_GID)) {
2702 		int	idmask = (mask & (AT_UID|AT_GID));
2703 		int	take_owner;
2704 		int	take_group;
2705 
2706 		/*
2707 		 * NOTE: even if a new mode is being set,
2708 		 * we may clear S_ISUID/S_ISGID bits.
2709 		 */
2710 
2711 		if (!(mask & AT_MODE))
2712 			vap->va_mode = zp->z_mode;
2713 
2714 		/*
2715 		 * Take ownership or chgrp to group we are a member of
2716 		 */
2717 
2718 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2719 		take_group = (mask & AT_GID) &&
2720 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2721 
2722 		/*
2723 		 * If both AT_UID and AT_GID are set then take_owner and
2724 		 * take_group must both be set in order to allow taking
2725 		 * ownership.
2726 		 *
2727 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2728 		 *
2729 		 */
2730 
2731 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2732 		    ((idmask == AT_UID) && take_owner) ||
2733 		    ((idmask == AT_GID) && take_group)) {
2734 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2735 			    skipaclchk, cr) == 0) {
2736 				/*
2737 				 * Remove setuid/setgid for non-privileged users
2738 				 */
2739 				secpolicy_setid_clear(vap, cr);
2740 				trim_mask = (mask & (AT_UID|AT_GID));
2741 			} else {
2742 				need_policy =  TRUE;
2743 			}
2744 		} else {
2745 			need_policy =  TRUE;
2746 		}
2747 	}
2748 
2749 	mutex_enter(&zp->z_lock);
2750 	oldva.va_mode = zp->z_mode;
2751 	oldva.va_uid = zp->z_uid;
2752 	oldva.va_gid = zp->z_gid;
2753 	if (mask & AT_XVATTR) {
2754 		/*
2755 		 * Update xvattr mask to include only those attributes
2756 		 * that are actually changing.
2757 		 *
2758 		 * the bits will be restored prior to actually setting
2759 		 * the attributes so the caller thinks they were set.
2760 		 */
2761 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2762 			if (xoap->xoa_appendonly !=
2763 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2764 				need_policy = TRUE;
2765 			} else {
2766 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2767 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2768 			}
2769 		}
2770 
2771 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2772 			if (xoap->xoa_nounlink !=
2773 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2774 				need_policy = TRUE;
2775 			} else {
2776 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2777 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2778 			}
2779 		}
2780 
2781 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2782 			if (xoap->xoa_immutable !=
2783 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2784 				need_policy = TRUE;
2785 			} else {
2786 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2787 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2788 			}
2789 		}
2790 
2791 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2792 			if (xoap->xoa_nodump !=
2793 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2794 				need_policy = TRUE;
2795 			} else {
2796 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2797 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2798 			}
2799 		}
2800 
2801 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2802 			if (xoap->xoa_av_modified !=
2803 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2804 				need_policy = TRUE;
2805 			} else {
2806 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2807 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2808 			}
2809 		}
2810 
2811 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2812 			if ((vp->v_type != VREG &&
2813 			    xoap->xoa_av_quarantined) ||
2814 			    xoap->xoa_av_quarantined !=
2815 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2816 				need_policy = TRUE;
2817 			} else {
2818 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2819 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2820 			}
2821 		}
2822 
2823 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2824 			mutex_exit(&zp->z_lock);
2825 			ZFS_EXIT(zfsvfs);
2826 			return (EPERM);
2827 		}
2828 
2829 		if (need_policy == FALSE &&
2830 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2831 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2832 			need_policy = TRUE;
2833 		}
2834 	}
2835 
2836 	mutex_exit(&zp->z_lock);
2837 
2838 	if (mask & AT_MODE) {
2839 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2840 			err = secpolicy_setid_setsticky_clear(vp, vap,
2841 			    &oldva, cr);
2842 			if (err) {
2843 				ZFS_EXIT(zfsvfs);
2844 				return (err);
2845 			}
2846 			trim_mask |= AT_MODE;
2847 		} else {
2848 			need_policy = TRUE;
2849 		}
2850 	}
2851 
2852 	if (need_policy) {
2853 		/*
2854 		 * If trim_mask is set then take ownership
2855 		 * has been granted or write_acl is present and user
2856 		 * has the ability to modify mode.  In that case remove
2857 		 * UID|GID and or MODE from mask so that
2858 		 * secpolicy_vnode_setattr() doesn't revoke it.
2859 		 */
2860 
2861 		if (trim_mask) {
2862 			saved_mask = vap->va_mask;
2863 			vap->va_mask &= ~trim_mask;
2864 		}
2865 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2866 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2867 		if (err) {
2868 			ZFS_EXIT(zfsvfs);
2869 			return (err);
2870 		}
2871 
2872 		if (trim_mask)
2873 			vap->va_mask |= saved_mask;
2874 	}
2875 
2876 	/*
2877 	 * secpolicy_vnode_setattr, or take ownership may have
2878 	 * changed va_mask
2879 	 */
2880 	mask = vap->va_mask;
2881 
2882 	if ((mask & (AT_UID | AT_GID))) {
2883 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj,
2884 		    sizeof (xattr_obj));
2885 
2886 		if (xattr_obj) {
2887 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2888 			if (err)
2889 				goto out2;
2890 		}
2891 		if (mask & AT_UID) {
2892 			new_uid = zfs_fuid_create(zfsvfs,
2893 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2894 			if (vap->va_uid != zp->z_uid &&
2895 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2896 				err = EDQUOT;
2897 				goto out2;
2898 			}
2899 		}
2900 
2901 		if (mask & AT_GID) {
2902 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2903 			    cr, ZFS_GROUP, &fuidp);
2904 			if (new_gid != zp->z_gid &&
2905 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
2906 				err = EDQUOT;
2907 				goto out2;
2908 			}
2909 		}
2910 	}
2911 	tx = dmu_tx_create(zfsvfs->z_os);
2912 
2913 	if (mask & AT_MODE) {
2914 		uint64_t pmode = zp->z_mode;
2915 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2916 
2917 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
2918 			goto out;
2919 
2920 		if (!zp->z_is_sa && ZFS_EXTERNAL_ACL(zp)) {
2921 			/*
2922 			 * Are we upgrading ACL from old V0 format
2923 			 * to V1 format?
2924 			 */
2925 			if (zfsvfs->z_version <= ZPL_VERSION_FUID &&
2926 			    ZNODE_ACL_VERSION(zp) ==
2927 			    ZFS_ACL_VERSION_INITIAL) {
2928 				dmu_tx_hold_free(tx,
2929 				    ZFS_EXTERNAL_ACL(zp), 0,
2930 				    DMU_OBJECT_END);
2931 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2932 				    0, aclp->z_acl_bytes);
2933 			} else {
2934 				dmu_tx_hold_write(tx, ZFS_EXTERNAL_ACL(zp), 0,
2935 				    aclp->z_acl_bytes);
2936 			}
2937 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2938 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2939 			    0, aclp->z_acl_bytes);
2940 		}
2941 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2942 	} else {
2943 		if ((mask & AT_XVATTR) &&
2944 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2945 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2946 		else
2947 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2948 	}
2949 
2950 	if (attrzp) {
2951 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2952 	}
2953 
2954 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2955 	if (fuid_dirtied)
2956 		zfs_fuid_txhold(zfsvfs, tx);
2957 
2958 	zfs_sa_upgrade_txholds(tx, zp);
2959 
2960 	err = dmu_tx_assign(tx, TXG_NOWAIT);
2961 	if (err) {
2962 		if (err == ERESTART)
2963 			dmu_tx_wait(tx);
2964 		goto out;
2965 	}
2966 
2967 	count = 0;
2968 	/*
2969 	 * Set each attribute requested.
2970 	 * We group settings according to the locks they need to acquire.
2971 	 *
2972 	 * Note: you cannot set ctime directly, although it will be
2973 	 * updated as a side-effect of calling this function.
