1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/vm.h> 45 #include <vm/seg_vn.h> 46 #include <vm/pvn.h> 47 #include <vm/as.h> 48 #include <vm/kpm.h> 49 #include <vm/seg_kpm.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include <sys/sid.h> 69 #include "fs/fs_subr.h" 70 #include <sys/zfs_ctldir.h> 71 #include <sys/zfs_fuid.h> 72 #include <sys/dnlc.h> 73 #include <sys/zfs_rlock.h> 74 #include <sys/extdirent.h> 75 #include <sys/kidmap.h> 76 #include <sys/cred_impl.h> 77 #include <sys/attr.h> 78 79 /* 80 * Programming rules. 81 * 82 * Each vnode op performs some logical unit of work. To do this, the ZPL must 83 * properly lock its in-core state, create a DMU transaction, do the work, 84 * record this work in the intent log (ZIL), commit the DMU transaction, 85 * and wait for the intent log to commit if it is a synchronous operation. 86 * Moreover, the vnode ops must work in both normal and log replay context. 87 * The ordering of events is important to avoid deadlocks and references 88 * to freed memory. The example below illustrates the following Big Rules: 89 * 90 * (1) A check must be made in each zfs thread for a mounted file system. 91 * This is done avoiding races using ZFS_ENTER(zfsvfs). 92 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 93 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 94 * can return EIO from the calling function. 95 * 96 * (2) VN_RELE() should always be the last thing except for zil_commit() 97 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 98 * First, if it's the last reference, the vnode/znode 99 * can be freed, so the zp may point to freed memory. Second, the last 100 * reference will call zfs_zinactive(), which may induce a lot of work -- 101 * pushing cached pages (which acquires range locks) and syncing out 102 * cached atime changes. Third, zfs_zinactive() may require a new tx, 103 * which could deadlock the system if you were already holding one. 104 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 105 * 106 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 107 * as they can span dmu_tx_assign() calls. 108 * 109 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 110 * This is critical because we don't want to block while holding locks. 111 * Note, in particular, that if a lock is sometimes acquired before 112 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 113 * use a non-blocking assign can deadlock the system. The scenario: 114 * 115 * Thread A has grabbed a lock before calling dmu_tx_assign(). 116 * Thread B is in an already-assigned tx, and blocks for this lock. 117 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 118 * forever, because the previous txg can't quiesce until B's tx commits. 119 * 120 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 121 * then drop all locks, call dmu_tx_wait(), and try again. 122 * 123 * (5) If the operation succeeded, generate the intent log entry for it 124 * before dropping locks. This ensures that the ordering of events 125 * in the intent log matches the order in which they actually occurred. 126 * During ZIL replay the zfs_log_* functions will update the sequence 127 * number to indicate the zil transaction has replayed. 128 * 129 * (6) At the end of each vnode op, the DMU tx must always commit, 130 * regardless of whether there were any errors. 131 * 132 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 133 * to ensure that synchronous semantics are provided when necessary. 134 * 135 * In general, this is how things should be ordered in each vnode op: 136 * 137 * ZFS_ENTER(zfsvfs); // exit if unmounted 138 * top: 139 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 140 * rw_enter(...); // grab any other locks you need 141 * tx = dmu_tx_create(...); // get DMU tx 142 * dmu_tx_hold_*(); // hold each object you might modify 143 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 144 * if (error) { 145 * rw_exit(...); // drop locks 146 * zfs_dirent_unlock(dl); // unlock directory entry 147 * VN_RELE(...); // release held vnodes 148 * if (error == ERESTART) { 149 * dmu_tx_wait(tx); 150 * dmu_tx_abort(tx); 151 * goto top; 152 * } 153 * dmu_tx_abort(tx); // abort DMU tx 154 * ZFS_EXIT(zfsvfs); // finished in zfs 155 * return (error); // really out of space 156 * } 157 * error = do_real_work(); // do whatever this VOP does 158 * if (error == 0) 159 * zfs_log_*(...); // on success, make ZIL entry 160 * dmu_tx_commit(tx); // commit DMU tx -- error or not 161 * rw_exit(...); // drop locks 162 * zfs_dirent_unlock(dl); // unlock directory entry 163 * VN_RELE(...); // release held vnodes 164 * zil_commit(zilog, seq, foid); // synchronous when necessary 165 * ZFS_EXIT(zfsvfs); // finished in zfs 166 * return (error); // done, report error 167 */ 168 169 /* ARGSUSED */ 170 static int 171 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 172 { 173 znode_t *zp = VTOZ(*vpp); 174 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 175 176 ZFS_ENTER(zfsvfs); 177 ZFS_VERIFY_ZP(zp); 178 179 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 180 ((flag & FAPPEND) == 0)) { 181 ZFS_EXIT(zfsvfs); 182 return (EPERM); 183 } 184 185 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 186 ZTOV(zp)->v_type == VREG && 187 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 188 zp->z_phys->zp_size > 0) { 189 if (fs_vscan(*vpp, cr, 0) != 0) { 190 ZFS_EXIT(zfsvfs); 191 return (EACCES); 192 } 193 } 194 195 /* Keep a count of the synchronous opens in the znode */ 196 if (flag & (FSYNC | FDSYNC)) 197 atomic_inc_32(&zp->z_sync_cnt); 198 199 ZFS_EXIT(zfsvfs); 200 return (0); 201 } 202 203 /* ARGSUSED */ 204 static int 205 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 206 caller_context_t *ct) 207 { 208 znode_t *zp = VTOZ(vp); 209 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 210 211 /* 212 * Clean up any locks held by this process on the vp. 213 */ 214 cleanlocks(vp, ddi_get_pid(), 0); 215 cleanshares(vp, ddi_get_pid()); 216 217 ZFS_ENTER(zfsvfs); 218 ZFS_VERIFY_ZP(zp); 219 220 /* Decrement the synchronous opens in the znode */ 221 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 222 atomic_dec_32(&zp->z_sync_cnt); 223 224 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 225 ZTOV(zp)->v_type == VREG && 226 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 227 zp->z_phys->zp_size > 0) 228 VERIFY(fs_vscan(vp, cr, 1) == 0); 229 230 ZFS_EXIT(zfsvfs); 231 return (0); 232 } 233 234 /* 235 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 236 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 237 */ 238 static int 239 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 240 { 241 znode_t *zp = VTOZ(vp); 242 uint64_t noff = (uint64_t)*off; /* new offset */ 243 uint64_t file_sz; 244 int error; 245 boolean_t hole; 246 247 file_sz = zp->z_phys->zp_size; 248 if (noff >= file_sz) { 249 return (ENXIO); 250 } 251 252 if (cmd == _FIO_SEEK_HOLE) 253 hole = B_TRUE; 254 else 255 hole = B_FALSE; 256 257 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 258 259 /* end of file? */ 260 if ((error == ESRCH) || (noff > file_sz)) { 261 /* 262 * Handle the virtual hole at the end of file. 263 */ 264 if (hole) { 265 *off = file_sz; 266 return (0); 267 } 268 return (ENXIO); 269 } 270 271 if (noff < *off) 272 return (error); 273 *off = noff; 274 return (error); 275 } 276 277 /* ARGSUSED */ 278 static int 279 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 280 int *rvalp, caller_context_t *ct) 281 { 282 offset_t off; 283 int error; 284 zfsvfs_t *zfsvfs; 285 znode_t *zp; 286 287 switch (com) { 288 case _FIOFFS: 289 return (zfs_sync(vp->v_vfsp, 0, cred)); 290 291 /* 292 * The following two ioctls are used by bfu. Faking out, 293 * necessary to avoid bfu errors. 294 */ 295 case _FIOGDIO: 296 case _FIOSDIO: 297 return (0); 298 299 case _FIO_SEEK_DATA: 300 case _FIO_SEEK_HOLE: 301 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 302 return (EFAULT); 303 304 zp = VTOZ(vp); 305 zfsvfs = zp->z_zfsvfs; 306 ZFS_ENTER(zfsvfs); 307 ZFS_VERIFY_ZP(zp); 308 309 /* offset parameter is in/out */ 310 error = zfs_holey(vp, com, &off); 311 ZFS_EXIT(zfsvfs); 312 if (error) 313 return (error); 314 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 315 return (EFAULT); 316 return (0); 317 } 318 return (ENOTTY); 319 } 320 321 /* 322 * Utility functions to map and unmap a single physical page. These 323 * are used to manage the mappable copies of ZFS file data, and therefore 324 * do not update ref/mod bits. 325 */ 326 caddr_t 327 zfs_map_page(page_t *pp, enum seg_rw rw) 328 { 329 if (kpm_enable) 330 return (hat_kpm_mapin(pp, 0)); 331 ASSERT(rw == S_READ || rw == S_WRITE); 332 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 333 (caddr_t)-1)); 334 } 335 336 void 337 zfs_unmap_page(page_t *pp, caddr_t addr) 338 { 339 if (kpm_enable) { 340 hat_kpm_mapout(pp, 0, addr); 341 } else { 342 ppmapout(addr); 343 } 344 } 345 346 /* 347 * When a file is memory mapped, we must keep the IO data synchronized 348 * between the DMU cache and the memory mapped pages. What this means: 349 * 350 * On Write: If we find a memory mapped page, we write to *both* 351 * the page and the dmu buffer. 352 */ 353 static void 354 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 355 { 356 int64_t off; 357 358 off = start & PAGEOFFSET; 359 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 360 page_t *pp; 361 uint64_t nbytes = MIN(PAGESIZE - off, len); 362 363 if (pp = page_lookup(vp, start, SE_SHARED)) { 364 caddr_t va; 365 366 va = zfs_map_page(pp, S_WRITE); 367 (void) dmu_read(os, oid, start+off, nbytes, va+off, 368 DMU_READ_PREFETCH); 369 zfs_unmap_page(pp, va); 370 page_unlock(pp); 371 } 372 len -= nbytes; 373 off = 0; 374 } 375 } 376 377 /* 378 * When a file is memory mapped, we must keep the IO data synchronized 379 * between the DMU cache and the memory mapped pages. What this means: 380 * 381 * On Read: We "read" preferentially from memory mapped pages, 382 * else we default from the dmu buffer. 383 * 384 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 385 * the file is memory mapped. 386 */ 387 static int 388 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 389 { 390 znode_t *zp = VTOZ(vp); 391 objset_t *os = zp->z_zfsvfs->z_os; 392 int64_t start, off; 393 int len = nbytes; 394 int error = 0; 395 396 start = uio->uio_loffset; 397 off = start & PAGEOFFSET; 398 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 399 page_t *pp; 400 uint64_t bytes = MIN(PAGESIZE - off, len); 401 402 if (pp = page_lookup(vp, start, SE_SHARED)) { 403 caddr_t va; 404 405 va = zfs_map_page(pp, S_READ); 406 error = uiomove(va + off, bytes, UIO_READ, uio); 407 zfs_unmap_page(pp, va); 408 page_unlock(pp); 409 } else { 410 error = dmu_read_uio(os, zp->z_id, uio, bytes); 411 } 412 len -= bytes; 413 off = 0; 414 if (error) 415 break; 416 } 417 return (error); 418 } 419 420 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 421 422 /* 423 * Read bytes from specified file into supplied buffer. 424 * 425 * IN: vp - vnode of file to be read from. 426 * uio - structure supplying read location, range info, 427 * and return buffer. 428 * ioflag - SYNC flags; used to provide FRSYNC semantics. 429 * cr - credentials of caller. 430 * ct - caller context 431 * 432 * OUT: uio - updated offset and range, buffer filled. 433 * 434 * RETURN: 0 if success 435 * error code if failure 436 * 437 * Side Effects: 438 * vp - atime updated if byte count > 0 439 */ 440 /* ARGSUSED */ 441 static int 442 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 443 { 444 znode_t *zp = VTOZ(vp); 445 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 446 objset_t *os; 447 ssize_t n, nbytes; 448 int error; 449 rl_t *rl; 450 451 ZFS_ENTER(zfsvfs); 452 ZFS_VERIFY_ZP(zp); 453 os = zfsvfs->z_os; 454 455 if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) { 456 ZFS_EXIT(zfsvfs); 457 return (EACCES); 458 } 459 460 /* 461 * Validate file offset 462 */ 463 if (uio->uio_loffset < (offset_t)0) { 464 ZFS_EXIT(zfsvfs); 465 return (EINVAL); 466 } 467 468 /* 469 * Fasttrack empty reads 470 */ 471 if (uio->uio_resid == 0) { 472 ZFS_EXIT(zfsvfs); 473 return (0); 474 } 475 476 /* 477 * Check for mandatory locks 478 */ 479 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 480 if (error = chklock(vp, FREAD, 481 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 482 ZFS_EXIT(zfsvfs); 483 return (error); 484 } 485 } 486 487 /* 488 * If we're in FRSYNC mode, sync out this znode before reading it. 489 */ 490 if (ioflag & FRSYNC) 491 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 492 493 /* 494 * Lock the range against changes. 495 */ 496 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 497 498 /* 499 * If we are reading past end-of-file we can skip 500 * to the end; but we might still need to set atime. 501 */ 502 if (uio->uio_loffset >= zp->z_phys->zp_size) { 503 error = 0; 504 goto out; 505 } 506 507 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 508 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 509 510 while (n > 0) { 511 nbytes = MIN(n, zfs_read_chunk_size - 512 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 513 514 if (vn_has_cached_data(vp)) 515 error = mappedread(vp, nbytes, uio); 516 else 517 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 518 if (error) { 519 /* convert checksum errors into IO errors */ 520 if (error == ECKSUM) 521 error = EIO; 522 break; 523 } 524 525 n -= nbytes; 526 } 527 528 out: 529 zfs_range_unlock(rl); 530 531 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 532 ZFS_EXIT(zfsvfs); 533 return (error); 534 } 535 536 /* 537 * Write the bytes to a file. 538 * 539 * IN: vp - vnode of file to be written to. 540 * uio - structure supplying write location, range info, 541 * and data buffer. 542 * ioflag - FAPPEND flag set if in append mode. 543 * cr - credentials of caller. 544 * ct - caller context (NFS/CIFS fem monitor only) 545 * 546 * OUT: uio - updated offset and range. 547 * 548 * RETURN: 0 if success 549 * error code if failure 550 * 551 * Timestamps: 552 * vp - ctime|mtime updated if byte count > 0 553 */ 554 /* ARGSUSED */ 555 static int 556 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 557 { 558 znode_t *zp = VTOZ(vp); 559 rlim64_t limit = uio->uio_llimit; 560 ssize_t start_resid = uio->uio_resid; 561 ssize_t tx_bytes; 562 uint64_t end_size; 563 dmu_tx_t *tx; 564 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 565 zilog_t *zilog; 566 offset_t woff; 567 ssize_t n, nbytes; 568 rl_t *rl; 569 int max_blksz = zfsvfs->z_max_blksz; 570 uint64_t pflags; 571 int error; 572 arc_buf_t *abuf; 573 574 /* 575 * Fasttrack empty write 576 */ 577 n = start_resid; 578 if (n == 0) 579 return (0); 580 581 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 582 limit = MAXOFFSET_T; 583 584 ZFS_ENTER(zfsvfs); 585 ZFS_VERIFY_ZP(zp); 586 587 /* 588 * If immutable or not appending then return EPERM 589 */ 590 pflags = zp->z_phys->zp_flags; 591 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 592 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 593 (uio->uio_loffset < zp->z_phys->zp_size))) { 594 ZFS_EXIT(zfsvfs); 595 return (EPERM); 596 } 597 598 zilog = zfsvfs->z_log; 599 600 /* 601 * Pre-fault the pages to ensure slow (eg NFS) pages 602 * don't hold up txg. 603 */ 604 uio_prefaultpages(n, uio); 605 606 /* 607 * If in append mode, set the io offset pointer to eof. 608 */ 609 if (ioflag & FAPPEND) { 610 /* 611 * Range lock for a file append: 612 * The value for the start of range will be determined by 613 * zfs_range_lock() (to guarantee append semantics). 614 * If this write will cause the block size to increase, 615 * zfs_range_lock() will lock the entire file, so we must 616 * later reduce the range after we grow the block size. 617 */ 618 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 619 if (rl->r_len == UINT64_MAX) { 620 /* overlocked, zp_size can't change */ 621 woff = uio->uio_loffset = zp->z_phys->zp_size; 622 } else { 623 woff = uio->uio_loffset = rl->r_off; 624 } 625 } else { 626 woff = uio->uio_loffset; 627 /* 628 * Validate file offset 629 */ 630 if (woff < 0) { 631 ZFS_EXIT(zfsvfs); 632 return (EINVAL); 633 } 634 635 /* 636 * If we need to grow the block size then zfs_range_lock() 637 * will lock a wider range than we request here. 638 * Later after growing the block size we reduce the range. 