1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2007 Jeremy Teo */ 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/vm.h> 45 #include <vm/seg_vn.h> 46 #include <vm/pvn.h> 47 #include <vm/as.h> 48 #include <vm/kpm.h> 49 #include <vm/seg_kpm.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/dmu_objset.h> 61 #include <sys/spa.h> 62 #include <sys/txg.h> 63 #include <sys/dbuf.h> 64 #include <sys/zap.h> 65 #include <sys/sa.h> 66 #include <sys/dirent.h> 67 #include <sys/policy.h> 68 #include <sys/sunddi.h> 69 #include <sys/filio.h> 70 #include <sys/sid.h> 71 #include "fs/fs_subr.h" 72 #include <sys/zfs_ctldir.h> 73 #include <sys/zfs_fuid.h> 74 #include <sys/zfs_sa.h> 75 #include <sys/dnlc.h> 76 #include <sys/zfs_rlock.h> 77 #include <sys/extdirent.h> 78 #include <sys/kidmap.h> 79 #include <sys/cred.h> 80 #include <sys/attr.h> 81 82 /* 83 * Programming rules. 84 * 85 * Each vnode op performs some logical unit of work. To do this, the ZPL must 86 * properly lock its in-core state, create a DMU transaction, do the work, 87 * record this work in the intent log (ZIL), commit the DMU transaction, 88 * and wait for the intent log to commit if it is a synchronous operation. 89 * Moreover, the vnode ops must work in both normal and log replay context. 90 * The ordering of events is important to avoid deadlocks and references 91 * to freed memory. The example below illustrates the following Big Rules: 92 * 93 * (1) A check must be made in each zfs thread for a mounted file system. 94 * This is done avoiding races using ZFS_ENTER(zfsvfs). 95 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 96 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 97 * can return EIO from the calling function. 98 * 99 * (2) VN_RELE() should always be the last thing except for zil_commit() 100 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 101 * First, if it's the last reference, the vnode/znode 102 * can be freed, so the zp may point to freed memory. Second, the last 103 * reference will call zfs_zinactive(), which may induce a lot of work -- 104 * pushing cached pages (which acquires range locks) and syncing out 105 * cached atime changes. Third, zfs_zinactive() may require a new tx, 106 * which could deadlock the system if you were already holding one. 107 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 108 * 109 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 110 * as they can span dmu_tx_assign() calls. 111 * 112 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 113 * This is critical because we don't want to block while holding locks. 114 * Note, in particular, that if a lock is sometimes acquired before 115 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 116 * use a non-blocking assign can deadlock the system. The scenario: 117 * 118 * Thread A has grabbed a lock before calling dmu_tx_assign(). 119 * Thread B is in an already-assigned tx, and blocks for this lock. 120 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 121 * forever, because the previous txg can't quiesce until B's tx commits. 122 * 123 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 124 * then drop all locks, call dmu_tx_wait(), and try again. 125 * 126 * (5) If the operation succeeded, generate the intent log entry for it 127 * before dropping locks. This ensures that the ordering of events 128 * in the intent log matches the order in which they actually occurred. 129 * During ZIL replay the zfs_log_* functions will update the sequence 130 * number to indicate the zil transaction has replayed. 131 * 132 * (6) At the end of each vnode op, the DMU tx must always commit, 133 * regardless of whether there were any errors. 134 * 135 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 136 * to ensure that synchronous semantics are provided when necessary. 137 * 138 * In general, this is how things should be ordered in each vnode op: 139 * 140 * ZFS_ENTER(zfsvfs); // exit if unmounted 141 * top: 142 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 143 * rw_enter(...); // grab any other locks you need 144 * tx = dmu_tx_create(...); // get DMU tx 145 * dmu_tx_hold_*(); // hold each object you might modify 146 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 147 * if (error) { 148 * rw_exit(...); // drop locks 149 * zfs_dirent_unlock(dl); // unlock directory entry 150 * VN_RELE(...); // release held vnodes 151 * if (error == ERESTART) { 152 * dmu_tx_wait(tx); 153 * dmu_tx_abort(tx); 154 * goto top; 155 * } 156 * dmu_tx_abort(tx); // abort DMU tx 157 * ZFS_EXIT(zfsvfs); // finished in zfs 158 * return (error); // really out of space 159 * } 160 * error = do_real_work(); // do whatever this VOP does 161 * if (error == 0) 162 * zfs_log_*(...); // on success, make ZIL entry 163 * dmu_tx_commit(tx); // commit DMU tx -- error or not 164 * rw_exit(...); // drop locks 165 * zfs_dirent_unlock(dl); // unlock directory entry 166 * VN_RELE(...); // release held vnodes 167 * zil_commit(zilog, seq, foid); // synchronous when necessary 168 * ZFS_EXIT(zfsvfs); // finished in zfs 169 * return (error); // done, report error 170 */ 171 172 /* ARGSUSED */ 173 static int 174 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 175 { 176 znode_t *zp = VTOZ(*vpp); 177 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 178 179 ZFS_ENTER(zfsvfs); 180 ZFS_VERIFY_ZP(zp); 181 182 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 183 ((flag & FAPPEND) == 0)) { 184 ZFS_EXIT(zfsvfs); 185 return (EPERM); 186 } 187 188 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 189 ZTOV(zp)->v_type == VREG && 190 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 191 if (fs_vscan(*vpp, cr, 0) != 0) { 192 ZFS_EXIT(zfsvfs); 193 return (EACCES); 194 } 195 } 196 197 /* Keep a count of the synchronous opens in the znode */ 198 if (flag & (FSYNC | FDSYNC)) 199 atomic_inc_32(&zp->z_sync_cnt); 200 201 ZFS_EXIT(zfsvfs); 202 return (0); 203 } 204 205 /* ARGSUSED */ 206 static int 207 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 208 caller_context_t *ct) 209 { 210 znode_t *zp = VTOZ(vp); 211 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 212 213 /* 214 * Clean up any locks held by this process on the vp. 215 */ 216 cleanlocks(vp, ddi_get_pid(), 0); 217 cleanshares(vp, ddi_get_pid()); 218 219 ZFS_ENTER(zfsvfs); 220 ZFS_VERIFY_ZP(zp); 221 222 /* Decrement the synchronous opens in the znode */ 223 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 224 atomic_dec_32(&zp->z_sync_cnt); 225 226 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 227 ZTOV(zp)->v_type == VREG && 228 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 229 VERIFY(fs_vscan(vp, cr, 1) == 0); 230 231 ZFS_EXIT(zfsvfs); 232 return (0); 233 } 234 235 /* 236 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 237 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 238 */ 239 static int 240 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 241 { 242 znode_t *zp = VTOZ(vp); 243 uint64_t noff = (uint64_t)*off; /* new offset */ 244 uint64_t file_sz; 245 int error; 246 boolean_t hole; 247 248 file_sz = zp->z_size; 249 if (noff >= file_sz) { 250 return (ENXIO); 251 } 252 253 if (cmd == _FIO_SEEK_HOLE) 254 hole = B_TRUE; 255 else 256 hole = B_FALSE; 257 258 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 259 260 /* end of file? */ 261 if ((error == ESRCH) || (noff > file_sz)) { 262 /* 263 * Handle the virtual hole at the end of file. 264 */ 265 if (hole) { 266 *off = file_sz; 267 return (0); 268 } 269 return (ENXIO); 270 } 271 272 if (noff < *off) 273 return (error); 274 *off = noff; 275 return (error); 276 } 277 278 /* ARGSUSED */ 279 static int 280 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 281 int *rvalp, caller_context_t *ct) 282 { 283 offset_t off; 284 int error; 285 zfsvfs_t *zfsvfs; 286 znode_t *zp; 287 288 switch (com) { 289 case _FIOFFS: 290 return (zfs_sync(vp->v_vfsp, 0, cred)); 291 292 /* 293 * The following two ioctls are used by bfu. Faking out, 294 * necessary to avoid bfu errors. 295 */ 296 case _FIOGDIO: 297 case _FIOSDIO: 298 return (0); 299 300 case _FIO_SEEK_DATA: 301 case _FIO_SEEK_HOLE: 302 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 303 return (EFAULT); 304 305 zp = VTOZ(vp); 306 zfsvfs = zp->z_zfsvfs; 307 ZFS_ENTER(zfsvfs); 308 ZFS_VERIFY_ZP(zp); 309 310 /* offset parameter is in/out */ 311 error = zfs_holey(vp, com, &off); 312 ZFS_EXIT(zfsvfs); 313 if (error) 314 return (error); 315 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 316 return (EFAULT); 317 return (0); 318 } 319 return (ENOTTY); 320 } 321 322 /* 323 * Utility functions to map and unmap a single physical page. These 324 * are used to manage the mappable copies of ZFS file data, and therefore 325 * do not update ref/mod bits. 326 */ 327 caddr_t 328 zfs_map_page(page_t *pp, enum seg_rw rw) 329 { 330 if (kpm_enable) 331 return (hat_kpm_mapin(pp, 0)); 332 ASSERT(rw == S_READ || rw == S_WRITE); 333 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 334 (caddr_t)-1)); 335 } 336 337 void 338 zfs_unmap_page(page_t *pp, caddr_t addr) 339 { 340 if (kpm_enable) { 341 hat_kpm_mapout(pp, 0, addr); 342 } else { 343 ppmapout(addr); 344 } 345 } 346 347 /* 348 * When a file is memory mapped, we must keep the IO data synchronized 349 * between the DMU cache and the memory mapped pages. What this means: 350 * 351 * On Write: If we find a memory mapped page, we write to *both* 352 * the page and the dmu buffer. 353 */ 354 static void 355 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 356 { 357 int64_t off; 358 359 off = start & PAGEOFFSET; 360 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 361 page_t *pp; 362 uint64_t nbytes = MIN(PAGESIZE - off, len); 363 364 if (pp = page_lookup(vp, start, SE_SHARED)) { 365 caddr_t va; 366 367 va = zfs_map_page(pp, S_WRITE); 368 (void) dmu_read(os, oid, start+off, nbytes, va+off, 369 DMU_READ_PREFETCH); 370 zfs_unmap_page(pp, va); 371 page_unlock(pp); 372 } 373 len -= nbytes; 374 off = 0; 375 } 376 } 377 378 /* 379 * When a file is memory mapped, we must keep the IO data synchronized 380 * between the DMU cache and the memory mapped pages. What this means: 381 * 382 * On Read: We "read" preferentially from memory mapped pages, 383 * else we default from the dmu buffer. 384 * 385 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 386 * the file is memory mapped. 387 */ 388 static int 389 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 390 { 391 znode_t *zp = VTOZ(vp); 392 objset_t *os = zp->z_zfsvfs->z_os; 393 int64_t start, off; 394 int len = nbytes; 395 int error = 0; 396 397 start = uio->uio_loffset; 398 off = start & PAGEOFFSET; 399 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 400 page_t *pp; 401 uint64_t bytes = MIN(PAGESIZE - off, len); 402 403 if (pp = page_lookup(vp, start, SE_SHARED)) { 404 caddr_t va; 405 406 va = zfs_map_page(pp, S_READ); 407 error = uiomove(va + off, bytes, UIO_READ, uio); 408 zfs_unmap_page(pp, va); 409 page_unlock(pp); 410 } else { 411 error = dmu_read_uio(os, zp->z_id, uio, bytes); 412 } 413 len -= bytes; 414 off = 0; 415 if (error) 416 break; 417 } 418 return (error); 419 } 420 421 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 422 423 /* 424 * Read bytes from specified file into supplied buffer. 425 * 426 * IN: vp - vnode of file to be read from. 427 * uio - structure supplying read location, range info, 428 * and return buffer. 429 * ioflag - SYNC flags; used to provide FRSYNC semantics. 430 * cr - credentials of caller. 431 * ct - caller context 432 * 433 * OUT: uio - updated offset and range, buffer filled. 434 * 435 * RETURN: 0 if success 436 * error code if failure 437 * 438 * Side Effects: 439 * vp - atime updated if byte count > 0 440 */ 441 /* ARGSUSED */ 442 static int 443 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 444 { 445 znode_t *zp = VTOZ(vp); 446 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 447 objset_t *os; 448 ssize_t n, nbytes; 449 int error; 450 rl_t *rl; 451 xuio_t *xuio = NULL; 452 453 ZFS_ENTER(zfsvfs); 454 ZFS_VERIFY_ZP(zp); 455 os = zfsvfs->z_os; 456 457 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 458 ZFS_EXIT(zfsvfs); 459 return (EACCES); 460 } 461 462 /* 463 * Validate file offset 464 */ 465 if (uio->uio_loffset < (offset_t)0) { 466 ZFS_EXIT(zfsvfs); 467 return (EINVAL); 468 } 469 470 /* 471 * Fasttrack empty reads 472 */ 473 if (uio->uio_resid == 0) { 474 ZFS_EXIT(zfsvfs); 475 return (0); 476 } 477 478 /* 479 * Check for mandatory locks 480 */ 481 if (MANDMODE(zp->z_mode)) { 482 if (error = chklock(vp, FREAD, 483 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 484 ZFS_EXIT(zfsvfs); 485 return (error); 486 } 487 } 488 489 /* 490 * If we're in FRSYNC mode, sync out this znode before reading it. 491 */ 492 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 493 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 494 495 /* 496 * Lock the range against changes. 