2974 	 */
2975 
2976 	mutex_enter(&zp->z_lock);
2977 
2978 	if (attrzp)
2979 		mutex_enter(&attrzp->z_lock);
2980 
2981 	if (mask & (AT_UID|AT_GID)) {
2982 
2983 		if (mask & AT_UID) {
2984 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2985 			    &new_uid, sizeof (new_uid));
2986 			zp->z_uid = zfs_fuid_map_id(zfsvfs, new_uid,
2987 			    cr, ZFS_OWNER);
2988 			if (attrzp) {
2989 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2990 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2991 				    sizeof (new_uid));
2992 				attrzp->z_gid = zp->z_uid;
2993 			}
2994 		}
2995 
2996 		if (mask & AT_GID) {
2997 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2998 			    NULL, &new_gid, sizeof (new_gid));
2999 			zp->z_gid = zfs_fuid_map_id(zfsvfs, new_gid, cr,
3000 			    ZFS_GROUP);
3001 			if (attrzp) {
3002 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3003 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3004 				    sizeof (new_gid));
3005 				attrzp->z_gid = zp->z_gid;
3006 			}
3007 		}
3008 		if (!(mask & AT_MODE)) {
3009 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3010 			    NULL, &new_mode, sizeof (new_mode));
3011 			new_mode = zp->z_mode;
3012 		}
3013 		err = zfs_acl_chown_setattr(zp);
3014 		ASSERT(err == 0);
3015 		if (attrzp) {
3016 			err = zfs_acl_chown_setattr(attrzp);
3017 			ASSERT(err == 0);
3018 		}
3019 	}
3020 
3021 	if (mask & AT_MODE) {
3022 		mutex_enter(&zp->z_acl_lock);
3023 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3024 		    &new_mode, sizeof (new_mode));
3025 		zp->z_mode = new_mode;
3026 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3027 		err = zfs_aclset_common(zp, aclp, cr, tx);
3028 		ASSERT3U(err, ==, 0);
3029 		zp->z_acl_cached = aclp;
3030 		aclp = NULL;
3031 		mutex_exit(&zp->z_acl_lock);
3032 	}
3033 
3034 	if (attrzp)
3035 		mutex_exit(&attrzp->z_lock);
3036 
3037 	if (mask & AT_ATIME) {
3038 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3039 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3040 		    &zp->z_atime, sizeof (zp->z_atime));
3041 	}
3042 
3043 	if (mask & AT_MTIME) {
3044 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3045 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3046 		    mtime, sizeof (mtime));
3047 	}
3048 
3049 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3050 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3051 		if (!(mask & AT_MTIME))
3052 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3053 			    NULL, mtime, sizeof (mtime));
3054 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3055 		    &ctime, sizeof (ctime));
3056 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3057 		    B_TRUE);
3058 	} else if (mask != 0) {
3059 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3060 		    &ctime, sizeof (ctime));
3061 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3062 		    B_TRUE);
3063 		if (attrzp) {
3064 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3065 			    SA_ZPL_CTIME(zfsvfs), NULL,
3066 			    &ctime, sizeof (ctime));
3067 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3068 			    mtime, ctime, B_TRUE);
3069 		}
3070 	}
3071 	/*
3072 	 * Do this after setting timestamps to prevent timestamp
3073 	 * update from toggling bit
3074 	 */
3075 
3076 	if (xoap && (mask & AT_XVATTR)) {
3077 
3078 		/*
3079 		 * restore trimmed off masks
3080 		 * so that return masks can be set for caller.
3081 		 */
3082 
3083 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3084 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3085 		}
3086 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3087 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3088 		}
3089 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3090 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3091 		}
3092 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3093 			XVA_SET_REQ(xvap, XAT_NODUMP);
3094 		}
3095 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3096 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3097 		}
3098 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3099 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3100 		}
3101 
3102 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3103 			ASSERT(vp->v_type == VREG);
3104 
3105 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3106 		    &zp->z_pflags, sizeof (zp->z_pflags));
3107 		zfs_xvattr_set(zp, xvap, tx);
3108 	}
3109 
3110 	if (fuid_dirtied)
3111 		zfs_fuid_sync(zfsvfs, tx);
3112 
3113 	if (mask != 0)
3114 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3115 
3116 	mutex_exit(&zp->z_lock);
3117 
3118 out:
3119 	if (err == 0 && attrzp) {
3120 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3121 		    xattr_count, tx);
3122 		ASSERT(err2 == 0);
3123 	}
3124 
3125 	if (attrzp)
3126 		VN_RELE(ZTOV(attrzp));
3127 	if (aclp)
3128 		zfs_acl_free(aclp);
3129 
3130 	if (fuidp) {
3131 		zfs_fuid_info_free(fuidp);
3132 		fuidp = NULL;
3133 	}
3134 
3135 	if (err) {
3136 		dmu_tx_abort(tx);
3137 		if (err == ERESTART)
3138 			goto top;
3139 	} else {
3140 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3141 		dmu_tx_commit(tx);
3142 	}
3143 
3144 
3145 out2:
3146 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3147 		zil_commit(zilog, UINT64_MAX, 0);
3148 
3149 	ZFS_EXIT(zfsvfs);
3150 	return (err);
3151 }
3152 
3153 typedef struct zfs_zlock {
3154 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3155 	znode_t		*zl_znode;	/* znode we held */
3156 	struct zfs_zlock *zl_next;	/* next in list */
3157 } zfs_zlock_t;
3158 
3159 /*
3160  * Drop locks and release vnodes that were held by zfs_rename_lock().
3161  */
3162 static void
3163 zfs_rename_unlock(zfs_zlock_t **zlpp)
3164 {
3165 	zfs_zlock_t *zl;
3166 
3167 	while ((zl = *zlpp) != NULL) {
3168 		if (zl->zl_znode != NULL)
3169 			VN_RELE(ZTOV(zl->zl_znode));
3170 		rw_exit(zl->zl_rwlock);
3171 		*zlpp = zl->zl_next;
3172 		kmem_free(zl, sizeof (*zl));
3173 	}
3174 }
3175 
3176 /*
3177  * Search back through the directory tree, using the ".." entries.
3178  * Lock each directory in the chain to prevent concurrent renames.
3179  * Fail any attempt to move a directory into one of its own descendants.
3180  * XXX - z_parent_lock can overlap with map or grow locks
3181  */
3182 static int
3183 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3184 {
3185 	zfs_zlock_t	*zl;
3186 	znode_t		*zp = tdzp;
3187 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3188 	uint64_t	oidp = zp->z_id;
3189 	krwlock_t	*rwlp = &szp->z_parent_lock;
3190 	krw_t		rw = RW_WRITER;
3191 
3192 	/*
3193 	 * First pass write-locks szp and compares to zp->z_id.
3194 	 * Later passes read-lock zp and compare to zp->z_parent.
3195 	 */
3196 	do {
3197 		if (!rw_tryenter(rwlp, rw)) {
3198 			/*
3199 			 * Another thread is renaming in this path.
3200 			 * Note that if we are a WRITER, we don't have any
3201 			 * parent_locks held yet.
3202 			 */
3203 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3204 				/*
3205 				 * Drop our locks and restart
3206 				 */
3207 				zfs_rename_unlock(&zl);
3208 				*zlpp = NULL;
3209 				zp = tdzp;
3210 				oidp = zp->z_id;
3211 				rwlp = &szp->z_parent_lock;
3212 				rw = RW_WRITER;
3213 				continue;
3214 			} else {
3215 				/*
3216 				 * Wait for other thread to drop its locks
3217 				 */
3218 				rw_enter(rwlp, rw);
3219 			}
3220 		}
3221 
3222 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3223 		zl->zl_rwlock = rwlp;
3224 		zl->zl_znode = NULL;
3225 		zl->zl_next = *zlpp;
3226 		*zlpp = zl;
3227 
3228 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3229 			return (EINVAL);
3230 
3231 		if (oidp == rootid)		/* We've hit the top */
3232 			return (0);
3233 
3234 		if (rw == RW_READER) {		/* i.e. not the first pass */
3235 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3236 			if (error)
3237 				return (error);
3238 			zl->zl_znode = zp;
3239 		}
3240 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3241 		    &oidp, sizeof (oidp));
3242 		rwlp = &zp->z_parent_lock;
3243 		rw = RW_READER;
3244 
3245 	} while (zp->z_id != sdzp->z_id);
3246 
3247 	return (0);
3248 }
3249 
3250 /*
3251  * Move an entry from the provided source directory to the target
3252  * directory.  Change the entry name as indicated.
3253  *
3254  *	IN:	sdvp	- Source directory containing the "old entry".
3255  *		snm	- Old entry name.
3256  *		tdvp	- Target directory to contain the "new entry".
3257  *		tnm	- New entry name.
3258  *		cr	- credentials of caller.
3259  *		ct	- caller context
3260  *		flags	- case flags
3261  *
3262  *	RETURN:	0 if success
3263  *		error code if failure
3264  *
3265  * Timestamps:
3266  *	sdvp,tdvp - ctime|mtime updated
3267  */
3268 /*ARGSUSED*/
3269 static int
3270 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3271     caller_context_t *ct, int flags)
3272 {
3273 	znode_t		*tdzp, *szp, *tzp;
3274 	znode_t		*sdzp = VTOZ(sdvp);
3275 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3276 	zilog_t		*zilog;
3277 	vnode_t		*realvp;
3278 	zfs_dirlock_t	*sdl, *tdl;
3279 	dmu_tx_t	*tx;
3280 	zfs_zlock_t	*zl;
3281 	int		cmp, serr, terr;
3282 	int		error = 0;
3283 	int		zflg = 0;
3284 
3285 	ZFS_ENTER(zfsvfs);
3286 	ZFS_VERIFY_ZP(sdzp);
3287 	zilog = zfsvfs->z_log;
3288 
3289 	/*
3290 	 * Make sure we have the real vp for the target directory.
3291 	 */
3292 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3293 		tdvp = realvp;
3294 
3295 	if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) {
3296 		ZFS_EXIT(zfsvfs);
3297 		return (EXDEV);
3298 	}
3299 
3300 	tdzp = VTOZ(tdvp);
3301 	ZFS_VERIFY_ZP(tdzp);
3302 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3303 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3304 		ZFS_EXIT(zfsvfs);
3305 		return (EILSEQ);
3306 	}
3307 
3308 	if (flags & FIGNORECASE)
3309 		zflg |= ZCILOOK;
3310 
3311 top:
3312 	szp = NULL;
3313 	tzp = NULL;
3314 	zl = NULL;
3315 
3316 	/*
3317 	 * This is to prevent the creation of links into attribute space
3318 	 * by renaming a linked file into/outof an attribute directory.