639 */ 640 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 641 } 642 643 if (woff >= limit) { 644 zfs_range_unlock(rl); 645 ZFS_EXIT(zfsvfs); 646 return (EFBIG); 647 } 648 649 if ((woff + n) > limit || woff > (limit - n)) 650 n = limit - woff; 651 652 /* 653 * Check for mandatory locks 654 */ 655 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 656 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 657 zfs_range_unlock(rl); 658 ZFS_EXIT(zfsvfs); 659 return (error); 660 } 661 end_size = MAX(zp->z_phys->zp_size, woff + n); 662 663 /* 664 * Write the file in reasonable size chunks. Each chunk is written 665 * in a separate transaction; this keeps the intent log records small 666 * and allows us to do more fine-grained space accounting. 667 */ 668 while (n > 0) { 669 abuf = NULL; 670 woff = uio->uio_loffset; 671 672 again: 673 if (zfs_usergroup_overquota(zfsvfs, 674 B_FALSE, zp->z_phys->zp_uid) || 675 zfs_usergroup_overquota(zfsvfs, 676 B_TRUE, zp->z_phys->zp_gid)) { 677 if (abuf != NULL) 678 dmu_return_arcbuf(abuf); 679 error = EDQUOT; 680 break; 681 } 682 683 /* 684 * If dmu_assign_arcbuf() is expected to execute with minimum 685 * overhead loan an arc buffer and copy user data to it before 686 * we enter a txg. This avoids holding a txg forever while we 687 * pagefault on a hanging NFS server mapping. 688 */ 689 if (abuf == NULL && n >= max_blksz && 690 woff >= zp->z_phys->zp_size && 691 P2PHASE(woff, max_blksz) == 0 && 692 zp->z_blksz == max_blksz) { 693 size_t cbytes; 694 695 abuf = dmu_request_arcbuf(zp->z_dbuf, max_blksz); 696 ASSERT(abuf != NULL); 697 ASSERT(arc_buf_size(abuf) == max_blksz); 698 if (error = uiocopy(abuf->b_data, max_blksz, 699 UIO_WRITE, uio, &cbytes)) { 700 dmu_return_arcbuf(abuf); 701 break; 702 } 703 ASSERT(cbytes == max_blksz); 704 } 705 706 /* 707 * Start a transaction. 708 */ 709 tx = dmu_tx_create(zfsvfs->z_os); 710 dmu_tx_hold_bonus(tx, zp->z_id); 711 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 712 error = dmu_tx_assign(tx, TXG_NOWAIT); 713 if (error) { 714 if (error == ERESTART) { 715 dmu_tx_wait(tx); 716 dmu_tx_abort(tx); 717 goto again; 718 } 719 dmu_tx_abort(tx); 720 if (abuf != NULL) 721 dmu_return_arcbuf(abuf); 722 break; 723 } 724 725 /* 726 * If zfs_range_lock() over-locked we grow the blocksize 727 * and then reduce the lock range. This will only happen 728 * on the first iteration since zfs_range_reduce() will 729 * shrink down r_len to the appropriate size. 730 */ 731 if (rl->r_len == UINT64_MAX) { 732 uint64_t new_blksz; 733 734 if (zp->z_blksz > max_blksz) { 735 ASSERT(!ISP2(zp->z_blksz)); 736 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 737 } else { 738 new_blksz = MIN(end_size, max_blksz); 739 } 740 zfs_grow_blocksize(zp, new_blksz, tx); 741 zfs_range_reduce(rl, woff, n); 742 } 743 744 /* 745 * XXX - should we really limit each write to z_max_blksz? 746 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 747 */ 748 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 749 750 if (abuf == NULL) { 751 tx_bytes = uio->uio_resid; 752 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, uio, 753 nbytes, tx); 754 tx_bytes -= uio->uio_resid; 755 } else { 756 tx_bytes = nbytes; 757 ASSERT(tx_bytes == max_blksz); 758 dmu_assign_arcbuf(zp->z_dbuf, woff, abuf, tx); 759 ASSERT(tx_bytes <= uio->uio_resid); 760 uioskip(uio, tx_bytes); 761 } 762 if (tx_bytes && vn_has_cached_data(vp)) { 763 update_pages(vp, woff, 764 tx_bytes, zfsvfs->z_os, zp->z_id); 765 } 766 767 /* 768 * If we made no progress, we're done. If we made even 769 * partial progress, update the znode and ZIL accordingly. 770 */ 771 if (tx_bytes == 0) { 772 dmu_tx_commit(tx); 773 ASSERT(error != 0); 774 break; 775 } 776 777 /* 778 * Clear Set-UID/Set-GID bits on successful write if not 779 * privileged and at least one of the excute bits is set. 780 * 781 * It would be nice to to this after all writes have 782 * been done, but that would still expose the ISUID/ISGID 783 * to another app after the partial write is committed. 784 * 785 * Note: we don't call zfs_fuid_map_id() here because 786 * user 0 is not an ephemeral uid. 787 */ 788 mutex_enter(&zp->z_acl_lock); 789 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 790 (S_IXUSR >> 6))) != 0 && 791 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 792 secpolicy_vnode_setid_retain(cr, 793 (zp->z_phys->zp_mode & S_ISUID) != 0 && 794 zp->z_phys->zp_uid == 0) != 0) { 795 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 796 } 797 mutex_exit(&zp->z_acl_lock); 798 799 /* 800 * Update time stamp. NOTE: This marks the bonus buffer as 801 * dirty, so we don't have to do it again for zp_size. 802 */ 803 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 804 805 /* 806 * Update the file size (zp_size) if it has changed; 807 * account for possible concurrent updates. 808 */ 809 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 810 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 811 uio->uio_loffset); 812 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 813 dmu_tx_commit(tx); 814 815 if (error != 0) 816 break; 817 ASSERT(tx_bytes == nbytes); 818 n -= nbytes; 819 } 820 821 zfs_range_unlock(rl); 822 823 /* 824 * If we're in replay mode, or we made no progress, return error. 825 * Otherwise, it's at least a partial write, so it's successful. 826 */ 827 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 828 ZFS_EXIT(zfsvfs); 829 return (error); 830 } 831 832 if (ioflag & (FSYNC | FDSYNC)) 833 zil_commit(zilog, zp->z_last_itx, zp->z_id); 834 835 ZFS_EXIT(zfsvfs); 836 return (0); 837 } 838 839 void 840 zfs_get_done(dmu_buf_t *db, void *vzgd) 841 { 842 zgd_t *zgd = (zgd_t *)vzgd; 843 rl_t *rl = zgd->zgd_rl; 844 vnode_t *vp = ZTOV(rl->r_zp); 845 objset_t *os = rl->r_zp->z_zfsvfs->z_os; 846 847 dmu_buf_rele(db, vzgd); 848 zfs_range_unlock(rl); 849 /* 850 * Release the vnode asynchronously as we currently have the 851 * txg stopped from syncing. 852 */ 853 VN_RELE_ASYNC(vp, dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 854 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 855 kmem_free(zgd, sizeof (zgd_t)); 856 } 857 858 /* 859 * Get data to generate a TX_WRITE intent log record. 860 */ 861 int 862 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 863 { 864 zfsvfs_t *zfsvfs = arg; 865 objset_t *os = zfsvfs->z_os; 866 znode_t *zp; 867 uint64_t off = lr->lr_offset; 868 dmu_buf_t *db; 869 rl_t *rl; 870 zgd_t *zgd; 871 int dlen = lr->lr_length; /* length of user data */ 872 int error = 0; 873 874 ASSERT(zio); 875 ASSERT(dlen != 0); 876 877 /* 878 * Nothing to do if the file has been removed 879 */ 880 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 881 return (ENOENT); 882 if (zp->z_unlinked) { 883 /* 884 * Release the vnode asynchronously as we currently have the 885 * txg stopped from syncing. 886 */ 887 VN_RELE_ASYNC(ZTOV(zp), 888 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 889 return (ENOENT); 890 } 891 892 /* 893 * Write records come in two flavors: immediate and indirect. 894 * For small writes it's cheaper to store the data with the 895 * log record (immediate); for large writes it's cheaper to 896 * sync the data and get a pointer to it (indirect) so that 897 * we don't have to write the data twice. 898 */ 899 if (buf != NULL) { /* immediate write */ 900 rl = zfs_range_lock(zp, off, dlen, RL_READER); 901 /* test for truncation needs to be done while range locked */ 902 if (off >= zp->z_phys->zp_size) { 903 error = ENOENT; 904 goto out; 905 } 906 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf, 907 DMU_READ_NO_PREFETCH)); 908 } else { /* indirect write */ 909 uint64_t boff; /* block starting offset */ 910 911 /* 912 * Have to lock the whole block to ensure when it's 913 * written out and it's checksum is being calculated 914 * that no one can change the data. We need to re-check 915 * blocksize after we get the lock in case it's changed! 916 */ 917 for (;;) { 918 if (ISP2(zp->z_blksz)) { 919 boff = P2ALIGN_TYPED(off, zp->z_blksz, 920 uint64_t); 921 } else { 922 boff = 0; 923 } 924 dlen = zp->z_blksz; 925 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 926 if (zp->z_blksz == dlen) 927 break; 928 zfs_range_unlock(rl); 929 } 930 /* test for truncation needs to be done while range locked */ 931 if (off >= zp->z_phys->zp_size) { 932 error = ENOENT; 933 goto out; 934 } 935 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 936 zgd->zgd_rl = rl; 937 zgd->zgd_zilog = zfsvfs->z_log; 938 zgd->zgd_bp = &lr->lr_blkptr; 939 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db)); 940 ASSERT(boff == db->db_offset); 941 lr->lr_blkoff = off - boff; 942 error = dmu_sync(zio, db, &lr->lr_blkptr, 943 lr->lr_common.lrc_txg, zfs_get_done, zgd); 944 ASSERT((error && error != EINPROGRESS) || 945 lr->lr_length <= zp->z_blksz); 946 if (error == 0) 947 zil_add_block(zfsvfs->z_log, &lr->lr_blkptr); 948 /* 949 * If we get EINPROGRESS, then we need to wait for a 950 * write IO initiated by dmu_sync() to complete before 951 * we can release this dbuf. We will finish everything 952 * up in the zfs_get_done() callback. 953 */ 954 if (error == EINPROGRESS) 955 return (0); 956 dmu_buf_rele(db, zgd); 957 kmem_free(zgd, sizeof (zgd_t)); 958 } 959 out: 960 zfs_range_unlock(rl); 961 /* 962 * Release the vnode asynchronously as we currently have the 963 * txg stopped from syncing. 964 */ 965 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 966 return (error); 967 } 968 969 /*ARGSUSED*/ 970 static int 971 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 972 caller_context_t *ct) 973 { 974 znode_t *zp = VTOZ(vp); 975 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 976 int error; 977 978 ZFS_ENTER(zfsvfs); 979 ZFS_VERIFY_ZP(zp); 980 981 if (flag & V_ACE_MASK) 982 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 983 else 984 error = zfs_zaccess_rwx(zp, mode, flag, cr); 985 986 ZFS_EXIT(zfsvfs); 987 return (error); 988 } 989 990 /* 991 * If vnode is for a device return a specfs vnode instead. 992 */ 993 static int 994 specvp_check(vnode_t **vpp, cred_t *cr) 995 { 996 int error = 0; 997 998 if (IS_DEVVP(*vpp)) { 999 struct vnode *svp; 1000 1001 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1002 VN_RELE(*vpp); 1003 if (svp == NULL) 1004 error = ENOSYS; 1005 *vpp = svp; 1006 } 1007 return (error); 1008 } 1009 1010 1011 /* 1012 * Lookup an entry in a directory, or an extended attribute directory. 1013 * If it exists, return a held vnode reference for it. 1014 * 1015 * IN: dvp - vnode of directory to search. 1016 * nm - name of entry to lookup. 1017 * pnp - full pathname to lookup [UNUSED]. 1018 * flags - LOOKUP_XATTR set if looking for an attribute. 1019 * rdir - root directory vnode [UNUSED]. 1020 * cr - credentials of caller. 1021 * ct - caller context 1022 * direntflags - directory lookup flags 1023 * realpnp - returned pathname. 1024 * 1025 * OUT: vpp - vnode of located entry, NULL if not found. 1026 * 1027 * RETURN: 0 if success 1028 * error code if failure 1029 * 1030 * Timestamps: 1031 * NA 1032 */ 1033 /* ARGSUSED */ 1034 static int 1035 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1036 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1037 int *direntflags, pathname_t *realpnp) 1038 { 1039 znode_t *zdp = VTOZ(dvp); 1040 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1041 int error = 0; 1042 1043 /* fast path */ 1044 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1045 1046 if (dvp->v_type != VDIR) { 1047 return (ENOTDIR); 1048 } else if (zdp->z_dbuf == NULL) { 1049 return (EIO); 1050 } 1051 1052 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1053 error = zfs_fastaccesschk_execute(zdp, cr); 1054 if (!error) { 1055 *vpp = dvp; 1056 VN_HOLD(*vpp); 1057 return (0); 1058 } 1059 return (error); 1060 } else { 1061 vnode_t *tvp = dnlc_lookup(dvp, nm); 1062 1063 if (tvp) { 1064 error = zfs_fastaccesschk_execute(zdp, cr); 1065 if (error) { 1066 VN_RELE(tvp); 1067 return (error); 1068 } 1069 if (tvp == DNLC_NO_VNODE) { 1070 VN_RELE(tvp); 1071 return (ENOENT); 1072 } else { 1073 *vpp = tvp; 1074 return (specvp_check(vpp, cr)); 1075 } 1076 } 1077 } 1078 } 1079 1080 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1081 1082 ZFS_ENTER(zfsvfs); 1083 ZFS_VERIFY_ZP(zdp); 1084 1085 *vpp = NULL; 1086 1087 if (flags & LOOKUP_XATTR) { 1088 /* 1089 * If the xattr property is off, refuse the lookup request. 1090 */ 1091 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1092 ZFS_EXIT(zfsvfs); 1093 return (EINVAL); 1094 } 1095 1096 /* 1097 * We don't allow recursive attributes.. 1098 * Maybe someday we will. 1099 */ 1100 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1101 ZFS_EXIT(zfsvfs); 1102 return (EINVAL); 1103 } 1104 1105 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1106 ZFS_EXIT(zfsvfs); 1107 return (error); 1108 } 1109 1110 /* 1111 * Do we have permission to get into attribute directory? 1112 */ 1113 1114 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1115 B_FALSE, cr)) { 1116 VN_RELE(*vpp); 1117 *vpp = NULL; 1118 } 1119 1120 ZFS_EXIT(zfsvfs); 1121 return (error); 1122 } 1123 1124 if (dvp->v_type != VDIR) { 1125 ZFS_EXIT(zfsvfs); 1126 return (ENOTDIR); 1127 } 1128 1129 /* 1130 * Check accessibility of directory. 1131 */ 1132 1133 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1134 ZFS_EXIT(zfsvfs); 1135 return (error); 1136 } 1137 1138 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1139 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1140 ZFS_EXIT(zfsvfs); 1141 return (EILSEQ); 1142 } 1143 1144 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1145 if (error == 0) 1146 error = specvp_check(vpp, cr); 1147 1148 ZFS_EXIT(zfsvfs); 1149 return (error); 1150 } 1151 1152 /* 1153 * Attempt to create a new entry in a directory. If the entry 1154 * already exists, truncate the file if permissible, else return 1155 * an error. Return the vp of the created or trunc'd file. 1156 * 1157 * IN: dvp - vnode of directory to put new file entry in. 1158 * name - name of new file entry. 1159 * vap - attributes of new file. 1160 * excl - flag indicating exclusive or non-exclusive mode. 1161 * mode - mode to open file with. 1162 * cr - credentials of caller. 1163 * flag - large file flag [UNUSED]. 1164 * ct - caller context 1165 * vsecp - ACL to be set 1166 * 1167 * OUT: vpp - vnode of created or trunc'd entry. 1168 * 1169 * RETURN: 0 if success 1170 * error code if failure 1171 * 1172 * Timestamps: 1173 * dvp - ctime|mtime updated if new entry created 1174 * vp - ctime|mtime always, atime if new 1175 */ 1176 1177 /* ARGSUSED */ 1178 static int 1179 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1180 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1181 vsecattr_t *vsecp) 1182 { 1183 znode_t *zp, *dzp = VTOZ(dvp); 1184 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1185 zilog_t *zilog; 1186 objset_t *os; 1187 zfs_dirlock_t *dl; 1188 dmu_tx_t *tx; 1189 int error; 1190 ksid_t *ksid; 1191 uid_t uid; 1192 gid_t gid = crgetgid(cr); 1193 zfs_acl_ids_t acl_ids; 1194 boolean_t fuid_dirtied; 1195 1196 /* 1197 * If we have an ephemeral id, ACL, or XVATTR then 1198 * make sure file system is at proper version 1199 */ 1200 1201 ksid = crgetsid(cr, KSID_OWNER); 1202 if (ksid) 1203 uid = ksid_getid(ksid); 1204 else 1205 uid = crgetuid(cr); 1206 1207 if (zfsvfs->z_use_fuids == B_FALSE && 1208 (vsecp || (vap->va_mask & AT_XVATTR) || 1209 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1210 return (EINVAL); 1211 1212 ZFS_ENTER(zfsvfs); 1213 ZFS_VERIFY_ZP(dzp); 1214 os = zfsvfs->z_os; 1215 zilog = zfsvfs->z_log; 1216 1217 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1218 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1219 ZFS_EXIT(zfsvfs); 1220 return (EILSEQ); 1221 } 1222 1223 if (vap->va_mask & AT_XVATTR) { 1224 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1225 crgetuid(cr), cr, vap->va_type)) != 0) { 1226 ZFS_EXIT(zfsvfs); 1227 return (error); 1228 } 1229 } 1230 top: 1231 *vpp = NULL; 1232 1233 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1234 vap->va_mode &= ~VSVTX; 1235 1236 if (*name == '\0') { 1237 /* 1238 * Null component name refers to the directory itself. 