497 */ 498 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 499 500 /* 501 * If we are reading past end-of-file we can skip 502 * to the end; but we might still need to set atime. 503 */ 504 if (uio->uio_loffset >= zp->z_size) { 505 error = 0; 506 goto out; 507 } 508 509 ASSERT(uio->uio_loffset < zp->z_size); 510 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 511 512 if ((uio->uio_extflg == UIO_XUIO) && 513 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 514 int nblk; 515 int blksz = zp->z_blksz; 516 uint64_t offset = uio->uio_loffset; 517 518 xuio = (xuio_t *)uio; 519 if ((ISP2(blksz))) { 520 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 521 blksz)) / blksz; 522 } else { 523 ASSERT(offset + n <= blksz); 524 nblk = 1; 525 } 526 (void) dmu_xuio_init(xuio, nblk); 527 528 if (vn_has_cached_data(vp)) { 529 /* 530 * For simplicity, we always allocate a full buffer 531 * even if we only expect to read a portion of a block. 532 */ 533 while (--nblk >= 0) { 534 (void) dmu_xuio_add(xuio, 535 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 536 blksz), 0, blksz); 537 } 538 } 539 } 540 541 while (n > 0) { 542 nbytes = MIN(n, zfs_read_chunk_size - 543 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 544 545 if (vn_has_cached_data(vp)) 546 error = mappedread(vp, nbytes, uio); 547 else 548 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 549 if (error) { 550 /* convert checksum errors into IO errors */ 551 if (error == ECKSUM) 552 error = EIO; 553 break; 554 } 555 556 n -= nbytes; 557 } 558 out: 559 zfs_range_unlock(rl); 560 561 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 562 ZFS_EXIT(zfsvfs); 563 return (error); 564 } 565 566 /* 567 * Write the bytes to a file. 568 * 569 * IN: vp - vnode of file to be written to. 570 * uio - structure supplying write location, range info, 571 * and data buffer. 572 * ioflag - FAPPEND flag set if in append mode. 573 * cr - credentials of caller. 574 * ct - caller context (NFS/CIFS fem monitor only) 575 * 576 * OUT: uio - updated offset and range. 577 * 578 * RETURN: 0 if success 579 * error code if failure 580 * 581 * Timestamps: 582 * vp - ctime|mtime updated if byte count > 0 583 */ 584 585 /* ARGSUSED */ 586 static int 587 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 588 { 589 znode_t *zp = VTOZ(vp); 590 rlim64_t limit = uio->uio_llimit; 591 ssize_t start_resid = uio->uio_resid; 592 ssize_t tx_bytes; 593 uint64_t end_size; 594 dmu_tx_t *tx; 595 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 596 zilog_t *zilog; 597 offset_t woff; 598 ssize_t n, nbytes; 599 rl_t *rl; 600 int max_blksz = zfsvfs->z_max_blksz; 601 int error; 602 arc_buf_t *abuf; 603 iovec_t *aiov; 604 xuio_t *xuio = NULL; 605 int i_iov = 0; 606 int iovcnt = uio->uio_iovcnt; 607 iovec_t *iovp = uio->uio_iov; 608 int write_eof; 609 int count = 0; 610 sa_bulk_attr_t bulk[4]; 611 uint64_t mtime[2], ctime[2]; 612 613 /* 614 * Fasttrack empty write 615 */ 616 n = start_resid; 617 if (n == 0) 618 return (0); 619 620 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 621 limit = MAXOFFSET_T; 622 623 ZFS_ENTER(zfsvfs); 624 ZFS_VERIFY_ZP(zp); 625 626 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 627 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 628 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 629 &zp->z_size, 8); 630 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 631 &zp->z_pflags, 8); 632 633 /* 634 * If immutable or not appending then return EPERM 635 */ 636 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 637 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 638 (uio->uio_loffset < zp->z_size))) { 639 ZFS_EXIT(zfsvfs); 640 return (EPERM); 641 } 642 643 zilog = zfsvfs->z_log; 644 645 /* 646 * Validate file offset 647 */ 648 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 649 if (woff < 0) { 650 ZFS_EXIT(zfsvfs); 651 return (EINVAL); 652 } 653 654 /* 655 * Check for mandatory locks before calling zfs_range_lock() 656 * in order to prevent a deadlock with locks set via fcntl(). 657 */ 658 if (MANDMODE((mode_t)zp->z_mode) && 659 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 660 ZFS_EXIT(zfsvfs); 661 return (error); 662 } 663 664 /* 665 * Pre-fault the pages to ensure slow (eg NFS) pages 666 * don't hold up txg. 667 * Skip this if uio contains loaned arc_buf. 668 */ 669 if ((uio->uio_extflg == UIO_XUIO) && 670 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 671 xuio = (xuio_t *)uio; 672 else 673 uio_prefaultpages(n, uio); 674 675 /* 676 * If in append mode, set the io offset pointer to eof. 677 */ 678 if (ioflag & FAPPEND) { 679 /* 680 * Obtain an appending range lock to guarantee file append 681 * semantics. We reset the write offset once we have the lock. 682 */ 683 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 684 woff = rl->r_off; 685 if (rl->r_len == UINT64_MAX) { 686 /* 687 * We overlocked the file because this write will cause 688 * the file block size to increase. 689 * Note that zp_size cannot change with this lock held. 690 */ 691 woff = zp->z_size; 692 } 693 uio->uio_loffset = woff; 694 } else { 695 /* 696 * Note that if the file block size will change as a result of 697 * this write, then this range lock will lock the entire file 698 * so that we can re-write the block safely. 699 */ 700 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 701 } 702 703 if (woff >= limit) { 704 zfs_range_unlock(rl); 705 ZFS_EXIT(zfsvfs); 706 return (EFBIG); 707 } 708 709 if ((woff + n) > limit || woff > (limit - n)) 710 n = limit - woff; 711 712 /* Will this write extend the file length? */ 713 write_eof = (woff + n > zp->z_size); 714 715 end_size = MAX(zp->z_size, woff + n); 716 717 /* 718 * Write the file in reasonable size chunks. Each chunk is written 719 * in a separate transaction; this keeps the intent log records small 720 * and allows us to do more fine-grained space accounting. 721 */ 722 while (n > 0) { 723 abuf = NULL; 724 woff = uio->uio_loffset; 725 again: 726 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 727 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 728 if (abuf != NULL) 729 dmu_return_arcbuf(abuf); 730 error = EDQUOT; 731 break; 732 } 733 734 if (xuio && abuf == NULL) { 735 ASSERT(i_iov < iovcnt); 736 aiov = &iovp[i_iov]; 737 abuf = dmu_xuio_arcbuf(xuio, i_iov); 738 dmu_xuio_clear(xuio, i_iov); 739 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 740 iovec_t *, aiov, arc_buf_t *, abuf); 741 ASSERT((aiov->iov_base == abuf->b_data) || 742 ((char *)aiov->iov_base - (char *)abuf->b_data + 743 aiov->iov_len == arc_buf_size(abuf))); 744 i_iov++; 745 } else if (abuf == NULL && n >= max_blksz && 746 woff >= zp->z_size && 747 P2PHASE(woff, max_blksz) == 0 && 748 zp->z_blksz == max_blksz) { 749 /* 750 * This write covers a full block. "Borrow" a buffer 751 * from the dmu so that we can fill it before we enter 752 * a transaction. This avoids the possibility of 753 * holding up the transaction if the data copy hangs 754 * up on a pagefault (e.g., from an NFS server mapping). 755 */ 756 size_t cbytes; 757 758 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 759 max_blksz); 760 ASSERT(abuf != NULL); 761 ASSERT(arc_buf_size(abuf) == max_blksz); 762 if (error = uiocopy(abuf->b_data, max_blksz, 763 UIO_WRITE, uio, &cbytes)) { 764 dmu_return_arcbuf(abuf); 765 break; 766 } 767 ASSERT(cbytes == max_blksz); 768 } 769 770 /* 771 * Start a transaction. 772 */ 773 tx = dmu_tx_create(zfsvfs->z_os); 774 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 775 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 776 zfs_sa_upgrade_txholds(tx, zp); 777 error = dmu_tx_assign(tx, TXG_NOWAIT); 778 if (error) { 779 if (error == ERESTART) { 780 dmu_tx_wait(tx); 781 dmu_tx_abort(tx); 782 goto again; 783 } 784 dmu_tx_abort(tx); 785 if (abuf != NULL) 786 dmu_return_arcbuf(abuf); 787 break; 788 } 789 790 /* 791 * If zfs_range_lock() over-locked we grow the blocksize 792 * and then reduce the lock range. This will only happen 793 * on the first iteration since zfs_range_reduce() will 794 * shrink down r_len to the appropriate size. 795 */ 796 if (rl->r_len == UINT64_MAX) { 797 uint64_t new_blksz; 798 799 if (zp->z_blksz > max_blksz) { 800 ASSERT(!ISP2(zp->z_blksz)); 801 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 802 } else { 803 new_blksz = MIN(end_size, max_blksz); 804 } 805 zfs_grow_blocksize(zp, new_blksz, tx); 806 zfs_range_reduce(rl, woff, n); 807 } 808 809 /* 810 * XXX - should we really limit each write to z_max_blksz? 811 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 812 */ 813 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 814 815 if (abuf == NULL) { 816 tx_bytes = uio->uio_resid; 817 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 818 uio, nbytes, tx); 819 tx_bytes -= uio->uio_resid; 820 } else { 821 tx_bytes = nbytes; 822 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 823 /* 824 * If this is not a full block write, but we are 825 * extending the file past EOF and this data starts 826 * block-aligned, use assign_arcbuf(). Otherwise, 827 * write via dmu_write(). 828 */ 829 if (tx_bytes < max_blksz && (!write_eof || 830 aiov->iov_base != abuf->b_data)) { 831 ASSERT(xuio); 832 dmu_write(zfsvfs->z_os, zp->z_id, woff, 833 aiov->iov_len, aiov->iov_base, tx); 834 dmu_return_arcbuf(abuf); 835 xuio_stat_wbuf_copied(); 836 } else { 837 ASSERT(xuio || tx_bytes == max_blksz); 838 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 839 woff, abuf, tx); 840 } 841 ASSERT(tx_bytes <= uio->uio_resid); 842 uioskip(uio, tx_bytes); 843 } 844 if (tx_bytes && vn_has_cached_data(vp)) { 845 update_pages(vp, woff, 846 tx_bytes, zfsvfs->z_os, zp->z_id); 847 } 848 849 /* 850 * If we made no progress, we're done. If we made even 851 * partial progress, update the znode and ZIL accordingly. 852 */ 853 if (tx_bytes == 0) { 854 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 855 (void *)&zp->z_size, sizeof (uint64_t), tx); 856 dmu_tx_commit(tx); 857 ASSERT(error != 0); 858 break; 859 } 860 861 /* 862 * Clear Set-UID/Set-GID bits on successful write if not 863 * privileged and at least one of the excute bits is set. 864 * 865 * It would be nice to to this after all writes have 866 * been done, but that would still expose the ISUID/ISGID 867 * to another app after the partial write is committed. 868 * 869 */ 870 mutex_enter(&zp->z_acl_lock); 871 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 872 (S_IXUSR >> 6))) != 0 && 873 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 874 secpolicy_vnode_setid_retain(cr, 875 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 876 uint64_t newmode; 877 zp->z_mode &= ~(S_ISUID | S_ISGID); 878 newmode = zp->z_mode; 879 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 880 (void *)&newmode, sizeof (uint64_t), tx); 881 } 882 mutex_exit(&zp->z_acl_lock); 883 884 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 885 B_TRUE); 886 887 /* 888 * Update the file size (zp_size) if it has changed; 889 * account for possible concurrent updates. 890 */ 891 while ((end_size = zp->z_size) < uio->uio_loffset) { 892 (void) atomic_cas_64(&zp->z_size, end_size, 893 uio->uio_loffset); 894 ASSERT(error == 0); 895 } 896 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 897 898 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 899 dmu_tx_commit(tx); 900 901 if (error != 0) 902 break; 903 ASSERT(tx_bytes == nbytes); 904 n -= nbytes; 905 } 906 907 zfs_range_unlock(rl); 908 909 /* 910 * If we're in replay mode, or we made no progress, return error. 911 * Otherwise, it's at least a partial write, so it's successful. 912 */ 913 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 914 ZFS_EXIT(zfsvfs); 915 return (error); 916 } 917 918 if (ioflag & (FSYNC | FDSYNC) || 919 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 920 zil_commit(zilog, zp->z_last_itx, zp->z_id); 921 922 ZFS_EXIT(zfsvfs); 923 return (0); 924 } 925 926 void 927 zfs_get_done(zgd_t *zgd, int error) 928 { 929 znode_t *zp = zgd->zgd_private; 930 objset_t *os = zp->z_zfsvfs->z_os; 931 932 if (zgd->zgd_db) 933 dmu_buf_rele(zgd->zgd_db, zgd); 934 935 zfs_range_unlock(zgd->zgd_rl); 936 937 /* 938 * Release the vnode asynchronously as we currently have the 939 * txg stopped from syncing. 940 */ 941 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 942 943 if (error == 0 && zgd->zgd_bp) 944 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 945 946 kmem_free(zgd, sizeof (zgd_t)); 947 } 948 949 #ifdef DEBUG 950 static int zil_fault_io = 0; 951 #endif 952 953 /* 954 * Get data to generate a TX_WRITE intent log record. 