3319 	 * See the comment in zfs_link() for why this is considered bad.
3320 	 */
3321 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3322 		ZFS_EXIT(zfsvfs);
3323 		return (EINVAL);
3324 	}
3325 
3326 	/*
3327 	 * Lock source and target directory entries.  To prevent deadlock,
3328 	 * a lock ordering must be defined.  We lock the directory with
3329 	 * the smallest object id first, or if it's a tie, the one with
3330 	 * the lexically first name.
3331 	 */
3332 	if (sdzp->z_id < tdzp->z_id) {
3333 		cmp = -1;
3334 	} else if (sdzp->z_id > tdzp->z_id) {
3335 		cmp = 1;
3336 	} else {
3337 		/*
3338 		 * First compare the two name arguments without
3339 		 * considering any case folding.
3340 		 */
3341 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3342 
3343 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3344 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3345 		if (cmp == 0) {
3346 			/*
3347 			 * POSIX: "If the old argument and the new argument
3348 			 * both refer to links to the same existing file,
3349 			 * the rename() function shall return successfully
3350 			 * and perform no other action."
3351 			 */
3352 			ZFS_EXIT(zfsvfs);
3353 			return (0);
3354 		}
3355 		/*
3356 		 * If the file system is case-folding, then we may
3357 		 * have some more checking to do.  A case-folding file
3358 		 * system is either supporting mixed case sensitivity
3359 		 * access or is completely case-insensitive.  Note
3360 		 * that the file system is always case preserving.
3361 		 *
3362 		 * In mixed sensitivity mode case sensitive behavior
3363 		 * is the default.  FIGNORECASE must be used to
3364 		 * explicitly request case insensitive behavior.
3365 		 *
3366 		 * If the source and target names provided differ only
3367 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3368 		 * we will treat this as a special case in the
3369 		 * case-insensitive mode: as long as the source name
3370 		 * is an exact match, we will allow this to proceed as
3371 		 * a name-change request.
3372 		 */
3373 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3374 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3375 		    flags & FIGNORECASE)) &&
3376 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3377 		    &error) == 0) {
3378 			/*
3379 			 * case preserving rename request, require exact
3380 			 * name matches
3381 			 */
3382 			zflg |= ZCIEXACT;
3383 			zflg &= ~ZCILOOK;
3384 		}
3385 	}
3386 
3387 	/*
3388 	 * If the source and destination directories are the same, we should
3389 	 * grab the z_name_lock of that directory only once.
3390 	 */
3391 	if (sdzp == tdzp) {
3392 		zflg |= ZHAVELOCK;
3393 		rw_enter(&sdzp->z_name_lock, RW_READER);
3394 	}
3395 
3396 	if (cmp < 0) {
3397 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3398 		    ZEXISTS | zflg, NULL, NULL);
3399 		terr = zfs_dirent_lock(&tdl,
3400 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3401 	} else {
3402 		terr = zfs_dirent_lock(&tdl,
3403 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3404 		serr = zfs_dirent_lock(&sdl,
3405 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3406 		    NULL, NULL);
3407 	}
3408 
3409 	if (serr) {
3410 		/*
3411 		 * Source entry invalid or not there.
3412 		 */
3413 		if (!terr) {
3414 			zfs_dirent_unlock(tdl);
3415 			if (tzp)
3416 				VN_RELE(ZTOV(tzp));
3417 		}
3418 
3419 		if (sdzp == tdzp)
3420 			rw_exit(&sdzp->z_name_lock);
3421 
3422 		if (strcmp(snm, "..") == 0)
3423 			serr = EINVAL;
3424 		ZFS_EXIT(zfsvfs);
3425 		return (serr);
3426 	}
3427 	if (terr) {
3428 		zfs_dirent_unlock(sdl);
3429 		VN_RELE(ZTOV(szp));
3430 
3431 		if (sdzp == tdzp)
3432 			rw_exit(&sdzp->z_name_lock);
3433 
3434 		if (strcmp(tnm, "..") == 0)
3435 			terr = EINVAL;
3436 		ZFS_EXIT(zfsvfs);
3437 		return (terr);
3438 	}
3439 
3440 	/*
3441 	 * Must have write access at the source to remove the old entry
3442 	 * and write access at the target to create the new entry.
3443 	 * Note that if target and source are the same, this can be
3444 	 * done in a single check.
3445 	 */
3446 
3447 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3448 		goto out;
3449 
3450 	if (ZTOV(szp)->v_type == VDIR) {
3451 		/*
3452 		 * Check to make sure rename is valid.
3453 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3454 		 */
3455 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3456 			goto out;
3457 	}
3458 
3459 	/*
3460 	 * Does target exist?
3461 	 */
3462 	if (tzp) {
3463 		/*
3464 		 * Source and target must be the same type.
3465 		 */
3466 		if (ZTOV(szp)->v_type == VDIR) {
3467 			if (ZTOV(tzp)->v_type != VDIR) {
3468 				error = ENOTDIR;
3469 				goto out;
3470 			}
3471 		} else {
3472 			if (ZTOV(tzp)->v_type == VDIR) {
3473 				error = EISDIR;
3474 				goto out;
3475 			}
3476 		}
3477 		/*
3478 		 * POSIX dictates that when the source and target
3479 		 * entries refer to the same file object, rename
3480 		 * must do nothing and exit without error.
3481 		 */
3482 		if (szp->z_id == tzp->z_id) {
3483 			error = 0;
3484 			goto out;
3485 		}
3486 	}
3487 
3488 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3489 	if (tzp)
3490 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3491 
3492 	/*
3493 	 * notify the target directory if it is not the same
3494 	 * as source directory.
3495 	 */
3496 	if (tdvp != sdvp) {
3497 		vnevent_rename_dest_dir(tdvp, ct);
3498 	}
3499 
3500 	tx = dmu_tx_create(zfsvfs->z_os);
3501 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3502 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3503 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3504 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3505 	if (sdzp != tdzp) {
3506 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3507 		zfs_sa_upgrade_txholds(tx, tdzp);
3508 	}
3509 	if (tzp) {
3510 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3511 		zfs_sa_upgrade_txholds(tx, tzp);
3512 	}
3513 
3514 	zfs_sa_upgrade_txholds(tx, szp);
3515 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3516 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3517 	if (error) {
3518 		if (zl != NULL)
3519 			zfs_rename_unlock(&zl);
3520 		zfs_dirent_unlock(sdl);
3521 		zfs_dirent_unlock(tdl);
3522 
3523 		if (sdzp == tdzp)
3524 			rw_exit(&sdzp->z_name_lock);
3525 
3526 		VN_RELE(ZTOV(szp));
3527 		if (tzp)
3528 			VN_RELE(ZTOV(tzp));
3529 		if (error == ERESTART) {
3530 			dmu_tx_wait(tx);
3531 			dmu_tx_abort(tx);
3532 			goto top;
3533 		}
3534 		dmu_tx_abort(tx);
3535 		ZFS_EXIT(zfsvfs);
3536 		return (error);
3537 	}
3538 
3539 	if (tzp)	/* Attempt to remove the existing target */
3540 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3541 
3542 	if (error == 0) {
3543 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3544 		if (error == 0) {
3545 			szp->z_pflags |= ZFS_AV_MODIFIED;
3546 
3547 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3548 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3549 			ASSERT3U(error, ==, 0);
3550 
3551 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3552 			ASSERT3U(error, ==, 0);
3553 
3554 			zfs_log_rename(zilog, tx,
3555 			    TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0),
3556 			    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3557 
3558 			/* Update path information for the target vnode */
3559 			vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm));
3560 		}
3561 	}
3562 
3563 	dmu_tx_commit(tx);
3564 out:
3565 	if (zl != NULL)
3566 		zfs_rename_unlock(&zl);
3567 
3568 	zfs_dirent_unlock(sdl);
3569 	zfs_dirent_unlock(tdl);
3570 
3571 	if (sdzp == tdzp)
3572 		rw_exit(&sdzp->z_name_lock);
3573 
3574 
3575 	VN_RELE(ZTOV(szp));
3576 	if (tzp)
3577 		VN_RELE(ZTOV(tzp));
3578 
3579 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3580 		zil_commit(zilog, UINT64_MAX, 0);
3581 
3582 	ZFS_EXIT(zfsvfs);
3583 	return (error);
3584 }
3585 
3586 /*
3587  * Insert the indicated symbolic reference entry into the directory.
3588  *
3589  *	IN:	dvp	- Directory to contain new symbolic link.
3590  *		link	- Name for new symlink entry.
3591  *		vap	- Attributes of new entry.
3592  *		target	- Target path of new symlink.
3593  *		cr	- credentials of caller.
