1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include "fs/fs_subr.h" 69 #include <sys/zfs_ctldir.h> 70 #include <sys/zfs_fuid.h> 71 #include <sys/dnlc.h> 72 #include <sys/zfs_rlock.h> 73 #include <sys/extdirent.h> 74 #include <sys/kidmap.h> 75 #include <sys/cred_impl.h> 76 #include <sys/attr.h> 77 78 /* 79 * Programming rules. 80 * 81 * Each vnode op performs some logical unit of work. To do this, the ZPL must 82 * properly lock its in-core state, create a DMU transaction, do the work, 83 * record this work in the intent log (ZIL), commit the DMU transaction, 84 * and wait for the intent log to commit if it is a synchronous operation. 85 * Moreover, the vnode ops must work in both normal and log replay context. 86 * The ordering of events is important to avoid deadlocks and references 87 * to freed memory. The example below illustrates the following Big Rules: 88 * 89 * (1) A check must be made in each zfs thread for a mounted file system. 90 * This is done avoiding races using ZFS_ENTER(zfsvfs). 91 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 92 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 93 * can return EIO from the calling function. 94 * 95 * (2) VN_RELE() should always be the last thing except for zil_commit() 96 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 97 * First, if it's the last reference, the vnode/znode 98 * can be freed, so the zp may point to freed memory. Second, the last 99 * reference will call zfs_zinactive(), which may induce a lot of work -- 100 * pushing cached pages (which acquires range locks) and syncing out 101 * cached atime changes. Third, zfs_zinactive() may require a new tx, 102 * which could deadlock the system if you were already holding one. 103 * 104 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 105 * as they can span dmu_tx_assign() calls. 106 * 107 * (4) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 108 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 109 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 110 * This is critical because we don't want to block while holding locks. 111 * Note, in particular, that if a lock is sometimes acquired before 112 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 113 * use a non-blocking assign can deadlock the system. The scenario: 114 * 115 * Thread A has grabbed a lock before calling dmu_tx_assign(). 116 * Thread B is in an already-assigned tx, and blocks for this lock. 117 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 118 * forever, because the previous txg can't quiesce until B's tx commits. 119 * 120 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 121 * then drop all locks, call dmu_tx_wait(), and try again. 122 * 123 * (5) If the operation succeeded, generate the intent log entry for it 124 * before dropping locks. This ensures that the ordering of events 125 * in the intent log matches the order in which they actually occurred. 126 * 127 * (6) At the end of each vnode op, the DMU tx must always commit, 128 * regardless of whether there were any errors. 129 * 130 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 131 * to ensure that synchronous semantics are provided when necessary. 132 * 133 * In general, this is how things should be ordered in each vnode op: 134 * 135 * ZFS_ENTER(zfsvfs); // exit if unmounted 136 * top: 137 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 138 * rw_enter(...); // grab any other locks you need 139 * tx = dmu_tx_create(...); // get DMU tx 140 * dmu_tx_hold_*(); // hold each object you might modify 141 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 142 * if (error) { 143 * rw_exit(...); // drop locks 144 * zfs_dirent_unlock(dl); // unlock directory entry 145 * VN_RELE(...); // release held vnodes 146 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 147 * dmu_tx_wait(tx); 148 * dmu_tx_abort(tx); 149 * goto top; 150 * } 151 * dmu_tx_abort(tx); // abort DMU tx 152 * ZFS_EXIT(zfsvfs); // finished in zfs 153 * return (error); // really out of space 154 * } 155 * error = do_real_work(); // do whatever this VOP does 156 * if (error == 0) 157 * zfs_log_*(...); // on success, make ZIL entry 158 * dmu_tx_commit(tx); // commit DMU tx -- error or not 159 * rw_exit(...); // drop locks 160 * zfs_dirent_unlock(dl); // unlock directory entry 161 * VN_RELE(...); // release held vnodes 162 * zil_commit(zilog, seq, foid); // synchronous when necessary 163 * ZFS_EXIT(zfsvfs); // finished in zfs 164 * return (error); // done, report error 165 */ 166 167 /* ARGSUSED */ 168 static int 169 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 170 { 171 znode_t *zp = VTOZ(*vpp); 172 173 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 174 ((flag & FAPPEND) == 0)) { 175 return (EPERM); 176 } 177 178 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 179 ZTOV(zp)->v_type == VREG && 180 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 181 zp->z_phys->zp_size > 0) 182 if (fs_vscan(*vpp, cr, 0) != 0) 183 return (EACCES); 184 185 /* Keep a count of the synchronous opens in the znode */ 186 if (flag & (FSYNC | FDSYNC)) 187 atomic_inc_32(&zp->z_sync_cnt); 188 189 return (0); 190 } 191 192 /* ARGSUSED */ 193 static int 194 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 195 caller_context_t *ct) 196 { 197 znode_t *zp = VTOZ(vp); 198 199 /* Decrement the synchronous opens in the znode */ 200 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 201 atomic_dec_32(&zp->z_sync_cnt); 202 203 /* 204 * Clean up any locks held by this process on the vp. 205 */ 206 cleanlocks(vp, ddi_get_pid(), 0); 207 cleanshares(vp, ddi_get_pid()); 208 209 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 210 ZTOV(zp)->v_type == VREG && 211 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 212 zp->z_phys->zp_size > 0) 213 VERIFY(fs_vscan(vp, cr, 1) == 0); 214 215 return (0); 216 } 217 218 /* 219 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 220 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 221 */ 222 static int 223 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 224 { 225 znode_t *zp = VTOZ(vp); 226 uint64_t noff = (uint64_t)*off; /* new offset */ 227 uint64_t file_sz; 228 int error; 229 boolean_t hole; 230 231 file_sz = zp->z_phys->zp_size; 232 if (noff >= file_sz) { 233 return (ENXIO); 234 } 235 236 if (cmd == _FIO_SEEK_HOLE) 237 hole = B_TRUE; 238 else 239 hole = B_FALSE; 240 241 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 242 243 /* end of file? */ 244 if ((error == ESRCH) || (noff > file_sz)) { 245 /* 246 * Handle the virtual hole at the end of file. 247 */ 248 if (hole) { 249 *off = file_sz; 250 return (0); 251 } 252 return (ENXIO); 253 } 254 255 if (noff < *off) 256 return (error); 257 *off = noff; 258 return (error); 259 } 260 261 /* ARGSUSED */ 262 static int 263 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 264 int *rvalp, caller_context_t *ct) 265 { 266 offset_t off; 267 int error; 268 zfsvfs_t *zfsvfs; 269 znode_t *zp; 270 271 switch (com) { 272 case _FIOFFS: 273 return (zfs_sync(vp->v_vfsp, 0, cred)); 274 275 /* 276 * The following two ioctls are used by bfu. Faking out, 277 * necessary to avoid bfu errors. 278 */ 279 case _FIOGDIO: 280 case _FIOSDIO: 281 return (0); 282 283 case _FIO_SEEK_DATA: 284 case _FIO_SEEK_HOLE: 285 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 286 return (EFAULT); 287 288 zp = VTOZ(vp); 289 zfsvfs = zp->z_zfsvfs; 290 ZFS_ENTER(zfsvfs); 291 ZFS_VERIFY_ZP(zp); 292 293 /* offset parameter is in/out */ 294 error = zfs_holey(vp, com, &off); 295 ZFS_EXIT(zfsvfs); 296 if (error) 297 return (error); 298 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 299 return (EFAULT); 300 return (0); 301 } 302 return (ENOTTY); 303 } 304 305 /* 306 * When a file is memory mapped, we must keep the IO data synchronized 307 * between the DMU cache and the memory mapped pages. What this means: 308 * 309 * On Write: If we find a memory mapped page, we write to *both* 310 * the page and the dmu buffer. 311 * 312 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 313 * the file is memory mapped. 314 */ 315 static int 316 mappedwrite(vnode_t *vp, int nbytes, uio_t *uio, dmu_tx_t *tx) 317 { 318 znode_t *zp = VTOZ(vp); 319 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 320 int64_t start, off; 321 int len = nbytes; 322 int error = 0; 323 324 start = uio->uio_loffset; 325 off = start & PAGEOFFSET; 326 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 327 page_t *pp; 328 uint64_t bytes = MIN(PAGESIZE - off, len); 329 uint64_t woff = uio->uio_loffset; 330 331 /* 332 * We don't want a new page to "appear" in the middle of 333 * the file update (because it may not get the write 334 * update data), so we grab a lock to block 335 * zfs_getpage(). 336 */ 337 rw_enter(&zp->z_map_lock, RW_WRITER); 338 if (pp = page_lookup(vp, start, SE_SHARED)) { 339 caddr_t va; 340 341 rw_exit(&zp->z_map_lock); 342 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 343 error = uiomove(va+off, bytes, UIO_WRITE, uio); 344 if (error == 0) { 345 dmu_write(zfsvfs->z_os, zp->z_id, 346 woff, bytes, va+off, tx); 347 } 348 ppmapout(va); 349 page_unlock(pp); 350 } else { 351 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 352 uio, bytes, tx); 353 rw_exit(&zp->z_map_lock); 354 } 355 len -= bytes; 356 off = 0; 357 if (error) 358 break; 359 } 360 return (error); 361 } 362 363 /* 364 * When a file is memory mapped, we must keep the IO data synchronized 365 * between the DMU cache and the memory mapped pages. What this means: 366 * 367 * On Read: We "read" preferentially from memory mapped pages, 368 * else we default from the dmu buffer. 369 * 370 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 371 * the file is memory mapped. 372 */ 373 static int 374 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 375 { 376 znode_t *zp = VTOZ(vp); 377 objset_t *os = zp->z_zfsvfs->z_os; 378 int64_t start, off; 379 int len = nbytes; 380 int error = 0; 381 382 start = uio->uio_loffset; 383 off = start & PAGEOFFSET; 384 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 385 page_t *pp; 386 uint64_t bytes = MIN(PAGESIZE - off, len); 387 388 if (pp = page_lookup(vp, start, SE_SHARED)) { 389 caddr_t va; 390 391 va = ppmapin(pp, PROT_READ, (caddr_t)-1L); 392 error = uiomove(va + off, bytes, UIO_READ, uio); 393 ppmapout(va); 394 page_unlock(pp); 395 } else { 396 error = dmu_read_uio(os, zp->z_id, uio, bytes); 397 } 398 len -= bytes; 399 off = 0; 400 if (error) 401 break; 402 } 403 return (error); 404 } 405 406 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 407 408 /* 409 * Read bytes from specified file into supplied buffer. 410 * 411 * IN: vp - vnode of file to be read from. 412 * uio - structure supplying read location, range info, 413 * and return buffer. 414 * ioflag - SYNC flags; used to provide FRSYNC semantics. 415 * cr - credentials of caller. 416 * ct - caller context 417 * 418 * OUT: uio - updated offset and range, buffer filled. 419 * 420 * RETURN: 0 if success 421 * error code if failure 422 * 423 * Side Effects: 424 * vp - atime updated if byte count > 0 425 */ 426 /* ARGSUSED */ 427 static int 428 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 429 { 430 znode_t *zp = VTOZ(vp); 431 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 432 objset_t *os; 433 ssize_t n, nbytes; 434 int error; 435 rl_t *rl; 436 437 ZFS_ENTER(zfsvfs); 438 ZFS_VERIFY_ZP(zp); 439 os = zfsvfs->z_os; 440 441 /* 442 * Validate file offset 443 */ 444 if (uio->uio_loffset < (offset_t)0) { 445 ZFS_EXIT(zfsvfs); 446 return (EINVAL); 447 } 448 449 /* 450 * Fasttrack empty reads 451 */ 452 if (uio->uio_resid == 0) { 453 ZFS_EXIT(zfsvfs); 454 return (0); 455 } 456 457 /* 458 * Check for mandatory locks 459 */ 460 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 461 if (error = chklock(vp, FREAD, 462 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 463 ZFS_EXIT(zfsvfs); 464 return (error); 465 } 466 } 467 468 /* 469 * If we're in FRSYNC mode, sync out this znode before reading it. 470 */ 471 if (ioflag & FRSYNC) 472 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 473 474 /* 475 * Lock the range against changes. 476 */ 477 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 478 479 /* 480 * If we are reading past end-of-file we can skip 481 * to the end; but we might still need to set atime. 482 */ 483 if (uio->uio_loffset >= zp->z_phys->zp_size) { 484 error = 0; 485 goto out; 486 } 487 488 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 489 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 490 491 while (n > 0) { 492 nbytes = MIN(n, zfs_read_chunk_size - 493 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 494 495 if (vn_has_cached_data(vp)) 496 error = mappedread(vp, nbytes, uio); 497 else 498 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 499 if (error) 500 break; 501 502 n -= nbytes; 503 } 504 505 out: 506 zfs_range_unlock(rl); 507 508 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 509 ZFS_EXIT(zfsvfs); 510 return (error); 511 } 512 513 /* 514 * Fault in the pages of the first n bytes specified by the uio structure. 515 * 1 byte in each page is touched and the uio struct is unmodified. 516 * Any error will exit this routine as this is only a best 517 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 518 */ 519 static void 520 zfs_prefault_write(ssize_t n, struct uio *uio) 521 { 522 struct iovec *iov; 523 ulong_t cnt, incr; 524 caddr_t p; 525 uint8_t tmp; 526 527 iov = uio->uio_iov; 528 529 while (n) { 530 cnt = MIN(iov->iov_len, n); 531 if (cnt == 0) { 532 /* empty iov entry */ 533 iov++; 534 continue; 535 } 536 n -= cnt; 537 /* 538 * touch each page in this segment. 539 */ 540 p = iov->iov_base; 541 while (cnt) { 542 switch (uio->uio_segflg) { 543 case UIO_USERSPACE: 544 case UIO_USERISPACE: 545 if (fuword8(p, &tmp)) 546 return; 547 break; 548 case UIO_SYSSPACE: 549 if (kcopy(p, &tmp, 1)) 550 return; 551 break; 552 } 553 incr = MIN(cnt, PAGESIZE); 554 p += incr; 555 cnt -= incr; 556 } 557 /* 558 * touch the last byte in case it straddles a page. 559 */ 560 p--; 561 switch (uio->uio_segflg) { 562 case UIO_USERSPACE: 563 case UIO_USERISPACE: 564 if (fuword8(p, &tmp)) 565 return; 566 break; 567 case UIO_SYSSPACE: 568 if (kcopy(p, &tmp, 1)) 569 return; 570 break; 571 } 572 iov++; 573 } 574 } 575 576 /* 577 * Write the bytes to a file. 578 * 579 * IN: vp - vnode of file to be written to. 580 * uio - structure supplying write location, range info, 581 * and data buffer. 582 * ioflag - FAPPEND flag set if in append mode. 583 * cr - credentials of caller. 584 * ct - caller context (NFS/CIFS fem monitor only) 585 * 586 * OUT: uio - updated offset and range. 587 * 588 * RETURN: 0 if success 589 * error code if failure 590 * 591 * Timestamps: 592 * vp - ctime|mtime updated if byte count > 0 593 */ 594 /* ARGSUSED */ 595 static int 596 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 597 { 598 znode_t *zp = VTOZ(vp); 599 rlim64_t limit = uio->uio_llimit; 600 ssize_t start_resid = uio->uio_resid; 601 ssize_t tx_bytes; 602 uint64_t end_size; 603 dmu_tx_t *tx; 604 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 605 zilog_t *zilog; 606 offset_t woff; 607 ssize_t n, nbytes; 608 rl_t *rl; 609 int max_blksz = zfsvfs->z_max_blksz; 610 uint64_t pflags = zp->z_phys->zp_flags; 611 int error; 612 613 /* 614 * If immutable or not appending then return EPERM 615 */ 616 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 617 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 618 (uio->uio_loffset < zp->z_phys->zp_size))) 619 return (EPERM); 620 621 /* 622 * Fasttrack empty write 623 */ 624 n = start_resid; 625 if (n == 0) 626 return (0); 627 628 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 629 limit = MAXOFFSET_T; 630 631 ZFS_ENTER(zfsvfs); 632 ZFS_VERIFY_ZP(zp); 633 zilog = zfsvfs->z_log; 634 635 /* 636 * Pre-fault the pages to ensure slow (eg NFS) pages 637 * don't hold up txg. 638 */ 639 zfs_prefault_write(n, uio); 640 641 /* 642 * If in append mode, set the io offset pointer to eof. 643 */ 644 if (ioflag & FAPPEND) { 645 /* 646 * Range lock for a file append: 647 * The value for the start of range will be determined by 648 * zfs_range_lock() (to guarantee append semantics). 