955 */ 956 int 957 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 958 { 959 zfsvfs_t *zfsvfs = arg; 960 objset_t *os = zfsvfs->z_os; 961 znode_t *zp; 962 uint64_t object = lr->lr_foid; 963 uint64_t offset = lr->lr_offset; 964 uint64_t size = lr->lr_length; 965 blkptr_t *bp = &lr->lr_blkptr; 966 dmu_buf_t *db; 967 zgd_t *zgd; 968 int error = 0; 969 970 ASSERT(zio != NULL); 971 ASSERT(size != 0); 972 973 /* 974 * Nothing to do if the file has been removed 975 */ 976 if (zfs_zget(zfsvfs, object, &zp) != 0) 977 return (ENOENT); 978 if (zp->z_unlinked) { 979 /* 980 * Release the vnode asynchronously as we currently have the 981 * txg stopped from syncing. 982 */ 983 VN_RELE_ASYNC(ZTOV(zp), 984 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 985 return (ENOENT); 986 } 987 988 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 989 zgd->zgd_zilog = zfsvfs->z_log; 990 zgd->zgd_private = zp; 991 992 /* 993 * Write records come in two flavors: immediate and indirect. 994 * For small writes it's cheaper to store the data with the 995 * log record (immediate); for large writes it's cheaper to 996 * sync the data and get a pointer to it (indirect) so that 997 * we don't have to write the data twice. 998 */ 999 if (buf != NULL) { /* immediate write */ 1000 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1001 /* test for truncation needs to be done while range locked */ 1002 if (offset >= zp->z_size) { 1003 error = ENOENT; 1004 } else { 1005 error = dmu_read(os, object, offset, size, buf, 1006 DMU_READ_NO_PREFETCH); 1007 } 1008 ASSERT(error == 0 || error == ENOENT); 1009 } else { /* indirect write */ 1010 /* 1011 * Have to lock the whole block to ensure when it's 1012 * written out and it's checksum is being calculated 1013 * that no one can change the data. We need to re-check 1014 * blocksize after we get the lock in case it's changed! 1015 */ 1016 for (;;) { 1017 uint64_t blkoff; 1018 size = zp->z_blksz; 1019 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1020 offset -= blkoff; 1021 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1022 RL_READER); 1023 if (zp->z_blksz == size) 1024 break; 1025 offset += blkoff; 1026 zfs_range_unlock(zgd->zgd_rl); 1027 } 1028 /* test for truncation needs to be done while range locked */ 1029 if (lr->lr_offset >= zp->z_size) 1030 error = ENOENT; 1031 #ifdef DEBUG 1032 if (zil_fault_io) { 1033 error = EIO; 1034 zil_fault_io = 0; 1035 } 1036 #endif 1037 if (error == 0) 1038 error = dmu_buf_hold(os, object, offset, zgd, &db, 1039 DMU_READ_NO_PREFETCH); 1040 1041 if (error == 0) { 1042 zgd->zgd_db = db; 1043 zgd->zgd_bp = bp; 1044 1045 ASSERT(db->db_offset == offset); 1046 ASSERT(db->db_size == size); 1047 1048 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1049 zfs_get_done, zgd); 1050 ASSERT(error || lr->lr_length <= zp->z_blksz); 1051 1052 /* 1053 * On success, we need to wait for the write I/O 1054 * initiated by dmu_sync() to complete before we can 1055 * release this dbuf. We will finish everything up 1056 * in the zfs_get_done() callback. 1057 */ 1058 if (error == 0) 1059 return (0); 1060 1061 if (error == EALREADY) { 1062 lr->lr_common.lrc_txtype = TX_WRITE2; 1063 error = 0; 1064 } 1065 } 1066 } 1067 1068 zfs_get_done(zgd, error); 1069 1070 return (error); 1071 } 1072 1073 /*ARGSUSED*/ 1074 static int 1075 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1076 caller_context_t *ct) 1077 { 1078 znode_t *zp = VTOZ(vp); 1079 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1080 int error; 1081 1082 ZFS_ENTER(zfsvfs); 1083 ZFS_VERIFY_ZP(zp); 1084 1085 if (flag & V_ACE_MASK) 1086 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1087 else 1088 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1089 1090 ZFS_EXIT(zfsvfs); 1091 return (error); 1092 } 1093 1094 /* 1095 * If vnode is for a device return a specfs vnode instead. 1096 */ 1097 static int 1098 specvp_check(vnode_t **vpp, cred_t *cr) 1099 { 1100 int error = 0; 1101 1102 if (IS_DEVVP(*vpp)) { 1103 struct vnode *svp; 1104 1105 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1106 VN_RELE(*vpp); 1107 if (svp == NULL) 1108 error = ENOSYS; 1109 *vpp = svp; 1110 } 1111 return (error); 1112 } 1113 1114 1115 /* 1116 * Lookup an entry in a directory, or an extended attribute directory. 1117 * If it exists, return a held vnode reference for it. 1118 * 1119 * IN: dvp - vnode of directory to search. 1120 * nm - name of entry to lookup. 1121 * pnp - full pathname to lookup [UNUSED]. 1122 * flags - LOOKUP_XATTR set if looking for an attribute. 1123 * rdir - root directory vnode [UNUSED]. 1124 * cr - credentials of caller. 1125 * ct - caller context 1126 * direntflags - directory lookup flags 1127 * realpnp - returned pathname. 1128 * 1129 * OUT: vpp - vnode of located entry, NULL if not found. 1130 * 1131 * RETURN: 0 if success 1132 * error code if failure 1133 * 1134 * Timestamps: 1135 * NA 1136 */ 1137 /* ARGSUSED */ 1138 static int 1139 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1140 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1141 int *direntflags, pathname_t *realpnp) 1142 { 1143 znode_t *zdp = VTOZ(dvp); 1144 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1145 int error = 0; 1146 1147 /* fast path */ 1148 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1149 1150 if (dvp->v_type != VDIR) { 1151 return (ENOTDIR); 1152 } else if (zdp->z_sa_hdl == NULL) { 1153 return (EIO); 1154 } 1155 1156 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1157 error = zfs_fastaccesschk_execute(zdp, cr); 1158 if (!error) { 1159 *vpp = dvp; 1160 VN_HOLD(*vpp); 1161 return (0); 1162 } 1163 return (error); 1164 } else { 1165 vnode_t *tvp = dnlc_lookup(dvp, nm); 1166 1167 if (tvp) { 1168 error = zfs_fastaccesschk_execute(zdp, cr); 1169 if (error) { 1170 VN_RELE(tvp); 1171 return (error); 1172 } 1173 if (tvp == DNLC_NO_VNODE) { 1174 VN_RELE(tvp); 1175 return (ENOENT); 1176 } else { 1177 *vpp = tvp; 1178 return (specvp_check(vpp, cr)); 1179 } 1180 } 1181 } 1182 } 1183 1184 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1185 1186 ZFS_ENTER(zfsvfs); 1187 ZFS_VERIFY_ZP(zdp); 1188 1189 *vpp = NULL; 1190 1191 if (flags & LOOKUP_XATTR) { 1192 /* 1193 * If the xattr property is off, refuse the lookup request. 1194 */ 1195 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1196 ZFS_EXIT(zfsvfs); 1197 return (EINVAL); 1198 } 1199 1200 /* 1201 * We don't allow recursive attributes.. 1202 * Maybe someday we will. 1203 */ 1204 if (zdp->z_pflags & ZFS_XATTR) { 1205 ZFS_EXIT(zfsvfs); 1206 return (EINVAL); 1207 } 1208 1209 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1210 ZFS_EXIT(zfsvfs); 1211 return (error); 1212 } 1213 1214 /* 1215 * Do we have permission to get into attribute directory? 1216 */ 1217 1218 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1219 B_FALSE, cr)) { 1220 VN_RELE(*vpp); 1221 *vpp = NULL; 1222 } 1223 1224 ZFS_EXIT(zfsvfs); 1225 return (error); 1226 } 1227 1228 if (dvp->v_type != VDIR) { 1229 ZFS_EXIT(zfsvfs); 1230 return (ENOTDIR); 1231 } 1232 1233 /* 1234 * Check accessibility of directory. 1235 */ 1236 1237 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1238 ZFS_EXIT(zfsvfs); 1239 return (error); 1240 } 1241 1242 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1243 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1244 ZFS_EXIT(zfsvfs); 1245 return (EILSEQ); 1246 } 1247 1248 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1249 if (error == 0) 1250 error = specvp_check(vpp, cr); 1251 1252 ZFS_EXIT(zfsvfs); 1253 return (error); 1254 } 1255 1256 /* 1257 * Attempt to create a new entry in a directory. If the entry 1258 * already exists, truncate the file if permissible, else return 1259 * an error. Return the vp of the created or trunc'd file. 1260 * 1261 * IN: dvp - vnode of directory to put new file entry in. 1262 * name - name of new file entry. 1263 * vap - attributes of new file. 1264 * excl - flag indicating exclusive or non-exclusive mode. 1265 * mode - mode to open file with. 1266 * cr - credentials of caller. 1267 * flag - large file flag [UNUSED]. 1268 * ct - caller context 1269 * vsecp - ACL to be set 1270 * 1271 * OUT: vpp - vnode of created or trunc'd entry. 1272 * 1273 * RETURN: 0 if success 1274 * error code if failure 1275 * 1276 * Timestamps: 1277 * dvp - ctime|mtime updated if new entry created 1278 * vp - ctime|mtime always, atime if new 1279 */ 1280 1281 /* ARGSUSED */ 1282 static int 1283 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1284 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1285 vsecattr_t *vsecp) 1286 { 1287 znode_t *zp, *dzp = VTOZ(dvp); 1288 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1289 zilog_t *zilog; 1290 objset_t *os; 1291 zfs_dirlock_t *dl; 1292 dmu_tx_t *tx; 1293 int error; 1294 ksid_t *ksid; 1295 uid_t uid; 1296 gid_t gid = crgetgid(cr); 1297 zfs_acl_ids_t acl_ids; 1298 boolean_t fuid_dirtied; 1299 boolean_t have_acl = B_FALSE; 1300 1301 /* 1302 * If we have an ephemeral id, ACL, or XVATTR then 1303 * make sure file system is at proper version 1304 */ 1305 1306 ksid = crgetsid(cr, KSID_OWNER); 1307 if (ksid) 1308 uid = ksid_getid(ksid); 1309 else 1310 uid = crgetuid(cr); 1311 1312 if (zfsvfs->z_use_fuids == B_FALSE && 1313 (vsecp || (vap->va_mask & AT_XVATTR) || 1314 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1315 return (EINVAL); 1316 1317 ZFS_ENTER(zfsvfs); 1318 ZFS_VERIFY_ZP(dzp); 1319 os = zfsvfs->z_os; 1320 zilog = zfsvfs->z_log; 1321 1322 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1323 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1324 ZFS_EXIT(zfsvfs); 1325 return (EILSEQ); 1326 } 1327 1328 if (vap->va_mask & AT_XVATTR) { 1329 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1330 crgetuid(cr), cr, vap->va_type)) != 0) { 1331 ZFS_EXIT(zfsvfs); 1332 return (error); 1333 } 1334 } 1335 top: 1336 *vpp = NULL; 1337 1338 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1339 vap->va_mode &= ~VSVTX; 1340 1341 if (*name == '\0') { 1342 /* 1343 * Null component name refers to the directory itself. 1344 */ 1345 VN_HOLD(dvp); 1346 zp = dzp; 1347 dl = NULL; 1348 error = 0; 1349 } else { 1350 /* possible VN_HOLD(zp) */ 1351 int zflg = 0; 1352 1353 if (flag & FIGNORECASE) 1354 zflg |= ZCILOOK; 1355 1356 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1357 NULL, NULL); 1358 if (error) { 1359 if (strcmp(name, "..") == 0) 1360 error = EISDIR; 1361 ZFS_EXIT(zfsvfs); 1362 return (error); 1363 } 1364 } 1365 1366 if (zp == NULL) { 1367 uint64_t txtype; 1368 1369 /* 1370 * Create a new file object and update the directory 1371 * to reference it. 1372 */ 1373 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1374 goto out; 1375 } 1376 1377 /* 1378 * We only support the creation of regular files in 1379 * extended attribute directories. 1380 */ 1381 1382 if ((dzp->z_pflags & ZFS_XATTR) && 1383 (vap->va_type != VREG)) { 1384 error = EINVAL; 1385 goto out; 1386 } 1387 1388 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1389 cr, vsecp, &acl_ids)) != 0) 1390 goto out; 1391 have_acl = B_TRUE; 1392 1393 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1394 zfs_acl_ids_free(&acl_ids); 1395 error = EDQUOT; 1396 goto out; 1397 } 1398 1399 tx = dmu_tx_create(os); 1400 1401 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1402 ZFS_SA_BASE_ATTR_SIZE); 1403 1404 fuid_dirtied = zfsvfs->z_fuid_dirty; 1405 if (fuid_dirtied) 1406 zfs_fuid_txhold(zfsvfs, tx); 1407 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1408 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1409 if (!zfsvfs->z_use_sa && 1410 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1411 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1412 0, acl_ids.z_aclp->z_acl_bytes); 1413 } 1414 error = dmu_tx_assign(tx, TXG_NOWAIT); 1415 if (error) { 1416 zfs_dirent_unlock(dl); 1417 if (error == ERESTART) { 1418 dmu_tx_wait(tx); 1419 dmu_tx_abort(tx); 1420 goto top; 1421 } 1422 zfs_acl_ids_free(&acl_ids); 1423 dmu_tx_abort(tx); 1424 ZFS_EXIT(zfsvfs); 1425 return (error); 1426 } 1427 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1428 1429 if (fuid_dirtied) 1430 zfs_fuid_sync(zfsvfs, tx); 1431 1432 (void) zfs_link_create(dl, zp, tx, ZNEW); 1433 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1434 if (flag & FIGNORECASE) 1435 txtype |= TX_CI; 1436 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1437 vsecp, acl_ids.z_fuidp, vap); 1438 zfs_acl_ids_free(&acl_ids); 1439 dmu_tx_commit(tx); 1440 } else { 1441 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1442 1443 /* 1444 * A directory entry already exists for this name. 1445 */ 1446 /* 1447 * Can't truncate an existing file if in exclusive mode. 1448 */ 1449 if (excl == EXCL) { 1450 error = EEXIST; 1451 goto out; 1452 } 1453 /* 1454 * Can't open a directory for writing. 1455 */ 1456 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1457 error = EISDIR; 1458 goto out; 1459 } 1460 /* 1461 * Verify requested access to file. 1462 */ 1463 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1464 goto out; 1465 } 1466 1467 mutex_enter(&dzp->z_lock); 1468 dzp->z_seq++; 1469 mutex_exit(&dzp->z_lock); 1470 1471 /* 1472 * Truncate regular files if requested. 