1239 */ 1240 VN_HOLD(dvp); 1241 zp = dzp; 1242 dl = NULL; 1243 error = 0; 1244 } else { 1245 /* possible VN_HOLD(zp) */ 1246 int zflg = 0; 1247 1248 if (flag & FIGNORECASE) 1249 zflg |= ZCILOOK; 1250 1251 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1252 NULL, NULL); 1253 if (error) { 1254 if (strcmp(name, "..") == 0) 1255 error = EISDIR; 1256 ZFS_EXIT(zfsvfs); 1257 return (error); 1258 } 1259 } 1260 if (zp == NULL) { 1261 uint64_t txtype; 1262 1263 /* 1264 * Create a new file object and update the directory 1265 * to reference it. 1266 */ 1267 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1268 goto out; 1269 } 1270 1271 /* 1272 * We only support the creation of regular files in 1273 * extended attribute directories. 1274 */ 1275 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1276 (vap->va_type != VREG)) { 1277 error = EINVAL; 1278 goto out; 1279 } 1280 1281 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1282 &acl_ids)) != 0) 1283 goto out; 1284 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1285 error = EDQUOT; 1286 goto out; 1287 } 1288 1289 tx = dmu_tx_create(os); 1290 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1291 fuid_dirtied = zfsvfs->z_fuid_dirty; 1292 if (fuid_dirtied) 1293 zfs_fuid_txhold(zfsvfs, tx); 1294 dmu_tx_hold_bonus(tx, dzp->z_id); 1295 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1296 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1297 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1298 0, SPA_MAXBLOCKSIZE); 1299 } 1300 error = dmu_tx_assign(tx, TXG_NOWAIT); 1301 if (error) { 1302 zfs_acl_ids_free(&acl_ids); 1303 zfs_dirent_unlock(dl); 1304 if (error == ERESTART) { 1305 dmu_tx_wait(tx); 1306 dmu_tx_abort(tx); 1307 goto top; 1308 } 1309 dmu_tx_abort(tx); 1310 ZFS_EXIT(zfsvfs); 1311 return (error); 1312 } 1313 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 1314 1315 if (fuid_dirtied) 1316 zfs_fuid_sync(zfsvfs, tx); 1317 1318 (void) zfs_link_create(dl, zp, tx, ZNEW); 1319 1320 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1321 if (flag & FIGNORECASE) 1322 txtype |= TX_CI; 1323 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1324 vsecp, acl_ids.z_fuidp, vap); 1325 zfs_acl_ids_free(&acl_ids); 1326 dmu_tx_commit(tx); 1327 } else { 1328 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1329 1330 /* 1331 * A directory entry already exists for this name. 1332 */ 1333 /* 1334 * Can't truncate an existing file if in exclusive mode. 1335 */ 1336 if (excl == EXCL) { 1337 error = EEXIST; 1338 goto out; 1339 } 1340 /* 1341 * Can't open a directory for writing. 1342 */ 1343 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1344 error = EISDIR; 1345 goto out; 1346 } 1347 /* 1348 * Verify requested access to file. 1349 */ 1350 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1351 goto out; 1352 } 1353 1354 mutex_enter(&dzp->z_lock); 1355 dzp->z_seq++; 1356 mutex_exit(&dzp->z_lock); 1357 1358 /* 1359 * Truncate regular files if requested. 1360 */ 1361 if ((ZTOV(zp)->v_type == VREG) && 1362 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1363 /* we can't hold any locks when calling zfs_freesp() */ 1364 zfs_dirent_unlock(dl); 1365 dl = NULL; 1366 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1367 if (error == 0) { 1368 vnevent_create(ZTOV(zp), ct); 1369 } 1370 } 1371 } 1372 out: 1373 1374 if (dl) 1375 zfs_dirent_unlock(dl); 1376 1377 if (error) { 1378 if (zp) 1379 VN_RELE(ZTOV(zp)); 1380 } else { 1381 *vpp = ZTOV(zp); 1382 error = specvp_check(vpp, cr); 1383 } 1384 1385 ZFS_EXIT(zfsvfs); 1386 return (error); 1387 } 1388 1389 /* 1390 * Remove an entry from a directory. 1391 * 1392 * IN: dvp - vnode of directory to remove entry from. 1393 * name - name of entry to remove. 1394 * cr - credentials of caller. 1395 * ct - caller context 1396 * flags - case flags 1397 * 1398 * RETURN: 0 if success 1399 * error code if failure 1400 * 1401 * Timestamps: 1402 * dvp - ctime|mtime 1403 * vp - ctime (if nlink > 0) 1404 */ 1405 /*ARGSUSED*/ 1406 static int 1407 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1408 int flags) 1409 { 1410 znode_t *zp, *dzp = VTOZ(dvp); 1411 znode_t *xzp = NULL; 1412 vnode_t *vp; 1413 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1414 zilog_t *zilog; 1415 uint64_t acl_obj, xattr_obj; 1416 zfs_dirlock_t *dl; 1417 dmu_tx_t *tx; 1418 boolean_t may_delete_now, delete_now = FALSE; 1419 boolean_t unlinked, toobig = FALSE; 1420 uint64_t txtype; 1421 pathname_t *realnmp = NULL; 1422 pathname_t realnm; 1423 int error; 1424 int zflg = ZEXISTS; 1425 1426 ZFS_ENTER(zfsvfs); 1427 ZFS_VERIFY_ZP(dzp); 1428 zilog = zfsvfs->z_log; 1429 1430 if (flags & FIGNORECASE) { 1431 zflg |= ZCILOOK; 1432 pn_alloc(&realnm); 1433 realnmp = &realnm; 1434 } 1435 1436 top: 1437 /* 1438 * Attempt to lock directory; fail if entry doesn't exist. 1439 */ 1440 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1441 NULL, realnmp)) { 1442 if (realnmp) 1443 pn_free(realnmp); 1444 ZFS_EXIT(zfsvfs); 1445 return (error); 1446 } 1447 1448 vp = ZTOV(zp); 1449 1450 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1451 goto out; 1452 } 1453 1454 /* 1455 * Need to use rmdir for removing directories. 1456 */ 1457 if (vp->v_type == VDIR) { 1458 error = EPERM; 1459 goto out; 1460 } 1461 1462 vnevent_remove(vp, dvp, name, ct); 1463 1464 if (realnmp) 1465 dnlc_remove(dvp, realnmp->pn_buf); 1466 else 1467 dnlc_remove(dvp, name); 1468 1469 mutex_enter(&vp->v_lock); 1470 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1471 mutex_exit(&vp->v_lock); 1472 1473 /* 1474 * We may delete the znode now, or we may put it in the unlinked set; 1475 * it depends on whether we're the last link, and on whether there are 1476 * other holds on the vnode. So we dmu_tx_hold() the right things to 1477 * allow for either case. 1478 */ 1479 tx = dmu_tx_create(zfsvfs->z_os); 1480 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1481 dmu_tx_hold_bonus(tx, zp->z_id); 1482 if (may_delete_now) { 1483 toobig = 1484 zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1485 /* if the file is too big, only hold_free a token amount */ 1486 dmu_tx_hold_free(tx, zp->z_id, 0, 1487 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1488 } 1489 1490 /* are there any extended attributes? */ 1491 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1492 /* XXX - do we need this if we are deleting? */ 1493 dmu_tx_hold_bonus(tx, xattr_obj); 1494 } 1495 1496 /* are there any additional acls */ 1497 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1498 may_delete_now) 1499 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1500 1501 /* charge as an update -- would be nice not to charge at all */ 1502 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1503 1504 error = dmu_tx_assign(tx, TXG_NOWAIT); 1505 if (error) { 1506 zfs_dirent_unlock(dl); 1507 VN_RELE(vp); 1508 if (error == ERESTART) { 1509 dmu_tx_wait(tx); 1510 dmu_tx_abort(tx); 1511 goto top; 1512 } 1513 if (realnmp) 1514 pn_free(realnmp); 1515 dmu_tx_abort(tx); 1516 ZFS_EXIT(zfsvfs); 1517 return (error); 1518 } 1519 1520 /* 1521 * Remove the directory entry. 1522 */ 1523 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1524 1525 if (error) { 1526 dmu_tx_commit(tx); 1527 goto out; 1528 } 1529 1530 if (unlinked) { 1531 mutex_enter(&vp->v_lock); 1532 delete_now = may_delete_now && !toobig && 1533 vp->v_count == 1 && !vn_has_cached_data(vp) && 1534 zp->z_phys->zp_xattr == xattr_obj && 1535 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1536 mutex_exit(&vp->v_lock); 1537 } 1538 1539 if (delete_now) { 1540 if (zp->z_phys->zp_xattr) { 1541 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1542 ASSERT3U(error, ==, 0); 1543 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1544 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1545 mutex_enter(&xzp->z_lock); 1546 xzp->z_unlinked = 1; 1547 xzp->z_phys->zp_links = 0; 1548 mutex_exit(&xzp->z_lock); 1549 zfs_unlinked_add(xzp, tx); 1550 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1551 } 1552 mutex_enter(&zp->z_lock); 1553 mutex_enter(&vp->v_lock); 1554 vp->v_count--; 1555 ASSERT3U(vp->v_count, ==, 0); 1556 mutex_exit(&vp->v_lock); 1557 mutex_exit(&zp->z_lock); 1558 zfs_znode_delete(zp, tx); 1559 } else if (unlinked) { 1560 zfs_unlinked_add(zp, tx); 1561 } 1562 1563 txtype = TX_REMOVE; 1564 if (flags & FIGNORECASE) 1565 txtype |= TX_CI; 1566 zfs_log_remove(zilog, tx, txtype, dzp, name); 1567 1568 dmu_tx_commit(tx); 1569 out: 1570 if (realnmp) 1571 pn_free(realnmp); 1572 1573 zfs_dirent_unlock(dl); 1574 1575 if (!delete_now) { 1576 VN_RELE(vp); 1577 } else if (xzp) { 1578 /* this rele is delayed to prevent nesting transactions */ 1579 VN_RELE(ZTOV(xzp)); 1580 } 1581 1582 ZFS_EXIT(zfsvfs); 1583 return (error); 1584 } 1585 1586 /* 1587 * Create a new directory and insert it into dvp using the name 1588 * provided. Return a pointer to the inserted directory. 1589 * 1590 * IN: dvp - vnode of directory to add subdir to. 1591 * dirname - name of new directory. 1592 * vap - attributes of new directory. 1593 * cr - credentials of caller. 1594 * ct - caller context 1595 * vsecp - ACL to be set 1596 * 1597 * OUT: vpp - vnode of created directory. 1598 * 1599 * RETURN: 0 if success 1600 * error code if failure 1601 * 1602 * Timestamps: 1603 * dvp - ctime|mtime updated 1604 * vp - ctime|mtime|atime updated 1605 */ 1606 /*ARGSUSED*/ 1607 static int 1608 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1609 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1610 { 1611 znode_t *zp, *dzp = VTOZ(dvp); 1612 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1613 zilog_t *zilog; 1614 zfs_dirlock_t *dl; 1615 uint64_t txtype; 1616 dmu_tx_t *tx; 1617 int error; 1618 int zf = ZNEW; 1619 ksid_t *ksid; 1620 uid_t uid; 1621 gid_t gid = crgetgid(cr); 1622 zfs_acl_ids_t acl_ids; 1623 boolean_t fuid_dirtied; 1624 1625 ASSERT(vap->va_type == VDIR); 1626 1627 /* 1628 * If we have an ephemeral id, ACL, or XVATTR then 1629 * make sure file system is at proper version 1630 */ 1631 1632 ksid = crgetsid(cr, KSID_OWNER); 1633 if (ksid) 1634 uid = ksid_getid(ksid); 1635 else 1636 uid = crgetuid(cr); 1637 if (zfsvfs->z_use_fuids == B_FALSE && 1638 (vsecp || (vap->va_mask & AT_XVATTR) || 1639 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1640 return (EINVAL); 1641 1642 ZFS_ENTER(zfsvfs); 1643 ZFS_VERIFY_ZP(dzp); 1644 zilog = zfsvfs->z_log; 1645 1646 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1647 ZFS_EXIT(zfsvfs); 1648 return (EINVAL); 1649 } 1650 1651 if (zfsvfs->z_utf8 && u8_validate(dirname, 1652 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1653 ZFS_EXIT(zfsvfs); 1654 return (EILSEQ); 1655 } 1656 if (flags & FIGNORECASE) 1657 zf |= ZCILOOK; 1658 1659 if (vap->va_mask & AT_XVATTR) 1660 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1661 crgetuid(cr), cr, vap->va_type)) != 0) { 1662 ZFS_EXIT(zfsvfs); 1663 return (error); 1664 } 1665 1666 /* 1667 * First make sure the new directory doesn't exist. 1668 */ 1669 top: 1670 *vpp = NULL; 1671 1672 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1673 NULL, NULL)) { 1674 ZFS_EXIT(zfsvfs); 1675 return (error); 1676 } 1677 1678 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1679 zfs_dirent_unlock(dl); 1680 ZFS_EXIT(zfsvfs); 1681 return (error); 1682 } 1683 1684 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1685 &acl_ids)) != 0) { 1686 zfs_dirent_unlock(dl); 1687 ZFS_EXIT(zfsvfs); 1688 return (error); 1689 } 1690 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1691 zfs_dirent_unlock(dl); 1692 ZFS_EXIT(zfsvfs); 1693 return (EDQUOT); 1694 } 1695 1696 /* 1697 * Add a new entry to the directory. 1698 */ 1699 tx = dmu_tx_create(zfsvfs->z_os); 1700 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1701 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1702 fuid_dirtied = zfsvfs->z_fuid_dirty; 1703 if (fuid_dirtied) 1704 zfs_fuid_txhold(zfsvfs, tx); 1705 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) 1706 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1707 0, SPA_MAXBLOCKSIZE); 1708 error = dmu_tx_assign(tx, TXG_NOWAIT); 1709 if (error) { 1710 zfs_acl_ids_free(&acl_ids); 1711 zfs_dirent_unlock(dl); 1712 if (error == ERESTART) { 1713 dmu_tx_wait(tx); 1714 dmu_tx_abort(tx); 1715 goto top; 1716 } 1717 dmu_tx_abort(tx); 1718 ZFS_EXIT(zfsvfs); 1719 return (error); 1720 } 1721 1722 /* 1723 * Create new node. 1724 */ 1725 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 1726 1727 if (fuid_dirtied) 1728 zfs_fuid_sync(zfsvfs, tx); 1729 /* 1730 * Now put new name in parent dir. 1731 */ 1732 (void) zfs_link_create(dl, zp, tx, ZNEW); 1733 1734 *vpp = ZTOV(zp); 1735 1736 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1737 if (flags & FIGNORECASE) 1738 txtype |= TX_CI; 1739 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1740 acl_ids.z_fuidp, vap); 1741 1742 zfs_acl_ids_free(&acl_ids); 1743 dmu_tx_commit(tx); 1744 1745 zfs_dirent_unlock(dl); 1746 1747 ZFS_EXIT(zfsvfs); 1748 return (0); 1749 } 1750 1751 /* 1752 * Remove a directory subdir entry. If the current working 1753 * directory is the same as the subdir to be removed, the 1754 * remove will fail. 1755 * 1756 * IN: dvp - vnode of directory to remove from. 1757 * name - name of directory to be removed. 1758 * cwd - vnode of current working directory. 1759 * cr - credentials of caller. 1760 * ct - caller context 1761 * flags - case flags 1762 * 1763 * RETURN: 0 if success 1764 * error code if failure 1765 * 1766 * Timestamps: 1767 * dvp - ctime|mtime updated 1768 */ 1769 /*ARGSUSED*/ 1770 static int 1771 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1772 caller_context_t *ct, int flags) 1773 { 1774 znode_t *dzp = VTOZ(dvp); 1775 znode_t *zp; 1776 vnode_t *vp; 1777 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1778 zilog_t *zilog; 1779 zfs_dirlock_t *dl; 1780 dmu_tx_t *tx; 1781 int error; 1782 int zflg = ZEXISTS; 1783 1784 ZFS_ENTER(zfsvfs); 1785 ZFS_VERIFY_ZP(dzp); 1786 zilog = zfsvfs->z_log; 1787 1788 if (flags & FIGNORECASE) 1789 zflg |= ZCILOOK; 1790 top: 1791 zp = NULL; 1792 1793 /* 1794 * Attempt to lock directory; fail if entry doesn't exist. 1795 */ 1796 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1797 NULL, NULL)) { 1798 ZFS_EXIT(zfsvfs); 1799 return (error); 1800 } 1801 1802 vp = ZTOV(zp); 1803 1804 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1805 goto out; 1806 } 1807 1808 if (vp->v_type != VDIR) { 1809 error = ENOTDIR; 1810 goto out; 1811 } 1812 1813 if (vp == cwd) { 1814 error = EINVAL; 1815 goto out; 1816 } 1817 1818 vnevent_rmdir(vp, dvp, name, ct); 1819 1820 /* 1821 * Grab a lock on the directory to make sure that noone is 1822 * trying to add (or lookup) entries while we are removing it. 1823 */ 1824 rw_enter(&zp->z_name_lock, RW_WRITER); 1825 1826 /* 1827 * Grab a lock on the parent pointer to make sure we play well 1828 * with the treewalk and directory rename code. 1829 */ 1830 rw_enter(&zp->z_parent_lock, RW_WRITER); 1831 1832 tx = dmu_tx_create(zfsvfs->z_os); 1833 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1834 dmu_tx_hold_bonus(tx, zp->z_id); 1835 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1836 error = dmu_tx_assign(tx, TXG_NOWAIT); 1837 if (error) { 1838 rw_exit(&zp->z_parent_lock); 1839 rw_exit(&zp->z_name_lock); 1840 zfs_dirent_unlock(dl); 1841 VN_RELE(vp); 1842 if (error == ERESTART) { 1843 dmu_tx_wait(tx); 1844 dmu_tx_abort(tx); 1845 goto top; 1846 } 1847 dmu_tx_abort(tx); 1848 ZFS_EXIT(zfsvfs); 1849 return (error); 1850 } 1851 1852 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1853 1854 if (error == 0) { 1855 uint64_t txtype = TX_RMDIR; 1856 if (flags & FIGNORECASE) 1857 txtype |= TX_CI; 1858 zfs_log_remove(zilog, tx, txtype, dzp, name); 1859 } 1860 1861 dmu_tx_commit(tx); 1862 1863 rw_exit(&zp->z_parent_lock); 1864 rw_exit(&zp->z_name_lock); 1865 out: 1866 zfs_dirent_unlock(dl); 1867 1868 VN_RELE(vp); 1869 1870 ZFS_EXIT(zfsvfs); 1871 return (error); 1872 } 1873 1874 /* 1875 * Read as many directory entries as will fit into the provided 1876 * buffer from the given directory cursor position (specified in 1877 * the uio structure. 