649 * If this write will cause the block size to increase, 650 * zfs_range_lock() will lock the entire file, so we must 651 * later reduce the range after we grow the block size. 652 */ 653 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 654 if (rl->r_len == UINT64_MAX) { 655 /* overlocked, zp_size can't change */ 656 woff = uio->uio_loffset = zp->z_phys->zp_size; 657 } else { 658 woff = uio->uio_loffset = rl->r_off; 659 } 660 } else { 661 woff = uio->uio_loffset; 662 /* 663 * Validate file offset 664 */ 665 if (woff < 0) { 666 ZFS_EXIT(zfsvfs); 667 return (EINVAL); 668 } 669 670 /* 671 * If we need to grow the block size then zfs_range_lock() 672 * will lock a wider range than we request here. 673 * Later after growing the block size we reduce the range. 674 */ 675 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 676 } 677 678 if (woff >= limit) { 679 zfs_range_unlock(rl); 680 ZFS_EXIT(zfsvfs); 681 return (EFBIG); 682 } 683 684 if ((woff + n) > limit || woff > (limit - n)) 685 n = limit - woff; 686 687 /* 688 * Check for mandatory locks 689 */ 690 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 691 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 692 zfs_range_unlock(rl); 693 ZFS_EXIT(zfsvfs); 694 return (error); 695 } 696 end_size = MAX(zp->z_phys->zp_size, woff + n); 697 698 /* 699 * Write the file in reasonable size chunks. Each chunk is written 700 * in a separate transaction; this keeps the intent log records small 701 * and allows us to do more fine-grained space accounting. 702 */ 703 while (n > 0) { 704 /* 705 * Start a transaction. 706 */ 707 woff = uio->uio_loffset; 708 tx = dmu_tx_create(zfsvfs->z_os); 709 dmu_tx_hold_bonus(tx, zp->z_id); 710 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 711 error = dmu_tx_assign(tx, zfsvfs->z_assign); 712 if (error) { 713 if (error == ERESTART && 714 zfsvfs->z_assign == TXG_NOWAIT) { 715 dmu_tx_wait(tx); 716 dmu_tx_abort(tx); 717 continue; 718 } 719 dmu_tx_abort(tx); 720 break; 721 } 722 723 /* 724 * If zfs_range_lock() over-locked we grow the blocksize 725 * and then reduce the lock range. This will only happen 726 * on the first iteration since zfs_range_reduce() will 727 * shrink down r_len to the appropriate size. 728 */ 729 if (rl->r_len == UINT64_MAX) { 730 uint64_t new_blksz; 731 732 if (zp->z_blksz > max_blksz) { 733 ASSERT(!ISP2(zp->z_blksz)); 734 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 735 } else { 736 new_blksz = MIN(end_size, max_blksz); 737 } 738 zfs_grow_blocksize(zp, new_blksz, tx); 739 zfs_range_reduce(rl, woff, n); 740 } 741 742 /* 743 * XXX - should we really limit each write to z_max_blksz? 744 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 745 */ 746 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 747 rw_enter(&zp->z_map_lock, RW_READER); 748 749 tx_bytes = uio->uio_resid; 750 if (vn_has_cached_data(vp)) { 751 rw_exit(&zp->z_map_lock); 752 error = mappedwrite(vp, nbytes, uio, tx); 753 } else { 754 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 755 uio, nbytes, tx); 756 rw_exit(&zp->z_map_lock); 757 } 758 tx_bytes -= uio->uio_resid; 759 760 /* 761 * If we made no progress, we're done. If we made even 762 * partial progress, update the znode and ZIL accordingly. 763 */ 764 if (tx_bytes == 0) { 765 dmu_tx_commit(tx); 766 ASSERT(error != 0); 767 break; 768 } 769 770 /* 771 * Clear Set-UID/Set-GID bits on successful write if not 772 * privileged and at least one of the excute bits is set. 773 * 774 * It would be nice to to this after all writes have 775 * been done, but that would still expose the ISUID/ISGID 776 * to another app after the partial write is committed. 777 * 778 * Note: we don't call zfs_fuid_map_id() here because 779 * user 0 is not an ephemeral uid. 780 */ 781 mutex_enter(&zp->z_acl_lock); 782 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 783 (S_IXUSR >> 6))) != 0 && 784 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 785 secpolicy_vnode_setid_retain(cr, 786 (zp->z_phys->zp_mode & S_ISUID) != 0 && 787 zp->z_phys->zp_uid == 0) != 0) { 788 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 789 } 790 mutex_exit(&zp->z_acl_lock); 791 792 /* 793 * Update time stamp. NOTE: This marks the bonus buffer as 794 * dirty, so we don't have to do it again for zp_size. 795 */ 796 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 797 798 /* 799 * Update the file size (zp_size) if it has changed; 800 * account for possible concurrent updates. 801 */ 802 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 803 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 804 uio->uio_loffset); 805 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 806 dmu_tx_commit(tx); 807 808 if (error != 0) 809 break; 810 ASSERT(tx_bytes == nbytes); 811 n -= nbytes; 812 } 813 814 zfs_range_unlock(rl); 815 816 /* 817 * If we're in replay mode, or we made no progress, return error. 818 * Otherwise, it's at least a partial write, so it's successful. 819 */ 820 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 821 ZFS_EXIT(zfsvfs); 822 return (error); 823 } 824 825 if (ioflag & (FSYNC | FDSYNC)) 826 zil_commit(zilog, zp->z_last_itx, zp->z_id); 827 828 ZFS_EXIT(zfsvfs); 829 return (0); 830 } 831 832 void 833 zfs_get_done(dmu_buf_t *db, void *vzgd) 834 { 835 zgd_t *zgd = (zgd_t *)vzgd; 836 rl_t *rl = zgd->zgd_rl; 837 vnode_t *vp = ZTOV(rl->r_zp); 838 839 dmu_buf_rele(db, vzgd); 840 zfs_range_unlock(rl); 841 VN_RELE(vp); 842 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 843 kmem_free(zgd, sizeof (zgd_t)); 844 } 845 846 /* 847 * Get data to generate a TX_WRITE intent log record. 848 */ 849 int 850 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 851 { 852 zfsvfs_t *zfsvfs = arg; 853 objset_t *os = zfsvfs->z_os; 854 znode_t *zp; 855 uint64_t off = lr->lr_offset; 856 dmu_buf_t *db; 857 rl_t *rl; 858 zgd_t *zgd; 859 int dlen = lr->lr_length; /* length of user data */ 860 int error = 0; 861 862 ASSERT(zio); 863 ASSERT(dlen != 0); 864 865 /* 866 * Nothing to do if the file has been removed 867 */ 868 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 869 return (ENOENT); 870 if (zp->z_unlinked) { 871 VN_RELE(ZTOV(zp)); 872 return (ENOENT); 873 } 874 875 /* 876 * Write records come in two flavors: immediate and indirect. 877 * For small writes it's cheaper to store the data with the 878 * log record (immediate); for large writes it's cheaper to 879 * sync the data and get a pointer to it (indirect) so that 880 * we don't have to write the data twice. 881 */ 882 if (buf != NULL) { /* immediate write */ 883 rl = zfs_range_lock(zp, off, dlen, RL_READER); 884 /* test for truncation needs to be done while range locked */ 885 if (off >= zp->z_phys->zp_size) { 886 error = ENOENT; 887 goto out; 888 } 889 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf)); 890 } else { /* indirect write */ 891 uint64_t boff; /* block starting offset */ 892 893 /* 894 * Have to lock the whole block to ensure when it's 895 * written out and it's checksum is being calculated 896 * that no one can change the data. We need to re-check 897 * blocksize after we get the lock in case it's changed! 898 */ 899 for (;;) { 900 if (ISP2(zp->z_blksz)) { 901 boff = P2ALIGN_TYPED(off, zp->z_blksz, 902 uint64_t); 903 } else { 904 boff = 0; 905 } 906 dlen = zp->z_blksz; 907 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 908 if (zp->z_blksz == dlen) 909 break; 910 zfs_range_unlock(rl); 911 } 912 /* test for truncation needs to be done while range locked */ 913 if (off >= zp->z_phys->zp_size) { 914 error = ENOENT; 915 goto out; 916 } 917 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 918 zgd->zgd_rl = rl; 919 zgd->zgd_zilog = zfsvfs->z_log; 920 zgd->zgd_bp = &lr->lr_blkptr; 921 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db)); 922 ASSERT(boff == db->db_offset); 923 lr->lr_blkoff = off - boff; 924 error = dmu_sync(zio, db, &lr->lr_blkptr, 925 lr->lr_common.lrc_txg, zfs_get_done, zgd); 926 ASSERT((error && error != EINPROGRESS) || 927 lr->lr_length <= zp->z_blksz); 928 if (error == 0) 929 zil_add_block(zfsvfs->z_log, &lr->lr_blkptr); 930 /* 931 * If we get EINPROGRESS, then we need to wait for a 932 * write IO initiated by dmu_sync() to complete before 933 * we can release this dbuf. We will finish everything 934 * up in the zfs_get_done() callback. 935 */ 936 if (error == EINPROGRESS) 937 return (0); 938 dmu_buf_rele(db, zgd); 939 kmem_free(zgd, sizeof (zgd_t)); 940 } 941 out: 942 zfs_range_unlock(rl); 943 VN_RELE(ZTOV(zp)); 944 return (error); 945 } 946 947 /*ARGSUSED*/ 948 static int 949 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 950 caller_context_t *ct) 951 { 952 znode_t *zp = VTOZ(vp); 953 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 954 int error; 955 956 ZFS_ENTER(zfsvfs); 957 ZFS_VERIFY_ZP(zp); 958 959 if (flag & V_ACE_MASK) 960 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 961 else 962 error = zfs_zaccess_rwx(zp, mode, flag, cr); 963 964 ZFS_EXIT(zfsvfs); 965 return (error); 966 } 967 968 /* 969 * Lookup an entry in a directory, or an extended attribute directory. 970 * If it exists, return a held vnode reference for it. 971 * 972 * IN: dvp - vnode of directory to search. 973 * nm - name of entry to lookup. 974 * pnp - full pathname to lookup [UNUSED]. 975 * flags - LOOKUP_XATTR set if looking for an attribute. 976 * rdir - root directory vnode [UNUSED]. 977 * cr - credentials of caller. 978 * ct - caller context 979 * direntflags - directory lookup flags 980 * realpnp - returned pathname. 981 * 982 * OUT: vpp - vnode of located entry, NULL if not found. 983 * 984 * RETURN: 0 if success 985 * error code if failure 986 * 987 * Timestamps: 988 * NA 989 */ 990 /* ARGSUSED */ 991 static int 992 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 993 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 994 int *direntflags, pathname_t *realpnp) 995 { 996 znode_t *zdp = VTOZ(dvp); 997 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 998 int error; 999 1000 ZFS_ENTER(zfsvfs); 1001 ZFS_VERIFY_ZP(zdp); 1002 1003 *vpp = NULL; 1004 1005 if (flags & LOOKUP_XATTR) { 1006 /* 1007 * If the xattr property is off, refuse the lookup request. 1008 */ 1009 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1010 ZFS_EXIT(zfsvfs); 1011 return (EINVAL); 1012 } 1013 1014 /* 1015 * We don't allow recursive attributes.. 1016 * Maybe someday we will. 1017 */ 1018 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1019 ZFS_EXIT(zfsvfs); 1020 return (EINVAL); 1021 } 1022 1023 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1024 ZFS_EXIT(zfsvfs); 1025 return (error); 1026 } 1027 1028 /* 1029 * Do we have permission to get into attribute directory? 1030 */ 1031 1032 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1033 B_FALSE, cr)) { 1034 VN_RELE(*vpp); 1035 *vpp = NULL; 1036 } 1037 1038 ZFS_EXIT(zfsvfs); 1039 return (error); 1040 } 1041 1042 if (dvp->v_type != VDIR) { 1043 ZFS_EXIT(zfsvfs); 1044 return (ENOTDIR); 1045 } 1046 1047 /* 1048 * Check accessibility of directory. 1049 */ 1050 1051 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1052 ZFS_EXIT(zfsvfs); 1053 return (error); 1054 } 1055 1056 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1057 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1058 ZFS_EXIT(zfsvfs); 1059 return (EILSEQ); 1060 } 1061 1062 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1063 if (error == 0) { 1064 /* 1065 * Convert device special files 1066 */ 1067 if (IS_DEVVP(*vpp)) { 1068 vnode_t *svp; 1069 1070 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1071 VN_RELE(*vpp); 1072 if (svp == NULL) 1073 error = ENOSYS; 1074 else 1075 *vpp = svp; 1076 } 1077 } 1078 1079 ZFS_EXIT(zfsvfs); 1080 return (error); 1081 } 1082 1083 /* 1084 * Attempt to create a new entry in a directory. If the entry 1085 * already exists, truncate the file if permissible, else return 1086 * an error. Return the vp of the created or trunc'd file. 1087 * 1088 * IN: dvp - vnode of directory to put new file entry in. 1089 * name - name of new file entry. 1090 * vap - attributes of new file. 1091 * excl - flag indicating exclusive or non-exclusive mode. 1092 * mode - mode to open file with. 1093 * cr - credentials of caller. 1094 * flag - large file flag [UNUSED]. 1095 * ct - caller context 1096 * vsecp - ACL to be set 1097 * 1098 * OUT: vpp - vnode of created or trunc'd entry. 1099 * 1100 * RETURN: 0 if success 1101 * error code if failure 1102 * 1103 * Timestamps: 1104 * dvp - ctime|mtime updated if new entry created 1105 * vp - ctime|mtime always, atime if new 1106 */ 1107 1108 /* ARGSUSED */ 1109 static int 1110 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1111 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1112 vsecattr_t *vsecp) 1113 { 1114 znode_t *zp, *dzp = VTOZ(dvp); 1115 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1116 zilog_t *zilog; 1117 objset_t *os; 1118 zfs_dirlock_t *dl; 1119 dmu_tx_t *tx; 1120 int error; 1121 zfs_acl_t *aclp = NULL; 1122 zfs_fuid_info_t *fuidp = NULL; 1123 1124 /* 1125 * If we have an ephemeral id, ACL, or XVATTR then 1126 * make sure file system is at proper version 1127 */ 1128 1129 if (zfsvfs->z_use_fuids == B_FALSE && 1130 (vsecp || (vap->va_mask & AT_XVATTR) || 1131 IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr)))) 1132 return (EINVAL); 1133 1134 ZFS_ENTER(zfsvfs); 1135 ZFS_VERIFY_ZP(dzp); 1136 os = zfsvfs->z_os; 1137 zilog = zfsvfs->z_log; 1138 1139 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1140 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1141 ZFS_EXIT(zfsvfs); 1142 return (EILSEQ); 1143 } 1144 1145 if (vap->va_mask & AT_XVATTR) { 1146 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1147 crgetuid(cr), cr, vap->va_type)) != 0) { 1148 ZFS_EXIT(zfsvfs); 1149 return (error); 1150 } 1151 } 1152 top: 1153 *vpp = NULL; 1154 1155 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1156 vap->va_mode &= ~VSVTX; 1157 1158 if (*name == '\0') { 1159 /* 1160 * Null component name refers to the directory itself. 1161 */ 1162 VN_HOLD(dvp); 1163 zp = dzp; 1164 dl = NULL; 1165 error = 0; 1166 } else { 1167 /* possible VN_HOLD(zp) */ 1168 int zflg = 0; 1169 1170 if (flag & FIGNORECASE) 1171 zflg |= ZCILOOK; 1172 1173 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1174 NULL, NULL); 1175 if (error) { 1176 if (strcmp(name, "..") == 0) 1177 error = EISDIR; 1178 ZFS_EXIT(zfsvfs); 1179 if (aclp) 1180 zfs_acl_free(aclp); 1181 return (error); 1182 } 1183 } 1184 if (vsecp && aclp == NULL) { 1185 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1186 if (error) { 1187 ZFS_EXIT(zfsvfs); 1188 if (dl) 1189 zfs_dirent_unlock(dl); 1190 return (error); 1191 } 1192 } 1193 1194 if (zp == NULL) { 1195 uint64_t txtype; 1196 1197 /* 1198 * Create a new file object and update the directory 1199 * to reference it. 1200 */ 1201 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1202 goto out; 1203 } 1204 1205 /* 1206 * We only support the creation of regular files in 1207 * extended attribute directories. 