1473 */ 1474 if ((ZTOV(zp)->v_type == VREG) && 1475 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1476 /* we can't hold any locks when calling zfs_freesp() */ 1477 zfs_dirent_unlock(dl); 1478 dl = NULL; 1479 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1480 if (error == 0) { 1481 vnevent_create(ZTOV(zp), ct); 1482 } 1483 } 1484 } 1485 out: 1486 1487 if (dl) 1488 zfs_dirent_unlock(dl); 1489 1490 if (error) { 1491 if (zp) 1492 VN_RELE(ZTOV(zp)); 1493 } else { 1494 *vpp = ZTOV(zp); 1495 error = specvp_check(vpp, cr); 1496 } 1497 1498 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1499 zil_commit(zilog, UINT64_MAX, 0); 1500 1501 ZFS_EXIT(zfsvfs); 1502 return (error); 1503 } 1504 1505 /* 1506 * Remove an entry from a directory. 1507 * 1508 * IN: dvp - vnode of directory to remove entry from. 1509 * name - name of entry to remove. 1510 * cr - credentials of caller. 1511 * ct - caller context 1512 * flags - case flags 1513 * 1514 * RETURN: 0 if success 1515 * error code if failure 1516 * 1517 * Timestamps: 1518 * dvp - ctime|mtime 1519 * vp - ctime (if nlink > 0) 1520 */ 1521 1522 uint64_t null_xattr = 0; 1523 1524 /*ARGSUSED*/ 1525 static int 1526 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1527 int flags) 1528 { 1529 znode_t *zp, *dzp = VTOZ(dvp); 1530 znode_t *xzp = NULL; 1531 vnode_t *vp; 1532 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1533 zilog_t *zilog; 1534 uint64_t acl_obj, xattr_obj = 0; 1535 uint64_t xattr_obj_unlinked = 0; 1536 zfs_dirlock_t *dl; 1537 dmu_tx_t *tx; 1538 boolean_t may_delete_now, delete_now = FALSE; 1539 boolean_t unlinked, toobig = FALSE; 1540 uint64_t txtype; 1541 pathname_t *realnmp = NULL; 1542 pathname_t realnm; 1543 int error; 1544 int zflg = ZEXISTS; 1545 1546 ZFS_ENTER(zfsvfs); 1547 ZFS_VERIFY_ZP(dzp); 1548 zilog = zfsvfs->z_log; 1549 1550 if (flags & FIGNORECASE) { 1551 zflg |= ZCILOOK; 1552 pn_alloc(&realnm); 1553 realnmp = &realnm; 1554 } 1555 1556 top: 1557 /* 1558 * Attempt to lock directory; fail if entry doesn't exist. 1559 */ 1560 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1561 NULL, realnmp)) { 1562 if (realnmp) 1563 pn_free(realnmp); 1564 ZFS_EXIT(zfsvfs); 1565 return (error); 1566 } 1567 1568 vp = ZTOV(zp); 1569 1570 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1571 goto out; 1572 } 1573 1574 /* 1575 * Need to use rmdir for removing directories. 1576 */ 1577 if (vp->v_type == VDIR) { 1578 error = EPERM; 1579 goto out; 1580 } 1581 1582 vnevent_remove(vp, dvp, name, ct); 1583 1584 if (realnmp) 1585 dnlc_remove(dvp, realnmp->pn_buf); 1586 else 1587 dnlc_remove(dvp, name); 1588 1589 mutex_enter(&vp->v_lock); 1590 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1591 mutex_exit(&vp->v_lock); 1592 1593 /* 1594 * We may delete the znode now, or we may put it in the unlinked set; 1595 * it depends on whether we're the last link, and on whether there are 1596 * other holds on the vnode. So we dmu_tx_hold() the right things to 1597 * allow for either case. 1598 */ 1599 tx = dmu_tx_create(zfsvfs->z_os); 1600 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1601 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1602 zfs_sa_upgrade_txholds(tx, zp); 1603 zfs_sa_upgrade_txholds(tx, dzp); 1604 if (may_delete_now) { 1605 toobig = 1606 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1607 /* if the file is too big, only hold_free a token amount */ 1608 dmu_tx_hold_free(tx, zp->z_id, 0, 1609 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1610 } 1611 1612 /* are there any extended attributes? */ 1613 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1614 &xattr_obj, sizeof (xattr_obj)); 1615 if (xattr_obj) { 1616 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1617 ASSERT3U(error, ==, 0); 1618 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1619 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1620 } 1621 1622 mutex_enter(&zp->z_lock); 1623 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1624 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1625 mutex_exit(&zp->z_lock); 1626 1627 /* charge as an update -- would be nice not to charge at all */ 1628 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1629 1630 error = dmu_tx_assign(tx, TXG_NOWAIT); 1631 if (error) { 1632 zfs_dirent_unlock(dl); 1633 VN_RELE(vp); 1634 if (error == ERESTART) { 1635 dmu_tx_wait(tx); 1636 dmu_tx_abort(tx); 1637 goto top; 1638 } 1639 if (realnmp) 1640 pn_free(realnmp); 1641 dmu_tx_abort(tx); 1642 ZFS_EXIT(zfsvfs); 1643 return (error); 1644 } 1645 1646 /* 1647 * Remove the directory entry. 1648 */ 1649 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1650 1651 if (error) { 1652 dmu_tx_commit(tx); 1653 goto out; 1654 } 1655 1656 if (unlinked) { 1657 1658 /* 1659 * Hold z_lock so that we can make sure that the ACL obj 1660 * hasn't changed. Could have been deleted due to 1661 * zfs_sa_upgrade(). 1662 */ 1663 mutex_enter(&zp->z_lock); 1664 mutex_enter(&vp->v_lock); 1665 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1666 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1667 delete_now = may_delete_now && !toobig && 1668 vp->v_count == 1 && !vn_has_cached_data(vp) && 1669 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1670 acl_obj; 1671 mutex_exit(&vp->v_lock); 1672 } 1673 1674 if (delete_now) { 1675 if (xattr_obj_unlinked) { 1676 ASSERT3U(xzp->z_links, ==, 2); 1677 mutex_enter(&xzp->z_lock); 1678 xzp->z_unlinked = 1; 1679 xzp->z_links = 0; 1680 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1681 &xzp->z_links, sizeof (xzp->z_links), tx); 1682 ASSERT3U(error, ==, 0); 1683 mutex_exit(&xzp->z_lock); 1684 zfs_unlinked_add(xzp, tx); 1685 1686 if (zp->z_is_sa) 1687 error = sa_remove(zp->z_sa_hdl, 1688 SA_ZPL_XATTR(zfsvfs), tx); 1689 else 1690 error = sa_update(zp->z_sa_hdl, 1691 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1692 sizeof (uint64_t), tx); 1693 ASSERT3U(error, ==, 0); 1694 } 1695 mutex_enter(&vp->v_lock); 1696 vp->v_count--; 1697 ASSERT3U(vp->v_count, ==, 0); 1698 mutex_exit(&vp->v_lock); 1699 mutex_exit(&zp->z_lock); 1700 zfs_znode_delete(zp, tx); 1701 } else if (unlinked) { 1702 mutex_exit(&zp->z_lock); 1703 zfs_unlinked_add(zp, tx); 1704 } 1705 1706 txtype = TX_REMOVE; 1707 if (flags & FIGNORECASE) 1708 txtype |= TX_CI; 1709 zfs_log_remove(zilog, tx, txtype, dzp, name); 1710 1711 dmu_tx_commit(tx); 1712 out: 1713 if (realnmp) 1714 pn_free(realnmp); 1715 1716 zfs_dirent_unlock(dl); 1717 1718 if (!delete_now) 1719 VN_RELE(vp); 1720 if (xzp) 1721 VN_RELE(ZTOV(xzp)); 1722 1723 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1724 zil_commit(zilog, UINT64_MAX, 0); 1725 1726 ZFS_EXIT(zfsvfs); 1727 return (error); 1728 } 1729 1730 /* 1731 * Create a new directory and insert it into dvp using the name 1732 * provided. Return a pointer to the inserted directory. 1733 * 1734 * IN: dvp - vnode of directory to add subdir to. 1735 * dirname - name of new directory. 1736 * vap - attributes of new directory. 1737 * cr - credentials of caller. 1738 * ct - caller context 1739 * vsecp - ACL to be set 1740 * 1741 * OUT: vpp - vnode of created directory. 1742 * 1743 * RETURN: 0 if success 1744 * error code if failure 1745 * 1746 * Timestamps: 1747 * dvp - ctime|mtime updated 1748 * vp - ctime|mtime|atime updated 1749 */ 1750 /*ARGSUSED*/ 1751 static int 1752 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1753 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1754 { 1755 znode_t *zp, *dzp = VTOZ(dvp); 1756 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1757 zilog_t *zilog; 1758 zfs_dirlock_t *dl; 1759 uint64_t txtype; 1760 dmu_tx_t *tx; 1761 int error; 1762 int zf = ZNEW; 1763 ksid_t *ksid; 1764 uid_t uid; 1765 gid_t gid = crgetgid(cr); 1766 zfs_acl_ids_t acl_ids; 1767 boolean_t fuid_dirtied; 1768 1769 ASSERT(vap->va_type == VDIR); 1770 1771 /* 1772 * If we have an ephemeral id, ACL, or XVATTR then 1773 * make sure file system is at proper version 1774 */ 1775 1776 ksid = crgetsid(cr, KSID_OWNER); 1777 if (ksid) 1778 uid = ksid_getid(ksid); 1779 else 1780 uid = crgetuid(cr); 1781 if (zfsvfs->z_use_fuids == B_FALSE && 1782 (vsecp || (vap->va_mask & AT_XVATTR) || 1783 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1784 return (EINVAL); 1785 1786 ZFS_ENTER(zfsvfs); 1787 ZFS_VERIFY_ZP(dzp); 1788 zilog = zfsvfs->z_log; 1789 1790 if (dzp->z_pflags & ZFS_XATTR) { 1791 ZFS_EXIT(zfsvfs); 1792 return (EINVAL); 1793 } 1794 1795 if (zfsvfs->z_utf8 && u8_validate(dirname, 1796 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1797 ZFS_EXIT(zfsvfs); 1798 return (EILSEQ); 1799 } 1800 if (flags & FIGNORECASE) 1801 zf |= ZCILOOK; 1802 1803 if (vap->va_mask & AT_XVATTR) { 1804 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1805 crgetuid(cr), cr, vap->va_type)) != 0) { 1806 ZFS_EXIT(zfsvfs); 1807 return (error); 1808 } 1809 } 1810 1811 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1812 vsecp, &acl_ids)) != 0) { 1813 ZFS_EXIT(zfsvfs); 1814 return (error); 1815 } 1816 /* 1817 * First make sure the new directory doesn't exist. 1818 * 1819 * Existence is checked first to make sure we don't return 1820 * EACCES instead of EEXIST which can cause some applications 1821 * to fail. 1822 */ 1823 top: 1824 *vpp = NULL; 1825 1826 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1827 NULL, NULL)) { 1828 zfs_acl_ids_free(&acl_ids); 1829 ZFS_EXIT(zfsvfs); 1830 return (error); 1831 } 1832 1833 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1834 zfs_acl_ids_free(&acl_ids); 1835 zfs_dirent_unlock(dl); 1836 ZFS_EXIT(zfsvfs); 1837 return (error); 1838 } 1839 1840 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1841 zfs_acl_ids_free(&acl_ids); 1842 zfs_dirent_unlock(dl); 1843 ZFS_EXIT(zfsvfs); 1844 return (EDQUOT); 1845 } 1846 1847 /* 1848 * Add a new entry to the directory. 1849 */ 1850 tx = dmu_tx_create(zfsvfs->z_os); 1851 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1852 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1853 fuid_dirtied = zfsvfs->z_fuid_dirty; 1854 if (fuid_dirtied) 1855 zfs_fuid_txhold(zfsvfs, tx); 1856 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1857 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1858 acl_ids.z_aclp->z_acl_bytes); 1859 } 1860 1861 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1862 ZFS_SA_BASE_ATTR_SIZE); 1863 1864 error = dmu_tx_assign(tx, TXG_NOWAIT); 1865 if (error) { 1866 zfs_dirent_unlock(dl); 1867 if (error == ERESTART) { 1868 dmu_tx_wait(tx); 1869 dmu_tx_abort(tx); 1870 goto top; 1871 } 1872 zfs_acl_ids_free(&acl_ids); 1873 dmu_tx_abort(tx); 1874 ZFS_EXIT(zfsvfs); 1875 return (error); 1876 } 1877 1878 /* 1879 * Create new node. 1880 */ 1881 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1882 1883 if (fuid_dirtied) 1884 zfs_fuid_sync(zfsvfs, tx); 1885 1886 /* 1887 * Now put new name in parent dir. 1888 */ 1889 (void) zfs_link_create(dl, zp, tx, ZNEW); 1890 1891 *vpp = ZTOV(zp); 1892 1893 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1894 if (flags & FIGNORECASE) 1895 txtype |= TX_CI; 1896 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1897 acl_ids.z_fuidp, vap); 1898 1899 zfs_acl_ids_free(&acl_ids); 1900 1901 dmu_tx_commit(tx); 1902 1903 zfs_dirent_unlock(dl); 1904 1905 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1906 zil_commit(zilog, UINT64_MAX, 0); 1907 1908 ZFS_EXIT(zfsvfs); 1909 return (0); 1910 } 1911 1912 /* 1913 * Remove a directory subdir entry. If the current working 1914 * directory is the same as the subdir to be removed, the 1915 * remove will fail. 1916 * 1917 * IN: dvp - vnode of directory to remove from. 1918 * name - name of directory to be removed. 1919 * cwd - vnode of current working directory. 1920 * cr - credentials of caller. 1921 * ct - caller context 1922 * flags - case flags 1923 * 1924 * RETURN: 0 if success 1925 * error code if failure 1926 * 1927 * Timestamps: 1928 * dvp - ctime|mtime updated 1929 */ 1930 /*ARGSUSED*/ 1931 static int 1932 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1933 caller_context_t *ct, int flags) 1934 { 1935 znode_t *dzp = VTOZ(dvp); 1936 znode_t *zp; 1937 vnode_t *vp; 1938 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1939 zilog_t *zilog; 1940 zfs_dirlock_t *dl; 1941 dmu_tx_t *tx; 1942 int error; 1943 int zflg = ZEXISTS; 1944 1945 ZFS_ENTER(zfsvfs); 1946 ZFS_VERIFY_ZP(dzp); 1947 zilog = zfsvfs->z_log; 1948 1949 if (flags & FIGNORECASE) 1950 zflg |= ZCILOOK; 1951 top: 1952 zp = NULL; 1953 1954 /* 1955 * Attempt to lock directory; fail if entry doesn't exist. 