1878 * 1879 * IN: vp - vnode of directory to read. 1880 * uio - structure supplying read location, range info, 1881 * and return buffer. 1882 * cr - credentials of caller. 1883 * ct - caller context 1884 * flags - case flags 1885 * 1886 * OUT: uio - updated offset and range, buffer filled. 1887 * eofp - set to true if end-of-file detected. 1888 * 1889 * RETURN: 0 if success 1890 * error code if failure 1891 * 1892 * Timestamps: 1893 * vp - atime updated 1894 * 1895 * Note that the low 4 bits of the cookie returned by zap is always zero. 1896 * This allows us to use the low range for "special" directory entries: 1897 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1898 * we use the offset 2 for the '.zfs' directory. 1899 */ 1900 /* ARGSUSED */ 1901 static int 1902 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 1903 caller_context_t *ct, int flags) 1904 { 1905 znode_t *zp = VTOZ(vp); 1906 iovec_t *iovp; 1907 edirent_t *eodp; 1908 dirent64_t *odp; 1909 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1910 objset_t *os; 1911 caddr_t outbuf; 1912 size_t bufsize; 1913 zap_cursor_t zc; 1914 zap_attribute_t zap; 1915 uint_t bytes_wanted; 1916 uint64_t offset; /* must be unsigned; checks for < 1 */ 1917 int local_eof; 1918 int outcount; 1919 int error; 1920 uint8_t prefetch; 1921 boolean_t check_sysattrs; 1922 1923 ZFS_ENTER(zfsvfs); 1924 ZFS_VERIFY_ZP(zp); 1925 1926 /* 1927 * If we are not given an eof variable, 1928 * use a local one. 1929 */ 1930 if (eofp == NULL) 1931 eofp = &local_eof; 1932 1933 /* 1934 * Check for valid iov_len. 1935 */ 1936 if (uio->uio_iov->iov_len <= 0) { 1937 ZFS_EXIT(zfsvfs); 1938 return (EINVAL); 1939 } 1940 1941 /* 1942 * Quit if directory has been removed (posix) 1943 */ 1944 if ((*eofp = zp->z_unlinked) != 0) { 1945 ZFS_EXIT(zfsvfs); 1946 return (0); 1947 } 1948 1949 error = 0; 1950 os = zfsvfs->z_os; 1951 offset = uio->uio_loffset; 1952 prefetch = zp->z_zn_prefetch; 1953 1954 /* 1955 * Initialize the iterator cursor. 1956 */ 1957 if (offset <= 3) { 1958 /* 1959 * Start iteration from the beginning of the directory. 1960 */ 1961 zap_cursor_init(&zc, os, zp->z_id); 1962 } else { 1963 /* 1964 * The offset is a serialized cursor. 1965 */ 1966 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1967 } 1968 1969 /* 1970 * Get space to change directory entries into fs independent format. 1971 */ 1972 iovp = uio->uio_iov; 1973 bytes_wanted = iovp->iov_len; 1974 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1975 bufsize = bytes_wanted; 1976 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1977 odp = (struct dirent64 *)outbuf; 1978 } else { 1979 bufsize = bytes_wanted; 1980 odp = (struct dirent64 *)iovp->iov_base; 1981 } 1982 eodp = (struct edirent *)odp; 1983 1984 /* 1985 * If this VFS supports the system attribute view interface; and 1986 * we're looking at an extended attribute directory; and we care 1987 * about normalization conflicts on this vfs; then we must check 1988 * for normalization conflicts with the sysattr name space. 1989 */ 1990 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 1991 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 1992 (flags & V_RDDIR_ENTFLAGS); 1993 1994 /* 1995 * Transform to file-system independent format 1996 */ 1997 outcount = 0; 1998 while (outcount < bytes_wanted) { 1999 ino64_t objnum; 2000 ushort_t reclen; 2001 off64_t *next; 2002 2003 /* 2004 * Special case `.', `..', and `.zfs'. 2005 */ 2006 if (offset == 0) { 2007 (void) strcpy(zap.za_name, "."); 2008 zap.za_normalization_conflict = 0; 2009 objnum = zp->z_id; 2010 } else if (offset == 1) { 2011 (void) strcpy(zap.za_name, ".."); 2012 zap.za_normalization_conflict = 0; 2013 objnum = zp->z_phys->zp_parent; 2014 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2015 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2016 zap.za_normalization_conflict = 0; 2017 objnum = ZFSCTL_INO_ROOT; 2018 } else { 2019 /* 2020 * Grab next entry. 2021 */ 2022 if (error = zap_cursor_retrieve(&zc, &zap)) { 2023 if ((*eofp = (error == ENOENT)) != 0) 2024 break; 2025 else 2026 goto update; 2027 } 2028 2029 if (zap.za_integer_length != 8 || 2030 zap.za_num_integers != 1) { 2031 cmn_err(CE_WARN, "zap_readdir: bad directory " 2032 "entry, obj = %lld, offset = %lld\n", 2033 (u_longlong_t)zp->z_id, 2034 (u_longlong_t)offset); 2035 error = ENXIO; 2036 goto update; 2037 } 2038 2039 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2040 /* 2041 * MacOS X can extract the object type here such as: 2042 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2043 */ 2044 2045 if (check_sysattrs && !zap.za_normalization_conflict) { 2046 zap.za_normalization_conflict = 2047 xattr_sysattr_casechk(zap.za_name); 2048 } 2049 } 2050 2051 if (flags & V_RDDIR_ACCFILTER) { 2052 /* 2053 * If we have no access at all, don't include 2054 * this entry in the returned information 2055 */ 2056 znode_t *ezp; 2057 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2058 goto skip_entry; 2059 if (!zfs_has_access(ezp, cr)) { 2060 VN_RELE(ZTOV(ezp)); 2061 goto skip_entry; 2062 } 2063 VN_RELE(ZTOV(ezp)); 2064 } 2065 2066 if (flags & V_RDDIR_ENTFLAGS) 2067 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2068 else 2069 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2070 2071 /* 2072 * Will this entry fit in the buffer? 2073 */ 2074 if (outcount + reclen > bufsize) { 2075 /* 2076 * Did we manage to fit anything in the buffer? 2077 */ 2078 if (!outcount) { 2079 error = EINVAL; 2080 goto update; 2081 } 2082 break; 2083 } 2084 if (flags & V_RDDIR_ENTFLAGS) { 2085 /* 2086 * Add extended flag entry: 2087 */ 2088 eodp->ed_ino = objnum; 2089 eodp->ed_reclen = reclen; 2090 /* NOTE: ed_off is the offset for the *next* entry */ 2091 next = &(eodp->ed_off); 2092 eodp->ed_eflags = zap.za_normalization_conflict ? 2093 ED_CASE_CONFLICT : 0; 2094 (void) strncpy(eodp->ed_name, zap.za_name, 2095 EDIRENT_NAMELEN(reclen)); 2096 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2097 } else { 2098 /* 2099 * Add normal entry: 2100 */ 2101 odp->d_ino = objnum; 2102 odp->d_reclen = reclen; 2103 /* NOTE: d_off is the offset for the *next* entry */ 2104 next = &(odp->d_off); 2105 (void) strncpy(odp->d_name, zap.za_name, 2106 DIRENT64_NAMELEN(reclen)); 2107 odp = (dirent64_t *)((intptr_t)odp + reclen); 2108 } 2109 outcount += reclen; 2110 2111 ASSERT(outcount <= bufsize); 2112 2113 /* Prefetch znode */ 2114 if (prefetch) 2115 dmu_prefetch(os, objnum, 0, 0); 2116 2117 skip_entry: 2118 /* 2119 * Move to the next entry, fill in the previous offset. 2120 */ 2121 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2122 zap_cursor_advance(&zc); 2123 offset = zap_cursor_serialize(&zc); 2124 } else { 2125 offset += 1; 2126 } 2127 *next = offset; 2128 } 2129 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2130 2131 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2132 iovp->iov_base += outcount; 2133 iovp->iov_len -= outcount; 2134 uio->uio_resid -= outcount; 2135 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2136 /* 2137 * Reset the pointer. 2138 */ 2139 offset = uio->uio_loffset; 2140 } 2141 2142 update: 2143 zap_cursor_fini(&zc); 2144 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2145 kmem_free(outbuf, bufsize); 2146 2147 if (error == ENOENT) 2148 error = 0; 2149 2150 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2151 2152 uio->uio_loffset = offset; 2153 ZFS_EXIT(zfsvfs); 2154 return (error); 2155 } 2156 2157 ulong_t zfs_fsync_sync_cnt = 4; 2158 2159 static int 2160 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2161 { 2162 znode_t *zp = VTOZ(vp); 2163 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2164 2165 /* 2166 * Regardless of whether this is required for standards conformance, 2167 * this is the logical behavior when fsync() is called on a file with 2168 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2169 * going to be pushed out as part of the zil_commit(). 2170 */ 2171 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2172 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2173 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2174 2175 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2176 2177 ZFS_ENTER(zfsvfs); 2178 ZFS_VERIFY_ZP(zp); 2179 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2180 ZFS_EXIT(zfsvfs); 2181 return (0); 2182 } 2183 2184 2185 /* 2186 * Get the requested file attributes and place them in the provided 2187 * vattr structure. 2188 * 2189 * IN: vp - vnode of file. 2190 * vap - va_mask identifies requested attributes. 2191 * If AT_XVATTR set, then optional attrs are requested 2192 * flags - ATTR_NOACLCHECK (CIFS server context) 2193 * cr - credentials of caller. 2194 * ct - caller context 2195 * 2196 * OUT: vap - attribute values. 2197 * 2198 * RETURN: 0 (always succeeds) 2199 */ 2200 /* ARGSUSED */ 2201 static int 2202 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2203 caller_context_t *ct) 2204 { 2205 znode_t *zp = VTOZ(vp); 2206 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2207 znode_phys_t *pzp; 2208 int error = 0; 2209 uint64_t links; 2210 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2211 xoptattr_t *xoap = NULL; 2212 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2213 2214 ZFS_ENTER(zfsvfs); 2215 ZFS_VERIFY_ZP(zp); 2216 pzp = zp->z_phys; 2217 2218 /* 2219 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2220 * Also, if we are the owner don't bother, since owner should 2221 * always be allowed to read basic attributes of file. 2222 */ 2223 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2224 (pzp->zp_uid != crgetuid(cr))) { 2225 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2226 skipaclchk, cr)) { 2227 ZFS_EXIT(zfsvfs); 2228 return (error); 2229 } 2230 } 2231 2232 /* 2233 * Return all attributes. It's cheaper to provide the answer 2234 * than to determine whether we were asked the question. 2235 */ 2236 2237 mutex_enter(&zp->z_lock); 2238 vap->va_type = vp->v_type; 2239 vap->va_mode = pzp->zp_mode & MODEMASK; 2240 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2241 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2242 vap->va_nodeid = zp->z_id; 2243 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2244 links = pzp->zp_links + 1; 2245 else 2246 links = pzp->zp_links; 2247 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2248 vap->va_size = pzp->zp_size; 2249 vap->va_rdev = vp->v_rdev; 2250 vap->va_seq = zp->z_seq; 2251 2252 /* 2253 * Add in any requested optional attributes and the create time. 2254 * Also set the corresponding bits in the returned attribute bitmap. 2255 */ 2256 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2257 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2258 xoap->xoa_archive = 2259 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2260 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2261 } 2262 2263 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2264 xoap->xoa_readonly = 2265 ((pzp->zp_flags & ZFS_READONLY) != 0); 2266 XVA_SET_RTN(xvap, XAT_READONLY); 2267 } 2268 2269 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2270 xoap->xoa_system = 2271 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2272 XVA_SET_RTN(xvap, XAT_SYSTEM); 2273 } 2274 2275 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2276 xoap->xoa_hidden = 2277 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2278 XVA_SET_RTN(xvap, XAT_HIDDEN); 2279 } 2280 2281 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2282 xoap->xoa_nounlink = 2283 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2284 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2285 } 2286 2287 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2288 xoap->xoa_immutable = 2289 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2290 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2291 } 2292 2293 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2294 xoap->xoa_appendonly = 2295 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2296 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2297 } 2298 2299 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2300 xoap->xoa_nodump = 2301 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2302 XVA_SET_RTN(xvap, XAT_NODUMP); 2303 } 2304 2305 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2306 xoap->xoa_opaque = 2307 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2308 XVA_SET_RTN(xvap, XAT_OPAQUE); 2309 } 2310 2311 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2312 xoap->xoa_av_quarantined = 2313 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2314 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2315 } 2316 2317 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2318 xoap->xoa_av_modified = 2319 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2320 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2321 } 2322 2323 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2324 vp->v_type == VREG && 2325 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2326 size_t len; 2327 dmu_object_info_t doi; 2328 2329 /* 2330 * Only VREG files have anti-virus scanstamps, so we 2331 * won't conflict with symlinks in the bonus buffer. 2332 */ 2333 dmu_object_info_from_db(zp->z_dbuf, &doi); 2334 len = sizeof (xoap->xoa_av_scanstamp) + 2335 sizeof (znode_phys_t); 2336 if (len <= doi.doi_bonus_size) { 2337 /* 2338 * pzp points to the start of the 2339 * znode_phys_t. pzp + 1 points to the 2340 * first byte after the znode_phys_t. 2341 */ 2342 (void) memcpy(xoap->xoa_av_scanstamp, 2343 pzp + 1, 2344 sizeof (xoap->xoa_av_scanstamp)); 2345 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2346 } 2347 } 2348 2349 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2350 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2351 XVA_SET_RTN(xvap, XAT_CREATETIME); 2352 } 2353 } 2354 2355 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2356 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2357 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2358 2359 mutex_exit(&zp->z_lock); 2360 2361 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 2362 2363 if (zp->z_blksz == 0) { 2364 /* 2365 * Block size hasn't been set; suggest maximal I/O transfers. 2366 */ 2367 vap->va_blksize = zfsvfs->z_max_blksz; 2368 } 2369 2370 ZFS_EXIT(zfsvfs); 2371 return (0); 2372 } 2373 2374 /* 2375 * Set the file attributes to the values contained in the 2376 * vattr structure. 2377 * 2378 * IN: vp - vnode of file to be modified. 2379 * vap - new attribute values. 2380 * If AT_XVATTR set, then optional attrs are being set 2381 * flags - ATTR_UTIME set if non-default time values provided. 2382 * - ATTR_NOACLCHECK (CIFS context only). 2383 * cr - credentials of caller. 2384 * ct - caller context 2385 * 2386 * RETURN: 0 if success 2387 * error code if failure 2388 * 2389 * Timestamps: 2390 * vp - ctime updated, mtime updated if size changed. 