3594  *		ct	- caller context
3595  *		flags	- case flags
3596  *
3597  *	RETURN:	0 if success
3598  *		error code if failure
3599  *
3600  * Timestamps:
3601  *	dvp - ctime|mtime updated
3602  */
3603 /*ARGSUSED*/
3604 static int
3605 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3606     caller_context_t *ct, int flags)
3607 {
3608 	znode_t		*zp, *dzp = VTOZ(dvp);
3609 	zfs_dirlock_t	*dl;
3610 	dmu_tx_t	*tx;
3611 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3612 	zilog_t		*zilog;
3613 	uint64_t	len = strlen(link);
3614 	int		error;
3615 	int		zflg = ZNEW;
3616 	zfs_acl_ids_t	acl_ids;
3617 	boolean_t	fuid_dirtied;
3618 	uint64_t	txtype = TX_SYMLINK;
3619 
3620 	ASSERT(vap->va_type == VLNK);
3621 
3622 	ZFS_ENTER(zfsvfs);
3623 	ZFS_VERIFY_ZP(dzp);
3624 	zilog = zfsvfs->z_log;
3625 
3626 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3627 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3628 		ZFS_EXIT(zfsvfs);
3629 		return (EILSEQ);
3630 	}
3631 	if (flags & FIGNORECASE)
3632 		zflg |= ZCILOOK;
3633 
3634 	if (len > MAXPATHLEN) {
3635 		ZFS_EXIT(zfsvfs);
3636 		return (ENAMETOOLONG);
3637 	}
3638 
3639 	if ((error = zfs_acl_ids_create(dzp, 0,
3640 	    vap, cr, NULL, &acl_ids)) != 0) {
3641 		ZFS_EXIT(zfsvfs);
3642 		return (error);
3643 	}
3644 top:
3645 	/*
3646 	 * Attempt to lock directory; fail if entry already exists.
3647 	 */
3648 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3649 	if (error) {
3650 		zfs_acl_ids_free(&acl_ids);
3651 		ZFS_EXIT(zfsvfs);
3652 		return (error);
3653 	}
3654 
3655 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3656 		zfs_acl_ids_free(&acl_ids);
3657 		ZFS_EXIT(zfsvfs);
3658 		return (error);
3659 	}
3660 
3661 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3662 		zfs_acl_ids_free(&acl_ids);
3663 		zfs_dirent_unlock(dl);
3664 		ZFS_EXIT(zfsvfs);
3665 		return (EDQUOT);
3666 	}
3667 	tx = dmu_tx_create(zfsvfs->z_os);
3668 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3669 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3670 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3671 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3672 	    ZFS_SA_BASE_ATTR_SIZE + len);
3673 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3674 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3675 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3676 		    acl_ids.z_aclp->z_acl_bytes);
3677 	}
3678 	if (fuid_dirtied)
3679 		zfs_fuid_txhold(zfsvfs, tx);
3680 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3681 	if (error) {
3682 		zfs_dirent_unlock(dl);
3683 		if (error == ERESTART) {
3684 			dmu_tx_wait(tx);
3685 			dmu_tx_abort(tx);
3686 			goto top;
3687 		}
3688 		zfs_acl_ids_free(&acl_ids);
3689 		dmu_tx_abort(tx);
3690 		ZFS_EXIT(zfsvfs);
3691 		return (error);
3692 	}
3693 
3694 	/*
3695 	 * Create a new object for the symlink.
3696 	 * for version 4 ZPL datsets the symlink will be an SA attribute
3697 	 */
3698 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3699 
3700 	if (fuid_dirtied)
3701 		zfs_fuid_sync(zfsvfs, tx);
3702 
3703 	if (zp->z_is_sa)
3704 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3705 		    link, len, tx);
3706 	else
3707 		zfs_sa_symlink(zp, link, len, tx);
3708 
3709 	zp->z_size = len;
3710 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3711 	    &zp->z_size, sizeof (zp->z_size), tx);
3712 	/*
3713 	 * Insert the new object into the directory.
3714 	 */
3715 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3716 
3717 	if (flags & FIGNORECASE)
3718 		txtype |= TX_CI;
3719 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3720 
3721 	zfs_acl_ids_free(&acl_ids);
3722 
3723 	dmu_tx_commit(tx);
3724 
3725 	zfs_dirent_unlock(dl);
3726 
3727 	VN_RELE(ZTOV(zp));
3728 
3729 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3730 		zil_commit(zilog, UINT64_MAX, 0);
3731 
3732 	ZFS_EXIT(zfsvfs);
3733 	return (error);
3734 }
3735 
3736 /*
3737  * Return, in the buffer contained in the provided uio structure,
3738  * the symbolic path referred to by vp.
3739  *
3740  *	IN:	vp	- vnode of symbolic link.
3741  *		uoip	- structure to contain the link path.
3742  *		cr	- credentials of caller.
3743  *		ct	- caller context
3744  *
3745  *	OUT:	uio	- structure to contain the link path.
3746  *
3747  *	RETURN:	0 if success
3748  *		error code if failure
3749  *
3750  * Timestamps:
3751  *	vp - atime updated
3752  */
3753 /* ARGSUSED */
3754 static int
3755 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3756 {
3757 	znode_t		*zp = VTOZ(vp);
3758 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3759 	int		error;
3760 
3761 	ZFS_ENTER(zfsvfs);
3762 	ZFS_VERIFY_ZP(zp);
3763 
3764 	if (zp->z_is_sa)
3765 		error = sa_lookup_uio(zp->z_sa_hdl,
3766 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3767 	else
3768 		error = zfs_sa_readlink(zp, uio);
3769 
3770 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3771 
3772 	ZFS_EXIT(zfsvfs);
3773 	return (error);
3774 }
3775 
3776 /*
3777  * Insert a new entry into directory tdvp referencing svp.
3778  *
3779  *	IN:	tdvp	- Directory to contain new entry.
3780  *		svp	- vnode of new entry.
3781  *		name	- name of new entry.
3782  *		cr	- credentials of caller.
3783  *		ct	- caller context
3784  *
3785  *	RETURN:	0 if success
3786  *		error code if failure
3787  *
3788  * Timestamps:
3789  *	tdvp - ctime|mtime updated
3790  *	 svp - ctime updated
3791  */
3792 /* ARGSUSED */
3793 static int
3794 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3795     caller_context_t *ct, int flags)
3796 {
3797 	znode_t		*dzp = VTOZ(tdvp);
3798 	znode_t		*tzp, *szp;
3799 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3800 	zilog_t		*zilog;
3801 	zfs_dirlock_t	*dl;
3802 	dmu_tx_t	*tx;
3803 	vnode_t		*realvp;
3804 	int		error;
3805 	int		zf = ZNEW;
3806 	uint64_t	parent;
3807 
3808 	ASSERT(tdvp->v_type == VDIR);
3809 
3810 	ZFS_ENTER(zfsvfs);
3811 	ZFS_VERIFY_ZP(dzp);
3812 	zilog = zfsvfs->z_log;
3813 
3814 	if (VOP_REALVP(svp, &realvp, ct) == 0)
3815 		svp = realvp;
3816 
3817 	/*
3818 	 * POSIX dictates that we return EPERM here.
3819 	 * Better choices include ENOTSUP or EISDIR.
3820 	 */
3821 	if (svp->v_type == VDIR) {
3822 		ZFS_EXIT(zfsvfs);
3823 		return (EPERM);
3824 	}
3825 
3826 	if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) {
3827 		ZFS_EXIT(zfsvfs);
3828 		return (EXDEV);
3829 	}
3830 
3831 	szp = VTOZ(svp);
3832 	ZFS_VERIFY_ZP(szp);
3833 
3834 	/* Prevent links to .zfs/shares files */
3835 
3836 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3837 	    &parent, sizeof (uint64_t))) != 0) {
3838 		ZFS_EXIT(zfsvfs);
3839 		return (error);
3840 	}
3841 	if (parent == zfsvfs->z_shares_dir) {
3842 		ZFS_EXIT(zfsvfs);
3843 		return (EPERM);
3844 	}
3845 
3846 	if (zfsvfs->z_utf8 && u8_validate(name,
3847 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3848 		ZFS_EXIT(zfsvfs);
3849 		return (EILSEQ);
3850 	}
3851 	if (flags & FIGNORECASE)
3852 		zf |= ZCILOOK;
3853 
3854 	/*
3855 	 * We do not support links between attributes and non-attributes
3856 	 * because of the potential security risk of creating links
3857 	 * into "normal" file space in order to circumvent restrictions
3858 	 * imposed in attribute space.
3859 	 */
3860 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3861 		ZFS_EXIT(zfsvfs);
3862 		return (EINVAL);
3863 	}
3864 
3865 
3866 	if (szp->z_uid != crgetuid(cr) &&
3867 	    secpolicy_basic_link(cr) != 0) {
3868 		ZFS_EXIT(zfsvfs);
3869 		return (EPERM);
3870 	}
3871 
3872 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3873 		ZFS_EXIT(zfsvfs);
3874 		return (error);
3875 	}
3876 
3877 top:
3878 	/*
3879 	 * Attempt to lock directory; fail if entry already exists.