1956 */ 1957 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1958 NULL, NULL)) { 1959 ZFS_EXIT(zfsvfs); 1960 return (error); 1961 } 1962 1963 vp = ZTOV(zp); 1964 1965 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1966 goto out; 1967 } 1968 1969 if (vp->v_type != VDIR) { 1970 error = ENOTDIR; 1971 goto out; 1972 } 1973 1974 if (vp == cwd) { 1975 error = EINVAL; 1976 goto out; 1977 } 1978 1979 vnevent_rmdir(vp, dvp, name, ct); 1980 1981 /* 1982 * Grab a lock on the directory to make sure that noone is 1983 * trying to add (or lookup) entries while we are removing it. 1984 */ 1985 rw_enter(&zp->z_name_lock, RW_WRITER); 1986 1987 /* 1988 * Grab a lock on the parent pointer to make sure we play well 1989 * with the treewalk and directory rename code. 1990 */ 1991 rw_enter(&zp->z_parent_lock, RW_WRITER); 1992 1993 tx = dmu_tx_create(zfsvfs->z_os); 1994 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1995 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1996 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1997 zfs_sa_upgrade_txholds(tx, zp); 1998 zfs_sa_upgrade_txholds(tx, dzp); 1999 error = dmu_tx_assign(tx, TXG_NOWAIT); 2000 if (error) { 2001 rw_exit(&zp->z_parent_lock); 2002 rw_exit(&zp->z_name_lock); 2003 zfs_dirent_unlock(dl); 2004 VN_RELE(vp); 2005 if (error == ERESTART) { 2006 dmu_tx_wait(tx); 2007 dmu_tx_abort(tx); 2008 goto top; 2009 } 2010 dmu_tx_abort(tx); 2011 ZFS_EXIT(zfsvfs); 2012 return (error); 2013 } 2014 2015 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2016 2017 if (error == 0) { 2018 uint64_t txtype = TX_RMDIR; 2019 if (flags & FIGNORECASE) 2020 txtype |= TX_CI; 2021 zfs_log_remove(zilog, tx, txtype, dzp, name); 2022 } 2023 2024 dmu_tx_commit(tx); 2025 2026 rw_exit(&zp->z_parent_lock); 2027 rw_exit(&zp->z_name_lock); 2028 out: 2029 zfs_dirent_unlock(dl); 2030 2031 VN_RELE(vp); 2032 2033 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2034 zil_commit(zilog, UINT64_MAX, 0); 2035 2036 ZFS_EXIT(zfsvfs); 2037 return (error); 2038 } 2039 2040 /* 2041 * Read as many directory entries as will fit into the provided 2042 * buffer from the given directory cursor position (specified in 2043 * the uio structure. 2044 * 2045 * IN: vp - vnode of directory to read. 2046 * uio - structure supplying read location, range info, 2047 * and return buffer. 2048 * cr - credentials of caller. 2049 * ct - caller context 2050 * flags - case flags 2051 * 2052 * OUT: uio - updated offset and range, buffer filled. 2053 * eofp - set to true if end-of-file detected. 2054 * 2055 * RETURN: 0 if success 2056 * error code if failure 2057 * 2058 * Timestamps: 2059 * vp - atime updated 2060 * 2061 * Note that the low 4 bits of the cookie returned by zap is always zero. 2062 * This allows us to use the low range for "special" directory entries: 2063 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2064 * we use the offset 2 for the '.zfs' directory. 2065 */ 2066 /* ARGSUSED */ 2067 static int 2068 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2069 caller_context_t *ct, int flags) 2070 { 2071 znode_t *zp = VTOZ(vp); 2072 iovec_t *iovp; 2073 edirent_t *eodp; 2074 dirent64_t *odp; 2075 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2076 objset_t *os; 2077 caddr_t outbuf; 2078 size_t bufsize; 2079 zap_cursor_t zc; 2080 zap_attribute_t zap; 2081 uint_t bytes_wanted; 2082 uint64_t offset; /* must be unsigned; checks for < 1 */ 2083 uint64_t parent; 2084 int local_eof; 2085 int outcount; 2086 int error; 2087 uint8_t prefetch; 2088 boolean_t check_sysattrs; 2089 2090 ZFS_ENTER(zfsvfs); 2091 ZFS_VERIFY_ZP(zp); 2092 2093 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2094 &parent, sizeof (parent))) != 0) { 2095 ZFS_EXIT(zfsvfs); 2096 return (error); 2097 } 2098 2099 /* 2100 * If we are not given an eof variable, 2101 * use a local one. 2102 */ 2103 if (eofp == NULL) 2104 eofp = &local_eof; 2105 2106 /* 2107 * Check for valid iov_len. 2108 */ 2109 if (uio->uio_iov->iov_len <= 0) { 2110 ZFS_EXIT(zfsvfs); 2111 return (EINVAL); 2112 } 2113 2114 /* 2115 * Quit if directory has been removed (posix) 2116 */ 2117 if ((*eofp = zp->z_unlinked) != 0) { 2118 ZFS_EXIT(zfsvfs); 2119 return (0); 2120 } 2121 2122 error = 0; 2123 os = zfsvfs->z_os; 2124 offset = uio->uio_loffset; 2125 prefetch = zp->z_zn_prefetch; 2126 2127 /* 2128 * Initialize the iterator cursor. 2129 */ 2130 if (offset <= 3) { 2131 /* 2132 * Start iteration from the beginning of the directory. 2133 */ 2134 zap_cursor_init(&zc, os, zp->z_id); 2135 } else { 2136 /* 2137 * The offset is a serialized cursor. 2138 */ 2139 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2140 } 2141 2142 /* 2143 * Get space to change directory entries into fs independent format. 2144 */ 2145 iovp = uio->uio_iov; 2146 bytes_wanted = iovp->iov_len; 2147 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2148 bufsize = bytes_wanted; 2149 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2150 odp = (struct dirent64 *)outbuf; 2151 } else { 2152 bufsize = bytes_wanted; 2153 odp = (struct dirent64 *)iovp->iov_base; 2154 } 2155 eodp = (struct edirent *)odp; 2156 2157 /* 2158 * If this VFS supports the system attribute view interface; and 2159 * we're looking at an extended attribute directory; and we care 2160 * about normalization conflicts on this vfs; then we must check 2161 * for normalization conflicts with the sysattr name space. 2162 */ 2163 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2164 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2165 (flags & V_RDDIR_ENTFLAGS); 2166 2167 /* 2168 * Transform to file-system independent format 2169 */ 2170 outcount = 0; 2171 while (outcount < bytes_wanted) { 2172 ino64_t objnum; 2173 ushort_t reclen; 2174 off64_t *next; 2175 2176 /* 2177 * Special case `.', `..', and `.zfs'. 2178 */ 2179 if (offset == 0) { 2180 (void) strcpy(zap.za_name, "."); 2181 zap.za_normalization_conflict = 0; 2182 objnum = zp->z_id; 2183 } else if (offset == 1) { 2184 (void) strcpy(zap.za_name, ".."); 2185 zap.za_normalization_conflict = 0; 2186 objnum = parent; 2187 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2188 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2189 zap.za_normalization_conflict = 0; 2190 objnum = ZFSCTL_INO_ROOT; 2191 } else { 2192 /* 2193 * Grab next entry. 2194 */ 2195 if (error = zap_cursor_retrieve(&zc, &zap)) { 2196 if ((*eofp = (error == ENOENT)) != 0) 2197 break; 2198 else 2199 goto update; 2200 } 2201 2202 if (zap.za_integer_length != 8 || 2203 zap.za_num_integers != 1) { 2204 cmn_err(CE_WARN, "zap_readdir: bad directory " 2205 "entry, obj = %lld, offset = %lld\n", 2206 (u_longlong_t)zp->z_id, 2207 (u_longlong_t)offset); 2208 error = ENXIO; 2209 goto update; 2210 } 2211 2212 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2213 /* 2214 * MacOS X can extract the object type here such as: 2215 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2216 */ 2217 2218 if (check_sysattrs && !zap.za_normalization_conflict) { 2219 zap.za_normalization_conflict = 2220 xattr_sysattr_casechk(zap.za_name); 2221 } 2222 } 2223 2224 if (flags & V_RDDIR_ACCFILTER) { 2225 /* 2226 * If we have no access at all, don't include 2227 * this entry in the returned information 2228 */ 2229 znode_t *ezp; 2230 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2231 goto skip_entry; 2232 if (!zfs_has_access(ezp, cr)) { 2233 VN_RELE(ZTOV(ezp)); 2234 goto skip_entry; 2235 } 2236 VN_RELE(ZTOV(ezp)); 2237 } 2238 2239 if (flags & V_RDDIR_ENTFLAGS) 2240 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2241 else 2242 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2243 2244 /* 2245 * Will this entry fit in the buffer? 2246 */ 2247 if (outcount + reclen > bufsize) { 2248 /* 2249 * Did we manage to fit anything in the buffer? 2250 */ 2251 if (!outcount) { 2252 error = EINVAL; 2253 goto update; 2254 } 2255 break; 2256 } 2257 if (flags & V_RDDIR_ENTFLAGS) { 2258 /* 2259 * Add extended flag entry: 2260 */ 2261 eodp->ed_ino = objnum; 2262 eodp->ed_reclen = reclen; 2263 /* NOTE: ed_off is the offset for the *next* entry */ 2264 next = &(eodp->ed_off); 2265 eodp->ed_eflags = zap.za_normalization_conflict ? 2266 ED_CASE_CONFLICT : 0; 2267 (void) strncpy(eodp->ed_name, zap.za_name, 2268 EDIRENT_NAMELEN(reclen)); 2269 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2270 } else { 2271 /* 2272 * Add normal entry: 2273 */ 2274 odp->d_ino = objnum; 2275 odp->d_reclen = reclen; 2276 /* NOTE: d_off is the offset for the *next* entry */ 2277 next = &(odp->d_off); 2278 (void) strncpy(odp->d_name, zap.za_name, 2279 DIRENT64_NAMELEN(reclen)); 2280 odp = (dirent64_t *)((intptr_t)odp + reclen); 2281 } 2282 outcount += reclen; 2283 2284 ASSERT(outcount <= bufsize); 2285 2286 /* Prefetch znode */ 2287 if (prefetch) 2288 dmu_prefetch(os, objnum, 0, 0); 2289 2290 skip_entry: 2291 /* 2292 * Move to the next entry, fill in the previous offset. 2293 */ 2294 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2295 zap_cursor_advance(&zc); 2296 offset = zap_cursor_serialize(&zc); 2297 } else { 2298 offset += 1; 2299 } 2300 *next = offset; 2301 } 2302 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2303 2304 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2305 iovp->iov_base += outcount; 2306 iovp->iov_len -= outcount; 2307 uio->uio_resid -= outcount; 2308 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2309 /* 2310 * Reset the pointer. 2311 */ 2312 offset = uio->uio_loffset; 2313 } 2314 2315 update: 2316 zap_cursor_fini(&zc); 2317 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2318 kmem_free(outbuf, bufsize); 2319 2320 if (error == ENOENT) 2321 error = 0; 2322 2323 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2324 2325 uio->uio_loffset = offset; 2326 ZFS_EXIT(zfsvfs); 2327 return (error); 2328 } 2329 2330 ulong_t zfs_fsync_sync_cnt = 4; 2331 2332 static int 2333 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2334 { 2335 znode_t *zp = VTOZ(vp); 2336 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2337 2338 /* 2339 * Regardless of whether this is required for standards conformance, 2340 * this is the logical behavior when fsync() is called on a file with 2341 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2342 * going to be pushed out as part of the zil_commit(). 2343 */ 2344 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2345 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2346 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2347 2348 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2349 2350 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2351 ZFS_ENTER(zfsvfs); 2352 ZFS_VERIFY_ZP(zp); 2353 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2354 ZFS_EXIT(zfsvfs); 2355 } 2356 return (0); 2357 } 2358 2359 2360 /* 2361 * Get the requested file attributes and place them in the provided 2362 * vattr structure. 2363 * 2364 * IN: vp - vnode of file. 2365 * vap - va_mask identifies requested attributes. 2366 * If AT_XVATTR set, then optional attrs are requested 2367 * flags - ATTR_NOACLCHECK (CIFS server context) 2368 * cr - credentials of caller. 2369 * ct - caller context 2370 * 2371 * OUT: vap - attribute values. 2372 * 2373 * RETURN: 0 (always succeeds) 2374 */ 2375 /* ARGSUSED */ 2376 static int 2377 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2378 caller_context_t *ct) 2379 { 2380 znode_t *zp = VTOZ(vp); 2381 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2382 int error = 0; 2383 uint64_t links; 2384 uint64_t mtime[2], ctime[2]; 2385 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2386 xoptattr_t *xoap = NULL; 2387 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2388 sa_bulk_attr_t bulk[2]; 2389 int count = 0; 2390 2391 ZFS_ENTER(zfsvfs); 2392 ZFS_VERIFY_ZP(zp); 2393 2394 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2395 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2396 2397 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2398 ZFS_EXIT(zfsvfs); 2399 return (error); 2400 } 2401 2402 /* 2403 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2404 * Also, if we are the owner don't bother, since owner should 2405 * always be allowed to read basic attributes of file. 2406 */ 2407 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && (zp->z_uid != crgetuid(cr))) { 2408 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2409 skipaclchk, cr)) { 2410 ZFS_EXIT(zfsvfs); 2411 return (error); 2412 } 2413 } 2414 2415 /* 2416 * Return all attributes. It's cheaper to provide the answer 2417 * than to determine whether we were asked the question. 2418 */ 2419 2420 mutex_enter(&zp->z_lock); 2421 vap->va_type = vp->v_type; 2422 vap->va_mode = zp->z_mode & MODEMASK; 2423 vap->va_uid = zp->z_uid; 2424 vap->va_gid = zp->z_gid; 2425 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2426 vap->va_nodeid = zp->z_id; 2427 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2428 links = zp->z_links + 1; 2429 else 2430 links = zp->z_links; 2431 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2432 vap->va_size = zp->z_size; 2433 vap->va_rdev = vp->v_rdev; 2434 vap->va_seq = zp->z_seq; 2435 2436 /* 2437 * Add in any requested optional attributes and the create time. 2438 * Also set the corresponding bits in the returned attribute bitmap. 