2391 */ 2392 /* ARGSUSED */ 2393 static int 2394 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2395 caller_context_t *ct) 2396 { 2397 znode_t *zp = VTOZ(vp); 2398 znode_phys_t *pzp; 2399 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2400 zilog_t *zilog; 2401 dmu_tx_t *tx; 2402 vattr_t oldva; 2403 xvattr_t tmpxvattr; 2404 uint_t mask = vap->va_mask; 2405 uint_t saved_mask; 2406 int trim_mask = 0; 2407 uint64_t new_mode; 2408 uint64_t new_uid, new_gid; 2409 znode_t *attrzp; 2410 int need_policy = FALSE; 2411 int err; 2412 zfs_fuid_info_t *fuidp = NULL; 2413 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2414 xoptattr_t *xoap; 2415 zfs_acl_t *aclp = NULL; 2416 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2417 boolean_t fuid_dirtied = B_FALSE; 2418 2419 if (mask == 0) 2420 return (0); 2421 2422 if (mask & AT_NOSET) 2423 return (EINVAL); 2424 2425 ZFS_ENTER(zfsvfs); 2426 ZFS_VERIFY_ZP(zp); 2427 2428 pzp = zp->z_phys; 2429 zilog = zfsvfs->z_log; 2430 2431 /* 2432 * Make sure that if we have ephemeral uid/gid or xvattr specified 2433 * that file system is at proper version level 2434 */ 2435 2436 if (zfsvfs->z_use_fuids == B_FALSE && 2437 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2438 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2439 (mask & AT_XVATTR))) { 2440 ZFS_EXIT(zfsvfs); 2441 return (EINVAL); 2442 } 2443 2444 if (mask & AT_SIZE && vp->v_type == VDIR) { 2445 ZFS_EXIT(zfsvfs); 2446 return (EISDIR); 2447 } 2448 2449 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2450 ZFS_EXIT(zfsvfs); 2451 return (EINVAL); 2452 } 2453 2454 /* 2455 * If this is an xvattr_t, then get a pointer to the structure of 2456 * optional attributes. If this is NULL, then we have a vattr_t. 2457 */ 2458 xoap = xva_getxoptattr(xvap); 2459 2460 xva_init(&tmpxvattr); 2461 2462 /* 2463 * Immutable files can only alter immutable bit and atime 2464 */ 2465 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2466 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2467 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2468 ZFS_EXIT(zfsvfs); 2469 return (EPERM); 2470 } 2471 2472 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2473 ZFS_EXIT(zfsvfs); 2474 return (EPERM); 2475 } 2476 2477 /* 2478 * Verify timestamps doesn't overflow 32 bits. 2479 * ZFS can handle large timestamps, but 32bit syscalls can't 2480 * handle times greater than 2039. This check should be removed 2481 * once large timestamps are fully supported. 2482 */ 2483 if (mask & (AT_ATIME | AT_MTIME)) { 2484 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2485 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2486 ZFS_EXIT(zfsvfs); 2487 return (EOVERFLOW); 2488 } 2489 } 2490 2491 top: 2492 attrzp = NULL; 2493 2494 /* Can this be moved to before the top label? */ 2495 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2496 ZFS_EXIT(zfsvfs); 2497 return (EROFS); 2498 } 2499 2500 /* 2501 * First validate permissions 2502 */ 2503 2504 if (mask & AT_SIZE) { 2505 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2506 if (err) { 2507 ZFS_EXIT(zfsvfs); 2508 return (err); 2509 } 2510 /* 2511 * XXX - Note, we are not providing any open 2512 * mode flags here (like FNDELAY), so we may 2513 * block if there are locks present... this 2514 * should be addressed in openat(). 2515 */ 2516 /* XXX - would it be OK to generate a log record here? */ 2517 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2518 if (err) { 2519 ZFS_EXIT(zfsvfs); 2520 return (err); 2521 } 2522 } 2523 2524 if (mask & (AT_ATIME|AT_MTIME) || 2525 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2526 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2527 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2528 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2529 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2530 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2531 skipaclchk, cr); 2532 2533 if (mask & (AT_UID|AT_GID)) { 2534 int idmask = (mask & (AT_UID|AT_GID)); 2535 int take_owner; 2536 int take_group; 2537 2538 /* 2539 * NOTE: even if a new mode is being set, 2540 * we may clear S_ISUID/S_ISGID bits. 2541 */ 2542 2543 if (!(mask & AT_MODE)) 2544 vap->va_mode = pzp->zp_mode; 2545 2546 /* 2547 * Take ownership or chgrp to group we are a member of 2548 */ 2549 2550 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2551 take_group = (mask & AT_GID) && 2552 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2553 2554 /* 2555 * If both AT_UID and AT_GID are set then take_owner and 2556 * take_group must both be set in order to allow taking 2557 * ownership. 2558 * 2559 * Otherwise, send the check through secpolicy_vnode_setattr() 2560 * 2561 */ 2562 2563 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2564 ((idmask == AT_UID) && take_owner) || 2565 ((idmask == AT_GID) && take_group)) { 2566 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2567 skipaclchk, cr) == 0) { 2568 /* 2569 * Remove setuid/setgid for non-privileged users 2570 */ 2571 secpolicy_setid_clear(vap, cr); 2572 trim_mask = (mask & (AT_UID|AT_GID)); 2573 } else { 2574 need_policy = TRUE; 2575 } 2576 } else { 2577 need_policy = TRUE; 2578 } 2579 } 2580 2581 mutex_enter(&zp->z_lock); 2582 oldva.va_mode = pzp->zp_mode; 2583 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2584 if (mask & AT_XVATTR) { 2585 /* 2586 * Update xvattr mask to include only those attributes 2587 * that are actually changing. 2588 * 2589 * the bits will be restored prior to actually setting 2590 * the attributes so the caller thinks they were set. 2591 */ 2592 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2593 if (xoap->xoa_appendonly != 2594 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) { 2595 need_policy = TRUE; 2596 } else { 2597 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2598 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2599 } 2600 } 2601 2602 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2603 if (xoap->xoa_nounlink != 2604 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) { 2605 need_policy = TRUE; 2606 } else { 2607 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2608 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2609 } 2610 } 2611 2612 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2613 if (xoap->xoa_immutable != 2614 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) { 2615 need_policy = TRUE; 2616 } else { 2617 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2618 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2619 } 2620 } 2621 2622 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2623 if (xoap->xoa_nodump != 2624 ((pzp->zp_flags & ZFS_NODUMP) != 0)) { 2625 need_policy = TRUE; 2626 } else { 2627 XVA_CLR_REQ(xvap, XAT_NODUMP); 2628 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2629 } 2630 } 2631 2632 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2633 if (xoap->xoa_av_modified != 2634 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) { 2635 need_policy = TRUE; 2636 } else { 2637 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2638 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2639 } 2640 } 2641 2642 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2643 if ((vp->v_type != VREG && 2644 xoap->xoa_av_quarantined) || 2645 xoap->xoa_av_quarantined != 2646 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)) { 2647 need_policy = TRUE; 2648 } else { 2649 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2650 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2651 } 2652 } 2653 2654 if (need_policy == FALSE && 2655 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2656 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2657 need_policy = TRUE; 2658 } 2659 } 2660 2661 mutex_exit(&zp->z_lock); 2662 2663 if (mask & AT_MODE) { 2664 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2665 err = secpolicy_setid_setsticky_clear(vp, vap, 2666 &oldva, cr); 2667 if (err) { 2668 ZFS_EXIT(zfsvfs); 2669 return (err); 2670 } 2671 trim_mask |= AT_MODE; 2672 } else { 2673 need_policy = TRUE; 2674 } 2675 } 2676 2677 if (need_policy) { 2678 /* 2679 * If trim_mask is set then take ownership 2680 * has been granted or write_acl is present and user 2681 * has the ability to modify mode. In that case remove 2682 * UID|GID and or MODE from mask so that 2683 * secpolicy_vnode_setattr() doesn't revoke it. 2684 */ 2685 2686 if (trim_mask) { 2687 saved_mask = vap->va_mask; 2688 vap->va_mask &= ~trim_mask; 2689 } 2690 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2691 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2692 if (err) { 2693 ZFS_EXIT(zfsvfs); 2694 return (err); 2695 } 2696 2697 if (trim_mask) 2698 vap->va_mask |= saved_mask; 2699 } 2700 2701 /* 2702 * secpolicy_vnode_setattr, or take ownership may have 2703 * changed va_mask 2704 */ 2705 mask = vap->va_mask; 2706 2707 tx = dmu_tx_create(zfsvfs->z_os); 2708 dmu_tx_hold_bonus(tx, zp->z_id); 2709 2710 if (mask & AT_MODE) { 2711 uint64_t pmode = pzp->zp_mode; 2712 2713 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2714 2715 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 2716 goto out; 2717 if (pzp->zp_acl.z_acl_extern_obj) { 2718 /* Are we upgrading ACL from old V0 format to new V1 */ 2719 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2720 pzp->zp_acl.z_acl_version == 2721 ZFS_ACL_VERSION_INITIAL) { 2722 dmu_tx_hold_free(tx, 2723 pzp->zp_acl.z_acl_extern_obj, 0, 2724 DMU_OBJECT_END); 2725 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2726 0, aclp->z_acl_bytes); 2727 } else { 2728 dmu_tx_hold_write(tx, 2729 pzp->zp_acl.z_acl_extern_obj, 0, 2730 aclp->z_acl_bytes); 2731 } 2732 } else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2733 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2734 0, aclp->z_acl_bytes); 2735 } 2736 } 2737 2738 if (mask & (AT_UID | AT_GID)) { 2739 if (pzp->zp_xattr) { 2740 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2741 if (err) 2742 goto out; 2743 dmu_tx_hold_bonus(tx, attrzp->z_id); 2744 } 2745 if (mask & AT_UID) { 2746 new_uid = zfs_fuid_create(zfsvfs, 2747 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2748 if (new_uid != pzp->zp_uid && 2749 zfs_usergroup_overquota(zfsvfs, B_FALSE, new_uid)) { 2750 err = EDQUOT; 2751 goto out; 2752 } 2753 } 2754 2755 if (mask & AT_GID) { 2756 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2757 cr, ZFS_GROUP, &fuidp); 2758 if (new_gid != pzp->zp_gid && 2759 zfs_usergroup_overquota(zfsvfs, B_TRUE, new_gid)) { 2760 err = EDQUOT; 2761 goto out; 2762 } 2763 } 2764 fuid_dirtied = zfsvfs->z_fuid_dirty; 2765 if (fuid_dirtied) { 2766 if (zfsvfs->z_fuid_obj == 0) { 2767 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2768 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2769 FUID_SIZE_ESTIMATE(zfsvfs)); 2770 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 2771 FALSE, NULL); 2772 } else { 2773 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 2774 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 2775 FUID_SIZE_ESTIMATE(zfsvfs)); 2776 } 2777 } 2778 } 2779 2780 err = dmu_tx_assign(tx, TXG_NOWAIT); 2781 if (err) { 2782 if (err == ERESTART) 2783 dmu_tx_wait(tx); 2784 goto out; 2785 } 2786 2787 dmu_buf_will_dirty(zp->z_dbuf, tx); 2788 2789 /* 2790 * Set each attribute requested. 2791 * We group settings according to the locks they need to acquire. 2792 * 2793 * Note: you cannot set ctime directly, although it will be 2794 * updated as a side-effect of calling this function. 2795 */ 2796 2797 mutex_enter(&zp->z_lock); 2798 2799 if (mask & AT_MODE) { 2800 mutex_enter(&zp->z_acl_lock); 2801 zp->z_phys->zp_mode = new_mode; 2802 err = zfs_aclset_common(zp, aclp, cr, tx); 2803 ASSERT3U(err, ==, 0); 2804 mutex_exit(&zp->z_acl_lock); 2805 } 2806 2807 if (attrzp) 2808 mutex_enter(&attrzp->z_lock); 2809 2810 if (mask & AT_UID) { 2811 pzp->zp_uid = new_uid; 2812 if (attrzp) 2813 attrzp->z_phys->zp_uid = new_uid; 2814 } 2815 2816 if (mask & AT_GID) { 2817 pzp->zp_gid = new_gid; 2818 if (attrzp) 2819 attrzp->z_phys->zp_gid = new_gid; 2820 } 2821 2822 if (attrzp) 2823 mutex_exit(&attrzp->z_lock); 2824 2825 if (mask & AT_ATIME) 2826 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2827 2828 if (mask & AT_MTIME) 2829 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2830 2831 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 2832 if (mask & AT_SIZE) 2833 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2834 else if (mask != 0) 2835 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2836 /* 2837 * Do this after setting timestamps to prevent timestamp 2838 * update from toggling bit 2839 */ 2840 2841 if (xoap && (mask & AT_XVATTR)) { 2842 2843 /* 2844 * restore trimmed off masks 2845 * so that return masks can be set for caller. 2846 */ 2847 2848 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 2849 XVA_SET_REQ(xvap, XAT_APPENDONLY); 2850 } 2851 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 2852 XVA_SET_REQ(xvap, XAT_NOUNLINK); 2853 } 2854 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 2855 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 2856 } 2857 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 2858 XVA_SET_REQ(xvap, XAT_NODUMP); 2859 } 2860 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 2861 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 2862 } 2863 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 2864 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 2865 } 2866 2867 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 2868 size_t len; 2869 dmu_object_info_t doi; 2870 2871 ASSERT(vp->v_type == VREG); 2872 2873 /* Grow the bonus buffer if necessary. */ 2874 dmu_object_info_from_db(zp->z_dbuf, &doi); 2875 len = sizeof (xoap->xoa_av_scanstamp) + 2876 sizeof (znode_phys_t); 2877 if (len > doi.doi_bonus_size) 2878 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 2879 } 2880 zfs_xvattr_set(zp, xvap); 2881 } 2882 2883 if (fuid_dirtied) 2884 zfs_fuid_sync(zfsvfs, tx); 2885 2886 if (mask != 0) 2887 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2888 2889 mutex_exit(&zp->z_lock); 2890 2891 out: 2892 if (attrzp) 2893 VN_RELE(ZTOV(attrzp)); 2894 2895 if (fuidp) { 2896 zfs_fuid_info_free(fuidp); 2897 fuidp = NULL; 2898 } 2899 2900 if (err) 2901 dmu_tx_abort(tx); 2902 else 2903 dmu_tx_commit(tx); 2904 2905 if (err == ERESTART) 2906 goto top; 2907 2908 ZFS_EXIT(zfsvfs); 2909 return (err); 2910 } 2911 2912 typedef struct zfs_zlock { 2913 krwlock_t *zl_rwlock; /* lock we acquired */ 2914 znode_t *zl_znode; /* znode we held */ 2915 struct zfs_zlock *zl_next; /* next in list */ 2916 } zfs_zlock_t; 2917 2918 /* 2919 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2920 */ 2921 static void 2922 zfs_rename_unlock(zfs_zlock_t **zlpp) 2923 { 2924 zfs_zlock_t *zl; 2925 2926 while ((zl = *zlpp) != NULL) { 2927 if (zl->zl_znode != NULL) 2928 VN_RELE(ZTOV(zl->zl_znode)); 2929 rw_exit(zl->zl_rwlock); 2930 *zlpp = zl->zl_next; 2931 kmem_free(zl, sizeof (*zl)); 2932 } 2933 } 2934 2935 /* 2936 * Search back through the directory tree, using the ".." entries. 2937 * Lock each directory in the chain to prevent concurrent renames. 2938 * Fail any attempt to move a directory into one of its own descendants. 2939 * XXX - z_parent_lock can overlap with map or grow locks 2940 */ 2941 static int 2942 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2943 { 2944 zfs_zlock_t *zl; 2945 znode_t *zp = tdzp; 2946 uint64_t rootid = zp->z_zfsvfs->z_root; 2947 uint64_t *oidp = &zp->z_id; 2948 krwlock_t *rwlp = &szp->z_parent_lock; 2949 krw_t rw = RW_WRITER; 2950 2951 /* 2952 * First pass write-locks szp and compares to zp->z_id. 2953 * Later passes read-lock zp and compare to zp->z_parent. 2954 */ 2955 do { 2956 if (!rw_tryenter(rwlp, rw)) { 2957 /* 2958 * Another thread is renaming in this path. 2959 * Note that if we are a WRITER, we don't have any 2960 * parent_locks held yet. 2961 */ 2962 if (rw == RW_READER && zp->z_id > szp->z_id) { 2963 /* 2964 * Drop our locks and restart 2965 */ 2966 zfs_rename_unlock(&zl); 2967 *zlpp = NULL; 2968 zp = tdzp; 2969 oidp = &zp->z_id; 2970 rwlp = &szp->z_parent_lock; 2971 rw = RW_WRITER; 2972 continue; 2973 } else { 2974 /* 2975 * Wait for other thread to drop its locks 2976 */ 2977 rw_enter(rwlp, rw); 2978 } 2979 } 2980 2981 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2982 zl->zl_rwlock = rwlp; 2983 zl->zl_znode = NULL; 2984 zl->zl_next = *zlpp; 2985 *zlpp = zl; 2986 2987 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2988 return (EINVAL); 2989 2990 if (*oidp == rootid) /* We've hit the top */ 2991 return (0); 2992 2993 if (rw == RW_READER) { /* i.e. not the first pass */ 2994 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2995 if (error) 2996 return (error); 2997 zl->zl_znode = zp; 2998 } 2999 oidp = &zp->z_phys->zp_parent; 3000 rwlp = &zp->z_parent_lock; 3001 rw = RW_READER; 3002 3003 } while (zp->z_id != sdzp->z_id); 3004 3005 return (0); 3006 } 3007 3008 /* 3009 * Move an entry from the provided source directory to the target 3010 * directory. Change the entry name as indicated. 