1208 */ 1209 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1210 (vap->va_type != VREG)) { 1211 error = EINVAL; 1212 goto out; 1213 } 1214 1215 tx = dmu_tx_create(os); 1216 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1217 if (aclp && aclp->z_has_fuids) { 1218 if (zfsvfs->z_fuid_obj == 0) { 1219 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1220 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1221 FUID_SIZE_ESTIMATE(zfsvfs)); 1222 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 1223 FALSE, NULL); 1224 } else { 1225 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1226 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1227 FUID_SIZE_ESTIMATE(zfsvfs)); 1228 } 1229 } 1230 dmu_tx_hold_bonus(tx, dzp->z_id); 1231 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1232 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) { 1233 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1234 0, SPA_MAXBLOCKSIZE); 1235 } 1236 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1237 if (error) { 1238 zfs_dirent_unlock(dl); 1239 if (error == ERESTART && 1240 zfsvfs->z_assign == TXG_NOWAIT) { 1241 dmu_tx_wait(tx); 1242 dmu_tx_abort(tx); 1243 goto top; 1244 } 1245 dmu_tx_abort(tx); 1246 ZFS_EXIT(zfsvfs); 1247 if (aclp) 1248 zfs_acl_free(aclp); 1249 return (error); 1250 } 1251 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1252 (void) zfs_link_create(dl, zp, tx, ZNEW); 1253 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1254 if (flag & FIGNORECASE) 1255 txtype |= TX_CI; 1256 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1257 vsecp, fuidp, vap); 1258 if (fuidp) 1259 zfs_fuid_info_free(fuidp); 1260 dmu_tx_commit(tx); 1261 } else { 1262 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1263 1264 /* 1265 * A directory entry already exists for this name. 1266 */ 1267 /* 1268 * Can't truncate an existing file if in exclusive mode. 1269 */ 1270 if (excl == EXCL) { 1271 error = EEXIST; 1272 goto out; 1273 } 1274 /* 1275 * Can't open a directory for writing. 1276 */ 1277 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1278 error = EISDIR; 1279 goto out; 1280 } 1281 /* 1282 * Verify requested access to file. 1283 */ 1284 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1285 goto out; 1286 } 1287 1288 mutex_enter(&dzp->z_lock); 1289 dzp->z_seq++; 1290 mutex_exit(&dzp->z_lock); 1291 1292 /* 1293 * Truncate regular files if requested. 1294 */ 1295 if ((ZTOV(zp)->v_type == VREG) && 1296 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1297 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1298 if (error == ERESTART && 1299 zfsvfs->z_assign == TXG_NOWAIT) { 1300 /* NB: we already did dmu_tx_wait() */ 1301 zfs_dirent_unlock(dl); 1302 VN_RELE(ZTOV(zp)); 1303 goto top; 1304 } 1305 1306 if (error == 0) { 1307 vnevent_create(ZTOV(zp), ct); 1308 } 1309 } 1310 } 1311 out: 1312 1313 if (dl) 1314 zfs_dirent_unlock(dl); 1315 1316 if (error) { 1317 if (zp) 1318 VN_RELE(ZTOV(zp)); 1319 } else { 1320 *vpp = ZTOV(zp); 1321 /* 1322 * If vnode is for a device return a specfs vnode instead. 1323 */ 1324 if (IS_DEVVP(*vpp)) { 1325 struct vnode *svp; 1326 1327 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1328 VN_RELE(*vpp); 1329 if (svp == NULL) { 1330 error = ENOSYS; 1331 } 1332 *vpp = svp; 1333 } 1334 } 1335 if (aclp) 1336 zfs_acl_free(aclp); 1337 1338 ZFS_EXIT(zfsvfs); 1339 return (error); 1340 } 1341 1342 /* 1343 * Remove an entry from a directory. 1344 * 1345 * IN: dvp - vnode of directory to remove entry from. 1346 * name - name of entry to remove. 1347 * cr - credentials of caller. 1348 * ct - caller context 1349 * flags - case flags 1350 * 1351 * RETURN: 0 if success 1352 * error code if failure 1353 * 1354 * Timestamps: 1355 * dvp - ctime|mtime 1356 * vp - ctime (if nlink > 0) 1357 */ 1358 /*ARGSUSED*/ 1359 static int 1360 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1361 int flags) 1362 { 1363 znode_t *zp, *dzp = VTOZ(dvp); 1364 znode_t *xzp = NULL; 1365 vnode_t *vp; 1366 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1367 zilog_t *zilog; 1368 uint64_t acl_obj, xattr_obj; 1369 zfs_dirlock_t *dl; 1370 dmu_tx_t *tx; 1371 boolean_t may_delete_now, delete_now = FALSE; 1372 boolean_t unlinked; 1373 uint64_t txtype; 1374 pathname_t *realnmp = NULL; 1375 pathname_t realnm; 1376 int error; 1377 int zflg = ZEXISTS; 1378 1379 ZFS_ENTER(zfsvfs); 1380 ZFS_VERIFY_ZP(dzp); 1381 zilog = zfsvfs->z_log; 1382 1383 if (flags & FIGNORECASE) { 1384 zflg |= ZCILOOK; 1385 pn_alloc(&realnm); 1386 realnmp = &realnm; 1387 } 1388 1389 top: 1390 /* 1391 * Attempt to lock directory; fail if entry doesn't exist. 1392 */ 1393 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1394 NULL, realnmp)) { 1395 if (realnmp) 1396 pn_free(realnmp); 1397 ZFS_EXIT(zfsvfs); 1398 return (error); 1399 } 1400 1401 vp = ZTOV(zp); 1402 1403 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1404 goto out; 1405 } 1406 1407 /* 1408 * Need to use rmdir for removing directories. 1409 */ 1410 if (vp->v_type == VDIR) { 1411 error = EPERM; 1412 goto out; 1413 } 1414 1415 vnevent_remove(vp, dvp, name, ct); 1416 1417 if (realnmp) 1418 dnlc_remove(dvp, realnmp->pn_path); 1419 else 1420 dnlc_remove(dvp, name); 1421 1422 mutex_enter(&vp->v_lock); 1423 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1424 mutex_exit(&vp->v_lock); 1425 1426 /* 1427 * We may delete the znode now, or we may put it in the unlinked set; 1428 * it depends on whether we're the last link, and on whether there are 1429 * other holds on the vnode. So we dmu_tx_hold() the right things to 1430 * allow for either case. 1431 */ 1432 tx = dmu_tx_create(zfsvfs->z_os); 1433 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1434 dmu_tx_hold_bonus(tx, zp->z_id); 1435 if (may_delete_now) 1436 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1437 1438 /* are there any extended attributes? */ 1439 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1440 /* XXX - do we need this if we are deleting? */ 1441 dmu_tx_hold_bonus(tx, xattr_obj); 1442 } 1443 1444 /* are there any additional acls */ 1445 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1446 may_delete_now) 1447 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1448 1449 /* charge as an update -- would be nice not to charge at all */ 1450 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1451 1452 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1453 if (error) { 1454 zfs_dirent_unlock(dl); 1455 VN_RELE(vp); 1456 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1457 dmu_tx_wait(tx); 1458 dmu_tx_abort(tx); 1459 goto top; 1460 } 1461 if (realnmp) 1462 pn_free(realnmp); 1463 dmu_tx_abort(tx); 1464 ZFS_EXIT(zfsvfs); 1465 return (error); 1466 } 1467 1468 /* 1469 * Remove the directory entry. 1470 */ 1471 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1472 1473 if (error) { 1474 dmu_tx_commit(tx); 1475 goto out; 1476 } 1477 1478 if (unlinked) { 1479 mutex_enter(&vp->v_lock); 1480 delete_now = may_delete_now && 1481 vp->v_count == 1 && !vn_has_cached_data(vp) && 1482 zp->z_phys->zp_xattr == xattr_obj && 1483 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1484 mutex_exit(&vp->v_lock); 1485 } 1486 1487 if (delete_now) { 1488 if (zp->z_phys->zp_xattr) { 1489 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1490 ASSERT3U(error, ==, 0); 1491 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1492 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1493 mutex_enter(&xzp->z_lock); 1494 xzp->z_unlinked = 1; 1495 xzp->z_phys->zp_links = 0; 1496 mutex_exit(&xzp->z_lock); 1497 zfs_unlinked_add(xzp, tx); 1498 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1499 } 1500 mutex_enter(&zp->z_lock); 1501 mutex_enter(&vp->v_lock); 1502 vp->v_count--; 1503 ASSERT3U(vp->v_count, ==, 0); 1504 mutex_exit(&vp->v_lock); 1505 mutex_exit(&zp->z_lock); 1506 zfs_znode_delete(zp, tx); 1507 } else if (unlinked) { 1508 zfs_unlinked_add(zp, tx); 1509 } 1510 1511 txtype = TX_REMOVE; 1512 if (flags & FIGNORECASE) 1513 txtype |= TX_CI; 1514 zfs_log_remove(zilog, tx, txtype, dzp, name); 1515 1516 dmu_tx_commit(tx); 1517 out: 1518 if (realnmp) 1519 pn_free(realnmp); 1520 1521 zfs_dirent_unlock(dl); 1522 1523 if (!delete_now) { 1524 VN_RELE(vp); 1525 } else if (xzp) { 1526 /* this rele delayed to prevent nesting transactions */ 1527 VN_RELE(ZTOV(xzp)); 1528 } 1529 1530 ZFS_EXIT(zfsvfs); 1531 return (error); 1532 } 1533 1534 /* 1535 * Create a new directory and insert it into dvp using the name 1536 * provided. Return a pointer to the inserted directory. 1537 * 1538 * IN: dvp - vnode of directory to add subdir to. 1539 * dirname - name of new directory. 1540 * vap - attributes of new directory. 1541 * cr - credentials of caller. 1542 * ct - caller context 1543 * vsecp - ACL to be set 1544 * 1545 * OUT: vpp - vnode of created directory. 1546 * 1547 * RETURN: 0 if success 1548 * error code if failure 1549 * 1550 * Timestamps: 1551 * dvp - ctime|mtime updated 1552 * vp - ctime|mtime|atime updated 1553 */ 1554 /*ARGSUSED*/ 1555 static int 1556 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1557 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1558 { 1559 znode_t *zp, *dzp = VTOZ(dvp); 1560 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1561 zilog_t *zilog; 1562 zfs_dirlock_t *dl; 1563 uint64_t txtype; 1564 dmu_tx_t *tx; 1565 int error; 1566 zfs_acl_t *aclp = NULL; 1567 zfs_fuid_info_t *fuidp = NULL; 1568 int zf = ZNEW; 1569 1570 ASSERT(vap->va_type == VDIR); 1571 1572 /* 1573 * If we have an ephemeral id, ACL, or XVATTR then 1574 * make sure file system is at proper version 1575 */ 1576 1577 if (zfsvfs->z_use_fuids == B_FALSE && 1578 (vsecp || (vap->va_mask & AT_XVATTR) || IS_EPHEMERAL(crgetuid(cr))|| 1579 IS_EPHEMERAL(crgetgid(cr)))) 1580 return (EINVAL); 1581 1582 ZFS_ENTER(zfsvfs); 1583 ZFS_VERIFY_ZP(dzp); 1584 zilog = zfsvfs->z_log; 1585 1586 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1587 ZFS_EXIT(zfsvfs); 1588 return (EINVAL); 1589 } 1590 1591 if (zfsvfs->z_utf8 && u8_validate(dirname, 1592 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1593 ZFS_EXIT(zfsvfs); 1594 return (EILSEQ); 1595 } 1596 if (flags & FIGNORECASE) 1597 zf |= ZCILOOK; 1598 1599 if (vap->va_mask & AT_XVATTR) 1600 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1601 crgetuid(cr), cr, vap->va_type)) != 0) { 1602 ZFS_EXIT(zfsvfs); 1603 return (error); 1604 } 1605 1606 /* 1607 * First make sure the new directory doesn't exist. 1608 */ 1609 top: 1610 *vpp = NULL; 1611 1612 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1613 NULL, NULL)) { 1614 ZFS_EXIT(zfsvfs); 1615 return (error); 1616 } 1617 1618 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1619 zfs_dirent_unlock(dl); 1620 ZFS_EXIT(zfsvfs); 1621 return (error); 1622 } 1623 1624 if (vsecp && aclp == NULL) { 1625 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1626 if (error) { 1627 zfs_dirent_unlock(dl); 1628 ZFS_EXIT(zfsvfs); 1629 return (error); 1630 } 1631 } 1632 /* 1633 * Add a new entry to the directory. 1634 */ 1635 tx = dmu_tx_create(zfsvfs->z_os); 1636 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1637 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1638 if (aclp && aclp->z_has_fuids) { 1639 if (zfsvfs->z_fuid_obj == 0) { 1640 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1641 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1642 FUID_SIZE_ESTIMATE(zfsvfs)); 1643 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 1644 } else { 1645 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1646 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1647 FUID_SIZE_ESTIMATE(zfsvfs)); 1648 } 1649 } 1650 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) 1651 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1652 0, SPA_MAXBLOCKSIZE); 1653 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1654 if (error) { 1655 zfs_dirent_unlock(dl); 1656 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1657 dmu_tx_wait(tx); 1658 dmu_tx_abort(tx); 1659 goto top; 1660 } 1661 dmu_tx_abort(tx); 1662 ZFS_EXIT(zfsvfs); 1663 if (aclp) 1664 zfs_acl_free(aclp); 1665 return (error); 1666 } 1667 1668 /* 1669 * Create new node. 1670 */ 1671 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1672 1673 if (aclp) 1674 zfs_acl_free(aclp); 1675 1676 /* 1677 * Now put new name in parent dir. 1678 */ 1679 (void) zfs_link_create(dl, zp, tx, ZNEW); 1680 1681 *vpp = ZTOV(zp); 1682 1683 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1684 if (flags & FIGNORECASE) 1685 txtype |= TX_CI; 1686 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, fuidp, vap); 1687 1688 if (fuidp) 1689 zfs_fuid_info_free(fuidp); 1690 dmu_tx_commit(tx); 1691 1692 zfs_dirent_unlock(dl); 1693 1694 ZFS_EXIT(zfsvfs); 1695 return (0); 1696 } 1697 1698 /* 1699 * Remove a directory subdir entry. If the current working 1700 * directory is the same as the subdir to be removed, the 1701 * remove will fail. 1702 * 1703 * IN: dvp - vnode of directory to remove from. 1704 * name - name of directory to be removed. 1705 * cwd - vnode of current working directory. 1706 * cr - credentials of caller. 1707 * ct - caller context 1708 * flags - case flags 1709 * 1710 * RETURN: 0 if success 1711 * error code if failure 1712 * 1713 * Timestamps: 1714 * dvp - ctime|mtime updated 1715 */ 1716 /*ARGSUSED*/ 1717 static int 1718 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1719 caller_context_t *ct, int flags) 1720 { 1721 znode_t *dzp = VTOZ(dvp); 1722 znode_t *zp; 1723 vnode_t *vp; 1724 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1725 zilog_t *zilog; 1726 zfs_dirlock_t *dl; 1727 dmu_tx_t *tx; 1728 int error; 1729 int zflg = ZEXISTS; 1730 1731 ZFS_ENTER(zfsvfs); 1732 ZFS_VERIFY_ZP(dzp); 1733 zilog = zfsvfs->z_log; 1734 1735 if (flags & FIGNORECASE) 1736 zflg |= ZCILOOK; 1737 top: 1738 zp = NULL; 1739 1740 /* 1741 * Attempt to lock directory; fail if entry doesn't exist. 1742 */ 1743 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1744 NULL, NULL)) { 1745 ZFS_EXIT(zfsvfs); 1746 return (error); 1747 } 1748 1749 vp = ZTOV(zp); 1750 1751 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1752 goto out; 1753 } 1754 1755 if (vp->v_type != VDIR) { 1756 error = ENOTDIR; 1757 goto out; 1758 } 1759 1760 if (vp == cwd) { 1761 error = EINVAL; 1762 goto out; 1763 } 1764 1765 vnevent_rmdir(vp, dvp, name, ct); 1766 1767 /* 1768 * Grab a lock on the directory to make sure that noone is 1769 * trying to add (or lookup) entries while we are removing it. 1770 */ 1771 rw_enter(&zp->z_name_lock, RW_WRITER); 1772 1773 /* 1774 * Grab a lock on the parent pointer to make sure we play well 1775 * with the treewalk and directory rename code. 1776 */ 1777 rw_enter(&zp->z_parent_lock, RW_WRITER); 1778 1779 tx = dmu_tx_create(zfsvfs->z_os); 1780 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1781 dmu_tx_hold_bonus(tx, zp->z_id); 1782 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1783 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1784 if (error) { 1785 rw_exit(&zp->z_parent_lock); 1786 rw_exit(&zp->z_name_lock); 1787 zfs_dirent_unlock(dl); 1788 VN_RELE(vp); 1789 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1790 dmu_tx_wait(tx); 1791 dmu_tx_abort(tx); 1792 goto top; 1793 } 1794 dmu_tx_abort(tx); 1795 ZFS_EXIT(zfsvfs); 1796 return (error); 1797 } 1798 1799 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1800 1801 if (error == 0) { 1802 uint64_t txtype = TX_RMDIR; 1803 if (flags & FIGNORECASE) 1804 txtype |= TX_CI; 1805 zfs_log_remove(zilog, tx, txtype, dzp, name); 1806 } 1807 1808 dmu_tx_commit(tx); 1809 1810 rw_exit(&zp->z_parent_lock); 1811 rw_exit(&zp->z_name_lock); 1812 out: 1813 zfs_dirent_unlock(dl); 1814 1815 VN_RELE(vp); 1816 1817 ZFS_EXIT(zfsvfs); 1818 return (error); 1819 } 1820 1821 /* 1822 * Read as many directory entries as will fit into the provided 1823 * buffer from the given directory cursor position (specified in 1824 * the uio structure. 