2439 */ 2440 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2441 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2442 xoap->xoa_archive = 2443 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2444 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2445 } 2446 2447 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2448 xoap->xoa_readonly = 2449 ((zp->z_pflags & ZFS_READONLY) != 0); 2450 XVA_SET_RTN(xvap, XAT_READONLY); 2451 } 2452 2453 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2454 xoap->xoa_system = 2455 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2456 XVA_SET_RTN(xvap, XAT_SYSTEM); 2457 } 2458 2459 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2460 xoap->xoa_hidden = 2461 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2462 XVA_SET_RTN(xvap, XAT_HIDDEN); 2463 } 2464 2465 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2466 xoap->xoa_nounlink = 2467 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2468 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2469 } 2470 2471 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2472 xoap->xoa_immutable = 2473 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2474 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2475 } 2476 2477 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2478 xoap->xoa_appendonly = 2479 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2480 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2481 } 2482 2483 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2484 xoap->xoa_nodump = 2485 ((zp->z_pflags & ZFS_NODUMP) != 0); 2486 XVA_SET_RTN(xvap, XAT_NODUMP); 2487 } 2488 2489 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2490 xoap->xoa_opaque = 2491 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2492 XVA_SET_RTN(xvap, XAT_OPAQUE); 2493 } 2494 2495 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2496 xoap->xoa_av_quarantined = 2497 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2498 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2499 } 2500 2501 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2502 xoap->xoa_av_modified = 2503 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2504 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2505 } 2506 2507 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2508 vp->v_type == VREG) { 2509 zfs_sa_get_scanstamp(zp, xvap); 2510 } 2511 2512 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2513 uint64_t times[2]; 2514 2515 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2516 times, sizeof (times)); 2517 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2518 XVA_SET_RTN(xvap, XAT_CREATETIME); 2519 } 2520 2521 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2522 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2523 XVA_SET_RTN(xvap, XAT_REPARSE); 2524 } 2525 } 2526 2527 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2528 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2529 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2530 2531 mutex_exit(&zp->z_lock); 2532 2533 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2534 2535 if (zp->z_blksz == 0) { 2536 /* 2537 * Block size hasn't been set; suggest maximal I/O transfers. 2538 */ 2539 vap->va_blksize = zfsvfs->z_max_blksz; 2540 } 2541 2542 ZFS_EXIT(zfsvfs); 2543 return (0); 2544 } 2545 2546 /* 2547 * Set the file attributes to the values contained in the 2548 * vattr structure. 2549 * 2550 * IN: vp - vnode of file to be modified. 2551 * vap - new attribute values. 2552 * If AT_XVATTR set, then optional attrs are being set 2553 * flags - ATTR_UTIME set if non-default time values provided. 2554 * - ATTR_NOACLCHECK (CIFS context only). 2555 * cr - credentials of caller. 2556 * ct - caller context 2557 * 2558 * RETURN: 0 if success 2559 * error code if failure 2560 * 2561 * Timestamps: 2562 * vp - ctime updated, mtime updated if size changed. 2563 */ 2564 /* ARGSUSED */ 2565 static int 2566 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2567 caller_context_t *ct) 2568 { 2569 znode_t *zp = VTOZ(vp); 2570 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2571 zilog_t *zilog; 2572 dmu_tx_t *tx; 2573 vattr_t oldva; 2574 xvattr_t tmpxvattr; 2575 uint_t mask = vap->va_mask; 2576 uint_t saved_mask; 2577 int trim_mask = 0; 2578 uint64_t new_mode; 2579 uint64_t new_uid, new_gid; 2580 uint64_t xattr_obj = 0; 2581 uint64_t mtime[2], ctime[2]; 2582 znode_t *attrzp; 2583 int need_policy = FALSE; 2584 int err, err2; 2585 zfs_fuid_info_t *fuidp = NULL; 2586 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2587 xoptattr_t *xoap; 2588 zfs_acl_t *aclp = NULL; 2589 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2590 boolean_t fuid_dirtied = B_FALSE; 2591 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2592 int count = 0, xattr_count = 0; 2593 2594 if (mask == 0) 2595 return (0); 2596 2597 if (mask & AT_NOSET) 2598 return (EINVAL); 2599 2600 ZFS_ENTER(zfsvfs); 2601 ZFS_VERIFY_ZP(zp); 2602 2603 zilog = zfsvfs->z_log; 2604 2605 /* 2606 * Make sure that if we have ephemeral uid/gid or xvattr specified 2607 * that file system is at proper version level 2608 */ 2609 2610 if (zfsvfs->z_use_fuids == B_FALSE && 2611 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2612 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2613 (mask & AT_XVATTR))) { 2614 ZFS_EXIT(zfsvfs); 2615 return (EINVAL); 2616 } 2617 2618 if (mask & AT_SIZE && vp->v_type == VDIR) { 2619 ZFS_EXIT(zfsvfs); 2620 return (EISDIR); 2621 } 2622 2623 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2624 ZFS_EXIT(zfsvfs); 2625 return (EINVAL); 2626 } 2627 2628 /* 2629 * If this is an xvattr_t, then get a pointer to the structure of 2630 * optional attributes. If this is NULL, then we have a vattr_t. 2631 */ 2632 xoap = xva_getxoptattr(xvap); 2633 2634 xva_init(&tmpxvattr); 2635 2636 /* 2637 * Immutable files can only alter immutable bit and atime 2638 */ 2639 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2640 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2641 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2642 ZFS_EXIT(zfsvfs); 2643 return (EPERM); 2644 } 2645 2646 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2647 ZFS_EXIT(zfsvfs); 2648 return (EPERM); 2649 } 2650 2651 /* 2652 * Verify timestamps doesn't overflow 32 bits. 2653 * ZFS can handle large timestamps, but 32bit syscalls can't 2654 * handle times greater than 2039. This check should be removed 2655 * once large timestamps are fully supported. 2656 */ 2657 if (mask & (AT_ATIME | AT_MTIME)) { 2658 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2659 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2660 ZFS_EXIT(zfsvfs); 2661 return (EOVERFLOW); 2662 } 2663 } 2664 2665 top: 2666 attrzp = NULL; 2667 2668 /* Can this be moved to before the top label? */ 2669 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2670 ZFS_EXIT(zfsvfs); 2671 return (EROFS); 2672 } 2673 2674 /* 2675 * First validate permissions 2676 */ 2677 2678 if (mask & AT_SIZE) { 2679 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2680 if (err) { 2681 ZFS_EXIT(zfsvfs); 2682 return (err); 2683 } 2684 /* 2685 * XXX - Note, we are not providing any open 2686 * mode flags here (like FNDELAY), so we may 2687 * block if there are locks present... this 2688 * should be addressed in openat(). 2689 */ 2690 /* XXX - would it be OK to generate a log record here? */ 2691 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2692 if (err) { 2693 ZFS_EXIT(zfsvfs); 2694 return (err); 2695 } 2696 } 2697 2698 if (mask & (AT_ATIME|AT_MTIME) || 2699 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2700 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2701 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2702 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2703 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2704 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2705 skipaclchk, cr); 2706 } 2707 2708 if (mask & (AT_UID|AT_GID)) { 2709 int idmask = (mask & (AT_UID|AT_GID)); 2710 int take_owner; 2711 int take_group; 2712 2713 /* 2714 * NOTE: even if a new mode is being set, 2715 * we may clear S_ISUID/S_ISGID bits. 2716 */ 2717 2718 if (!(mask & AT_MODE)) 2719 vap->va_mode = zp->z_mode; 2720 2721 /* 2722 * Take ownership or chgrp to group we are a member of 2723 */ 2724 2725 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2726 take_group = (mask & AT_GID) && 2727 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2728 2729 /* 2730 * If both AT_UID and AT_GID are set then take_owner and 2731 * take_group must both be set in order to allow taking 2732 * ownership. 2733 * 2734 * Otherwise, send the check through secpolicy_vnode_setattr() 2735 * 2736 */ 2737 2738 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2739 ((idmask == AT_UID) && take_owner) || 2740 ((idmask == AT_GID) && take_group)) { 2741 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2742 skipaclchk, cr) == 0) { 2743 /* 2744 * Remove setuid/setgid for non-privileged users 2745 */ 2746 secpolicy_setid_clear(vap, cr); 2747 trim_mask = (mask & (AT_UID|AT_GID)); 2748 } else { 2749 need_policy = TRUE; 2750 } 2751 } else { 2752 need_policy = TRUE; 2753 } 2754 } 2755 2756 mutex_enter(&zp->z_lock); 2757 oldva.va_mode = zp->z_mode; 2758 oldva.va_uid = zp->z_uid; 2759 oldva.va_gid = zp->z_gid; 2760 if (mask & AT_XVATTR) { 2761 /* 2762 * Update xvattr mask to include only those attributes 2763 * that are actually changing. 2764 * 2765 * the bits will be restored prior to actually setting 2766 * the attributes so the caller thinks they were set. 2767 */ 2768 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2769 if (xoap->xoa_appendonly != 2770 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2771 need_policy = TRUE; 2772 } else { 2773 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2774 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2775 } 2776 } 2777 2778 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2779 if (xoap->xoa_nounlink != 2780 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2781 need_policy = TRUE; 2782 } else { 2783 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2784 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2785 } 2786 } 2787 2788 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2789 if (xoap->xoa_immutable != 2790 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2791 need_policy = TRUE; 2792 } else { 2793 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2794 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2795 } 2796 } 2797 2798 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2799 if (xoap->xoa_nodump != 2800 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2801 need_policy = TRUE; 2802 } else { 2803 XVA_CLR_REQ(xvap, XAT_NODUMP); 2804 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2805 } 2806 } 2807 2808 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2809 if (xoap->xoa_av_modified != 2810 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2811 need_policy = TRUE; 2812 } else { 2813 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2814 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2815 } 2816 } 2817 2818 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2819 if ((vp->v_type != VREG && 2820 xoap->xoa_av_quarantined) || 2821 xoap->xoa_av_quarantined != 2822 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2823 need_policy = TRUE; 2824 } else { 2825 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2826 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2827 } 2828 } 2829 2830 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2831 mutex_exit(&zp->z_lock); 2832 ZFS_EXIT(zfsvfs); 2833 return (EPERM); 2834 } 2835 2836 if (need_policy == FALSE && 2837 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2838 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2839 need_policy = TRUE; 2840 } 2841 } 2842 2843 mutex_exit(&zp->z_lock); 2844 2845 if (mask & AT_MODE) { 2846 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2847 err = secpolicy_setid_setsticky_clear(vp, vap, 2848 &oldva, cr); 2849 if (err) { 2850 ZFS_EXIT(zfsvfs); 2851 return (err); 2852 } 2853 trim_mask |= AT_MODE; 2854 } else { 2855 need_policy = TRUE; 2856 } 2857 } 2858 2859 if (need_policy) { 2860 /* 2861 * If trim_mask is set then take ownership 2862 * has been granted or write_acl is present and user 2863 * has the ability to modify mode. In that case remove 2864 * UID|GID and or MODE from mask so that 2865 * secpolicy_vnode_setattr() doesn't revoke it. 2866 */ 2867 2868 if (trim_mask) { 2869 saved_mask = vap->va_mask; 2870 vap->va_mask &= ~trim_mask; 2871 } 2872 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2873 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2874 if (err) { 2875 ZFS_EXIT(zfsvfs); 2876 return (err); 2877 } 2878 2879 if (trim_mask) 2880 vap->va_mask |= saved_mask; 2881 } 2882 2883 /* 2884 * secpolicy_vnode_setattr, or take ownership may have 2885 * changed va_mask 2886 */ 2887 mask = vap->va_mask; 2888 2889 if ((mask & (AT_UID | AT_GID))) { 2890 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj, 2891 sizeof (xattr_obj)); 2892 2893 if (xattr_obj) { 2894 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 2895 if (err) 2896 goto out2; 2897 } 2898 if (mask & AT_UID) { 2899 new_uid = zfs_fuid_create(zfsvfs, 2900 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2901 if (vap->va_uid != zp->z_uid && 2902 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 2903 err = EDQUOT; 2904 goto out2; 2905 } 2906 } 2907 2908 if (mask & AT_GID) { 2909 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2910 cr, ZFS_GROUP, &fuidp); 2911 if (new_gid != zp->z_gid && 2912 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 2913 err = EDQUOT; 2914 goto out2; 2915 } 2916 } 2917 } 2918 tx = dmu_tx_create(zfsvfs->z_os); 2919 2920 if (mask & AT_MODE) { 2921 uint64_t pmode = zp->z_mode; 2922 uint64_t acl_obj; 2923 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2924 2925 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 2926 goto out; 2927 2928 mutex_enter(&zp->z_lock); 2929 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 2930 /* 2931 * Are we upgrading ACL from old V0 format 2932 * to V1 format? 