3880 	 */
3881 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3882 	if (error) {
3883 		ZFS_EXIT(zfsvfs);
3884 		return (error);
3885 	}
3886 
3887 	tx = dmu_tx_create(zfsvfs->z_os);
3888 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3889 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3890 	zfs_sa_upgrade_txholds(tx, szp);
3891 	zfs_sa_upgrade_txholds(tx, dzp);
3892 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3893 	if (error) {
3894 		zfs_dirent_unlock(dl);
3895 		if (error == ERESTART) {
3896 			dmu_tx_wait(tx);
3897 			dmu_tx_abort(tx);
3898 			goto top;
3899 		}
3900 		dmu_tx_abort(tx);
3901 		ZFS_EXIT(zfsvfs);
3902 		return (error);
3903 	}
3904 
3905 	error = zfs_link_create(dl, szp, tx, 0);
3906 
3907 	if (error == 0) {
3908 		uint64_t txtype = TX_LINK;
3909 		if (flags & FIGNORECASE)
3910 			txtype |= TX_CI;
3911 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
3912 	}
3913 
3914 	dmu_tx_commit(tx);
3915 
3916 	zfs_dirent_unlock(dl);
3917 
3918 	if (error == 0) {
3919 		vnevent_link(svp, ct);
3920 	}
3921 
3922 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3923 		zil_commit(zilog, UINT64_MAX, 0);
3924 
3925 	ZFS_EXIT(zfsvfs);
3926 	return (error);
3927 }
3928 
3929 /*
3930  * zfs_null_putapage() is used when the file system has been force
3931  * unmounted. It just drops the pages.
3932  */
3933 /* ARGSUSED */
3934 static int
3935 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3936 		size_t *lenp, int flags, cred_t *cr)
3937 {
3938 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
3939 	return (0);
3940 }
3941 
3942 /*
3943  * Push a page out to disk, klustering if possible.
3944  *
3945  *	IN:	vp	- file to push page to.
3946  *		pp	- page to push.
3947  *		flags	- additional flags.
3948  *		cr	- credentials of caller.
3949  *
3950  *	OUT:	offp	- start of range pushed.
3951  *		lenp	- len of range pushed.
3952  *
3953  *	RETURN:	0 if success
3954  *		error code if failure
3955  *
3956  * NOTE: callers must have locked the page to be pushed.  On
3957  * exit, the page (and all other pages in the kluster) must be
3958  * unlocked.
3959  */
3960 /* ARGSUSED */
3961 static int
3962 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3963 		size_t *lenp, int flags, cred_t *cr)
3964 {
3965 	znode_t		*zp = VTOZ(vp);
3966 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3967 	dmu_tx_t	*tx;
3968 	u_offset_t	off, koff;
3969 	size_t		len, klen;
3970 	int		err;
3971 
3972 	off = pp->p_offset;
3973 	len = PAGESIZE;
3974 	/*
3975 	 * If our blocksize is bigger than the page size, try to kluster
3976 	 * multiple pages so that we write a full block (thus avoiding
3977 	 * a read-modify-write).
3978 	 */
3979 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
3980 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
3981 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
3982 		ASSERT(koff <= zp->z_size);
3983 		if (koff + klen > zp->z_size)
3984 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
3985 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
3986 	}
3987 	ASSERT3U(btop(len), ==, btopr(len));
3988 
3989 	/*
3990 	 * Can't push pages past end-of-file.
3991 	 */
3992 	if (off >= zp->z_size) {
3993 		/* ignore all pages */
3994 		err = 0;
3995 		goto out;
3996 	} else if (off + len > zp->z_size) {
3997 		int npages = btopr(zp->z_size - off);
3998 		page_t *trunc;
3999 
4000 		page_list_break(&pp, &trunc, npages);
4001 		/* ignore pages past end of file */
4002 		if (trunc)
4003 			pvn_write_done(trunc, flags);
4004 		len = zp->z_size - off;
4005 	}
4006 
4007 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4008 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4009 		err = EDQUOT;
4010 		goto out;
4011 	}
4012 top:
4013 	tx = dmu_tx_create(zfsvfs->z_os);
4014 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4015 
4016 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4017 	zfs_sa_upgrade_txholds(tx, zp);
4018 	err = dmu_tx_assign(tx, TXG_NOWAIT);
4019 	if (err != 0) {
4020 		if (err == ERESTART) {
4021 			dmu_tx_wait(tx);
4022 			dmu_tx_abort(tx);
4023 			goto top;
4024 		}
4025 		dmu_tx_abort(tx);
4026 		goto out;
4027 	}
4028 
4029 	if (zp->z_blksz <= PAGESIZE) {
4030 		caddr_t va = zfs_map_page(pp, S_READ);
4031 		ASSERT3U(len, <=, PAGESIZE);
4032 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4033 		zfs_unmap_page(pp, va);
4034 	} else {
4035 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4036 	}
4037 
4038 	if (err == 0) {
4039 		uint64_t mtime[2], ctime[2];
4040 		sa_bulk_attr_t bulk[2];
4041 		int count = 0;
4042 
4043 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4044 		    &mtime, 16);
4045 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4046 		    &ctime, 16);
4047 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4048 		    B_TRUE);
4049 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4050 	}
4051 	dmu_tx_commit(tx);
4052 
4053 out:
4054 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4055 	if (offp)
4056 		*offp = off;
4057 	if (lenp)
4058 		*lenp = len;
4059 
4060 	return (err);
4061 }
4062 
4063 /*
4064  * Copy the portion of the file indicated from pages into the file.
4065  * The pages are stored in a page list attached to the files vnode.
4066  *
4067  *	IN:	vp	- vnode of file to push page data to.
4068  *		off	- position in file to put data.
4069  *		len	- amount of data to write.
4070  *		flags	- flags to control the operation.
4071  *		cr	- credentials of caller.
4072  *		ct	- caller context.
4073  *
4074  *	RETURN:	0 if success
4075  *		error code if failure
4076  *
4077  * Timestamps:
4078  *	vp - ctime|mtime updated
4079  */
4080 /*ARGSUSED*/
4081 static int
4082 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4083     caller_context_t *ct)
4084 {
4085 	znode_t		*zp = VTOZ(vp);
4086 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4087 	page_t		*pp;
4088 	size_t		io_len;
4089 	u_offset_t	io_off;
4090 	uint_t		blksz;
4091 	rl_t		*rl;
4092 	int		error = 0;
4093 
4094 	ZFS_ENTER(zfsvfs);
4095 	ZFS_VERIFY_ZP(zp);
4096 
4097 	/*
4098 	 * Align this request to the file block size in case we kluster.
4099 	 * XXX - this can result in pretty aggresive locking, which can
4100 	 * impact simultanious read/write access.  One option might be
4101 	 * to break up long requests (len == 0) into block-by-block
4102 	 * operations to get narrower locking.
4103 	 */
4104 	blksz = zp->z_blksz;
4105 	if (ISP2(blksz))
4106 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4107 	else
4108 		io_off = 0;
4109 	if (len > 0 && ISP2(blksz))
4110 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4111 	else
4112 		io_len = 0;
4113 
4114 	if (io_len == 0) {
4115 		/*
4116 		 * Search the entire vp list for pages >= io_off.
4117 		 */
4118 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4119 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4120 		goto out;
4121 	}
4122 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4123 
4124 	if (off > zp->z_size) {
4125 		/* past end of file */
4126 		zfs_range_unlock(rl);
4127 		ZFS_EXIT(zfsvfs);
4128 		return (0);
4129 	}
4130 
4131 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4132 
4133 	for (off = io_off; io_off < off + len; io_off += io_len) {
4134 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4135 			pp = page_lookup(vp, io_off,
4136 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4137 		} else {
4138 			pp = page_lookup_nowait(vp, io_off,
4139 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4140 		}
4141 
4142 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4143 			int err;
4144 
4145 			/*
4146 			 * Found a dirty page to push
4147 			 */
4148 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4149 			if (err)
4150 				error = err;
4151 		} else {
4152 			io_len = PAGESIZE;
4153 		}
4154 	}
4155 out:
4156 	zfs_range_unlock(rl);
4157 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4158 		zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id);
4159 	ZFS_EXIT(zfsvfs);
4160 	return (error);
4161 }
4162 
4163 /*ARGSUSED*/
4164 void
4165 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4166 {
4167 	znode_t	*zp = VTOZ(vp);
4168 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4169 	int error;
4170 
4171 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4172 	if (zp->z_sa_hdl == NULL) {
4173 		/*
4174 		 * The fs has been unmounted, or we did a
4175 		 * suspend/resume and this file no longer exists.
4176 		 */
4177 		if (vn_has_cached_data(vp)) {
4178 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4179 			    B_INVAL, cr);
4180 		}
4181 
4182 		mutex_enter(&zp->z_lock);
4183 		mutex_enter(&vp->v_lock);
4184 		ASSERT(vp->v_count == 1);
4185 		vp->v_count = 0;
4186 		mutex_exit(&vp->v_lock);
4187 		mutex_exit(&zp->z_lock);
4188 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4189 		zfs_znode_free(zp);
4190 		return;
4191 	}
4192 
4193 	/*
4194 	 * Attempt to push any data in the page cache.  If this fails
4195 	 * we will get kicked out later in zfs_zinactive().