1825 * 1826 * IN: vp - vnode of directory to read. 1827 * uio - structure supplying read location, range info, 1828 * and return buffer. 1829 * cr - credentials of caller. 1830 * ct - caller context 1831 * flags - case flags 1832 * 1833 * OUT: uio - updated offset and range, buffer filled. 1834 * eofp - set to true if end-of-file detected. 1835 * 1836 * RETURN: 0 if success 1837 * error code if failure 1838 * 1839 * Timestamps: 1840 * vp - atime updated 1841 * 1842 * Note that the low 4 bits of the cookie returned by zap is always zero. 1843 * This allows us to use the low range for "special" directory entries: 1844 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1845 * we use the offset 2 for the '.zfs' directory. 1846 */ 1847 /* ARGSUSED */ 1848 static int 1849 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 1850 caller_context_t *ct, int flags) 1851 { 1852 znode_t *zp = VTOZ(vp); 1853 iovec_t *iovp; 1854 edirent_t *eodp; 1855 dirent64_t *odp; 1856 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1857 objset_t *os; 1858 caddr_t outbuf; 1859 size_t bufsize; 1860 zap_cursor_t zc; 1861 zap_attribute_t zap; 1862 uint_t bytes_wanted; 1863 uint64_t offset; /* must be unsigned; checks for < 1 */ 1864 int local_eof; 1865 int outcount; 1866 int error; 1867 uint8_t prefetch; 1868 boolean_t check_sysattrs; 1869 1870 ZFS_ENTER(zfsvfs); 1871 ZFS_VERIFY_ZP(zp); 1872 1873 /* 1874 * If we are not given an eof variable, 1875 * use a local one. 1876 */ 1877 if (eofp == NULL) 1878 eofp = &local_eof; 1879 1880 /* 1881 * Check for valid iov_len. 1882 */ 1883 if (uio->uio_iov->iov_len <= 0) { 1884 ZFS_EXIT(zfsvfs); 1885 return (EINVAL); 1886 } 1887 1888 /* 1889 * Quit if directory has been removed (posix) 1890 */ 1891 if ((*eofp = zp->z_unlinked) != 0) { 1892 ZFS_EXIT(zfsvfs); 1893 return (0); 1894 } 1895 1896 error = 0; 1897 os = zfsvfs->z_os; 1898 offset = uio->uio_loffset; 1899 prefetch = zp->z_zn_prefetch; 1900 1901 /* 1902 * Initialize the iterator cursor. 1903 */ 1904 if (offset <= 3) { 1905 /* 1906 * Start iteration from the beginning of the directory. 1907 */ 1908 zap_cursor_init(&zc, os, zp->z_id); 1909 } else { 1910 /* 1911 * The offset is a serialized cursor. 1912 */ 1913 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1914 } 1915 1916 /* 1917 * Get space to change directory entries into fs independent format. 1918 */ 1919 iovp = uio->uio_iov; 1920 bytes_wanted = iovp->iov_len; 1921 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1922 bufsize = bytes_wanted; 1923 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1924 odp = (struct dirent64 *)outbuf; 1925 } else { 1926 bufsize = bytes_wanted; 1927 odp = (struct dirent64 *)iovp->iov_base; 1928 } 1929 eodp = (struct edirent *)odp; 1930 1931 /* 1932 * If this VFS supports system attributes; and we're looking at an 1933 * extended attribute directory; and we care about normalization 1934 * conflicts on this vfs; then we must check for normalization 1935 * conflicts with the sysattr name space. 1936 */ 1937 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) && 1938 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 1939 (flags & V_RDDIR_ENTFLAGS); 1940 1941 /* 1942 * Transform to file-system independent format 1943 */ 1944 outcount = 0; 1945 while (outcount < bytes_wanted) { 1946 ino64_t objnum; 1947 ushort_t reclen; 1948 off64_t *next; 1949 1950 /* 1951 * Special case `.', `..', and `.zfs'. 1952 */ 1953 if (offset == 0) { 1954 (void) strcpy(zap.za_name, "."); 1955 zap.za_normalization_conflict = 0; 1956 objnum = zp->z_id; 1957 } else if (offset == 1) { 1958 (void) strcpy(zap.za_name, ".."); 1959 zap.za_normalization_conflict = 0; 1960 objnum = zp->z_phys->zp_parent; 1961 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1962 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1963 zap.za_normalization_conflict = 0; 1964 objnum = ZFSCTL_INO_ROOT; 1965 } else { 1966 /* 1967 * Grab next entry. 1968 */ 1969 if (error = zap_cursor_retrieve(&zc, &zap)) { 1970 if ((*eofp = (error == ENOENT)) != 0) 1971 break; 1972 else 1973 goto update; 1974 } 1975 1976 if (zap.za_integer_length != 8 || 1977 zap.za_num_integers != 1) { 1978 cmn_err(CE_WARN, "zap_readdir: bad directory " 1979 "entry, obj = %lld, offset = %lld\n", 1980 (u_longlong_t)zp->z_id, 1981 (u_longlong_t)offset); 1982 error = ENXIO; 1983 goto update; 1984 } 1985 1986 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 1987 /* 1988 * MacOS X can extract the object type here such as: 1989 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 1990 */ 1991 1992 if (check_sysattrs && !zap.za_normalization_conflict) { 1993 zap.za_normalization_conflict = 1994 xattr_sysattr_casechk(zap.za_name); 1995 } 1996 } 1997 1998 if (flags & V_RDDIR_ENTFLAGS) 1999 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2000 else 2001 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2002 2003 /* 2004 * Will this entry fit in the buffer? 2005 */ 2006 if (outcount + reclen > bufsize) { 2007 /* 2008 * Did we manage to fit anything in the buffer? 2009 */ 2010 if (!outcount) { 2011 error = EINVAL; 2012 goto update; 2013 } 2014 break; 2015 } 2016 if (flags & V_RDDIR_ENTFLAGS) { 2017 /* 2018 * Add extended flag entry: 2019 */ 2020 eodp->ed_ino = objnum; 2021 eodp->ed_reclen = reclen; 2022 /* NOTE: ed_off is the offset for the *next* entry */ 2023 next = &(eodp->ed_off); 2024 eodp->ed_eflags = zap.za_normalization_conflict ? 2025 ED_CASE_CONFLICT : 0; 2026 (void) strncpy(eodp->ed_name, zap.za_name, 2027 EDIRENT_NAMELEN(reclen)); 2028 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2029 } else { 2030 /* 2031 * Add normal entry: 2032 */ 2033 odp->d_ino = objnum; 2034 odp->d_reclen = reclen; 2035 /* NOTE: d_off is the offset for the *next* entry */ 2036 next = &(odp->d_off); 2037 (void) strncpy(odp->d_name, zap.za_name, 2038 DIRENT64_NAMELEN(reclen)); 2039 odp = (dirent64_t *)((intptr_t)odp + reclen); 2040 } 2041 outcount += reclen; 2042 2043 ASSERT(outcount <= bufsize); 2044 2045 /* Prefetch znode */ 2046 if (prefetch) 2047 dmu_prefetch(os, objnum, 0, 0); 2048 2049 /* 2050 * Move to the next entry, fill in the previous offset. 2051 */ 2052 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2053 zap_cursor_advance(&zc); 2054 offset = zap_cursor_serialize(&zc); 2055 } else { 2056 offset += 1; 2057 } 2058 *next = offset; 2059 } 2060 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2061 2062 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2063 iovp->iov_base += outcount; 2064 iovp->iov_len -= outcount; 2065 uio->uio_resid -= outcount; 2066 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2067 /* 2068 * Reset the pointer. 2069 */ 2070 offset = uio->uio_loffset; 2071 } 2072 2073 update: 2074 zap_cursor_fini(&zc); 2075 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2076 kmem_free(outbuf, bufsize); 2077 2078 if (error == ENOENT) 2079 error = 0; 2080 2081 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2082 2083 uio->uio_loffset = offset; 2084 ZFS_EXIT(zfsvfs); 2085 return (error); 2086 } 2087 2088 ulong_t zfs_fsync_sync_cnt = 4; 2089 2090 static int 2091 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2092 { 2093 znode_t *zp = VTOZ(vp); 2094 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2095 2096 /* 2097 * Regardless of whether this is required for standards conformance, 2098 * this is the logical behavior when fsync() is called on a file with 2099 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2100 * going to be pushed out as part of the zil_commit(). 2101 */ 2102 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2103 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2104 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2105 2106 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2107 2108 ZFS_ENTER(zfsvfs); 2109 ZFS_VERIFY_ZP(zp); 2110 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2111 ZFS_EXIT(zfsvfs); 2112 return (0); 2113 } 2114 2115 2116 /* 2117 * Get the requested file attributes and place them in the provided 2118 * vattr structure. 2119 * 2120 * IN: vp - vnode of file. 2121 * vap - va_mask identifies requested attributes. 2122 * If AT_XVATTR set, then optional attrs are requested 2123 * flags - ATTR_NOACLCHECK (CIFS server context) 2124 * cr - credentials of caller. 2125 * ct - caller context 2126 * 2127 * OUT: vap - attribute values. 2128 * 2129 * RETURN: 0 (always succeeds) 2130 */ 2131 /* ARGSUSED */ 2132 static int 2133 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2134 caller_context_t *ct) 2135 { 2136 znode_t *zp = VTOZ(vp); 2137 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2138 znode_phys_t *pzp; 2139 int error = 0; 2140 uint64_t links; 2141 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2142 xoptattr_t *xoap = NULL; 2143 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2144 2145 ZFS_ENTER(zfsvfs); 2146 ZFS_VERIFY_ZP(zp); 2147 pzp = zp->z_phys; 2148 2149 mutex_enter(&zp->z_lock); 2150 2151 /* 2152 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2153 * Also, if we are the owner don't bother, since owner should 2154 * always be allowed to read basic attributes of file. 2155 */ 2156 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2157 (pzp->zp_uid != crgetuid(cr))) { 2158 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2159 skipaclchk, cr)) { 2160 mutex_exit(&zp->z_lock); 2161 ZFS_EXIT(zfsvfs); 2162 return (error); 2163 } 2164 } 2165 2166 /* 2167 * Return all attributes. It's cheaper to provide the answer 2168 * than to determine whether we were asked the question. 2169 */ 2170 2171 vap->va_type = vp->v_type; 2172 vap->va_mode = pzp->zp_mode & MODEMASK; 2173 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2174 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2175 vap->va_nodeid = zp->z_id; 2176 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2177 links = pzp->zp_links + 1; 2178 else 2179 links = pzp->zp_links; 2180 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2181 vap->va_size = pzp->zp_size; 2182 vap->va_rdev = vp->v_rdev; 2183 vap->va_seq = zp->z_seq; 2184 2185 /* 2186 * Add in any requested optional attributes and the create time. 2187 * Also set the corresponding bits in the returned attribute bitmap. 2188 */ 2189 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2190 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2191 xoap->xoa_archive = 2192 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2193 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2194 } 2195 2196 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2197 xoap->xoa_readonly = 2198 ((pzp->zp_flags & ZFS_READONLY) != 0); 2199 XVA_SET_RTN(xvap, XAT_READONLY); 2200 } 2201 2202 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2203 xoap->xoa_system = 2204 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2205 XVA_SET_RTN(xvap, XAT_SYSTEM); 2206 } 2207 2208 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2209 xoap->xoa_hidden = 2210 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2211 XVA_SET_RTN(xvap, XAT_HIDDEN); 2212 } 2213 2214 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2215 xoap->xoa_nounlink = 2216 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2217 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2218 } 2219 2220 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2221 xoap->xoa_immutable = 2222 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2223 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2224 } 2225 2226 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2227 xoap->xoa_appendonly = 2228 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2229 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2230 } 2231 2232 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2233 xoap->xoa_nodump = 2234 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2235 XVA_SET_RTN(xvap, XAT_NODUMP); 2236 } 2237 2238 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2239 xoap->xoa_opaque = 2240 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2241 XVA_SET_RTN(xvap, XAT_OPAQUE); 2242 } 2243 2244 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2245 xoap->xoa_av_quarantined = 2246 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2247 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2248 } 2249 2250 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2251 xoap->xoa_av_modified = 2252 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2253 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2254 } 2255 2256 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2257 vp->v_type == VREG && 2258 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2259 size_t len; 2260 dmu_object_info_t doi; 2261 2262 /* 2263 * Only VREG files have anti-virus scanstamps, so we 2264 * won't conflict with symlinks in the bonus buffer. 2265 */ 2266 dmu_object_info_from_db(zp->z_dbuf, &doi); 2267 len = sizeof (xoap->xoa_av_scanstamp) + 2268 sizeof (znode_phys_t); 2269 if (len <= doi.doi_bonus_size) { 2270 /* 2271 * pzp points to the start of the 2272 * znode_phys_t. pzp + 1 points to the 2273 * first byte after the znode_phys_t. 2274 */ 2275 (void) memcpy(xoap->xoa_av_scanstamp, 2276 pzp + 1, 2277 sizeof (xoap->xoa_av_scanstamp)); 2278 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2279 } 2280 } 2281 2282 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2283 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2284 XVA_SET_RTN(xvap, XAT_CREATETIME); 2285 } 2286 } 2287 2288 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2289 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2290 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2291 2292 mutex_exit(&zp->z_lock); 2293 2294 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 2295 2296 if (zp->z_blksz == 0) { 2297 /* 2298 * Block size hasn't been set; suggest maximal I/O transfers. 2299 */ 2300 vap->va_blksize = zfsvfs->z_max_blksz; 2301 } 2302 2303 ZFS_EXIT(zfsvfs); 2304 return (0); 2305 } 2306 2307 /* 2308 * Set the file attributes to the values contained in the 2309 * vattr structure. 2310 * 2311 * IN: vp - vnode of file to be modified. 2312 * vap - new attribute values. 2313 * If AT_XVATTR set, then optional attrs are being set 2314 * flags - ATTR_UTIME set if non-default time values provided. 2315 * - ATTR_NOACLCHECK (CIFS context only). 2316 * cr - credentials of caller. 2317 * ct - caller context 2318 * 2319 * RETURN: 0 if success 2320 * error code if failure 2321 * 2322 * Timestamps: 2323 * vp - ctime updated, mtime updated if size changed. 