2933 */ 2934 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2935 zfs_znode_acl_version(zp) == 2936 ZFS_ACL_VERSION_INITIAL) { 2937 dmu_tx_hold_free(tx, acl_obj, 0, 2938 DMU_OBJECT_END); 2939 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2940 0, aclp->z_acl_bytes); 2941 } else { 2942 dmu_tx_hold_write(tx, acl_obj, 0, 2943 aclp->z_acl_bytes); 2944 } 2945 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2946 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2947 0, aclp->z_acl_bytes); 2948 } 2949 mutex_exit(&zp->z_lock); 2950 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2951 } else { 2952 if ((mask & AT_XVATTR) && 2953 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 2954 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2955 else 2956 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2957 } 2958 2959 if (attrzp) { 2960 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 2961 } 2962 2963 fuid_dirtied = zfsvfs->z_fuid_dirty; 2964 if (fuid_dirtied) 2965 zfs_fuid_txhold(zfsvfs, tx); 2966 2967 zfs_sa_upgrade_txholds(tx, zp); 2968 2969 err = dmu_tx_assign(tx, TXG_NOWAIT); 2970 if (err) { 2971 if (err == ERESTART) 2972 dmu_tx_wait(tx); 2973 goto out; 2974 } 2975 2976 count = 0; 2977 /* 2978 * Set each attribute requested. 2979 * We group settings according to the locks they need to acquire. 2980 * 2981 * Note: you cannot set ctime directly, although it will be 2982 * updated as a side-effect of calling this function. 2983 */ 2984 2985 2986 if (mask & (AT_UID|AT_GID|AT_MODE)) 2987 mutex_enter(&zp->z_acl_lock); 2988 mutex_enter(&zp->z_lock); 2989 2990 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 2991 &zp->z_pflags, sizeof (zp->z_pflags)); 2992 2993 if (attrzp) { 2994 if (mask & (AT_UID|AT_GID|AT_MODE)) 2995 mutex_enter(&attrzp->z_acl_lock); 2996 mutex_enter(&attrzp->z_lock); 2997 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2998 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 2999 sizeof (attrzp->z_pflags)); 3000 } 3001 3002 if (mask & (AT_UID|AT_GID)) { 3003 3004 if (mask & AT_UID) { 3005 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3006 &new_uid, sizeof (new_uid)); 3007 zp->z_uid = zfs_fuid_map_id(zfsvfs, new_uid, 3008 cr, ZFS_OWNER); 3009 if (attrzp) { 3010 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3011 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3012 sizeof (new_uid)); 3013 attrzp->z_uid = zp->z_uid; 3014 } 3015 } 3016 3017 if (mask & AT_GID) { 3018 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3019 NULL, &new_gid, sizeof (new_gid)); 3020 zp->z_gid = zfs_fuid_map_id(zfsvfs, new_gid, cr, 3021 ZFS_GROUP); 3022 if (attrzp) { 3023 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3024 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3025 sizeof (new_gid)); 3026 attrzp->z_gid = zp->z_gid; 3027 } 3028 } 3029 if (!(mask & AT_MODE)) { 3030 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3031 NULL, &new_mode, sizeof (new_mode)); 3032 new_mode = zp->z_mode; 3033 } 3034 err = zfs_acl_chown_setattr(zp); 3035 ASSERT(err == 0); 3036 if (attrzp) { 3037 err = zfs_acl_chown_setattr(attrzp); 3038 ASSERT(err == 0); 3039 } 3040 } 3041 3042 if (mask & AT_MODE) { 3043 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3044 &new_mode, sizeof (new_mode)); 3045 zp->z_mode = new_mode; 3046 ASSERT3U((uintptr_t)aclp, !=, NULL); 3047 err = zfs_aclset_common(zp, aclp, cr, tx); 3048 ASSERT3U(err, ==, 0); 3049 zp->z_acl_cached = aclp; 3050 aclp = NULL; 3051 } 3052 3053 3054 if (mask & AT_ATIME) { 3055 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3056 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3057 &zp->z_atime, sizeof (zp->z_atime)); 3058 } 3059 3060 if (mask & AT_MTIME) { 3061 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3062 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3063 mtime, sizeof (mtime)); 3064 } 3065 3066 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3067 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3068 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3069 NULL, mtime, sizeof (mtime)); 3070 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3071 &ctime, sizeof (ctime)); 3072 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3073 B_TRUE); 3074 } else if (mask != 0) { 3075 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3076 &ctime, sizeof (ctime)); 3077 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3078 B_TRUE); 3079 if (attrzp) { 3080 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3081 SA_ZPL_CTIME(zfsvfs), NULL, 3082 &ctime, sizeof (ctime)); 3083 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3084 mtime, ctime, B_TRUE); 3085 } 3086 } 3087 /* 3088 * Do this after setting timestamps to prevent timestamp 3089 * update from toggling bit 3090 */ 3091 3092 if (xoap && (mask & AT_XVATTR)) { 3093 3094 /* 3095 * restore trimmed off masks 3096 * so that return masks can be set for caller. 3097 */ 3098 3099 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3100 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3101 } 3102 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3103 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3104 } 3105 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3106 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3107 } 3108 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3109 XVA_SET_REQ(xvap, XAT_NODUMP); 3110 } 3111 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3112 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3113 } 3114 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3115 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3116 } 3117 3118 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3119 ASSERT(vp->v_type == VREG); 3120 3121 zfs_xvattr_set(zp, xvap, tx); 3122 } 3123 3124 if (fuid_dirtied) 3125 zfs_fuid_sync(zfsvfs, tx); 3126 3127 if (mask != 0) 3128 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3129 3130 mutex_exit(&zp->z_lock); 3131 if (mask & (AT_UID|AT_GID|AT_MODE)) 3132 mutex_exit(&zp->z_acl_lock); 3133 3134 if (attrzp) { 3135 if (mask & (AT_UID|AT_GID|AT_MODE)) 3136 mutex_exit(&attrzp->z_acl_lock); 3137 mutex_exit(&attrzp->z_lock); 3138 } 3139 out: 3140 if (err == 0 && attrzp) { 3141 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3142 xattr_count, tx); 3143 ASSERT(err2 == 0); 3144 } 3145 3146 if (attrzp) 3147 VN_RELE(ZTOV(attrzp)); 3148 if (aclp) 3149 zfs_acl_free(aclp); 3150 3151 if (fuidp) { 3152 zfs_fuid_info_free(fuidp); 3153 fuidp = NULL; 3154 } 3155 3156 if (err) { 3157 dmu_tx_abort(tx); 3158 if (err == ERESTART) 3159 goto top; 3160 } else { 3161 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3162 dmu_tx_commit(tx); 3163 } 3164 3165 3166 out2: 3167 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3168 zil_commit(zilog, UINT64_MAX, 0); 3169 3170 ZFS_EXIT(zfsvfs); 3171 return (err); 3172 } 3173 3174 typedef struct zfs_zlock { 3175 krwlock_t *zl_rwlock; /* lock we acquired */ 3176 znode_t *zl_znode; /* znode we held */ 3177 struct zfs_zlock *zl_next; /* next in list */ 3178 } zfs_zlock_t; 3179 3180 /* 3181 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3182 */ 3183 static void 3184 zfs_rename_unlock(zfs_zlock_t **zlpp) 3185 { 3186 zfs_zlock_t *zl; 3187 3188 while ((zl = *zlpp) != NULL) { 3189 if (zl->zl_znode != NULL) 3190 VN_RELE(ZTOV(zl->zl_znode)); 3191 rw_exit(zl->zl_rwlock); 3192 *zlpp = zl->zl_next; 3193 kmem_free(zl, sizeof (*zl)); 3194 } 3195 } 3196 3197 /* 3198 * Search back through the directory tree, using the ".." entries. 3199 * Lock each directory in the chain to prevent concurrent renames. 3200 * Fail any attempt to move a directory into one of its own descendants. 3201 * XXX - z_parent_lock can overlap with map or grow locks 3202 */ 3203 static int 3204 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3205 { 3206 zfs_zlock_t *zl; 3207 znode_t *zp = tdzp; 3208 uint64_t rootid = zp->z_zfsvfs->z_root; 3209 uint64_t oidp = zp->z_id; 3210 krwlock_t *rwlp = &szp->z_parent_lock; 3211 krw_t rw = RW_WRITER; 3212 3213 /* 3214 * First pass write-locks szp and compares to zp->z_id. 3215 * Later passes read-lock zp and compare to zp->z_parent. 3216 */ 3217 do { 3218 if (!rw_tryenter(rwlp, rw)) { 3219 /* 3220 * Another thread is renaming in this path. 3221 * Note that if we are a WRITER, we don't have any 3222 * parent_locks held yet. 3223 */ 3224 if (rw == RW_READER && zp->z_id > szp->z_id) { 3225 /* 3226 * Drop our locks and restart 3227 */ 3228 zfs_rename_unlock(&zl); 3229 *zlpp = NULL; 3230 zp = tdzp; 3231 oidp = zp->z_id; 3232 rwlp = &szp->z_parent_lock; 3233 rw = RW_WRITER; 3234 continue; 3235 } else { 3236 /* 3237 * Wait for other thread to drop its locks 3238 */ 3239 rw_enter(rwlp, rw); 3240 } 3241 } 3242 3243 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3244 zl->zl_rwlock = rwlp; 3245 zl->zl_znode = NULL; 3246 zl->zl_next = *zlpp; 3247 *zlpp = zl; 3248 3249 if (oidp == szp->z_id) /* We're a descendant of szp */ 3250 return (EINVAL); 3251 3252 if (oidp == rootid) /* We've hit the top */ 3253 return (0); 3254 3255 if (rw == RW_READER) { /* i.e. not the first pass */ 3256 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3257 if (error) 3258 return (error); 3259 zl->zl_znode = zp; 3260 } 3261 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3262 &oidp, sizeof (oidp)); 3263 rwlp = &zp->z_parent_lock; 3264 rw = RW_READER; 3265 3266 } while (zp->z_id != sdzp->z_id); 3267 3268 return (0); 3269 } 3270 3271 /* 3272 * Move an entry from the provided source directory to the target 3273 * directory. Change the entry name as indicated. 3274 * 3275 * IN: sdvp - Source directory containing the "old entry". 3276 * snm - Old entry name. 3277 * tdvp - Target directory to contain the "new entry". 3278 * tnm - New entry name. 3279 * cr - credentials of caller. 3280 * ct - caller context 3281 * flags - case flags 3282 * 3283 * RETURN: 0 if success 3284 * error code if failure 3285 * 3286 * Timestamps: 3287 * sdvp,tdvp - ctime|mtime updated 3288 */ 3289 /*ARGSUSED*/ 3290 static int 3291 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3292 caller_context_t *ct, int flags) 3293 { 3294 znode_t *tdzp, *szp, *tzp; 3295 znode_t *sdzp = VTOZ(sdvp); 3296 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3297 zilog_t *zilog; 3298 vnode_t *realvp; 3299 zfs_dirlock_t *sdl, *tdl; 3300 dmu_tx_t *tx; 3301 zfs_zlock_t *zl; 3302 int cmp, serr, terr; 3303 int error = 0; 3304 int zflg = 0; 3305 3306 ZFS_ENTER(zfsvfs); 3307 ZFS_VERIFY_ZP(sdzp); 3308 zilog = zfsvfs->z_log; 3309 3310 /* 3311 * Make sure we have the real vp for the target directory. 3312 */ 3313 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3314 tdvp = realvp; 3315 3316 if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) { 3317 ZFS_EXIT(zfsvfs); 3318 return (EXDEV); 3319 } 3320 3321 tdzp = VTOZ(tdvp); 3322 ZFS_VERIFY_ZP(tdzp); 3323 if (zfsvfs->z_utf8 && u8_validate(tnm, 3324 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3325 ZFS_EXIT(zfsvfs); 3326 return (EILSEQ); 3327 } 3328 3329 if (flags & FIGNORECASE) 3330 zflg |= ZCILOOK; 3331 3332 top: 3333 szp = NULL; 3334 tzp = NULL; 3335 zl = NULL; 3336 3337 /* 3338 * This is to prevent the creation of links into attribute space 3339 * by renaming a linked file into/outof an attribute directory. 3340 * See the comment in zfs_link() for why this is considered bad. 3341 */ 3342 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3343 ZFS_EXIT(zfsvfs); 3344 return (EINVAL); 3345 } 3346 3347 /* 3348 * Lock source and target directory entries. To prevent deadlock, 3349 * a lock ordering must be defined. We lock the directory with 3350 * the smallest object id first, or if it's a tie, the one with 3351 * the lexically first name. 3352 */ 3353 if (sdzp->z_id < tdzp->z_id) { 3354 cmp = -1; 3355 } else if (sdzp->z_id > tdzp->z_id) { 3356 cmp = 1; 3357 } else { 3358 /* 3359 * First compare the two name arguments without 3360 * considering any case folding. 