4196 	 */
4197 	if (vn_has_cached_data(vp)) {
4198 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4199 		    cr);
4200 	}
4201 
4202 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4203 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4204 
4205 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4206 		zfs_sa_upgrade_txholds(tx, zp);
4207 		error = dmu_tx_assign(tx, TXG_WAIT);
4208 		if (error) {
4209 			dmu_tx_abort(tx);
4210 		} else {
4211 			mutex_enter(&zp->z_lock);
4212 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4213 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4214 			zp->z_atime_dirty = 0;
4215 			mutex_exit(&zp->z_lock);
4216 			dmu_tx_commit(tx);
4217 		}
4218 	}
4219 
4220 	zfs_zinactive(zp);
4221 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4222 }
4223 
4224 /*
4225  * Bounds-check the seek operation.
4226  *
4227  *	IN:	vp	- vnode seeking within
4228  *		ooff	- old file offset
4229  *		noffp	- pointer to new file offset
4230  *		ct	- caller context
4231  *
4232  *	RETURN:	0 if success
4233  *		EINVAL if new offset invalid
4234  */
4235 /* ARGSUSED */
4236 static int
4237 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4238     caller_context_t *ct)
4239 {
4240 	if (vp->v_type == VDIR)
4241 		return (0);
4242 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4243 }
4244 
4245 /*
4246  * Pre-filter the generic locking function to trap attempts to place
4247  * a mandatory lock on a memory mapped file.
4248  */
4249 static int
4250 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4251     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4252 {
4253 	znode_t *zp = VTOZ(vp);
4254 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4255 
4256 	ZFS_ENTER(zfsvfs);
4257 	ZFS_VERIFY_ZP(zp);
4258 
4259 	/*
4260 	 * We are following the UFS semantics with respect to mapcnt
4261 	 * here: If we see that the file is mapped already, then we will
4262 	 * return an error, but we don't worry about races between this
4263 	 * function and zfs_map().
4264 	 */
4265 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4266 		ZFS_EXIT(zfsvfs);
4267 		return (EAGAIN);
4268 	}
4269 	ZFS_EXIT(zfsvfs);
4270 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4271 }
4272 
4273 /*
4274  * If we can't find a page in the cache, we will create a new page
4275  * and fill it with file data.  For efficiency, we may try to fill
4276  * multiple pages at once (klustering) to fill up the supplied page
4277  * list.  Note that the pages to be filled are held with an exclusive
4278  * lock to prevent access by other threads while they are being filled.
4279  */
4280 static int
4281 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4282     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4283 {
4284 	znode_t *zp = VTOZ(vp);
4285 	page_t *pp, *cur_pp;
4286 	objset_t *os = zp->z_zfsvfs->z_os;
4287 	u_offset_t io_off, total;
4288 	size_t io_len;
4289 	int err;
4290 
4291 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4292 		/*
4293 		 * We only have a single page, don't bother klustering
4294 		 */
4295 		io_off = off;
4296 		io_len = PAGESIZE;
4297 		pp = page_create_va(vp, io_off, io_len,
4298 		    PG_EXCL | PG_WAIT, seg, addr);
4299 	} else {
4300 		/*
4301 		 * Try to find enough pages to fill the page list
4302 		 */
4303 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4304 		    &io_len, off, plsz, 0);
4305 	}
4306 	if (pp == NULL) {
4307 		/*
4308 		 * The page already exists, nothing to do here.
4309 		 */
4310 		*pl = NULL;
4311 		return (0);
4312 	}
4313 
4314 	/*
4315 	 * Fill the pages in the kluster.
4316 	 */
4317 	cur_pp = pp;
4318 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4319 		caddr_t va;
4320 
4321 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4322 		va = zfs_map_page(cur_pp, S_WRITE);
4323 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4324 		    DMU_READ_PREFETCH);
4325 		zfs_unmap_page(cur_pp, va);
4326 		if (err) {
4327 			/* On error, toss the entire kluster */
4328 			pvn_read_done(pp, B_ERROR);
4329 			/* convert checksum errors into IO errors */
4330 			if (err == ECKSUM)
4331 				err = EIO;
4332 			return (err);
4333 		}
4334 		cur_pp = cur_pp->p_next;
4335 	}
4336 
4337 	/*
4338 	 * Fill in the page list array from the kluster starting
4339 	 * from the desired offset `off'.
4340 	 * NOTE: the page list will always be null terminated.
4341 	 */
4342 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4343 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4344 
4345 	return (0);
4346 }
4347 
4348 /*
4349  * Return pointers to the pages for the file region [off, off + len]
4350  * in the pl array.  If plsz is greater than len, this function may
4351  * also return page pointers from after the specified region
4352  * (i.e. the region [off, off + plsz]).  These additional pages are
4353  * only returned if they are already in the cache, or were created as
4354  * part of a klustered read.
4355  *
4356  *	IN:	vp	- vnode of file to get data from.
4357  *		off	- position in file to get data from.
4358  *		len	- amount of data to retrieve.
4359  *		plsz	- length of provided page list.
4360  *		seg	- segment to obtain pages for.
4361  *		addr	- virtual address of fault.
4362  *		rw	- mode of created pages.
4363  *		cr	- credentials of caller.
4364  *		ct	- caller context.
4365  *
4366  *	OUT:	protp	- protection mode of created pages.
4367  *		pl	- list of pages created.
4368  *
4369  *	RETURN:	0 if success
4370  *		error code if failure
4371  *
4372  * Timestamps:
4373  *	vp - atime updated
4374  */
4375 /* ARGSUSED */
4376 static int
4377 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4378 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4379 	enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4380 {
4381 	znode_t		*zp = VTOZ(vp);
4382 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4383 	page_t		**pl0 = pl;
4384 	int		err = 0;
4385 
4386 	/* we do our own caching, faultahead is unnecessary */
4387 	if (pl == NULL)
4388 		return (0);
4389 	else if (len > plsz)
4390 		len = plsz;
4391 	else
4392 		len = P2ROUNDUP(len, PAGESIZE);
4393 	ASSERT(plsz >= len);
4394 
4395 	ZFS_ENTER(zfsvfs);
4396 	ZFS_VERIFY_ZP(zp);
4397 
4398 	if (protp)
4399 		*protp = PROT_ALL;
4400 
4401 	/*
4402 	 * Loop through the requested range [off, off + len) looking
4403 	 * for pages.  If we don't find a page, we will need to create
4404 	 * a new page and fill it with data from the file.
4405 	 */
4406 	while (len > 0) {
4407 		if (*pl = page_lookup(vp, off, SE_SHARED))
4408 			*(pl+1) = NULL;
4409 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4410 			goto out;
4411 		while (*pl) {
4412 			ASSERT3U((*pl)->p_offset, ==, off);
4413 			off += PAGESIZE;
4414 			addr += PAGESIZE;
4415 			if (len > 0) {
4416 				ASSERT3U(len, >=, PAGESIZE);
4417 				len -= PAGESIZE;
4418 			}
4419 			ASSERT3U(plsz, >=, PAGESIZE);
4420 			plsz -= PAGESIZE;
4421 			pl++;
4422 		}
4423 	}
4424 
4425 	/*
4426 	 * Fill out the page array with any pages already in the cache.
4427 	 */
4428 	while (plsz > 0 &&
4429 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4430 			off += PAGESIZE;
4431 			plsz -= PAGESIZE;
4432 	}
4433 out:
4434 	if (err) {
4435 		/*
4436 		 * Release any pages we have previously locked.
4437 		 */
4438 		while (pl > pl0)
4439 			page_unlock(*--pl);
4440 	} else {
4441 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4442 	}
4443 
4444 	*pl = NULL;
4445 
4446 	ZFS_EXIT(zfsvfs);
4447 	return (err);
4448 }
4449 
4450 /*
4451  * Request a memory map for a section of a file.  This code interacts
4452  * with common code and the VM system as follows:
4453  *
4454  *	common code calls mmap(), which ends up in smmap_common()
4455  *
4456  *	this calls VOP_MAP(), which takes you into (say) zfs
4457  *
4458  *	zfs_map() calls as_map(), passing segvn_create() as the callback
4459  *
4460  *	segvn_create() creates the new segment and calls VOP_ADDMAP()
4461  *
4462  *	zfs_addmap() updates z_mapcnt
4463  */
4464 /*ARGSUSED*/
4465 static int
4466 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4467     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4468     caller_context_t *ct)
4469 {
4470 	znode_t *zp = VTOZ(vp);
4471 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4472 	segvn_crargs_t	vn_a;
4473 	int		error;
4474 
4475 	ZFS_ENTER(zfsvfs);
4476 	ZFS_VERIFY_ZP(zp);
4477 
4478 	if ((prot & PROT_WRITE) && (zp->z_pflags &
4479 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4480 		ZFS_EXIT(zfsvfs);
4481 		return (EPERM);
4482 	}
4483 
4484 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4485 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4486 		ZFS_EXIT(zfsvfs);
4487 		return (EACCES);
4488 	}
4489 
4490 	if (vp->v_flag & VNOMAP) {
4491 		ZFS_EXIT(zfsvfs);
4492 		return (ENOSYS);
4493 	}
4494 
4495 	if (off < 0 || len > MAXOFFSET_T - off) {
4496 		ZFS_EXIT(zfsvfs);
4497 		return (ENXIO);
4498 	}
4499 
4500 	if (vp->v_type != VREG) {
4501 		ZFS_EXIT(zfsvfs);
4502 		return (ENODEV);
4503 	}
4504 
4505 	/*
4506 	 * If file is locked, disallow mapping.