2324 */ 2325 /* ARGSUSED */ 2326 static int 2327 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2328 caller_context_t *ct) 2329 { 2330 znode_t *zp = VTOZ(vp); 2331 znode_phys_t *pzp; 2332 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2333 zilog_t *zilog; 2334 dmu_tx_t *tx; 2335 vattr_t oldva; 2336 uint_t mask = vap->va_mask; 2337 uint_t saved_mask; 2338 int trim_mask = 0; 2339 uint64_t new_mode; 2340 znode_t *attrzp; 2341 int need_policy = FALSE; 2342 int err; 2343 zfs_fuid_info_t *fuidp = NULL; 2344 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2345 xoptattr_t *xoap; 2346 zfs_acl_t *aclp = NULL; 2347 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2348 2349 if (mask == 0) 2350 return (0); 2351 2352 if (mask & AT_NOSET) 2353 return (EINVAL); 2354 2355 ZFS_ENTER(zfsvfs); 2356 ZFS_VERIFY_ZP(zp); 2357 2358 pzp = zp->z_phys; 2359 zilog = zfsvfs->z_log; 2360 2361 /* 2362 * Make sure that if we have ephemeral uid/gid or xvattr specified 2363 * that file system is at proper version level 2364 */ 2365 2366 if (zfsvfs->z_use_fuids == B_FALSE && 2367 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2368 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2369 (mask & AT_XVATTR))) { 2370 ZFS_EXIT(zfsvfs); 2371 return (EINVAL); 2372 } 2373 2374 if (mask & AT_SIZE && vp->v_type == VDIR) { 2375 ZFS_EXIT(zfsvfs); 2376 return (EISDIR); 2377 } 2378 2379 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2380 ZFS_EXIT(zfsvfs); 2381 return (EINVAL); 2382 } 2383 2384 /* 2385 * If this is an xvattr_t, then get a pointer to the structure of 2386 * optional attributes. If this is NULL, then we have a vattr_t. 2387 */ 2388 xoap = xva_getxoptattr(xvap); 2389 2390 /* 2391 * Immutable files can only alter immutable bit and atime 2392 */ 2393 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2394 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2395 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2396 ZFS_EXIT(zfsvfs); 2397 return (EPERM); 2398 } 2399 2400 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2401 ZFS_EXIT(zfsvfs); 2402 return (EPERM); 2403 } 2404 2405 top: 2406 attrzp = NULL; 2407 2408 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2409 ZFS_EXIT(zfsvfs); 2410 return (EROFS); 2411 } 2412 2413 /* 2414 * First validate permissions 2415 */ 2416 2417 if (mask & AT_SIZE) { 2418 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2419 if (err) { 2420 ZFS_EXIT(zfsvfs); 2421 return (err); 2422 } 2423 /* 2424 * XXX - Note, we are not providing any open 2425 * mode flags here (like FNDELAY), so we may 2426 * block if there are locks present... this 2427 * should be addressed in openat(). 2428 */ 2429 do { 2430 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2431 /* NB: we already did dmu_tx_wait() if necessary */ 2432 } while (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 2433 if (err) { 2434 ZFS_EXIT(zfsvfs); 2435 return (err); 2436 } 2437 } 2438 2439 if (mask & (AT_ATIME|AT_MTIME) || 2440 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2441 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2442 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2443 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2444 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2445 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2446 skipaclchk, cr); 2447 2448 if (mask & (AT_UID|AT_GID)) { 2449 int idmask = (mask & (AT_UID|AT_GID)); 2450 int take_owner; 2451 int take_group; 2452 2453 /* 2454 * NOTE: even if a new mode is being set, 2455 * we may clear S_ISUID/S_ISGID bits. 2456 */ 2457 2458 if (!(mask & AT_MODE)) 2459 vap->va_mode = pzp->zp_mode; 2460 2461 /* 2462 * Take ownership or chgrp to group we are a member of 2463 */ 2464 2465 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2466 take_group = (mask & AT_GID) && 2467 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2468 2469 /* 2470 * If both AT_UID and AT_GID are set then take_owner and 2471 * take_group must both be set in order to allow taking 2472 * ownership. 2473 * 2474 * Otherwise, send the check through secpolicy_vnode_setattr() 2475 * 2476 */ 2477 2478 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2479 ((idmask == AT_UID) && take_owner) || 2480 ((idmask == AT_GID) && take_group)) { 2481 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2482 skipaclchk, cr) == 0) { 2483 /* 2484 * Remove setuid/setgid for non-privileged users 2485 */ 2486 secpolicy_setid_clear(vap, cr); 2487 trim_mask = (mask & (AT_UID|AT_GID)); 2488 } else { 2489 need_policy = TRUE; 2490 } 2491 } else { 2492 need_policy = TRUE; 2493 } 2494 } 2495 2496 mutex_enter(&zp->z_lock); 2497 oldva.va_mode = pzp->zp_mode; 2498 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2499 if (mask & AT_XVATTR) { 2500 if ((need_policy == FALSE) && 2501 (XVA_ISSET_REQ(xvap, XAT_APPENDONLY) && 2502 xoap->xoa_appendonly != 2503 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) || 2504 (XVA_ISSET_REQ(xvap, XAT_NOUNLINK) && 2505 xoap->xoa_nounlink != 2506 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) || 2507 (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE) && 2508 xoap->xoa_immutable != 2509 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) || 2510 (XVA_ISSET_REQ(xvap, XAT_NODUMP) && 2511 xoap->xoa_nodump != 2512 ((pzp->zp_flags & ZFS_NODUMP) != 0)) || 2513 (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED) && 2514 xoap->xoa_av_modified != 2515 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) || 2516 ((XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED) && 2517 ((vp->v_type != VREG && xoap->xoa_av_quarantined) || 2518 xoap->xoa_av_quarantined != 2519 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)))) || 2520 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) || 2521 (XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2522 need_policy = TRUE; 2523 } 2524 } 2525 2526 mutex_exit(&zp->z_lock); 2527 2528 if (mask & AT_MODE) { 2529 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2530 err = secpolicy_setid_setsticky_clear(vp, vap, 2531 &oldva, cr); 2532 if (err) { 2533 ZFS_EXIT(zfsvfs); 2534 return (err); 2535 } 2536 trim_mask |= AT_MODE; 2537 } else { 2538 need_policy = TRUE; 2539 } 2540 } 2541 2542 if (need_policy) { 2543 /* 2544 * If trim_mask is set then take ownership 2545 * has been granted or write_acl is present and user 2546 * has the ability to modify mode. In that case remove 2547 * UID|GID and or MODE from mask so that 2548 * secpolicy_vnode_setattr() doesn't revoke it. 2549 */ 2550 2551 if (trim_mask) { 2552 saved_mask = vap->va_mask; 2553 vap->va_mask &= ~trim_mask; 2554 } 2555 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2556 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2557 if (err) { 2558 ZFS_EXIT(zfsvfs); 2559 return (err); 2560 } 2561 2562 if (trim_mask) 2563 vap->va_mask |= saved_mask; 2564 } 2565 2566 /* 2567 * secpolicy_vnode_setattr, or take ownership may have 2568 * changed va_mask 2569 */ 2570 mask = vap->va_mask; 2571 2572 tx = dmu_tx_create(zfsvfs->z_os); 2573 dmu_tx_hold_bonus(tx, zp->z_id); 2574 if (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2575 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid))) { 2576 if (zfsvfs->z_fuid_obj == 0) { 2577 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2578 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2579 FUID_SIZE_ESTIMATE(zfsvfs)); 2580 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 2581 } else { 2582 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 2583 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 2584 FUID_SIZE_ESTIMATE(zfsvfs)); 2585 } 2586 } 2587 2588 if (mask & AT_MODE) { 2589 uint64_t pmode = pzp->zp_mode; 2590 2591 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2592 2593 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) { 2594 dmu_tx_abort(tx); 2595 ZFS_EXIT(zfsvfs); 2596 return (err); 2597 } 2598 if (pzp->zp_acl.z_acl_extern_obj) { 2599 /* Are we upgrading ACL from old V0 format to new V1 */ 2600 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2601 pzp->zp_acl.z_acl_version == 2602 ZFS_ACL_VERSION_INITIAL) { 2603 dmu_tx_hold_free(tx, 2604 pzp->zp_acl.z_acl_extern_obj, 0, 2605 DMU_OBJECT_END); 2606 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2607 0, aclp->z_acl_bytes); 2608 } else { 2609 dmu_tx_hold_write(tx, 2610 pzp->zp_acl.z_acl_extern_obj, 0, 2611 aclp->z_acl_bytes); 2612 } 2613 } else if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL)) { 2614 if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2615 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2616 0, aclp->z_acl_bytes); 2617 } 2618 } 2619 } 2620 2621 if ((mask & (AT_UID | AT_GID)) && pzp->zp_xattr != 0) { 2622 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2623 if (err) { 2624 dmu_tx_abort(tx); 2625 ZFS_EXIT(zfsvfs); 2626 if (aclp) 2627 zfs_acl_free(aclp); 2628 return (err); 2629 } 2630 dmu_tx_hold_bonus(tx, attrzp->z_id); 2631 } 2632 2633 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2634 if (err) { 2635 if (attrzp) 2636 VN_RELE(ZTOV(attrzp)); 2637 2638 if (aclp) { 2639 zfs_acl_free(aclp); 2640 aclp = NULL; 2641 } 2642 2643 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2644 dmu_tx_wait(tx); 2645 dmu_tx_abort(tx); 2646 goto top; 2647 } 2648 dmu_tx_abort(tx); 2649 ZFS_EXIT(zfsvfs); 2650 return (err); 2651 } 2652 2653 dmu_buf_will_dirty(zp->z_dbuf, tx); 2654 2655 /* 2656 * Set each attribute requested. 2657 * We group settings according to the locks they need to acquire. 2658 * 2659 * Note: you cannot set ctime directly, although it will be 2660 * updated as a side-effect of calling this function. 2661 */ 2662 2663 mutex_enter(&zp->z_lock); 2664 2665 if (mask & AT_MODE) { 2666 mutex_enter(&zp->z_acl_lock); 2667 zp->z_phys->zp_mode = new_mode; 2668 err = zfs_aclset_common(zp, aclp, cr, &fuidp, tx); 2669 ASSERT3U(err, ==, 0); 2670 mutex_exit(&zp->z_acl_lock); 2671 } 2672 2673 if (attrzp) 2674 mutex_enter(&attrzp->z_lock); 2675 2676 if (mask & AT_UID) { 2677 pzp->zp_uid = zfs_fuid_create(zfsvfs, 2678 vap->va_uid, cr, ZFS_OWNER, tx, &fuidp); 2679 if (attrzp) { 2680 attrzp->z_phys->zp_uid = zfs_fuid_create(zfsvfs, 2681 vap->va_uid, cr, ZFS_OWNER, tx, &fuidp); 2682 } 2683 } 2684 2685 if (mask & AT_GID) { 2686 pzp->zp_gid = zfs_fuid_create(zfsvfs, vap->va_gid, 2687 cr, ZFS_GROUP, tx, &fuidp); 2688 if (attrzp) 2689 attrzp->z_phys->zp_gid = zfs_fuid_create(zfsvfs, 2690 vap->va_gid, cr, ZFS_GROUP, tx, &fuidp); 2691 } 2692 2693 if (aclp) 2694 zfs_acl_free(aclp); 2695 2696 if (attrzp) 2697 mutex_exit(&attrzp->z_lock); 2698 2699 if (mask & AT_ATIME) 2700 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2701 2702 if (mask & AT_MTIME) 2703 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2704 2705 if (mask & AT_SIZE) 2706 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2707 else if (mask != 0) 2708 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2709 /* 2710 * Do this after setting timestamps to prevent timestamp 2711 * update from toggling bit 2712 */ 2713 2714 if (xoap && (mask & AT_XVATTR)) { 2715 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 2716 size_t len; 2717 dmu_object_info_t doi; 2718 2719 ASSERT(vp->v_type == VREG); 2720 2721 /* Grow the bonus buffer if necessary. */ 2722 dmu_object_info_from_db(zp->z_dbuf, &doi); 2723 len = sizeof (xoap->xoa_av_scanstamp) + 2724 sizeof (znode_phys_t); 2725 if (len > doi.doi_bonus_size) 2726 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 2727 } 2728 zfs_xvattr_set(zp, xvap); 2729 } 2730 2731 if (mask != 0) 2732 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2733 2734 if (fuidp) 2735 zfs_fuid_info_free(fuidp); 2736 mutex_exit(&zp->z_lock); 2737 2738 if (attrzp) 2739 VN_RELE(ZTOV(attrzp)); 2740 2741 dmu_tx_commit(tx); 2742 2743 ZFS_EXIT(zfsvfs); 2744 return (err); 2745 } 2746 2747 typedef struct zfs_zlock { 2748 krwlock_t *zl_rwlock; /* lock we acquired */ 2749 znode_t *zl_znode; /* znode we held */ 2750 struct zfs_zlock *zl_next; /* next in list */ 2751 } zfs_zlock_t; 2752 2753 /* 2754 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2755 */ 2756 static void 2757 zfs_rename_unlock(zfs_zlock_t **zlpp) 2758 { 2759 zfs_zlock_t *zl; 2760 2761 while ((zl = *zlpp) != NULL) { 2762 if (zl->zl_znode != NULL) 2763 VN_RELE(ZTOV(zl->zl_znode)); 2764 rw_exit(zl->zl_rwlock); 2765 *zlpp = zl->zl_next; 2766 kmem_free(zl, sizeof (*zl)); 2767 } 2768 } 2769 2770 /* 2771 * Search back through the directory tree, using the ".." entries. 2772 * Lock each directory in the chain to prevent concurrent renames. 2773 * Fail any attempt to move a directory into one of its own descendants. 2774 * XXX - z_parent_lock can overlap with map or grow locks 2775 */ 2776 static int 2777 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2778 { 2779 zfs_zlock_t *zl; 2780 znode_t *zp = tdzp; 2781 uint64_t rootid = zp->z_zfsvfs->z_root; 2782 uint64_t *oidp = &zp->z_id; 2783 krwlock_t *rwlp = &szp->z_parent_lock; 2784 krw_t rw = RW_WRITER; 2785 2786 /* 2787 * First pass write-locks szp and compares to zp->z_id. 2788 * Later passes read-lock zp and compare to zp->z_parent. 2789 */ 2790 do { 2791 if (!rw_tryenter(rwlp, rw)) { 2792 /* 2793 * Another thread is renaming in this path. 2794 * Note that if we are a WRITER, we don't have any 2795 * parent_locks held yet. 2796 */ 2797 if (rw == RW_READER && zp->z_id > szp->z_id) { 2798 /* 2799 * Drop our locks and restart 2800 */ 2801 zfs_rename_unlock(&zl); 2802 *zlpp = NULL; 2803 zp = tdzp; 2804 oidp = &zp->z_id; 2805 rwlp = &szp->z_parent_lock; 2806 rw = RW_WRITER; 2807 continue; 2808 } else { 2809 /* 2810 * Wait for other thread to drop its locks 2811 */ 2812 rw_enter(rwlp, rw); 2813 } 2814 } 2815 2816 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2817 zl->zl_rwlock = rwlp; 2818 zl->zl_znode = NULL; 2819 zl->zl_next = *zlpp; 2820 *zlpp = zl; 2821 2822 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2823 return (EINVAL); 2824 2825 if (*oidp == rootid) /* We've hit the top */ 2826 return (0); 2827 2828 if (rw == RW_READER) { /* i.e. not the first pass */ 2829 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2830 if (error) 2831 return (error); 2832 zl->zl_znode = zp; 2833 } 2834 oidp = &zp->z_phys->zp_parent; 2835 rwlp = &zp->z_parent_lock; 2836 rw = RW_READER; 2837 2838 } while (zp->z_id != sdzp->z_id); 2839 2840 return (0); 2841 } 2842 2843 /* 2844 * Move an entry from the provided source directory to the target 2845 * directory. Change the entry name as indicated. 2846 * 2847 * IN: sdvp - Source directory containing the "old entry". 2848 * snm - Old entry name. 2849 * tdvp - Target directory to contain the "new entry". 2850 * tnm - New entry name. 2851 * cr - credentials of caller. 2852 * ct - caller context 2853 * flags - case flags 2854 * 2855 * RETURN: 0 if success 2856 * error code if failure 2857 * 2858 * Timestamps: 2859 * sdvp,tdvp - ctime|mtime updated 2860 */ 2861 /*ARGSUSED*/ 2862 static int 2863 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 2864 caller_context_t *ct, int flags) 2865 { 2866 znode_t *tdzp, *szp, *tzp; 2867 znode_t *sdzp = VTOZ(sdvp); 2868 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2869 zilog_t *zilog; 2870 vnode_t *realvp; 2871 zfs_dirlock_t *sdl, *tdl; 2872 dmu_tx_t *tx; 2873 zfs_zlock_t *zl; 2874 int cmp, serr, terr; 2875 int error = 0; 2876 int zflg = 0; 2877 2878 ZFS_ENTER(zfsvfs); 2879 ZFS_VERIFY_ZP(sdzp); 2880 zilog = zfsvfs->z_log; 2881 2882 /* 2883 * Make sure we have the real vp for the target directory. 2884 */ 2885 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 2886 tdvp = realvp; 2887 2888 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2889 ZFS_EXIT(zfsvfs); 2890 return (EXDEV); 2891 } 2892 2893 tdzp = VTOZ(tdvp); 2894 ZFS_VERIFY_ZP(tdzp); 2895 if (zfsvfs->z_utf8 && u8_validate(tnm, 2896 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 2897 ZFS_EXIT(zfsvfs); 2898 return (EILSEQ); 2899 } 2900 2901 if (flags & FIGNORECASE) 2902 zflg |= ZCILOOK; 2903 2904 top: 2905 szp = NULL; 2906 tzp = NULL; 2907 zl = NULL; 2908 2909 /* 2910 * This is to prevent the creation of links into attribute space 2911 * by renaming a linked file into/outof an attribute directory. 