3011 * 3012 * IN: sdvp - Source directory containing the "old entry". 3013 * snm - Old entry name. 3014 * tdvp - Target directory to contain the "new entry". 3015 * tnm - New entry name. 3016 * cr - credentials of caller. 3017 * ct - caller context 3018 * flags - case flags 3019 * 3020 * RETURN: 0 if success 3021 * error code if failure 3022 * 3023 * Timestamps: 3024 * sdvp,tdvp - ctime|mtime updated 3025 */ 3026 /*ARGSUSED*/ 3027 static int 3028 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3029 caller_context_t *ct, int flags) 3030 { 3031 znode_t *tdzp, *szp, *tzp; 3032 znode_t *sdzp = VTOZ(sdvp); 3033 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3034 zilog_t *zilog; 3035 vnode_t *realvp; 3036 zfs_dirlock_t *sdl, *tdl; 3037 dmu_tx_t *tx; 3038 zfs_zlock_t *zl; 3039 int cmp, serr, terr; 3040 int error = 0; 3041 int zflg = 0; 3042 3043 ZFS_ENTER(zfsvfs); 3044 ZFS_VERIFY_ZP(sdzp); 3045 zilog = zfsvfs->z_log; 3046 3047 /* 3048 * Make sure we have the real vp for the target directory. 3049 */ 3050 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3051 tdvp = realvp; 3052 3053 if (tdvp->v_vfsp != sdvp->v_vfsp) { 3054 ZFS_EXIT(zfsvfs); 3055 return (EXDEV); 3056 } 3057 3058 tdzp = VTOZ(tdvp); 3059 ZFS_VERIFY_ZP(tdzp); 3060 if (zfsvfs->z_utf8 && u8_validate(tnm, 3061 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3062 ZFS_EXIT(zfsvfs); 3063 return (EILSEQ); 3064 } 3065 3066 if (flags & FIGNORECASE) 3067 zflg |= ZCILOOK; 3068 3069 top: 3070 szp = NULL; 3071 tzp = NULL; 3072 zl = NULL; 3073 3074 /* 3075 * This is to prevent the creation of links into attribute space 3076 * by renaming a linked file into/outof an attribute directory. 3077 * See the comment in zfs_link() for why this is considered bad. 3078 */ 3079 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 3080 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 3081 ZFS_EXIT(zfsvfs); 3082 return (EINVAL); 3083 } 3084 3085 /* 3086 * Lock source and target directory entries. To prevent deadlock, 3087 * a lock ordering must be defined. We lock the directory with 3088 * the smallest object id first, or if it's a tie, the one with 3089 * the lexically first name. 3090 */ 3091 if (sdzp->z_id < tdzp->z_id) { 3092 cmp = -1; 3093 } else if (sdzp->z_id > tdzp->z_id) { 3094 cmp = 1; 3095 } else { 3096 /* 3097 * First compare the two name arguments without 3098 * considering any case folding. 3099 */ 3100 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3101 3102 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3103 ASSERT(error == 0 || !zfsvfs->z_utf8); 3104 if (cmp == 0) { 3105 /* 3106 * POSIX: "If the old argument and the new argument 3107 * both refer to links to the same existing file, 3108 * the rename() function shall return successfully 3109 * and perform no other action." 3110 */ 3111 ZFS_EXIT(zfsvfs); 3112 return (0); 3113 } 3114 /* 3115 * If the file system is case-folding, then we may 3116 * have some more checking to do. A case-folding file 3117 * system is either supporting mixed case sensitivity 3118 * access or is completely case-insensitive. Note 3119 * that the file system is always case preserving. 3120 * 3121 * In mixed sensitivity mode case sensitive behavior 3122 * is the default. FIGNORECASE must be used to 3123 * explicitly request case insensitive behavior. 3124 * 3125 * If the source and target names provided differ only 3126 * by case (e.g., a request to rename 'tim' to 'Tim'), 3127 * we will treat this as a special case in the 3128 * case-insensitive mode: as long as the source name 3129 * is an exact match, we will allow this to proceed as 3130 * a name-change request. 3131 */ 3132 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3133 (zfsvfs->z_case == ZFS_CASE_MIXED && 3134 flags & FIGNORECASE)) && 3135 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3136 &error) == 0) { 3137 /* 3138 * case preserving rename request, require exact 3139 * name matches 3140 */ 3141 zflg |= ZCIEXACT; 3142 zflg &= ~ZCILOOK; 3143 } 3144 } 3145 3146 if (cmp < 0) { 3147 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3148 ZEXISTS | zflg, NULL, NULL); 3149 terr = zfs_dirent_lock(&tdl, 3150 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3151 } else { 3152 terr = zfs_dirent_lock(&tdl, 3153 tdzp, tnm, &tzp, zflg, NULL, NULL); 3154 serr = zfs_dirent_lock(&sdl, 3155 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3156 NULL, NULL); 3157 } 3158 3159 if (serr) { 3160 /* 3161 * Source entry invalid or not there. 3162 */ 3163 if (!terr) { 3164 zfs_dirent_unlock(tdl); 3165 if (tzp) 3166 VN_RELE(ZTOV(tzp)); 3167 } 3168 if (strcmp(snm, "..") == 0) 3169 serr = EINVAL; 3170 ZFS_EXIT(zfsvfs); 3171 return (serr); 3172 } 3173 if (terr) { 3174 zfs_dirent_unlock(sdl); 3175 VN_RELE(ZTOV(szp)); 3176 if (strcmp(tnm, "..") == 0) 3177 terr = EINVAL; 3178 ZFS_EXIT(zfsvfs); 3179 return (terr); 3180 } 3181 3182 /* 3183 * Must have write access at the source to remove the old entry 3184 * and write access at the target to create the new entry. 3185 * Note that if target and source are the same, this can be 3186 * done in a single check. 3187 */ 3188 3189 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3190 goto out; 3191 3192 if (ZTOV(szp)->v_type == VDIR) { 3193 /* 3194 * Check to make sure rename is valid. 3195 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3196 */ 3197 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3198 goto out; 3199 } 3200 3201 /* 3202 * Does target exist? 3203 */ 3204 if (tzp) { 3205 /* 3206 * Source and target must be the same type. 3207 */ 3208 if (ZTOV(szp)->v_type == VDIR) { 3209 if (ZTOV(tzp)->v_type != VDIR) { 3210 error = ENOTDIR; 3211 goto out; 3212 } 3213 } else { 3214 if (ZTOV(tzp)->v_type == VDIR) { 3215 error = EISDIR; 3216 goto out; 3217 } 3218 } 3219 /* 3220 * POSIX dictates that when the source and target 3221 * entries refer to the same file object, rename 3222 * must do nothing and exit without error. 3223 */ 3224 if (szp->z_id == tzp->z_id) { 3225 error = 0; 3226 goto out; 3227 } 3228 } 3229 3230 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3231 if (tzp) 3232 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3233 3234 /* 3235 * notify the target directory if it is not the same 3236 * as source directory. 3237 */ 3238 if (tdvp != sdvp) { 3239 vnevent_rename_dest_dir(tdvp, ct); 3240 } 3241 3242 tx = dmu_tx_create(zfsvfs->z_os); 3243 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3244 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3245 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3246 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3247 if (sdzp != tdzp) 3248 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3249 if (tzp) 3250 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3251 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3252 error = dmu_tx_assign(tx, TXG_NOWAIT); 3253 if (error) { 3254 if (zl != NULL) 3255 zfs_rename_unlock(&zl); 3256 zfs_dirent_unlock(sdl); 3257 zfs_dirent_unlock(tdl); 3258 VN_RELE(ZTOV(szp)); 3259 if (tzp) 3260 VN_RELE(ZTOV(tzp)); 3261 if (error == ERESTART) { 3262 dmu_tx_wait(tx); 3263 dmu_tx_abort(tx); 3264 goto top; 3265 } 3266 dmu_tx_abort(tx); 3267 ZFS_EXIT(zfsvfs); 3268 return (error); 3269 } 3270 3271 if (tzp) /* Attempt to remove the existing target */ 3272 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3273 3274 if (error == 0) { 3275 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3276 if (error == 0) { 3277 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3278 3279 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3280 ASSERT(error == 0); 3281 3282 zfs_log_rename(zilog, tx, 3283 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3284 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3285 3286 /* Update path information for the target vnode */ 3287 vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm)); 3288 } 3289 } 3290 3291 dmu_tx_commit(tx); 3292 out: 3293 if (zl != NULL) 3294 zfs_rename_unlock(&zl); 3295 3296 zfs_dirent_unlock(sdl); 3297 zfs_dirent_unlock(tdl); 3298 3299 VN_RELE(ZTOV(szp)); 3300 if (tzp) 3301 VN_RELE(ZTOV(tzp)); 3302 3303 ZFS_EXIT(zfsvfs); 3304 return (error); 3305 } 3306 3307 /* 3308 * Insert the indicated symbolic reference entry into the directory. 3309 * 3310 * IN: dvp - Directory to contain new symbolic link. 3311 * link - Name for new symlink entry. 3312 * vap - Attributes of new entry. 3313 * target - Target path of new symlink. 3314 * cr - credentials of caller. 3315 * ct - caller context 3316 * flags - case flags 3317 * 3318 * RETURN: 0 if success 3319 * error code if failure 3320 * 3321 * Timestamps: 3322 * dvp - ctime|mtime updated 3323 */ 3324 /*ARGSUSED*/ 3325 static int 3326 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3327 caller_context_t *ct, int flags) 3328 { 3329 znode_t *zp, *dzp = VTOZ(dvp); 3330 zfs_dirlock_t *dl; 3331 dmu_tx_t *tx; 3332 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3333 zilog_t *zilog; 3334 int len = strlen(link); 3335 int error; 3336 int zflg = ZNEW; 3337 zfs_acl_ids_t acl_ids; 3338 boolean_t fuid_dirtied; 3339 3340 ASSERT(vap->va_type == VLNK); 3341 3342 ZFS_ENTER(zfsvfs); 3343 ZFS_VERIFY_ZP(dzp); 3344 zilog = zfsvfs->z_log; 3345 3346 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3347 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3348 ZFS_EXIT(zfsvfs); 3349 return (EILSEQ); 3350 } 3351 if (flags & FIGNORECASE) 3352 zflg |= ZCILOOK; 3353 top: 3354 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3355 ZFS_EXIT(zfsvfs); 3356 return (error); 3357 } 3358 3359 if (len > MAXPATHLEN) { 3360 ZFS_EXIT(zfsvfs); 3361 return (ENAMETOOLONG); 3362 } 3363 3364 /* 3365 * Attempt to lock directory; fail if entry already exists. 3366 */ 3367 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3368 if (error) { 3369 ZFS_EXIT(zfsvfs); 3370 return (error); 3371 } 3372 3373 VERIFY(0 == zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids)); 3374 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3375 zfs_acl_ids_free(&acl_ids); 3376 zfs_dirent_unlock(dl); 3377 ZFS_EXIT(zfsvfs); 3378 return (EDQUOT); 3379 } 3380 tx = dmu_tx_create(zfsvfs->z_os); 3381 fuid_dirtied = zfsvfs->z_fuid_dirty; 3382 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3383 dmu_tx_hold_bonus(tx, dzp->z_id); 3384 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3385 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) 3386 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3387 if (fuid_dirtied) 3388 zfs_fuid_txhold(zfsvfs, tx); 3389 error = dmu_tx_assign(tx, TXG_NOWAIT); 3390 if (error) { 3391 zfs_acl_ids_free(&acl_ids); 3392 zfs_dirent_unlock(dl); 3393 if (error == ERESTART) { 3394 dmu_tx_wait(tx); 3395 dmu_tx_abort(tx); 3396 goto top; 3397 } 3398 dmu_tx_abort(tx); 3399 ZFS_EXIT(zfsvfs); 3400 return (error); 3401 } 3402 3403 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3404 3405 /* 3406 * Create a new object for the symlink. 3407 * Put the link content into bonus buffer if it will fit; 3408 * otherwise, store it just like any other file data. 3409 */ 3410 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3411 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, &acl_ids); 3412 if (len != 0) 3413 bcopy(link, zp->z_phys + 1, len); 3414 } else { 3415 dmu_buf_t *dbp; 3416 3417 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 3418 3419 if (fuid_dirtied) 3420 zfs_fuid_sync(zfsvfs, tx); 3421 /* 3422 * Nothing can access the znode yet so no locking needed 3423 * for growing the znode's blocksize. 3424 */ 3425 zfs_grow_blocksize(zp, len, tx); 3426 3427 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3428 zp->z_id, 0, FTAG, &dbp)); 3429 dmu_buf_will_dirty(dbp, tx); 3430 3431 ASSERT3U(len, <=, dbp->db_size); 3432 bcopy(link, dbp->db_data, len); 3433 dmu_buf_rele(dbp, FTAG); 3434 } 3435 zp->z_phys->zp_size = len; 3436 3437 /* 3438 * Insert the new object into the directory. 3439 */ 3440 (void) zfs_link_create(dl, zp, tx, ZNEW); 3441 if (error == 0) { 3442 uint64_t txtype = TX_SYMLINK; 3443 if (flags & FIGNORECASE) 3444 txtype |= TX_CI; 3445 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3446 } 3447 3448 zfs_acl_ids_free(&acl_ids); 3449 3450 dmu_tx_commit(tx); 3451 3452 zfs_dirent_unlock(dl); 3453 3454 VN_RELE(ZTOV(zp)); 3455 3456 ZFS_EXIT(zfsvfs); 3457 return (error); 3458 } 3459 3460 /* 3461 * Return, in the buffer contained in the provided uio structure, 3462 * the symbolic path referred to by vp. 3463 * 3464 * IN: vp - vnode of symbolic link. 3465 * uoip - structure to contain the link path. 3466 * cr - credentials of caller. 3467 * ct - caller context 3468 * 3469 * OUT: uio - structure to contain the link path. 3470 * 3471 * RETURN: 0 if success 3472 * error code if failure 3473 * 3474 * Timestamps: 3475 * vp - atime updated 3476 */ 3477 /* ARGSUSED */ 3478 static int 3479 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3480 { 3481 znode_t *zp = VTOZ(vp); 3482 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3483 size_t bufsz; 3484 int error; 3485 3486 ZFS_ENTER(zfsvfs); 3487 ZFS_VERIFY_ZP(zp); 3488 3489 bufsz = (size_t)zp->z_phys->zp_size; 3490 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3491 error = uiomove(zp->z_phys + 1, 3492 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3493 } else { 3494 dmu_buf_t *dbp; 3495 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3496 if (error) { 3497 ZFS_EXIT(zfsvfs); 3498 return (error); 3499 } 3500 error = uiomove(dbp->db_data, 3501 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3502 dmu_buf_rele(dbp, FTAG); 3503 } 3504 3505 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3506 ZFS_EXIT(zfsvfs); 3507 return (error); 3508 } 3509 3510 /* 3511 * Insert a new entry into directory tdvp referencing svp. 3512 * 3513 * IN: tdvp - Directory to contain new entry. 3514 * svp - vnode of new entry. 3515 * name - name of new entry. 3516 * cr - credentials of caller. 3517 * ct - caller context 3518 * 3519 * RETURN: 0 if success 3520 * error code if failure 3521 * 3522 * Timestamps: 3523 * tdvp - ctime|mtime updated 3524 * svp - ctime updated 3525 */ 3526 /* ARGSUSED */ 3527 static int 3528 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3529 caller_context_t *ct, int flags) 3530 { 3531 znode_t *dzp = VTOZ(tdvp); 3532 znode_t *tzp, *szp; 3533 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3534 zilog_t *zilog; 3535 zfs_dirlock_t *dl; 3536 dmu_tx_t *tx; 3537 vnode_t *realvp; 3538 int error; 3539 int zf = ZNEW; 3540 uid_t owner; 3541 3542 ASSERT(tdvp->v_type == VDIR); 3543 3544 ZFS_ENTER(zfsvfs); 3545 ZFS_VERIFY_ZP(dzp); 3546 zilog = zfsvfs->z_log; 3547 3548 if (VOP_REALVP(svp, &realvp, ct) == 0) 3549 svp = realvp; 3550 3551 if (svp->v_vfsp != tdvp->v_vfsp) { 3552 ZFS_EXIT(zfsvfs); 3553 return (EXDEV); 3554 } 3555 szp = VTOZ(svp); 3556 ZFS_VERIFY_ZP(szp); 3557 3558 if (zfsvfs->z_utf8 && u8_validate(name, 3559 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3560 ZFS_EXIT(zfsvfs); 3561 return (EILSEQ); 3562 } 3563 if (flags & FIGNORECASE) 3564 zf |= ZCILOOK; 3565 3566 top: 3567 /* 3568 * We do not support links between attributes and non-attributes 3569 * because of the potential security risk of creating links 3570 * into "normal" file space in order to circumvent restrictions 3571 * imposed in attribute space. 3572 */ 3573 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3574 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3575 ZFS_EXIT(zfsvfs); 3576 return (EINVAL); 3577 } 3578 3579 /* 3580 * POSIX dictates that we return EPERM here. 3581 * Better choices include ENOTSUP or EISDIR. 