4507 	 */
4508 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4509 		ZFS_EXIT(zfsvfs);
4510 		return (EAGAIN);
4511 	}
4512 
4513 	as_rangelock(as);
4514 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4515 	if (error != 0) {
4516 		as_rangeunlock(as);
4517 		ZFS_EXIT(zfsvfs);
4518 		return (error);
4519 	}
4520 
4521 	vn_a.vp = vp;
4522 	vn_a.offset = (u_offset_t)off;
4523 	vn_a.type = flags & MAP_TYPE;
4524 	vn_a.prot = prot;
4525 	vn_a.maxprot = maxprot;
4526 	vn_a.cred = cr;
4527 	vn_a.amp = NULL;
4528 	vn_a.flags = flags & ~MAP_TYPE;
4529 	vn_a.szc = 0;
4530 	vn_a.lgrp_mem_policy_flags = 0;
4531 
4532 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4533 
4534 	as_rangeunlock(as);
4535 	ZFS_EXIT(zfsvfs);
4536 	return (error);
4537 }
4538 
4539 /* ARGSUSED */
4540 static int
4541 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4542     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4543     caller_context_t *ct)
4544 {
4545 	uint64_t pages = btopr(len);
4546 
4547 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4548 	return (0);
4549 }
4550 
4551 /*
4552  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4553  * more accurate mtime for the associated file.  Since we don't have a way of
4554  * detecting when the data was actually modified, we have to resort to
4555  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4556  * last page is pushed.  The problem occurs when the msync() call is omitted,
4557  * which by far the most common case:
4558  *
4559  * 	open()
4560  * 	mmap()
4561  * 	<modify memory>
4562  * 	munmap()
4563  * 	close()
4564  * 	<time lapse>
4565  * 	putpage() via fsflush
4566  *
4567  * If we wait until fsflush to come along, we can have a modification time that
4568  * is some arbitrary point in the future.  In order to prevent this in the
4569  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4570  * torn down.
4571  */
4572 /* ARGSUSED */
4573 static int
4574 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4575     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4576     caller_context_t *ct)
4577 {
4578 	uint64_t pages = btopr(len);
4579 
4580 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4581 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4582 
4583 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4584 	    vn_has_cached_data(vp))
4585 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4586 
4587 	return (0);
4588 }
4589 
4590 /*
4591  * Free or allocate space in a file.  Currently, this function only
4592  * supports the `F_FREESP' command.  However, this command is somewhat
4593  * misnamed, as its functionality includes the ability to allocate as
4594  * well as free space.
4595  *
4596  *	IN:	vp	- vnode of file to free data in.
4597  *		cmd	- action to take (only F_FREESP supported).
4598  *		bfp	- section of file to free/alloc.
4599  *		flag	- current file open mode flags.
4600  *		offset	- current file offset.
4601  *		cr	- credentials of caller [UNUSED].
4602  *		ct	- caller context.
4603  *
4604  *	RETURN:	0 if success
4605  *		error code if failure
4606  *
4607  * Timestamps:
4608  *	vp - ctime|mtime updated
4609  */
4610 /* ARGSUSED */
4611 static int
4612 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4613     offset_t offset, cred_t *cr, caller_context_t *ct)
4614 {
4615 	znode_t		*zp = VTOZ(vp);
4616 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4617 	uint64_t	off, len;
4618 	int		error;
4619 
4620 	ZFS_ENTER(zfsvfs);
4621 	ZFS_VERIFY_ZP(zp);
4622 
4623 	if (cmd != F_FREESP) {
4624 		ZFS_EXIT(zfsvfs);
4625 		return (EINVAL);
4626 	}
4627 
4628 	if (error = convoff(vp, bfp, 0, offset)) {
4629 		ZFS_EXIT(zfsvfs);
4630 		return (error);
4631 	}
4632 
4633 	if (bfp->l_len < 0) {
4634 		ZFS_EXIT(zfsvfs);
4635 		return (EINVAL);
4636 	}
4637 
4638 	off = bfp->l_start;
4639 	len = bfp->l_len; /* 0 means from off to end of file */
4640 
4641 	error = zfs_freesp(zp, off, len, flag, TRUE);
4642 
4643 	ZFS_EXIT(zfsvfs);
4644 	return (error);
4645 }
4646 
4647 /*ARGSUSED*/
4648 static int
4649 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4650 {
4651 	znode_t		*zp = VTOZ(vp);
4652 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4653 	uint32_t	gen;
4654 	uint64_t	gen64;
4655 	uint64_t	object = zp->z_id;
4656 	zfid_short_t	*zfid;
4657 	int		size, i, error;
4658 
4659 	ZFS_ENTER(zfsvfs);
4660 	ZFS_VERIFY_ZP(zp);
4661 
4662 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4663 	    &gen64, sizeof (uint64_t))) != 0) {
4664 		ZFS_EXIT(zfsvfs);
4665 		return (error);
4666 	}
4667 
4668 	gen = (uint32_t)gen64;
4669 
4670 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4671 	if (fidp->fid_len < size) {
4672 		fidp->fid_len = size;
4673 		ZFS_EXIT(zfsvfs);
4674 		return (ENOSPC);
4675 	}
4676 
4677 	zfid = (zfid_short_t *)fidp;
4678 
4679 	zfid->zf_len = size;
4680 
4681 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4682 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4683 
4684 	/* Must have a non-zero generation number to distinguish from .zfs */
4685 	if (gen == 0)
4686 		gen = 1;
4687 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4688 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4689 
4690 	if (size == LONG_FID_LEN) {
4691 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4692 		zfid_long_t	*zlfid;
4693 
4694 		zlfid = (zfid_long_t *)fidp;
4695 
4696 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4697 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4698 
4699 		/* XXX - this should be the generation number for the objset */
4700 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4701 			zlfid->zf_setgen[i] = 0;
4702 	}
4703 
4704 	ZFS_EXIT(zfsvfs);
4705 	return (0);
4706 }
4707 
4708 static int
4709 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4710     caller_context_t *ct)
4711 {
4712 	znode_t		*zp, *xzp;
4713 	zfsvfs_t	*zfsvfs;
4714 	zfs_dirlock_t	*dl;
4715 	int		error;
4716 
4717 	switch (cmd) {
4718 	case _PC_LINK_MAX:
4719 		*valp = ULONG_MAX;
4720 		return (0);
4721 
4722 	case _PC_FILESIZEBITS:
4723 		*valp = 64;
4724 		return (0);
4725 
4726 	case _PC_XATTR_EXISTS:
4727 		zp = VTOZ(vp);
4728 		zfsvfs = zp->z_zfsvfs;
4729 		ZFS_ENTER(zfsvfs);
4730 		ZFS_VERIFY_ZP(zp);
4731 		*valp = 0;
4732 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4733 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4734 		if (error == 0) {
4735 			zfs_dirent_unlock(dl);
4736 			if (!zfs_dirempty(xzp))
4737 				*valp = 1;
4738 			VN_RELE(ZTOV(xzp));
4739 		} else if (error == ENOENT) {
4740 			/*
4741 			 * If there aren't extended attributes, it's the
4742 			 * same as having zero of them.
4743 			 */
4744 			error = 0;
4745 		}
4746 		ZFS_EXIT(zfsvfs);
4747 		return (error);
4748 
4749 	case _PC_SATTR_ENABLED:
4750 	case _PC_SATTR_EXISTS:
4751 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4752 		    (vp->v_type == VREG || vp->v_type == VDIR);
4753 		return (0);
4754 
4755 	case _PC_ACCESS_FILTERING:
4756 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4757 		    vp->v_type == VDIR;
4758 		return (0);
4759 
4760 	case _PC_ACL_ENABLED:
4761 		*valp = _ACL_ACE_ENABLED;
4762 		return (0);
4763 
4764 	case _PC_MIN_HOLE_SIZE:
4765 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4766 		return (0);
4767 
4768 	case _PC_TIMESTAMP_RESOLUTION:
4769 		/* nanosecond timestamp resolution */
4770 		*valp = 1L;
4771 		return (0);
4772 
4773 	default:
4774 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4775 	}
4776 }
4777 
4778 /*ARGSUSED*/
4779 static int
4780 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4781     caller_context_t *ct)
4782 {
4783 	znode_t *zp = VTOZ(vp);
4784 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4785 	int error;
4786 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4787 
4788 	ZFS_ENTER(zfsvfs);
4789 	ZFS_VERIFY_ZP(zp);
4790 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4791 	ZFS_EXIT(zfsvfs);
4792 
4793 	return (error);
4794 }
4795 
4796 /*ARGSUSED*/
4797 static int
4798 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4799     caller_context_t *ct)
4800 {
4801 	znode_t *zp = VTOZ(vp);
4802 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4803 	int error;
4804 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4805 	zilog_t	*zilog = zfsvfs->z_log;
4806 
4807 	ZFS_ENTER(zfsvfs);
4808 	ZFS_VERIFY_ZP(zp);
4809 
4810 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4811 
4812 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4813 		zil_commit(zilog, UINT64_MAX, 0);
4814 
4815 	ZFS_EXIT(zfsvfs);
4816 	return (error);
4817 }
4818 
4819 /*
4820  * Tunable, both must be a power of 2.