2912 * See the comment in zfs_link() for why this is considered bad. 2913 */ 2914 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2915 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2916 ZFS_EXIT(zfsvfs); 2917 return (EINVAL); 2918 } 2919 2920 /* 2921 * Lock source and target directory entries. To prevent deadlock, 2922 * a lock ordering must be defined. We lock the directory with 2923 * the smallest object id first, or if it's a tie, the one with 2924 * the lexically first name. 2925 */ 2926 if (sdzp->z_id < tdzp->z_id) { 2927 cmp = -1; 2928 } else if (sdzp->z_id > tdzp->z_id) { 2929 cmp = 1; 2930 } else { 2931 /* 2932 * First compare the two name arguments without 2933 * considering any case folding. 2934 */ 2935 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 2936 2937 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 2938 ASSERT(error == 0 || !zfsvfs->z_utf8); 2939 if (cmp == 0) { 2940 /* 2941 * POSIX: "If the old argument and the new argument 2942 * both refer to links to the same existing file, 2943 * the rename() function shall return successfully 2944 * and perform no other action." 2945 */ 2946 ZFS_EXIT(zfsvfs); 2947 return (0); 2948 } 2949 /* 2950 * If the file system is case-folding, then we may 2951 * have some more checking to do. A case-folding file 2952 * system is either supporting mixed case sensitivity 2953 * access or is completely case-insensitive. Note 2954 * that the file system is always case preserving. 2955 * 2956 * In mixed sensitivity mode case sensitive behavior 2957 * is the default. FIGNORECASE must be used to 2958 * explicitly request case insensitive behavior. 2959 * 2960 * If the source and target names provided differ only 2961 * by case (e.g., a request to rename 'tim' to 'Tim'), 2962 * we will treat this as a special case in the 2963 * case-insensitive mode: as long as the source name 2964 * is an exact match, we will allow this to proceed as 2965 * a name-change request. 2966 */ 2967 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 2968 (zfsvfs->z_case == ZFS_CASE_MIXED && 2969 flags & FIGNORECASE)) && 2970 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 2971 &error) == 0) { 2972 /* 2973 * case preserving rename request, require exact 2974 * name matches 2975 */ 2976 zflg |= ZCIEXACT; 2977 zflg &= ~ZCILOOK; 2978 } 2979 } 2980 2981 if (cmp < 0) { 2982 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 2983 ZEXISTS | zflg, NULL, NULL); 2984 terr = zfs_dirent_lock(&tdl, 2985 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 2986 } else { 2987 terr = zfs_dirent_lock(&tdl, 2988 tdzp, tnm, &tzp, zflg, NULL, NULL); 2989 serr = zfs_dirent_lock(&sdl, 2990 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 2991 NULL, NULL); 2992 } 2993 2994 if (serr) { 2995 /* 2996 * Source entry invalid or not there. 2997 */ 2998 if (!terr) { 2999 zfs_dirent_unlock(tdl); 3000 if (tzp) 3001 VN_RELE(ZTOV(tzp)); 3002 } 3003 if (strcmp(snm, "..") == 0) 3004 serr = EINVAL; 3005 ZFS_EXIT(zfsvfs); 3006 return (serr); 3007 } 3008 if (terr) { 3009 zfs_dirent_unlock(sdl); 3010 VN_RELE(ZTOV(szp)); 3011 if (strcmp(tnm, "..") == 0) 3012 terr = EINVAL; 3013 ZFS_EXIT(zfsvfs); 3014 return (terr); 3015 } 3016 3017 /* 3018 * Must have write access at the source to remove the old entry 3019 * and write access at the target to create the new entry. 3020 * Note that if target and source are the same, this can be 3021 * done in a single check. 3022 */ 3023 3024 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3025 goto out; 3026 3027 if (ZTOV(szp)->v_type == VDIR) { 3028 /* 3029 * Check to make sure rename is valid. 3030 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3031 */ 3032 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3033 goto out; 3034 } 3035 3036 /* 3037 * Does target exist? 3038 */ 3039 if (tzp) { 3040 /* 3041 * Source and target must be the same type. 3042 */ 3043 if (ZTOV(szp)->v_type == VDIR) { 3044 if (ZTOV(tzp)->v_type != VDIR) { 3045 error = ENOTDIR; 3046 goto out; 3047 } 3048 } else { 3049 if (ZTOV(tzp)->v_type == VDIR) { 3050 error = EISDIR; 3051 goto out; 3052 } 3053 } 3054 /* 3055 * POSIX dictates that when the source and target 3056 * entries refer to the same file object, rename 3057 * must do nothing and exit without error. 3058 */ 3059 if (szp->z_id == tzp->z_id) { 3060 error = 0; 3061 goto out; 3062 } 3063 } 3064 3065 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3066 if (tzp) 3067 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3068 3069 /* 3070 * notify the target directory if it is not the same 3071 * as source directory. 3072 */ 3073 if (tdvp != sdvp) { 3074 vnevent_rename_dest_dir(tdvp, ct); 3075 } 3076 3077 tx = dmu_tx_create(zfsvfs->z_os); 3078 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3079 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3080 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3081 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3082 if (sdzp != tdzp) 3083 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3084 if (tzp) 3085 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3086 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3087 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3088 if (error) { 3089 if (zl != NULL) 3090 zfs_rename_unlock(&zl); 3091 zfs_dirent_unlock(sdl); 3092 zfs_dirent_unlock(tdl); 3093 VN_RELE(ZTOV(szp)); 3094 if (tzp) 3095 VN_RELE(ZTOV(tzp)); 3096 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3097 dmu_tx_wait(tx); 3098 dmu_tx_abort(tx); 3099 goto top; 3100 } 3101 dmu_tx_abort(tx); 3102 ZFS_EXIT(zfsvfs); 3103 return (error); 3104 } 3105 3106 if (tzp) /* Attempt to remove the existing target */ 3107 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3108 3109 if (error == 0) { 3110 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3111 if (error == 0) { 3112 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3113 3114 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3115 ASSERT(error == 0); 3116 3117 zfs_log_rename(zilog, tx, 3118 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3119 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3120 } 3121 } 3122 3123 dmu_tx_commit(tx); 3124 out: 3125 if (zl != NULL) 3126 zfs_rename_unlock(&zl); 3127 3128 zfs_dirent_unlock(sdl); 3129 zfs_dirent_unlock(tdl); 3130 3131 VN_RELE(ZTOV(szp)); 3132 if (tzp) 3133 VN_RELE(ZTOV(tzp)); 3134 3135 ZFS_EXIT(zfsvfs); 3136 return (error); 3137 } 3138 3139 /* 3140 * Insert the indicated symbolic reference entry into the directory. 3141 * 3142 * IN: dvp - Directory to contain new symbolic link. 3143 * link - Name for new symlink entry. 3144 * vap - Attributes of new entry. 3145 * target - Target path of new symlink. 3146 * cr - credentials of caller. 3147 * ct - caller context 3148 * flags - case flags 3149 * 3150 * RETURN: 0 if success 3151 * error code if failure 3152 * 3153 * Timestamps: 3154 * dvp - ctime|mtime updated 3155 */ 3156 /*ARGSUSED*/ 3157 static int 3158 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3159 caller_context_t *ct, int flags) 3160 { 3161 znode_t *zp, *dzp = VTOZ(dvp); 3162 zfs_dirlock_t *dl; 3163 dmu_tx_t *tx; 3164 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3165 zilog_t *zilog; 3166 int len = strlen(link); 3167 int error; 3168 int zflg = ZNEW; 3169 zfs_fuid_info_t *fuidp = NULL; 3170 3171 ASSERT(vap->va_type == VLNK); 3172 3173 ZFS_ENTER(zfsvfs); 3174 ZFS_VERIFY_ZP(dzp); 3175 zilog = zfsvfs->z_log; 3176 3177 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3178 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3179 ZFS_EXIT(zfsvfs); 3180 return (EILSEQ); 3181 } 3182 if (flags & FIGNORECASE) 3183 zflg |= ZCILOOK; 3184 top: 3185 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3186 ZFS_EXIT(zfsvfs); 3187 return (error); 3188 } 3189 3190 if (len > MAXPATHLEN) { 3191 ZFS_EXIT(zfsvfs); 3192 return (ENAMETOOLONG); 3193 } 3194 3195 /* 3196 * Attempt to lock directory; fail if entry already exists. 3197 */ 3198 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3199 if (error) { 3200 ZFS_EXIT(zfsvfs); 3201 return (error); 3202 } 3203 3204 tx = dmu_tx_create(zfsvfs->z_os); 3205 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3206 dmu_tx_hold_bonus(tx, dzp->z_id); 3207 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3208 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 3209 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3210 if (IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr))) { 3211 if (zfsvfs->z_fuid_obj == 0) { 3212 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 3213 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3214 FUID_SIZE_ESTIMATE(zfsvfs)); 3215 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 3216 } else { 3217 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 3218 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 3219 FUID_SIZE_ESTIMATE(zfsvfs)); 3220 } 3221 } 3222 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3223 if (error) { 3224 zfs_dirent_unlock(dl); 3225 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3226 dmu_tx_wait(tx); 3227 dmu_tx_abort(tx); 3228 goto top; 3229 } 3230 dmu_tx_abort(tx); 3231 ZFS_EXIT(zfsvfs); 3232 return (error); 3233 } 3234 3235 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3236 3237 /* 3238 * Create a new object for the symlink. 3239 * Put the link content into bonus buffer if it will fit; 3240 * otherwise, store it just like any other file data. 3241 */ 3242 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3243 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, NULL, &fuidp); 3244 if (len != 0) 3245 bcopy(link, zp->z_phys + 1, len); 3246 } else { 3247 dmu_buf_t *dbp; 3248 3249 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, NULL, &fuidp); 3250 /* 3251 * Nothing can access the znode yet so no locking needed 3252 * for growing the znode's blocksize. 3253 */ 3254 zfs_grow_blocksize(zp, len, tx); 3255 3256 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3257 zp->z_id, 0, FTAG, &dbp)); 3258 dmu_buf_will_dirty(dbp, tx); 3259 3260 ASSERT3U(len, <=, dbp->db_size); 3261 bcopy(link, dbp->db_data, len); 3262 dmu_buf_rele(dbp, FTAG); 3263 } 3264 zp->z_phys->zp_size = len; 3265 3266 /* 3267 * Insert the new object into the directory. 3268 */ 3269 (void) zfs_link_create(dl, zp, tx, ZNEW); 3270 out: 3271 if (error == 0) { 3272 uint64_t txtype = TX_SYMLINK; 3273 if (flags & FIGNORECASE) 3274 txtype |= TX_CI; 3275 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3276 } 3277 if (fuidp) 3278 zfs_fuid_info_free(fuidp); 3279 3280 dmu_tx_commit(tx); 3281 3282 zfs_dirent_unlock(dl); 3283 3284 VN_RELE(ZTOV(zp)); 3285 3286 ZFS_EXIT(zfsvfs); 3287 return (error); 3288 } 3289 3290 /* 3291 * Return, in the buffer contained in the provided uio structure, 3292 * the symbolic path referred to by vp. 3293 * 3294 * IN: vp - vnode of symbolic link. 3295 * uoip - structure to contain the link path. 3296 * cr - credentials of caller. 3297 * ct - caller context 3298 * 3299 * OUT: uio - structure to contain the link path. 3300 * 3301 * RETURN: 0 if success 3302 * error code if failure 3303 * 3304 * Timestamps: 3305 * vp - atime updated 3306 */ 3307 /* ARGSUSED */ 3308 static int 3309 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3310 { 3311 znode_t *zp = VTOZ(vp); 3312 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3313 size_t bufsz; 3314 int error; 3315 3316 ZFS_ENTER(zfsvfs); 3317 ZFS_VERIFY_ZP(zp); 3318 3319 bufsz = (size_t)zp->z_phys->zp_size; 3320 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3321 error = uiomove(zp->z_phys + 1, 3322 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3323 } else { 3324 dmu_buf_t *dbp; 3325 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3326 if (error) { 3327 ZFS_EXIT(zfsvfs); 3328 return (error); 3329 } 3330 error = uiomove(dbp->db_data, 3331 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3332 dmu_buf_rele(dbp, FTAG); 3333 } 3334 3335 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3336 ZFS_EXIT(zfsvfs); 3337 return (error); 3338 } 3339 3340 /* 3341 * Insert a new entry into directory tdvp referencing svp. 3342 * 3343 * IN: tdvp - Directory to contain new entry. 3344 * svp - vnode of new entry. 3345 * name - name of new entry. 3346 * cr - credentials of caller. 3347 * ct - caller context 3348 * 3349 * RETURN: 0 if success 3350 * error code if failure 3351 * 3352 * Timestamps: 3353 * tdvp - ctime|mtime updated 3354 * svp - ctime updated 3355 */ 3356 /* ARGSUSED */ 3357 static int 3358 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3359 caller_context_t *ct, int flags) 3360 { 3361 znode_t *dzp = VTOZ(tdvp); 3362 znode_t *tzp, *szp; 3363 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3364 zilog_t *zilog; 3365 zfs_dirlock_t *dl; 3366 dmu_tx_t *tx; 3367 vnode_t *realvp; 3368 int error; 3369 int zf = ZNEW; 3370 uid_t owner; 3371 3372 ASSERT(tdvp->v_type == VDIR); 3373 3374 ZFS_ENTER(zfsvfs); 3375 ZFS_VERIFY_ZP(dzp); 3376 zilog = zfsvfs->z_log; 3377 3378 if (VOP_REALVP(svp, &realvp, ct) == 0) 3379 svp = realvp; 3380 3381 if (svp->v_vfsp != tdvp->v_vfsp) { 3382 ZFS_EXIT(zfsvfs); 3383 return (EXDEV); 3384 } 3385 szp = VTOZ(svp); 3386 ZFS_VERIFY_ZP(szp); 3387 3388 if (zfsvfs->z_utf8 && u8_validate(name, 3389 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3390 ZFS_EXIT(zfsvfs); 3391 return (EILSEQ); 3392 } 3393 if (flags & FIGNORECASE) 3394 zf |= ZCILOOK; 3395 3396 top: 3397 /* 3398 * We do not support links between attributes and non-attributes 3399 * because of the potential security risk of creating links 3400 * into "normal" file space in order to circumvent restrictions 3401 * imposed in attribute space. 3402 */ 3403 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3404 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3405 ZFS_EXIT(zfsvfs); 3406 return (EINVAL); 3407 } 3408 3409 /* 3410 * POSIX dictates that we return EPERM here. 3411 * Better choices include ENOTSUP or EISDIR. 3412 */ 3413 if (svp->v_type == VDIR) { 3414 ZFS_EXIT(zfsvfs); 3415 return (EPERM); 3416 } 3417 3418 zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER, &owner); 3419 if (owner != crgetuid(cr) && 3420 secpolicy_basic_link(cr) != 0) { 3421 ZFS_EXIT(zfsvfs); 3422 return (EPERM); 3423 } 3424 3425 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3426 ZFS_EXIT(zfsvfs); 3427 return (error); 3428 } 3429 3430 /* 3431 * Attempt to lock directory; fail if entry already exists. 3432 */ 3433 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3434 if (error) { 3435 ZFS_EXIT(zfsvfs); 3436 return (error); 3437 } 3438 3439 tx = dmu_tx_create(zfsvfs->z_os); 3440 dmu_tx_hold_bonus(tx, szp->z_id); 3441 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3442 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3443 if (error) { 3444 zfs_dirent_unlock(dl); 3445 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3446 dmu_tx_wait(tx); 3447 dmu_tx_abort(tx); 3448 goto top; 3449 } 3450 dmu_tx_abort(tx); 3451 ZFS_EXIT(zfsvfs); 3452 return (error); 3453 } 3454 3455 error = zfs_link_create(dl, szp, tx, 0); 3456 3457 if (error == 0) { 3458 uint64_t txtype = TX_LINK; 3459 if (flags & FIGNORECASE) 3460 txtype |= TX_CI; 3461 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3462 } 3463 3464 dmu_tx_commit(tx); 3465 3466 zfs_dirent_unlock(dl); 3467 3468 if (error == 0) { 3469 vnevent_link(svp, ct); 3470 } 3471 3472 ZFS_EXIT(zfsvfs); 3473 return (error); 3474 } 3475 3476 /* 3477 * zfs_null_putapage() is used when the file system has been force 3478 * unmounted. It just drops the pages. 