3582 */ 3583 if (svp->v_type == VDIR) { 3584 ZFS_EXIT(zfsvfs); 3585 return (EPERM); 3586 } 3587 3588 owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER); 3589 if (owner != crgetuid(cr) && 3590 secpolicy_basic_link(cr) != 0) { 3591 ZFS_EXIT(zfsvfs); 3592 return (EPERM); 3593 } 3594 3595 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3596 ZFS_EXIT(zfsvfs); 3597 return (error); 3598 } 3599 3600 /* 3601 * Attempt to lock directory; fail if entry already exists. 3602 */ 3603 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3604 if (error) { 3605 ZFS_EXIT(zfsvfs); 3606 return (error); 3607 } 3608 3609 tx = dmu_tx_create(zfsvfs->z_os); 3610 dmu_tx_hold_bonus(tx, szp->z_id); 3611 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3612 error = dmu_tx_assign(tx, TXG_NOWAIT); 3613 if (error) { 3614 zfs_dirent_unlock(dl); 3615 if (error == ERESTART) { 3616 dmu_tx_wait(tx); 3617 dmu_tx_abort(tx); 3618 goto top; 3619 } 3620 dmu_tx_abort(tx); 3621 ZFS_EXIT(zfsvfs); 3622 return (error); 3623 } 3624 3625 error = zfs_link_create(dl, szp, tx, 0); 3626 3627 if (error == 0) { 3628 uint64_t txtype = TX_LINK; 3629 if (flags & FIGNORECASE) 3630 txtype |= TX_CI; 3631 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3632 } 3633 3634 dmu_tx_commit(tx); 3635 3636 zfs_dirent_unlock(dl); 3637 3638 if (error == 0) { 3639 vnevent_link(svp, ct); 3640 } 3641 3642 ZFS_EXIT(zfsvfs); 3643 return (error); 3644 } 3645 3646 /* 3647 * zfs_null_putapage() is used when the file system has been force 3648 * unmounted. It just drops the pages. 3649 */ 3650 /* ARGSUSED */ 3651 static int 3652 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3653 size_t *lenp, int flags, cred_t *cr) 3654 { 3655 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3656 return (0); 3657 } 3658 3659 /* 3660 * Push a page out to disk, klustering if possible. 3661 * 3662 * IN: vp - file to push page to. 3663 * pp - page to push. 3664 * flags - additional flags. 3665 * cr - credentials of caller. 3666 * 3667 * OUT: offp - start of range pushed. 3668 * lenp - len of range pushed. 3669 * 3670 * RETURN: 0 if success 3671 * error code if failure 3672 * 3673 * NOTE: callers must have locked the page to be pushed. On 3674 * exit, the page (and all other pages in the kluster) must be 3675 * unlocked. 3676 */ 3677 /* ARGSUSED */ 3678 static int 3679 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3680 size_t *lenp, int flags, cred_t *cr) 3681 { 3682 znode_t *zp = VTOZ(vp); 3683 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3684 dmu_tx_t *tx; 3685 u_offset_t off, koff; 3686 size_t len, klen; 3687 uint64_t filesz; 3688 int err; 3689 3690 filesz = zp->z_phys->zp_size; 3691 off = pp->p_offset; 3692 len = PAGESIZE; 3693 /* 3694 * If our blocksize is bigger than the page size, try to kluster 3695 * multiple pages so that we write a full block (thus avoiding 3696 * a read-modify-write). 3697 */ 3698 if (off < filesz && zp->z_blksz > PAGESIZE) { 3699 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3700 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 3701 ASSERT(koff <= filesz); 3702 if (koff + klen > filesz) 3703 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 3704 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3705 } 3706 ASSERT3U(btop(len), ==, btopr(len)); 3707 3708 /* 3709 * Can't push pages past end-of-file. 3710 */ 3711 if (off >= filesz) { 3712 /* ignore all pages */ 3713 err = 0; 3714 goto out; 3715 } else if (off + len > filesz) { 3716 int npages = btopr(filesz - off); 3717 page_t *trunc; 3718 3719 page_list_break(&pp, &trunc, npages); 3720 /* ignore pages past end of file */ 3721 if (trunc) 3722 pvn_write_done(trunc, flags); 3723 len = filesz - off; 3724 } 3725 3726 if (zfs_usergroup_overquota(zfsvfs, B_FALSE, zp->z_phys->zp_uid) || 3727 zfs_usergroup_overquota(zfsvfs, B_TRUE, zp->z_phys->zp_gid)) { 3728 err = EDQUOT; 3729 goto out; 3730 } 3731 top: 3732 tx = dmu_tx_create(zfsvfs->z_os); 3733 dmu_tx_hold_write(tx, zp->z_id, off, len); 3734 dmu_tx_hold_bonus(tx, zp->z_id); 3735 err = dmu_tx_assign(tx, TXG_NOWAIT); 3736 if (err != 0) { 3737 if (err == ERESTART) { 3738 dmu_tx_wait(tx); 3739 dmu_tx_abort(tx); 3740 goto top; 3741 } 3742 dmu_tx_abort(tx); 3743 goto out; 3744 } 3745 3746 if (zp->z_blksz <= PAGESIZE) { 3747 caddr_t va = zfs_map_page(pp, S_READ); 3748 ASSERT3U(len, <=, PAGESIZE); 3749 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3750 zfs_unmap_page(pp, va); 3751 } else { 3752 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3753 } 3754 3755 if (err == 0) { 3756 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3757 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 3758 } 3759 dmu_tx_commit(tx); 3760 3761 out: 3762 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3763 if (offp) 3764 *offp = off; 3765 if (lenp) 3766 *lenp = len; 3767 3768 return (err); 3769 } 3770 3771 /* 3772 * Copy the portion of the file indicated from pages into the file. 3773 * The pages are stored in a page list attached to the files vnode. 3774 * 3775 * IN: vp - vnode of file to push page data to. 3776 * off - position in file to put data. 3777 * len - amount of data to write. 3778 * flags - flags to control the operation. 3779 * cr - credentials of caller. 3780 * ct - caller context. 3781 * 3782 * RETURN: 0 if success 3783 * error code if failure 3784 * 3785 * Timestamps: 3786 * vp - ctime|mtime updated 3787 */ 3788 /*ARGSUSED*/ 3789 static int 3790 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 3791 caller_context_t *ct) 3792 { 3793 znode_t *zp = VTOZ(vp); 3794 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3795 page_t *pp; 3796 size_t io_len; 3797 u_offset_t io_off; 3798 uint_t blksz; 3799 rl_t *rl; 3800 int error = 0; 3801 3802 ZFS_ENTER(zfsvfs); 3803 ZFS_VERIFY_ZP(zp); 3804 3805 /* 3806 * Align this request to the file block size in case we kluster. 3807 * XXX - this can result in pretty aggresive locking, which can 3808 * impact simultanious read/write access. One option might be 3809 * to break up long requests (len == 0) into block-by-block 3810 * operations to get narrower locking. 3811 */ 3812 blksz = zp->z_blksz; 3813 if (ISP2(blksz)) 3814 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 3815 else 3816 io_off = 0; 3817 if (len > 0 && ISP2(blksz)) 3818 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 3819 else 3820 io_len = 0; 3821 3822 if (io_len == 0) { 3823 /* 3824 * Search the entire vp list for pages >= io_off. 3825 */ 3826 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 3827 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 3828 goto out; 3829 } 3830 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 3831 3832 if (off > zp->z_phys->zp_size) { 3833 /* past end of file */ 3834 zfs_range_unlock(rl); 3835 ZFS_EXIT(zfsvfs); 3836 return (0); 3837 } 3838 3839 len = MIN(io_len, P2ROUNDUP(zp->z_phys->zp_size, PAGESIZE) - io_off); 3840 3841 for (off = io_off; io_off < off + len; io_off += io_len) { 3842 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 3843 pp = page_lookup(vp, io_off, 3844 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 3845 } else { 3846 pp = page_lookup_nowait(vp, io_off, 3847 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3848 } 3849 3850 if (pp != NULL && pvn_getdirty(pp, flags)) { 3851 int err; 3852 3853 /* 3854 * Found a dirty page to push 3855 */ 3856 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3857 if (err) 3858 error = err; 3859 } else { 3860 io_len = PAGESIZE; 3861 } 3862 } 3863 out: 3864 zfs_range_unlock(rl); 3865 if ((flags & B_ASYNC) == 0) 3866 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3867 ZFS_EXIT(zfsvfs); 3868 return (error); 3869 } 3870 3871 /*ARGSUSED*/ 3872 void 3873 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 3874 { 3875 znode_t *zp = VTOZ(vp); 3876 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3877 int error; 3878 3879 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 3880 if (zp->z_dbuf == NULL) { 3881 /* 3882 * The fs has been unmounted, or we did a 3883 * suspend/resume and this file no longer exists. 3884 */ 3885 if (vn_has_cached_data(vp)) { 3886 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3887 B_INVAL, cr); 3888 } 3889 3890 mutex_enter(&zp->z_lock); 3891 vp->v_count = 0; /* count arrives as 1 */ 3892 mutex_exit(&zp->z_lock); 3893 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3894 zfs_znode_free(zp); 3895 return; 3896 } 3897 3898 /* 3899 * Attempt to push any data in the page cache. If this fails 3900 * we will get kicked out later in zfs_zinactive(). 3901 */ 3902 if (vn_has_cached_data(vp)) { 3903 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3904 cr); 3905 } 3906 3907 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3908 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3909 3910 dmu_tx_hold_bonus(tx, zp->z_id); 3911 error = dmu_tx_assign(tx, TXG_WAIT); 3912 if (error) { 3913 dmu_tx_abort(tx); 3914 } else { 3915 dmu_buf_will_dirty(zp->z_dbuf, tx); 3916 mutex_enter(&zp->z_lock); 3917 zp->z_atime_dirty = 0; 3918 mutex_exit(&zp->z_lock); 3919 dmu_tx_commit(tx); 3920 } 3921 } 3922 3923 zfs_zinactive(zp); 3924 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3925 } 3926 3927 /* 3928 * Bounds-check the seek operation. 3929 * 3930 * IN: vp - vnode seeking within 3931 * ooff - old file offset 3932 * noffp - pointer to new file offset 3933 * ct - caller context 3934 * 3935 * RETURN: 0 if success 3936 * EINVAL if new offset invalid 3937 */ 3938 /* ARGSUSED */ 3939 static int 3940 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 3941 caller_context_t *ct) 3942 { 3943 if (vp->v_type == VDIR) 3944 return (0); 3945 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3946 } 3947 3948 /* 3949 * Pre-filter the generic locking function to trap attempts to place 3950 * a mandatory lock on a memory mapped file. 3951 */ 3952 static int 3953 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3954 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 3955 { 3956 znode_t *zp = VTOZ(vp); 3957 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3958 int error; 3959 3960 ZFS_ENTER(zfsvfs); 3961 ZFS_VERIFY_ZP(zp); 3962 3963 /* 3964 * We are following the UFS semantics with respect to mapcnt 3965 * here: If we see that the file is mapped already, then we will 3966 * return an error, but we don't worry about races between this 3967 * function and zfs_map(). 3968 */ 3969 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3970 ZFS_EXIT(zfsvfs); 3971 return (EAGAIN); 3972 } 3973 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 3974 ZFS_EXIT(zfsvfs); 3975 return (error); 3976 } 3977 3978 /* 3979 * If we can't find a page in the cache, we will create a new page 3980 * and fill it with file data. For efficiency, we may try to fill 3981 * multiple pages at once (klustering) to fill up the supplied page 3982 * list. Note that the pages to be filled are held with an exclusive 3983 * lock to prevent access by other threads while they are being filled. 3984 */ 3985 static int 3986 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3987 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3988 { 3989 znode_t *zp = VTOZ(vp); 3990 page_t *pp, *cur_pp; 3991 objset_t *os = zp->z_zfsvfs->z_os; 3992 u_offset_t io_off, total; 3993 size_t io_len; 3994 int err; 3995 3996 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 3997 /* 3998 * We only have a single page, don't bother klustering 3999 */ 4000 io_off = off; 4001 io_len = PAGESIZE; 4002 pp = page_create_va(vp, io_off, io_len, 4003 PG_EXCL | PG_WAIT, seg, addr); 4004 } else { 4005 /* 4006 * Try to find enough pages to fill the page list 4007 */ 4008 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4009 &io_len, off, plsz, 0); 4010 } 4011 if (pp == NULL) { 4012 /* 4013 * The page already exists, nothing to do here. 4014 */ 4015 *pl = NULL; 4016 return (0); 4017 } 4018 4019 /* 4020 * Fill the pages in the kluster. 4021 */ 4022 cur_pp = pp; 4023 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4024 caddr_t va; 4025 4026 ASSERT3U(io_off, ==, cur_pp->p_offset); 4027 va = zfs_map_page(cur_pp, S_WRITE); 4028 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4029 DMU_READ_PREFETCH); 4030 zfs_unmap_page(cur_pp, va); 4031 if (err) { 4032 /* On error, toss the entire kluster */ 4033 pvn_read_done(pp, B_ERROR); 4034 /* convert checksum errors into IO errors */ 4035 if (err == ECKSUM) 4036 err = EIO; 4037 return (err); 4038 } 4039 cur_pp = cur_pp->p_next; 4040 } 4041 4042 /* 4043 * Fill in the page list array from the kluster starting 4044 * from the desired offset `off'. 4045 * NOTE: the page list will always be null terminated. 4046 */ 4047 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4048 ASSERT(pl == NULL || (*pl)->p_offset == off); 4049 4050 return (0); 4051 } 4052 4053 /* 4054 * Return pointers to the pages for the file region [off, off + len] 4055 * in the pl array. If plsz is greater than len, this function may 4056 * also return page pointers from after the specified region 4057 * (i.e. the region [off, off + plsz]). These additional pages are 4058 * only returned if they are already in the cache, or were created as 4059 * part of a klustered read. 4060 * 4061 * IN: vp - vnode of file to get data from. 4062 * off - position in file to get data from. 4063 * len - amount of data to retrieve. 4064 * plsz - length of provided page list. 4065 * seg - segment to obtain pages for. 4066 * addr - virtual address of fault. 4067 * rw - mode of created pages. 4068 * cr - credentials of caller. 4069 * ct - caller context. 4070 * 4071 * OUT: protp - protection mode of created pages. 4072 * pl - list of pages created. 4073 * 4074 * RETURN: 0 if success 4075 * error code if failure 4076 * 4077 * Timestamps: 4078 * vp - atime updated 4079 */ 4080 /* ARGSUSED */ 4081 static int 4082 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4083 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4084 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4085 { 4086 znode_t *zp = VTOZ(vp); 4087 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4088 page_t **pl0 = pl; 4089 int err = 0; 4090 4091 /* we do our own caching, faultahead is unnecessary */ 4092 if (pl == NULL) 4093 return (0); 4094 else if (len > plsz) 4095 len = plsz; 4096 else 4097 len = P2ROUNDUP(len, PAGESIZE); 4098 ASSERT(plsz >= len); 4099 4100 ZFS_ENTER(zfsvfs); 4101 ZFS_VERIFY_ZP(zp); 4102 4103 if (protp) 4104 *protp = PROT_ALL; 4105 4106 /* 4107 * Loop through the requested range [off, off + len) looking 4108 * for pages. If we don't find a page, we will need to create 4109 * a new page and fill it with data from the file. 4110 */ 4111 while (len > 0) { 4112 if (*pl = page_lookup(vp, off, SE_SHARED)) 4113 *(pl+1) = NULL; 4114 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4115 goto out; 4116 while (*pl) { 4117 ASSERT3U((*pl)->p_offset, ==, off); 4118 off += PAGESIZE; 4119 addr += PAGESIZE; 4120 if (len > 0) { 4121 ASSERT3U(len, >=, PAGESIZE); 4122 len -= PAGESIZE; 4123 } 4124 ASSERT3U(plsz, >=, PAGESIZE); 4125 plsz -= PAGESIZE; 4126 pl++; 4127 } 4128 } 4129 4130 /* 4131 * Fill out the page array with any pages already in the cache. 4132 */ 4133 while (plsz > 0 && 4134 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4135 off += PAGESIZE; 4136 plsz -= PAGESIZE; 4137 } 4138 out: 4139 if (err) { 4140 /* 4141 * Release any pages we have previously locked. 