4821  *
4822  * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4823  * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4824  *                an arcbuf for a partial block read
4825  */
4826 int zcr_blksz_min = (1 << 10);	/* 1K */
4827 int zcr_blksz_max = (1 << 17);	/* 128K */
4828 
4829 /*ARGSUSED*/
4830 static int
4831 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4832     caller_context_t *ct)
4833 {
4834 	znode_t	*zp = VTOZ(vp);
4835 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4836 	int max_blksz = zfsvfs->z_max_blksz;
4837 	uio_t *uio = &xuio->xu_uio;
4838 	ssize_t size = uio->uio_resid;
4839 	offset_t offset = uio->uio_loffset;
4840 	int blksz;
4841 	int fullblk, i;
4842 	arc_buf_t *abuf;
4843 	ssize_t maxsize;
4844 	int preamble, postamble;
4845 
4846 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4847 		return (EINVAL);
4848 
4849 	ZFS_ENTER(zfsvfs);
4850 	ZFS_VERIFY_ZP(zp);
4851 	switch (ioflag) {
4852 	case UIO_WRITE:
4853 		/*
4854 		 * Loan out an arc_buf for write if write size is bigger than
4855 		 * max_blksz, and the file's block size is also max_blksz.
4856 		 */
4857 		blksz = max_blksz;
4858 		if (size < blksz || zp->z_blksz != blksz) {
4859 			ZFS_EXIT(zfsvfs);
4860 			return (EINVAL);
4861 		}
4862 		/*
4863 		 * Caller requests buffers for write before knowing where the
4864 		 * write offset might be (e.g. NFS TCP write).
4865 		 */
4866 		if (offset == -1) {
4867 			preamble = 0;
4868 		} else {
4869 			preamble = P2PHASE(offset, blksz);
4870 			if (preamble) {
4871 				preamble = blksz - preamble;
4872 				size -= preamble;
4873 			}
4874 		}
4875 
4876 		postamble = P2PHASE(size, blksz);
4877 		size -= postamble;
4878 
4879 		fullblk = size / blksz;
4880 		(void) dmu_xuio_init(xuio,
4881 		    (preamble != 0) + fullblk + (postamble != 0));
4882 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
4883 		    int, postamble, int,
4884 		    (preamble != 0) + fullblk + (postamble != 0));
4885 
4886 		/*
4887 		 * Have to fix iov base/len for partial buffers.  They
4888 		 * currently represent full arc_buf's.
4889 		 */
4890 		if (preamble) {
4891 			/* data begins in the middle of the arc_buf */
4892 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4893 			    blksz);
4894 			ASSERT(abuf);
4895 			(void) dmu_xuio_add(xuio, abuf,
4896 			    blksz - preamble, preamble);
4897 		}
4898 
4899 		for (i = 0; i < fullblk; i++) {
4900 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4901 			    blksz);
4902 			ASSERT(abuf);
4903 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
4904 		}
4905 
4906 		if (postamble) {
4907 			/* data ends in the middle of the arc_buf */
4908 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4909 			    blksz);
4910 			ASSERT(abuf);
4911 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
4912 		}
4913 		break;
4914 	case UIO_READ:
4915 		/*
4916 		 * Loan out an arc_buf for read if the read size is larger than
4917 		 * the current file block size.  Block alignment is not
4918 		 * considered.  Partial arc_buf will be loaned out for read.
4919 		 */
4920 		blksz = zp->z_blksz;
4921 		if (blksz < zcr_blksz_min)
4922 			blksz = zcr_blksz_min;
4923 		if (blksz > zcr_blksz_max)
4924 			blksz = zcr_blksz_max;
4925 		/* avoid potential complexity of dealing with it */
4926 		if (blksz > max_blksz) {
4927 			ZFS_EXIT(zfsvfs);
4928 			return (EINVAL);
4929 		}
4930 
4931 		maxsize = zp->z_size - uio->uio_loffset;
4932 		if (size > maxsize)
4933 			size = maxsize;
4934 
4935 		if (size < blksz || vn_has_cached_data(vp)) {
4936 			ZFS_EXIT(zfsvfs);
4937 			return (EINVAL);
4938 		}
4939 		break;
4940 	default:
4941 		ZFS_EXIT(zfsvfs);
4942 		return (EINVAL);
4943 	}
4944 
4945 	uio->uio_extflg = UIO_XUIO;
4946 	XUIO_XUZC_RW(xuio) = ioflag;
4947 	ZFS_EXIT(zfsvfs);
4948 	return (0);
4949 }
4950 
4951 /*ARGSUSED*/
4952 static int
4953 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
4954 {
4955 	int i;
4956 	arc_buf_t *abuf;
4957 	int ioflag = XUIO_XUZC_RW(xuio);
4958 
4959 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
4960 
4961 	i = dmu_xuio_cnt(xuio);
4962 	while (i-- > 0) {
4963 		abuf = dmu_xuio_arcbuf(xuio, i);
4964 		/*
4965 		 * if abuf == NULL, it must be a write buffer
4966 		 * that has been returned in zfs_write().
4967 		 */
4968 		if (abuf)
4969 			dmu_return_arcbuf(abuf);
4970 		ASSERT(abuf || ioflag == UIO_WRITE);
4971 	}
4972 
4973 	dmu_xuio_fini(xuio);
4974 	return (0);
4975 }
4976 
4977 /*
4978  * Predeclare these here so that the compiler assumes that
4979  * this is an "old style" function declaration that does
4980  * not include arguments => we won't get type mismatch errors
4981  * in the initializations that follow.
4982  */
4983 static int zfs_inval();
4984 static int zfs_isdir();
4985 
4986 static int
4987 zfs_inval()
4988 {
4989 	return (EINVAL);
4990 }
4991 
4992 static int
4993 zfs_isdir()
4994 {
4995 	return (EISDIR);
4996 }
4997 /*
4998  * Directory vnode operations template
4999  */
5000 vnodeops_t *zfs_dvnodeops;
5001 const fs_operation_def_t zfs_dvnodeops_template[] = {
5002 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5003 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5004 	VOPNAME_READ,		{ .error = zfs_isdir },
5005 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5006 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5007 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5008 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5009 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5010 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5011 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5012 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5013 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5014 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5015 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5016 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5017 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5018 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5019 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5020 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5021 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5022 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5023 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5024 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5025 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5026 	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
5027 	NULL,			NULL
5028 };
5029 
5030 /*
5031  * Regular file vnode operations template
5032  */
5033 vnodeops_t *zfs_fvnodeops;
5034 const fs_operation_def_t zfs_fvnodeops_template[] = {
5035 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5036 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5037 	VOPNAME_READ,		{ .vop_read = zfs_read },
5038 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5039 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5040 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5041 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5042 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5043 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5044 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5045 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5046 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5047 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5048 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5049 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5050 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5051 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5052 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5053 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5054 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5055 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5056 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5057 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5058 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5059 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5060 	VOPNAME_REQZCBUF, 	{ .vop_reqzcbuf = zfs_reqzcbuf },
5061 	VOPNAME_RETZCBUF, 	{ .vop_retzcbuf = zfs_retzcbuf },
5062 	NULL,			NULL
5063 };
5064 
5065 /*
5066  * Symbolic link vnode operations template
5067  */
5068 vnodeops_t *zfs_symvnodeops;
5069 const fs_operation_def_t zfs_symvnodeops_template[] = {
5070 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5071 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5072 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5073 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5074 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5075 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5076 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5077 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5078 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5079 	NULL,			NULL
5080 };
5081 
5082 /*
5083  * special share hidden files vnode operations template
5084  */
5085 vnodeops_t *zfs_sharevnodeops;
5086 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5087 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5088 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5089 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5090 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5091 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5092 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5093 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5094 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5095 	NULL,			NULL
5096 };
5097 
5098 /*
5099  * Extended attribute directory vnode operations template
5100  *	This template is identical to the directory vnodes
5101  *	operation template except for restricted operations:
5102  *		VOP_MKDIR()
5103  *		VOP_SYMLINK()
5104  * Note that there are other restrictions embedded in:
5105  *	zfs_create()	- restrict type to VREG
5106  *	zfs_link()	- no links into/out of attribute space
5107  *	zfs_rename()	- no moves into/out of attribute space
5108  */
5109 vnodeops_t *zfs_xdvnodeops;
5110 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5111 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5112 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5113 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5114 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5115 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5116 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5117 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5118 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5119 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5120 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5121 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5122 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5123 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5124 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5125 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5126 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5127 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5128 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5129 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5130 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5131 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5132 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5133 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5134 	NULL,			NULL
5135 };
5136 
5137 /*
5138  * Error vnode operations template
5139  */
5140 vnodeops_t *zfs_evnodeops;
5141 const fs_operation_def_t zfs_evnodeops_template[] = {
5142 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5143 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5144 	NULL,			NULL
5145 };
5146