3479 */ 3480 /* ARGSUSED */ 3481 static int 3482 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3483 size_t *lenp, int flags, cred_t *cr) 3484 { 3485 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3486 return (0); 3487 } 3488 3489 /* 3490 * Push a page out to disk, klustering if possible. 3491 * 3492 * IN: vp - file to push page to. 3493 * pp - page to push. 3494 * flags - additional flags. 3495 * cr - credentials of caller. 3496 * 3497 * OUT: offp - start of range pushed. 3498 * lenp - len of range pushed. 3499 * 3500 * RETURN: 0 if success 3501 * error code if failure 3502 * 3503 * NOTE: callers must have locked the page to be pushed. On 3504 * exit, the page (and all other pages in the kluster) must be 3505 * unlocked. 3506 */ 3507 /* ARGSUSED */ 3508 static int 3509 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3510 size_t *lenp, int flags, cred_t *cr) 3511 { 3512 znode_t *zp = VTOZ(vp); 3513 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3514 zilog_t *zilog = zfsvfs->z_log; 3515 dmu_tx_t *tx; 3516 rl_t *rl; 3517 u_offset_t off, koff; 3518 size_t len, klen; 3519 uint64_t filesz; 3520 int err; 3521 3522 filesz = zp->z_phys->zp_size; 3523 off = pp->p_offset; 3524 len = PAGESIZE; 3525 /* 3526 * If our blocksize is bigger than the page size, try to kluster 3527 * muiltiple pages so that we write a full block (thus avoiding 3528 * a read-modify-write). 3529 */ 3530 if (off < filesz && zp->z_blksz > PAGESIZE) { 3531 if (!ISP2(zp->z_blksz)) { 3532 /* Only one block in the file. */ 3533 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3534 koff = 0; 3535 } else { 3536 klen = zp->z_blksz; 3537 koff = P2ALIGN(off, (u_offset_t)klen); 3538 } 3539 ASSERT(koff <= filesz); 3540 if (koff + klen > filesz) 3541 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 3542 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3543 } 3544 ASSERT3U(btop(len), ==, btopr(len)); 3545 top: 3546 rl = zfs_range_lock(zp, off, len, RL_WRITER); 3547 /* 3548 * Can't push pages past end-of-file. 3549 */ 3550 filesz = zp->z_phys->zp_size; 3551 if (off >= filesz) { 3552 /* ignore all pages */ 3553 err = 0; 3554 goto out; 3555 } else if (off + len > filesz) { 3556 int npages = btopr(filesz - off); 3557 page_t *trunc; 3558 3559 page_list_break(&pp, &trunc, npages); 3560 /* ignore pages past end of file */ 3561 if (trunc) 3562 pvn_write_done(trunc, flags); 3563 len = filesz - off; 3564 } 3565 3566 tx = dmu_tx_create(zfsvfs->z_os); 3567 dmu_tx_hold_write(tx, zp->z_id, off, len); 3568 dmu_tx_hold_bonus(tx, zp->z_id); 3569 err = dmu_tx_assign(tx, zfsvfs->z_assign); 3570 if (err != 0) { 3571 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3572 zfs_range_unlock(rl); 3573 dmu_tx_wait(tx); 3574 dmu_tx_abort(tx); 3575 err = 0; 3576 goto top; 3577 } 3578 dmu_tx_abort(tx); 3579 goto out; 3580 } 3581 3582 if (zp->z_blksz <= PAGESIZE) { 3583 caddr_t va = ppmapin(pp, PROT_READ, (caddr_t)-1); 3584 ASSERT3U(len, <=, PAGESIZE); 3585 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3586 ppmapout(va); 3587 } else { 3588 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3589 } 3590 3591 if (err == 0) { 3592 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3593 zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0); 3594 dmu_tx_commit(tx); 3595 } 3596 3597 out: 3598 zfs_range_unlock(rl); 3599 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3600 if (offp) 3601 *offp = off; 3602 if (lenp) 3603 *lenp = len; 3604 3605 return (err); 3606 } 3607 3608 /* 3609 * Copy the portion of the file indicated from pages into the file. 3610 * The pages are stored in a page list attached to the files vnode. 3611 * 3612 * IN: vp - vnode of file to push page data to. 3613 * off - position in file to put data. 3614 * len - amount of data to write. 3615 * flags - flags to control the operation. 3616 * cr - credentials of caller. 3617 * ct - caller context. 3618 * 3619 * RETURN: 0 if success 3620 * error code if failure 3621 * 3622 * Timestamps: 3623 * vp - ctime|mtime updated 3624 */ 3625 /*ARGSUSED*/ 3626 static int 3627 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 3628 caller_context_t *ct) 3629 { 3630 znode_t *zp = VTOZ(vp); 3631 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3632 page_t *pp; 3633 size_t io_len; 3634 u_offset_t io_off; 3635 uint64_t filesz; 3636 int error = 0; 3637 3638 ZFS_ENTER(zfsvfs); 3639 ZFS_VERIFY_ZP(zp); 3640 3641 if (len == 0) { 3642 /* 3643 * Search the entire vp list for pages >= off. 3644 */ 3645 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 3646 flags, cr); 3647 goto out; 3648 } 3649 3650 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3651 if (off > filesz) { 3652 /* past end of file */ 3653 ZFS_EXIT(zfsvfs); 3654 return (0); 3655 } 3656 3657 len = MIN(len, filesz - off); 3658 3659 for (io_off = off; io_off < off + len; io_off += io_len) { 3660 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 3661 pp = page_lookup(vp, io_off, 3662 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 3663 } else { 3664 pp = page_lookup_nowait(vp, io_off, 3665 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3666 } 3667 3668 if (pp != NULL && pvn_getdirty(pp, flags)) { 3669 int err; 3670 3671 /* 3672 * Found a dirty page to push 3673 */ 3674 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3675 if (err) 3676 error = err; 3677 } else { 3678 io_len = PAGESIZE; 3679 } 3680 } 3681 out: 3682 if ((flags & B_ASYNC) == 0) 3683 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3684 ZFS_EXIT(zfsvfs); 3685 return (error); 3686 } 3687 3688 /*ARGSUSED*/ 3689 void 3690 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 3691 { 3692 znode_t *zp = VTOZ(vp); 3693 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3694 int error; 3695 3696 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 3697 if (zp->z_dbuf == NULL) { 3698 /* 3699 * The fs has been unmounted, or we did a 3700 * suspend/resume and this file no longer exists. 3701 */ 3702 if (vn_has_cached_data(vp)) { 3703 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3704 B_INVAL, cr); 3705 } 3706 3707 mutex_enter(&zp->z_lock); 3708 vp->v_count = 0; /* count arrives as 1 */ 3709 mutex_exit(&zp->z_lock); 3710 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3711 zfs_znode_free(zp); 3712 return; 3713 } 3714 3715 /* 3716 * Attempt to push any data in the page cache. If this fails 3717 * we will get kicked out later in zfs_zinactive(). 3718 */ 3719 if (vn_has_cached_data(vp)) { 3720 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3721 cr); 3722 } 3723 3724 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3725 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3726 3727 dmu_tx_hold_bonus(tx, zp->z_id); 3728 error = dmu_tx_assign(tx, TXG_WAIT); 3729 if (error) { 3730 dmu_tx_abort(tx); 3731 } else { 3732 dmu_buf_will_dirty(zp->z_dbuf, tx); 3733 mutex_enter(&zp->z_lock); 3734 zp->z_atime_dirty = 0; 3735 mutex_exit(&zp->z_lock); 3736 dmu_tx_commit(tx); 3737 } 3738 } 3739 3740 zfs_zinactive(zp); 3741 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3742 } 3743 3744 /* 3745 * Bounds-check the seek operation. 3746 * 3747 * IN: vp - vnode seeking within 3748 * ooff - old file offset 3749 * noffp - pointer to new file offset 3750 * ct - caller context 3751 * 3752 * RETURN: 0 if success 3753 * EINVAL if new offset invalid 3754 */ 3755 /* ARGSUSED */ 3756 static int 3757 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 3758 caller_context_t *ct) 3759 { 3760 if (vp->v_type == VDIR) 3761 return (0); 3762 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3763 } 3764 3765 /* 3766 * Pre-filter the generic locking function to trap attempts to place 3767 * a mandatory lock on a memory mapped file. 3768 */ 3769 static int 3770 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3771 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 3772 { 3773 znode_t *zp = VTOZ(vp); 3774 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3775 int error; 3776 3777 ZFS_ENTER(zfsvfs); 3778 ZFS_VERIFY_ZP(zp); 3779 3780 /* 3781 * We are following the UFS semantics with respect to mapcnt 3782 * here: If we see that the file is mapped already, then we will 3783 * return an error, but we don't worry about races between this 3784 * function and zfs_map(). 3785 */ 3786 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3787 ZFS_EXIT(zfsvfs); 3788 return (EAGAIN); 3789 } 3790 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 3791 ZFS_EXIT(zfsvfs); 3792 return (error); 3793 } 3794 3795 /* 3796 * If we can't find a page in the cache, we will create a new page 3797 * and fill it with file data. For efficiency, we may try to fill 3798 * multiple pages at once (klustering). 3799 */ 3800 static int 3801 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3802 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3803 { 3804 znode_t *zp = VTOZ(vp); 3805 page_t *pp, *cur_pp; 3806 objset_t *os = zp->z_zfsvfs->z_os; 3807 caddr_t va; 3808 u_offset_t io_off, total; 3809 uint64_t oid = zp->z_id; 3810 size_t io_len; 3811 uint64_t filesz; 3812 int err; 3813 3814 /* 3815 * If we are only asking for a single page don't bother klustering. 3816 */ 3817 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3818 if (off >= filesz) 3819 return (EFAULT); 3820 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 3821 io_off = off; 3822 io_len = PAGESIZE; 3823 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3824 } else { 3825 /* 3826 * Try to fill a kluster of pages (a blocks worth). 3827 */ 3828 size_t klen; 3829 u_offset_t koff; 3830 3831 if (!ISP2(zp->z_blksz)) { 3832 /* Only one block in the file. */ 3833 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3834 koff = 0; 3835 } else { 3836 /* 3837 * It would be ideal to align our offset to the 3838 * blocksize but doing so has resulted in some 3839 * strange application crashes. For now, we 3840 * leave the offset as is and only adjust the 3841 * length if we are off the end of the file. 3842 */ 3843 koff = off; 3844 klen = plsz; 3845 } 3846 ASSERT(koff <= filesz); 3847 if (koff + klen > filesz) 3848 klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff; 3849 ASSERT3U(off, >=, koff); 3850 ASSERT3U(off, <, koff + klen); 3851 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3852 &io_len, koff, klen, 0); 3853 } 3854 if (pp == NULL) { 3855 /* 3856 * Some other thread entered the page before us. 3857 * Return to zfs_getpage to retry the lookup. 3858 */ 3859 *pl = NULL; 3860 return (0); 3861 } 3862 3863 /* 3864 * Fill the pages in the kluster. 3865 */ 3866 cur_pp = pp; 3867 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3868 ASSERT3U(io_off, ==, cur_pp->p_offset); 3869 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3870 err = dmu_read(os, oid, io_off, PAGESIZE, va); 3871 ppmapout(va); 3872 if (err) { 3873 /* On error, toss the entire kluster */ 3874 pvn_read_done(pp, B_ERROR); 3875 return (err); 3876 } 3877 cur_pp = cur_pp->p_next; 3878 } 3879 out: 3880 /* 3881 * Fill in the page list array from the kluster. If 3882 * there are too many pages in the kluster, return 3883 * as many pages as possible starting from the desired 3884 * offset `off'. 3885 * NOTE: the page list will always be null terminated. 3886 */ 3887 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3888 3889 return (0); 3890 } 3891 3892 /* 3893 * Return pointers to the pages for the file region [off, off + len] 3894 * in the pl array. If plsz is greater than len, this function may 3895 * also return page pointers from before or after the specified 3896 * region (i.e. some region [off', off' + plsz]). These additional 3897 * pages are only returned if they are already in the cache, or were 3898 * created as part of a klustered read. 3899 * 3900 * IN: vp - vnode of file to get data from. 3901 * off - position in file to get data from. 3902 * len - amount of data to retrieve. 3903 * plsz - length of provided page list. 3904 * seg - segment to obtain pages for. 3905 * addr - virtual address of fault. 3906 * rw - mode of created pages. 3907 * cr - credentials of caller. 3908 * ct - caller context. 3909 * 3910 * OUT: protp - protection mode of created pages. 3911 * pl - list of pages created. 3912 * 3913 * RETURN: 0 if success 3914 * error code if failure 3915 * 3916 * Timestamps: 3917 * vp - atime updated 3918 */ 3919 /* ARGSUSED */ 3920 static int 3921 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3922 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3923 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3924 { 3925 znode_t *zp = VTOZ(vp); 3926 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3927 page_t *pp, **pl0 = pl; 3928 int need_unlock = 0, err = 0; 3929 offset_t orig_off; 3930 3931 ZFS_ENTER(zfsvfs); 3932 ZFS_VERIFY_ZP(zp); 3933 3934 if (protp) 3935 *protp = PROT_ALL; 3936 3937 /* no faultahead (for now) */ 3938 if (pl == NULL) { 3939 ZFS_EXIT(zfsvfs); 3940 return (0); 3941 } 3942 3943 /* can't fault past EOF */ 3944 if (off >= zp->z_phys->zp_size) { 3945 ZFS_EXIT(zfsvfs); 3946 return (EFAULT); 3947 } 3948 orig_off = off; 3949 3950 /* 3951 * If we already own the lock, then we must be page faulting 3952 * in the middle of a write to this file (i.e., we are writing 3953 * to this file using data from a mapped region of the file). 3954 */ 3955 if (rw_owner(&zp->z_map_lock) != curthread) { 3956 rw_enter(&zp->z_map_lock, RW_WRITER); 3957 need_unlock = TRUE; 3958 } 3959 3960 /* 3961 * Loop through the requested range [off, off + len] looking 3962 * for pages. If we don't find a page, we will need to create 3963 * a new page and fill it with data from the file. 3964 */ 3965 while (len > 0) { 3966 if (plsz < PAGESIZE) 3967 break; 3968 if (pp = page_lookup(vp, off, SE_SHARED)) { 3969 *pl++ = pp; 3970 off += PAGESIZE; 3971 addr += PAGESIZE; 3972 len -= PAGESIZE; 3973 plsz -= PAGESIZE; 3974 } else { 3975 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3976 if (err) 3977 goto out; 3978 /* 3979 * klustering may have changed our region 3980 * to be block aligned. 3981 */ 3982 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 3983 int delta = off - pp->p_offset; 3984 len += delta; 3985 off -= delta; 3986 addr -= delta; 3987 } 3988 while (*pl) { 3989 pl++; 3990 off += PAGESIZE; 3991 addr += PAGESIZE; 3992 plsz -= PAGESIZE; 3993 if (len > PAGESIZE) 3994 len -= PAGESIZE; 3995 else 3996 len = 0; 3997 } 3998 } 3999 } 4000 4001 /* 4002 * Fill out the page array with any pages already in the cache. 4003 */ 4004 while (plsz > 0) { 4005 pp = page_lookup_nowait(vp, off, SE_SHARED); 4006 if (pp == NULL) 4007 break; 4008 *pl++ = pp; 4009 off += PAGESIZE; 4010 plsz -= PAGESIZE; 4011 } 4012 4013 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4014 out: 4015 /* 4016 * We can't grab the range lock for the page as reader which would 4017 * stop truncation as this leads to deadlock. So we need to recheck 4018 * the file size. 4019 */ 4020 if (orig_off >= zp->z_phys->zp_size) 4021 err = EFAULT; 4022 if (err) { 4023 /* 4024 * Release any pages we have previously locked. 