4142 */ 4143 while (pl > pl0) 4144 page_unlock(*--pl); 4145 } else { 4146 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4147 } 4148 4149 *pl = NULL; 4150 4151 ZFS_EXIT(zfsvfs); 4152 return (err); 4153 } 4154 4155 /* 4156 * Request a memory map for a section of a file. This code interacts 4157 * with common code and the VM system as follows: 4158 * 4159 * common code calls mmap(), which ends up in smmap_common() 4160 * 4161 * this calls VOP_MAP(), which takes you into (say) zfs 4162 * 4163 * zfs_map() calls as_map(), passing segvn_create() as the callback 4164 * 4165 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4166 * 4167 * zfs_addmap() updates z_mapcnt 4168 */ 4169 /*ARGSUSED*/ 4170 static int 4171 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4172 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4173 caller_context_t *ct) 4174 { 4175 znode_t *zp = VTOZ(vp); 4176 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4177 segvn_crargs_t vn_a; 4178 int error; 4179 4180 ZFS_ENTER(zfsvfs); 4181 ZFS_VERIFY_ZP(zp); 4182 4183 if ((prot & PROT_WRITE) && 4184 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4185 ZFS_APPENDONLY))) { 4186 ZFS_EXIT(zfsvfs); 4187 return (EPERM); 4188 } 4189 4190 if ((prot & (PROT_READ | PROT_EXEC)) && 4191 (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) { 4192 ZFS_EXIT(zfsvfs); 4193 return (EACCES); 4194 } 4195 4196 if (vp->v_flag & VNOMAP) { 4197 ZFS_EXIT(zfsvfs); 4198 return (ENOSYS); 4199 } 4200 4201 if (off < 0 || len > MAXOFFSET_T - off) { 4202 ZFS_EXIT(zfsvfs); 4203 return (ENXIO); 4204 } 4205 4206 if (vp->v_type != VREG) { 4207 ZFS_EXIT(zfsvfs); 4208 return (ENODEV); 4209 } 4210 4211 /* 4212 * If file is locked, disallow mapping. 4213 */ 4214 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4215 ZFS_EXIT(zfsvfs); 4216 return (EAGAIN); 4217 } 4218 4219 as_rangelock(as); 4220 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4221 if (error != 0) { 4222 as_rangeunlock(as); 4223 ZFS_EXIT(zfsvfs); 4224 return (error); 4225 } 4226 4227 vn_a.vp = vp; 4228 vn_a.offset = (u_offset_t)off; 4229 vn_a.type = flags & MAP_TYPE; 4230 vn_a.prot = prot; 4231 vn_a.maxprot = maxprot; 4232 vn_a.cred = cr; 4233 vn_a.amp = NULL; 4234 vn_a.flags = flags & ~MAP_TYPE; 4235 vn_a.szc = 0; 4236 vn_a.lgrp_mem_policy_flags = 0; 4237 4238 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4239 4240 as_rangeunlock(as); 4241 ZFS_EXIT(zfsvfs); 4242 return (error); 4243 } 4244 4245 /* ARGSUSED */ 4246 static int 4247 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4248 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4249 caller_context_t *ct) 4250 { 4251 uint64_t pages = btopr(len); 4252 4253 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4254 return (0); 4255 } 4256 4257 /* 4258 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4259 * more accurate mtime for the associated file. Since we don't have a way of 4260 * detecting when the data was actually modified, we have to resort to 4261 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4262 * last page is pushed. The problem occurs when the msync() call is omitted, 4263 * which by far the most common case: 4264 * 4265 * open() 4266 * mmap() 4267 * <modify memory> 4268 * munmap() 4269 * close() 4270 * <time lapse> 4271 * putpage() via fsflush 4272 * 4273 * If we wait until fsflush to come along, we can have a modification time that 4274 * is some arbitrary point in the future. In order to prevent this in the 4275 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4276 * torn down. 4277 */ 4278 /* ARGSUSED */ 4279 static int 4280 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4281 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4282 caller_context_t *ct) 4283 { 4284 uint64_t pages = btopr(len); 4285 4286 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4287 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4288 4289 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4290 vn_has_cached_data(vp)) 4291 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4292 4293 return (0); 4294 } 4295 4296 /* 4297 * Free or allocate space in a file. Currently, this function only 4298 * supports the `F_FREESP' command. However, this command is somewhat 4299 * misnamed, as its functionality includes the ability to allocate as 4300 * well as free space. 4301 * 4302 * IN: vp - vnode of file to free data in. 4303 * cmd - action to take (only F_FREESP supported). 4304 * bfp - section of file to free/alloc. 4305 * flag - current file open mode flags. 4306 * offset - current file offset. 4307 * cr - credentials of caller [UNUSED]. 4308 * ct - caller context. 4309 * 4310 * RETURN: 0 if success 4311 * error code if failure 4312 * 4313 * Timestamps: 4314 * vp - ctime|mtime updated 4315 */ 4316 /* ARGSUSED */ 4317 static int 4318 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4319 offset_t offset, cred_t *cr, caller_context_t *ct) 4320 { 4321 znode_t *zp = VTOZ(vp); 4322 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4323 uint64_t off, len; 4324 int error; 4325 4326 ZFS_ENTER(zfsvfs); 4327 ZFS_VERIFY_ZP(zp); 4328 4329 if (cmd != F_FREESP) { 4330 ZFS_EXIT(zfsvfs); 4331 return (EINVAL); 4332 } 4333 4334 if (error = convoff(vp, bfp, 0, offset)) { 4335 ZFS_EXIT(zfsvfs); 4336 return (error); 4337 } 4338 4339 if (bfp->l_len < 0) { 4340 ZFS_EXIT(zfsvfs); 4341 return (EINVAL); 4342 } 4343 4344 off = bfp->l_start; 4345 len = bfp->l_len; /* 0 means from off to end of file */ 4346 4347 error = zfs_freesp(zp, off, len, flag, TRUE); 4348 4349 ZFS_EXIT(zfsvfs); 4350 return (error); 4351 } 4352 4353 /*ARGSUSED*/ 4354 static int 4355 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4356 { 4357 znode_t *zp = VTOZ(vp); 4358 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4359 uint32_t gen; 4360 uint64_t object = zp->z_id; 4361 zfid_short_t *zfid; 4362 int size, i; 4363 4364 ZFS_ENTER(zfsvfs); 4365 ZFS_VERIFY_ZP(zp); 4366 gen = (uint32_t)zp->z_gen; 4367 4368 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4369 if (fidp->fid_len < size) { 4370 fidp->fid_len = size; 4371 ZFS_EXIT(zfsvfs); 4372 return (ENOSPC); 4373 } 4374 4375 zfid = (zfid_short_t *)fidp; 4376 4377 zfid->zf_len = size; 4378 4379 for (i = 0; i < sizeof (zfid->zf_object); i++) 4380 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4381 4382 /* Must have a non-zero generation number to distinguish from .zfs */ 4383 if (gen == 0) 4384 gen = 1; 4385 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4386 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4387 4388 if (size == LONG_FID_LEN) { 4389 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4390 zfid_long_t *zlfid; 4391 4392 zlfid = (zfid_long_t *)fidp; 4393 4394 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4395 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4396 4397 /* XXX - this should be the generation number for the objset */ 4398 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4399 zlfid->zf_setgen[i] = 0; 4400 } 4401 4402 ZFS_EXIT(zfsvfs); 4403 return (0); 4404 } 4405 4406 static int 4407 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4408 caller_context_t *ct) 4409 { 4410 znode_t *zp, *xzp; 4411 zfsvfs_t *zfsvfs; 4412 zfs_dirlock_t *dl; 4413 int error; 4414 4415 switch (cmd) { 4416 case _PC_LINK_MAX: 4417 *valp = ULONG_MAX; 4418 return (0); 4419 4420 case _PC_FILESIZEBITS: 4421 *valp = 64; 4422 return (0); 4423 4424 case _PC_XATTR_EXISTS: 4425 zp = VTOZ(vp); 4426 zfsvfs = zp->z_zfsvfs; 4427 ZFS_ENTER(zfsvfs); 4428 ZFS_VERIFY_ZP(zp); 4429 *valp = 0; 4430 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4431 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4432 if (error == 0) { 4433 zfs_dirent_unlock(dl); 4434 if (!zfs_dirempty(xzp)) 4435 *valp = 1; 4436 VN_RELE(ZTOV(xzp)); 4437 } else if (error == ENOENT) { 4438 /* 4439 * If there aren't extended attributes, it's the 4440 * same as having zero of them. 4441 */ 4442 error = 0; 4443 } 4444 ZFS_EXIT(zfsvfs); 4445 return (error); 4446 4447 case _PC_SATTR_ENABLED: 4448 case _PC_SATTR_EXISTS: 4449 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4450 (vp->v_type == VREG || vp->v_type == VDIR); 4451 return (0); 4452 4453 case _PC_ACCESS_FILTERING: 4454 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4455 vp->v_type == VDIR; 4456 return (0); 4457 4458 case _PC_ACL_ENABLED: 4459 *valp = _ACL_ACE_ENABLED; 4460 return (0); 4461 4462 case _PC_MIN_HOLE_SIZE: 4463 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4464 return (0); 4465 4466 default: 4467 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4468 } 4469 } 4470 4471 /*ARGSUSED*/ 4472 static int 4473 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4474 caller_context_t *ct) 4475 { 4476 znode_t *zp = VTOZ(vp); 4477 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4478 int error; 4479 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4480 4481 ZFS_ENTER(zfsvfs); 4482 ZFS_VERIFY_ZP(zp); 4483 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4484 ZFS_EXIT(zfsvfs); 4485 4486 return (error); 4487 } 4488 4489 /*ARGSUSED*/ 4490 static int 4491 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4492 caller_context_t *ct) 4493 { 4494 znode_t *zp = VTOZ(vp); 4495 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4496 int error; 4497 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4498 4499 ZFS_ENTER(zfsvfs); 4500 ZFS_VERIFY_ZP(zp); 4501 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4502 ZFS_EXIT(zfsvfs); 4503 return (error); 4504 } 4505 4506 /* 4507 * Predeclare these here so that the compiler assumes that 4508 * this is an "old style" function declaration that does 4509 * not include arguments => we won't get type mismatch errors 4510 * in the initializations that follow. 4511 */ 4512 static int zfs_inval(); 4513 static int zfs_isdir(); 4514 4515 static int 4516 zfs_inval() 4517 { 4518 return (EINVAL); 4519 } 4520 4521 static int 4522 zfs_isdir() 4523 { 4524 return (EISDIR); 4525 } 4526 /* 4527 * Directory vnode operations template 4528 */ 4529 vnodeops_t *zfs_dvnodeops; 4530 const fs_operation_def_t zfs_dvnodeops_template[] = { 4531 VOPNAME_OPEN, { .vop_open = zfs_open }, 4532 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4533 VOPNAME_READ, { .error = zfs_isdir }, 4534 VOPNAME_WRITE, { .error = zfs_isdir }, 4535 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4536 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4537 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4538 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4539 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4540 VOPNAME_CREATE, { .vop_create = zfs_create }, 4541 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4542 VOPNAME_LINK, { .vop_link = zfs_link }, 4543 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4544 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4545 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4546 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4547 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4548 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4549 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4550 VOPNAME_FID, { .vop_fid = zfs_fid }, 4551 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4552 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4553 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4554 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4555 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4556 NULL, NULL 4557 }; 4558 4559 /* 4560 * Regular file vnode operations template 4561 */ 4562 vnodeops_t *zfs_fvnodeops; 4563 const fs_operation_def_t zfs_fvnodeops_template[] = { 4564 VOPNAME_OPEN, { .vop_open = zfs_open }, 4565 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4566 VOPNAME_READ, { .vop_read = zfs_read }, 4567 VOPNAME_WRITE, { .vop_write = zfs_write }, 4568 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4569 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4570 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4571 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4572 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4573 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4574 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4575 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4576 VOPNAME_FID, { .vop_fid = zfs_fid }, 4577 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4578 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4579 VOPNAME_SPACE, { .vop_space = zfs_space }, 4580 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4581 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4582 VOPNAME_MAP, { .vop_map = zfs_map }, 4583 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4584 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4585 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4586 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4587 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4588 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4589 NULL, NULL 4590 }; 4591 4592 /* 4593 * Symbolic link vnode operations template 4594 */ 4595 vnodeops_t *zfs_symvnodeops; 4596 const fs_operation_def_t zfs_symvnodeops_template[] = { 4597 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4598 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4599 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4600 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4601 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4602 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4603 VOPNAME_FID, { .vop_fid = zfs_fid }, 4604 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4605 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4606 NULL, NULL 4607 }; 4608 4609 /* 4610 * special share hidden files vnode operations template 4611 */ 4612 vnodeops_t *zfs_sharevnodeops; 4613 const fs_operation_def_t zfs_sharevnodeops_template[] = { 4614 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4615 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4616 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4617 VOPNAME_FID, { .vop_fid = zfs_fid }, 4618 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4619 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4620 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4621 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4622 NULL, NULL 4623 }; 4624 4625 /* 4626 * Extended attribute directory vnode operations template 4627 * This template is identical to the directory vnodes 4628 * operation template except for restricted operations: 4629 * VOP_MKDIR() 4630 * VOP_SYMLINK() 4631 * Note that there are other restrictions embedded in: 4632 * zfs_create() - restrict type to VREG 4633 * zfs_link() - no links into/out of attribute space 4634 * zfs_rename() - no moves into/out of attribute space 4635 */ 4636 vnodeops_t *zfs_xdvnodeops; 4637 const fs_operation_def_t zfs_xdvnodeops_template[] = { 4638 VOPNAME_OPEN, { .vop_open = zfs_open }, 4639 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4640 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4641 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4642 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4643 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4644 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4645 VOPNAME_CREATE, { .vop_create = zfs_create }, 4646 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4647 VOPNAME_LINK, { .vop_link = zfs_link }, 4648 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4649 VOPNAME_MKDIR, { .error = zfs_inval }, 4650 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4651 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4652 VOPNAME_SYMLINK, { .error = zfs_inval }, 4653 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4654 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4655 VOPNAME_FID, { .vop_fid = zfs_fid }, 4656 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4657 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4658 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4659 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4660 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4661 NULL, NULL 4662 }; 4663 4664 /* 4665 * Error vnode operations template 4666 */ 4667 vnodeops_t *zfs_evnodeops; 4668 const fs_operation_def_t zfs_evnodeops_template[] = { 4669 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4670 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4671 NULL, NULL 4672 }; 4673