4025 */ 4026 while (pl > pl0) 4027 page_unlock(*--pl); 4028 } 4029 4030 *pl = NULL; 4031 4032 if (need_unlock) 4033 rw_exit(&zp->z_map_lock); 4034 4035 ZFS_EXIT(zfsvfs); 4036 return (err); 4037 } 4038 4039 /* 4040 * Request a memory map for a section of a file. This code interacts 4041 * with common code and the VM system as follows: 4042 * 4043 * common code calls mmap(), which ends up in smmap_common() 4044 * 4045 * this calls VOP_MAP(), which takes you into (say) zfs 4046 * 4047 * zfs_map() calls as_map(), passing segvn_create() as the callback 4048 * 4049 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4050 * 4051 * zfs_addmap() updates z_mapcnt 4052 */ 4053 /*ARGSUSED*/ 4054 static int 4055 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4056 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4057 caller_context_t *ct) 4058 { 4059 znode_t *zp = VTOZ(vp); 4060 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4061 segvn_crargs_t vn_a; 4062 int error; 4063 4064 if ((prot & PROT_WRITE) && 4065 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4066 ZFS_APPENDONLY))) 4067 return (EPERM); 4068 4069 ZFS_ENTER(zfsvfs); 4070 ZFS_VERIFY_ZP(zp); 4071 4072 if (vp->v_flag & VNOMAP) { 4073 ZFS_EXIT(zfsvfs); 4074 return (ENOSYS); 4075 } 4076 4077 if (off < 0 || len > MAXOFFSET_T - off) { 4078 ZFS_EXIT(zfsvfs); 4079 return (ENXIO); 4080 } 4081 4082 if (vp->v_type != VREG) { 4083 ZFS_EXIT(zfsvfs); 4084 return (ENODEV); 4085 } 4086 4087 /* 4088 * If file is locked, disallow mapping. 4089 */ 4090 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4091 ZFS_EXIT(zfsvfs); 4092 return (EAGAIN); 4093 } 4094 4095 as_rangelock(as); 4096 if ((flags & MAP_FIXED) == 0) { 4097 map_addr(addrp, len, off, 1, flags); 4098 if (*addrp == NULL) { 4099 as_rangeunlock(as); 4100 ZFS_EXIT(zfsvfs); 4101 return (ENOMEM); 4102 } 4103 } else { 4104 /* 4105 * User specified address - blow away any previous mappings 4106 */ 4107 (void) as_unmap(as, *addrp, len); 4108 } 4109 4110 vn_a.vp = vp; 4111 vn_a.offset = (u_offset_t)off; 4112 vn_a.type = flags & MAP_TYPE; 4113 vn_a.prot = prot; 4114 vn_a.maxprot = maxprot; 4115 vn_a.cred = cr; 4116 vn_a.amp = NULL; 4117 vn_a.flags = flags & ~MAP_TYPE; 4118 vn_a.szc = 0; 4119 vn_a.lgrp_mem_policy_flags = 0; 4120 4121 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4122 4123 as_rangeunlock(as); 4124 ZFS_EXIT(zfsvfs); 4125 return (error); 4126 } 4127 4128 /* ARGSUSED */ 4129 static int 4130 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4131 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4132 caller_context_t *ct) 4133 { 4134 uint64_t pages = btopr(len); 4135 4136 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4137 return (0); 4138 } 4139 4140 /* 4141 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4142 * more accurate mtime for the associated file. Since we don't have a way of 4143 * detecting when the data was actually modified, we have to resort to 4144 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4145 * last page is pushed. The problem occurs when the msync() call is omitted, 4146 * which by far the most common case: 4147 * 4148 * open() 4149 * mmap() 4150 * <modify memory> 4151 * munmap() 4152 * close() 4153 * <time lapse> 4154 * putpage() via fsflush 4155 * 4156 * If we wait until fsflush to come along, we can have a modification time that 4157 * is some arbitrary point in the future. In order to prevent this in the 4158 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4159 * torn down. 4160 */ 4161 /* ARGSUSED */ 4162 static int 4163 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4164 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4165 caller_context_t *ct) 4166 { 4167 uint64_t pages = btopr(len); 4168 4169 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4170 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4171 4172 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4173 vn_has_cached_data(vp)) 4174 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4175 4176 return (0); 4177 } 4178 4179 /* 4180 * Free or allocate space in a file. Currently, this function only 4181 * supports the `F_FREESP' command. However, this command is somewhat 4182 * misnamed, as its functionality includes the ability to allocate as 4183 * well as free space. 4184 * 4185 * IN: vp - vnode of file to free data in. 4186 * cmd - action to take (only F_FREESP supported). 4187 * bfp - section of file to free/alloc. 4188 * flag - current file open mode flags. 4189 * offset - current file offset. 4190 * cr - credentials of caller [UNUSED]. 4191 * ct - caller context. 4192 * 4193 * RETURN: 0 if success 4194 * error code if failure 4195 * 4196 * Timestamps: 4197 * vp - ctime|mtime updated 4198 */ 4199 /* ARGSUSED */ 4200 static int 4201 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4202 offset_t offset, cred_t *cr, caller_context_t *ct) 4203 { 4204 znode_t *zp = VTOZ(vp); 4205 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4206 uint64_t off, len; 4207 int error; 4208 4209 ZFS_ENTER(zfsvfs); 4210 ZFS_VERIFY_ZP(zp); 4211 4212 top: 4213 if (cmd != F_FREESP) { 4214 ZFS_EXIT(zfsvfs); 4215 return (EINVAL); 4216 } 4217 4218 if (error = convoff(vp, bfp, 0, offset)) { 4219 ZFS_EXIT(zfsvfs); 4220 return (error); 4221 } 4222 4223 if (bfp->l_len < 0) { 4224 ZFS_EXIT(zfsvfs); 4225 return (EINVAL); 4226 } 4227 4228 off = bfp->l_start; 4229 len = bfp->l_len; /* 0 means from off to end of file */ 4230 4231 do { 4232 error = zfs_freesp(zp, off, len, flag, TRUE); 4233 /* NB: we already did dmu_tx_wait() if necessary */ 4234 } while (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 4235 4236 ZFS_EXIT(zfsvfs); 4237 return (error); 4238 } 4239 4240 /*ARGSUSED*/ 4241 static int 4242 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4243 { 4244 znode_t *zp = VTOZ(vp); 4245 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4246 uint32_t gen; 4247 uint64_t object = zp->z_id; 4248 zfid_short_t *zfid; 4249 int size, i; 4250 4251 ZFS_ENTER(zfsvfs); 4252 ZFS_VERIFY_ZP(zp); 4253 gen = (uint32_t)zp->z_gen; 4254 4255 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4256 if (fidp->fid_len < size) { 4257 fidp->fid_len = size; 4258 ZFS_EXIT(zfsvfs); 4259 return (ENOSPC); 4260 } 4261 4262 zfid = (zfid_short_t *)fidp; 4263 4264 zfid->zf_len = size; 4265 4266 for (i = 0; i < sizeof (zfid->zf_object); i++) 4267 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4268 4269 /* Must have a non-zero generation number to distinguish from .zfs */ 4270 if (gen == 0) 4271 gen = 1; 4272 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4273 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4274 4275 if (size == LONG_FID_LEN) { 4276 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4277 zfid_long_t *zlfid; 4278 4279 zlfid = (zfid_long_t *)fidp; 4280 4281 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4282 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4283 4284 /* XXX - this should be the generation number for the objset */ 4285 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4286 zlfid->zf_setgen[i] = 0; 4287 } 4288 4289 ZFS_EXIT(zfsvfs); 4290 return (0); 4291 } 4292 4293 static int 4294 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4295 caller_context_t *ct) 4296 { 4297 znode_t *zp, *xzp; 4298 zfsvfs_t *zfsvfs; 4299 zfs_dirlock_t *dl; 4300 int error; 4301 4302 switch (cmd) { 4303 case _PC_LINK_MAX: 4304 *valp = ULONG_MAX; 4305 return (0); 4306 4307 case _PC_FILESIZEBITS: 4308 *valp = 64; 4309 return (0); 4310 4311 case _PC_XATTR_EXISTS: 4312 zp = VTOZ(vp); 4313 zfsvfs = zp->z_zfsvfs; 4314 ZFS_ENTER(zfsvfs); 4315 ZFS_VERIFY_ZP(zp); 4316 *valp = 0; 4317 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4318 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4319 if (error == 0) { 4320 zfs_dirent_unlock(dl); 4321 if (!zfs_dirempty(xzp)) 4322 *valp = 1; 4323 VN_RELE(ZTOV(xzp)); 4324 } else if (error == ENOENT) { 4325 /* 4326 * If there aren't extended attributes, it's the 4327 * same as having zero of them. 4328 */ 4329 error = 0; 4330 } 4331 ZFS_EXIT(zfsvfs); 4332 return (error); 4333 4334 case _PC_SATTR_ENABLED: 4335 case _PC_SATTR_EXISTS: 4336 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) && 4337 (vp->v_type == VREG || vp->v_type == VDIR); 4338 return (0); 4339 4340 case _PC_ACL_ENABLED: 4341 *valp = _ACL_ACE_ENABLED; 4342 return (0); 4343 4344 case _PC_MIN_HOLE_SIZE: 4345 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4346 return (0); 4347 4348 default: 4349 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4350 } 4351 } 4352 4353 /*ARGSUSED*/ 4354 static int 4355 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4356 caller_context_t *ct) 4357 { 4358 znode_t *zp = VTOZ(vp); 4359 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4360 int error; 4361 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4362 4363 ZFS_ENTER(zfsvfs); 4364 ZFS_VERIFY_ZP(zp); 4365 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4366 ZFS_EXIT(zfsvfs); 4367 4368 return (error); 4369 } 4370 4371 /*ARGSUSED*/ 4372 static int 4373 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4374 caller_context_t *ct) 4375 { 4376 znode_t *zp = VTOZ(vp); 4377 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4378 int error; 4379 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4380 4381 ZFS_ENTER(zfsvfs); 4382 ZFS_VERIFY_ZP(zp); 4383 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4384 ZFS_EXIT(zfsvfs); 4385 return (error); 4386 } 4387 4388 /* 4389 * Predeclare these here so that the compiler assumes that 4390 * this is an "old style" function declaration that does 4391 * not include arguments => we won't get type mismatch errors 4392 * in the initializations that follow. 4393 */ 4394 static int zfs_inval(); 4395 static int zfs_isdir(); 4396 4397 static int 4398 zfs_inval() 4399 { 4400 return (EINVAL); 4401 } 4402 4403 static int 4404 zfs_isdir() 4405 { 4406 return (EISDIR); 4407 } 4408 /* 4409 * Directory vnode operations template 4410 */ 4411 vnodeops_t *zfs_dvnodeops; 4412 const fs_operation_def_t zfs_dvnodeops_template[] = { 4413 VOPNAME_OPEN, { .vop_open = zfs_open }, 4414 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4415 VOPNAME_READ, { .error = zfs_isdir }, 4416 VOPNAME_WRITE, { .error = zfs_isdir }, 4417 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4418 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4419 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4420 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4421 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4422 VOPNAME_CREATE, { .vop_create = zfs_create }, 4423 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4424 VOPNAME_LINK, { .vop_link = zfs_link }, 4425 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4426 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4427 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4428 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4429 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4430 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4431 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4432 VOPNAME_FID, { .vop_fid = zfs_fid }, 4433 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4434 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4435 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4436 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4437 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4438 NULL, NULL 4439 }; 4440 4441 /* 4442 * Regular file vnode operations template 4443 */ 4444 vnodeops_t *zfs_fvnodeops; 4445 const fs_operation_def_t zfs_fvnodeops_template[] = { 4446 VOPNAME_OPEN, { .vop_open = zfs_open }, 4447 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4448 VOPNAME_READ, { .vop_read = zfs_read }, 4449 VOPNAME_WRITE, { .vop_write = zfs_write }, 4450 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4451 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4452 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4453 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4454 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4455 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4456 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4457 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4458 VOPNAME_FID, { .vop_fid = zfs_fid }, 4459 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4460 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4461 VOPNAME_SPACE, { .vop_space = zfs_space }, 4462 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4463 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4464 VOPNAME_MAP, { .vop_map = zfs_map }, 4465 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4466 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4467 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4468 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4469 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4470 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4471 NULL, NULL 4472 }; 4473 4474 /* 4475 * Symbolic link vnode operations template 4476 */ 4477 vnodeops_t *zfs_symvnodeops; 4478 const fs_operation_def_t zfs_symvnodeops_template[] = { 4479 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4480 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4481 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4482 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4483 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4484 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4485 VOPNAME_FID, { .vop_fid = zfs_fid }, 4486 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4487 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4488 NULL, NULL 4489 }; 4490 4491 /* 4492 * Extended attribute directory vnode operations template 4493 * This template is identical to the directory vnodes 4494 * operation template except for restricted operations: 4495 * VOP_MKDIR() 4496 * VOP_SYMLINK() 4497 * Note that there are other restrictions embedded in: 4498 * zfs_create() - restrict type to VREG 4499 * zfs_link() - no links into/out of attribute space 4500 * zfs_rename() - no moves into/out of attribute space 4501 */ 4502 vnodeops_t *zfs_xdvnodeops; 4503 const fs_operation_def_t zfs_xdvnodeops_template[] = { 4504 VOPNAME_OPEN, { .vop_open = zfs_open }, 4505 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4506 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4507 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4508 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4509 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4510 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4511 VOPNAME_CREATE, { .vop_create = zfs_create }, 4512 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4513 VOPNAME_LINK, { .vop_link = zfs_link }, 4514 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4515 VOPNAME_MKDIR, { .error = zfs_inval }, 4516 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4517 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4518 VOPNAME_SYMLINK, { .error = zfs_inval }, 4519 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4520 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4521 VOPNAME_FID, { .vop_fid = zfs_fid }, 4522 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4523 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4524 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4525 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4526 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4527 NULL, NULL 4528 }; 4529 4530 /* 4531 * Error vnode operations template 4532 */ 4533 vnodeops_t *zfs_evnodeops; 4534 const fs_operation_def_t zfs_evnodeops_template[] = { 4535 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4536 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4537 NULL, NULL 4538 }; 4539