3361 */ 3362 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3363 3364 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3365 ASSERT(error == 0 || !zfsvfs->z_utf8); 3366 if (cmp == 0) { 3367 /* 3368 * POSIX: "If the old argument and the new argument 3369 * both refer to links to the same existing file, 3370 * the rename() function shall return successfully 3371 * and perform no other action." 3372 */ 3373 ZFS_EXIT(zfsvfs); 3374 return (0); 3375 } 3376 /* 3377 * If the file system is case-folding, then we may 3378 * have some more checking to do. A case-folding file 3379 * system is either supporting mixed case sensitivity 3380 * access or is completely case-insensitive. Note 3381 * that the file system is always case preserving. 3382 * 3383 * In mixed sensitivity mode case sensitive behavior 3384 * is the default. FIGNORECASE must be used to 3385 * explicitly request case insensitive behavior. 3386 * 3387 * If the source and target names provided differ only 3388 * by case (e.g., a request to rename 'tim' to 'Tim'), 3389 * we will treat this as a special case in the 3390 * case-insensitive mode: as long as the source name 3391 * is an exact match, we will allow this to proceed as 3392 * a name-change request. 3393 */ 3394 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3395 (zfsvfs->z_case == ZFS_CASE_MIXED && 3396 flags & FIGNORECASE)) && 3397 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3398 &error) == 0) { 3399 /* 3400 * case preserving rename request, require exact 3401 * name matches 3402 */ 3403 zflg |= ZCIEXACT; 3404 zflg &= ~ZCILOOK; 3405 } 3406 } 3407 3408 /* 3409 * If the source and destination directories are the same, we should 3410 * grab the z_name_lock of that directory only once. 3411 */ 3412 if (sdzp == tdzp) { 3413 zflg |= ZHAVELOCK; 3414 rw_enter(&sdzp->z_name_lock, RW_READER); 3415 } 3416 3417 if (cmp < 0) { 3418 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3419 ZEXISTS | zflg, NULL, NULL); 3420 terr = zfs_dirent_lock(&tdl, 3421 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3422 } else { 3423 terr = zfs_dirent_lock(&tdl, 3424 tdzp, tnm, &tzp, zflg, NULL, NULL); 3425 serr = zfs_dirent_lock(&sdl, 3426 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3427 NULL, NULL); 3428 } 3429 3430 if (serr) { 3431 /* 3432 * Source entry invalid or not there. 3433 */ 3434 if (!terr) { 3435 zfs_dirent_unlock(tdl); 3436 if (tzp) 3437 VN_RELE(ZTOV(tzp)); 3438 } 3439 3440 if (sdzp == tdzp) 3441 rw_exit(&sdzp->z_name_lock); 3442 3443 if (strcmp(snm, "..") == 0) 3444 serr = EINVAL; 3445 ZFS_EXIT(zfsvfs); 3446 return (serr); 3447 } 3448 if (terr) { 3449 zfs_dirent_unlock(sdl); 3450 VN_RELE(ZTOV(szp)); 3451 3452 if (sdzp == tdzp) 3453 rw_exit(&sdzp->z_name_lock); 3454 3455 if (strcmp(tnm, "..") == 0) 3456 terr = EINVAL; 3457 ZFS_EXIT(zfsvfs); 3458 return (terr); 3459 } 3460 3461 /* 3462 * Must have write access at the source to remove the old entry 3463 * and write access at the target to create the new entry. 3464 * Note that if target and source are the same, this can be 3465 * done in a single check. 3466 */ 3467 3468 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3469 goto out; 3470 3471 if (ZTOV(szp)->v_type == VDIR) { 3472 /* 3473 * Check to make sure rename is valid. 3474 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3475 */ 3476 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3477 goto out; 3478 } 3479 3480 /* 3481 * Does target exist? 3482 */ 3483 if (tzp) { 3484 /* 3485 * Source and target must be the same type. 3486 */ 3487 if (ZTOV(szp)->v_type == VDIR) { 3488 if (ZTOV(tzp)->v_type != VDIR) { 3489 error = ENOTDIR; 3490 goto out; 3491 } 3492 } else { 3493 if (ZTOV(tzp)->v_type == VDIR) { 3494 error = EISDIR; 3495 goto out; 3496 } 3497 } 3498 /* 3499 * POSIX dictates that when the source and target 3500 * entries refer to the same file object, rename 3501 * must do nothing and exit without error. 3502 */ 3503 if (szp->z_id == tzp->z_id) { 3504 error = 0; 3505 goto out; 3506 } 3507 } 3508 3509 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3510 if (tzp) 3511 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3512 3513 /* 3514 * notify the target directory if it is not the same 3515 * as source directory. 3516 */ 3517 if (tdvp != sdvp) { 3518 vnevent_rename_dest_dir(tdvp, ct); 3519 } 3520 3521 tx = dmu_tx_create(zfsvfs->z_os); 3522 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3523 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3524 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3525 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3526 if (sdzp != tdzp) { 3527 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3528 zfs_sa_upgrade_txholds(tx, tdzp); 3529 } 3530 if (tzp) { 3531 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3532 zfs_sa_upgrade_txholds(tx, tzp); 3533 } 3534 3535 zfs_sa_upgrade_txholds(tx, szp); 3536 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3537 error = dmu_tx_assign(tx, TXG_NOWAIT); 3538 if (error) { 3539 if (zl != NULL) 3540 zfs_rename_unlock(&zl); 3541 zfs_dirent_unlock(sdl); 3542 zfs_dirent_unlock(tdl); 3543 3544 if (sdzp == tdzp) 3545 rw_exit(&sdzp->z_name_lock); 3546 3547 VN_RELE(ZTOV(szp)); 3548 if (tzp) 3549 VN_RELE(ZTOV(tzp)); 3550 if (error == ERESTART) { 3551 dmu_tx_wait(tx); 3552 dmu_tx_abort(tx); 3553 goto top; 3554 } 3555 dmu_tx_abort(tx); 3556 ZFS_EXIT(zfsvfs); 3557 return (error); 3558 } 3559 3560 if (tzp) /* Attempt to remove the existing target */ 3561 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3562 3563 if (error == 0) { 3564 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3565 if (error == 0) { 3566 szp->z_pflags |= ZFS_AV_MODIFIED; 3567 3568 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3569 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3570 ASSERT3U(error, ==, 0); 3571 3572 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3573 if (error == 0) { 3574 zfs_log_rename(zilog, tx, TX_RENAME | 3575 (flags & FIGNORECASE ? TX_CI : 0), 3576 sdzp, sdl->dl_name, tdzp, tdl->dl_name, 3577 szp); 3578 3579 /* 3580 * Update path information for the target vnode 3581 */ 3582 vn_renamepath(tdvp, ZTOV(szp), tnm, 3583 strlen(tnm)); 3584 } else { 3585 /* 3586 * At this point, we have successfully created 3587 * the target name, but have failed to remove 3588 * the source name. Since the create was done 3589 * with the ZRENAMING flag, there are 3590 * complications; for one, the link count is 3591 * wrong. The easiest way to deal with this 3592 * is to remove the newly created target, and 3593 * return the original error. This must 3594 * succeed; fortunately, it is very unlikely to 3595 * fail, since we just created it. 3596 */ 3597 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3598 ZRENAMING, NULL), ==, 0); 3599 } 3600 } 3601 } 3602 3603 dmu_tx_commit(tx); 3604 out: 3605 if (zl != NULL) 3606 zfs_rename_unlock(&zl); 3607 3608 zfs_dirent_unlock(sdl); 3609 zfs_dirent_unlock(tdl); 3610 3611 if (sdzp == tdzp) 3612 rw_exit(&sdzp->z_name_lock); 3613 3614 3615 VN_RELE(ZTOV(szp)); 3616 if (tzp) 3617 VN_RELE(ZTOV(tzp)); 3618 3619 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3620 zil_commit(zilog, UINT64_MAX, 0); 3621 3622 ZFS_EXIT(zfsvfs); 3623 return (error); 3624 } 3625 3626 /* 3627 * Insert the indicated symbolic reference entry into the directory. 3628 * 3629 * IN: dvp - Directory to contain new symbolic link. 3630 * link - Name for new symlink entry. 3631 * vap - Attributes of new entry. 3632 * target - Target path of new symlink. 3633 * cr - credentials of caller. 3634 * ct - caller context 3635 * flags - case flags 3636 * 3637 * RETURN: 0 if success 3638 * error code if failure 3639 * 3640 * Timestamps: 3641 * dvp - ctime|mtime updated 3642 */ 3643 /*ARGSUSED*/ 3644 static int 3645 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3646 caller_context_t *ct, int flags) 3647 { 3648 znode_t *zp, *dzp = VTOZ(dvp); 3649 zfs_dirlock_t *dl; 3650 dmu_tx_t *tx; 3651 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3652 zilog_t *zilog; 3653 uint64_t len = strlen(link); 3654 int error; 3655 int zflg = ZNEW; 3656 zfs_acl_ids_t acl_ids; 3657 boolean_t fuid_dirtied; 3658 uint64_t txtype = TX_SYMLINK; 3659 3660 ASSERT(vap->va_type == VLNK); 3661 3662 ZFS_ENTER(zfsvfs); 3663 ZFS_VERIFY_ZP(dzp); 3664 zilog = zfsvfs->z_log; 3665 3666 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3667 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3668 ZFS_EXIT(zfsvfs); 3669 return (EILSEQ); 3670 } 3671 if (flags & FIGNORECASE) 3672 zflg |= ZCILOOK; 3673 3674 if (len > MAXPATHLEN) { 3675 ZFS_EXIT(zfsvfs); 3676 return (ENAMETOOLONG); 3677 } 3678 3679 if ((error = zfs_acl_ids_create(dzp, 0, 3680 vap, cr, NULL, &acl_ids)) != 0) { 3681 ZFS_EXIT(zfsvfs); 3682 return (error); 3683 } 3684 top: 3685 /* 3686 * Attempt to lock directory; fail if entry already exists. 3687 */ 3688 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3689 if (error) { 3690 zfs_acl_ids_free(&acl_ids); 3691 ZFS_EXIT(zfsvfs); 3692 return (error); 3693 } 3694 3695 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3696 zfs_acl_ids_free(&acl_ids); 3697 zfs_dirent_unlock(dl); 3698 ZFS_EXIT(zfsvfs); 3699 return (error); 3700 } 3701 3702 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3703 zfs_acl_ids_free(&acl_ids); 3704 zfs_dirent_unlock(dl); 3705 ZFS_EXIT(zfsvfs); 3706 return (EDQUOT); 3707 } 3708 tx = dmu_tx_create(zfsvfs->z_os); 3709 fuid_dirtied = zfsvfs->z_fuid_dirty; 3710 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3711 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3712 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3713 ZFS_SA_BASE_ATTR_SIZE + len); 3714 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3715 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3716 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3717 acl_ids.z_aclp->z_acl_bytes); 3718 } 3719 if (fuid_dirtied) 3720 zfs_fuid_txhold(zfsvfs, tx); 3721 error = dmu_tx_assign(tx, TXG_NOWAIT); 3722 if (error) { 3723 zfs_dirent_unlock(dl); 3724 if (error == ERESTART) { 3725 dmu_tx_wait(tx); 3726 dmu_tx_abort(tx); 3727 goto top; 3728 } 3729 zfs_acl_ids_free(&acl_ids); 3730 dmu_tx_abort(tx); 3731 ZFS_EXIT(zfsvfs); 3732 return (error); 3733 } 3734 3735 /* 3736 * Create a new object for the symlink. 3737 * for version 4 ZPL datsets the symlink will be an SA attribute 3738 */ 3739 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3740 3741 if (fuid_dirtied) 3742 zfs_fuid_sync(zfsvfs, tx); 3743 3744 mutex_enter(&zp->z_lock); 3745 if (zp->z_is_sa) 3746 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3747 link, len, tx); 3748 else 3749 zfs_sa_symlink(zp, link, len, tx); 3750 mutex_exit(&zp->z_lock); 3751 3752 zp->z_size = len; 3753 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3754 &zp->z_size, sizeof (zp->z_size), tx); 3755 /* 3756 * Insert the new object into the directory. 3757 */ 3758 (void) zfs_link_create(dl, zp, tx, ZNEW); 3759 3760 if (flags & FIGNORECASE) 3761 txtype |= TX_CI; 3762 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3763 3764 zfs_acl_ids_free(&acl_ids); 3765 3766 dmu_tx_commit(tx); 3767 3768 zfs_dirent_unlock(dl); 3769 3770 VN_RELE(ZTOV(zp)); 3771 3772 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3773 zil_commit(zilog, UINT64_MAX, 0); 3774 3775 ZFS_EXIT(zfsvfs); 3776 return (error); 3777 } 3778 3779 /* 3780 * Return, in the buffer contained in the provided uio structure, 3781 * the symbolic path referred to by vp. 3782 * 3783 * IN: vp - vnode of symbolic link. 3784 * uoip - structure to contain the link path. 3785 * cr - credentials of caller. 3786 * ct - caller context 3787 * 3788 * OUT: uio - structure to contain the link path. 3789 * 3790 * RETURN: 0 if success 3791 * error code if failure 3792 * 3793 * Timestamps: 3794 * vp - atime updated 3795 */ 3796 /* ARGSUSED */ 3797 static int 3798 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3799 { 3800 znode_t *zp = VTOZ(vp); 3801 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3802 int error; 3803 3804 ZFS_ENTER(zfsvfs); 3805 ZFS_VERIFY_ZP(zp); 3806 3807 mutex_enter(&zp->z_lock); 3808 if (zp->z_is_sa) 3809 error = sa_lookup_uio(zp->z_sa_hdl, 3810 SA_ZPL_SYMLINK(zfsvfs), uio); 3811 else 3812 error = zfs_sa_readlink(zp, uio); 3813 mutex_exit(&zp->z_lock); 3814 3815 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3816 3817 ZFS_EXIT(zfsvfs); 3818 return (error); 3819 } 3820 3821 /* 3822 * Insert a new entry into directory tdvp referencing svp. 3823 * 3824 * IN: tdvp - Directory to contain new entry. 3825 * svp - vnode of new entry. 3826 * name - name of new entry. 3827 * cr - credentials of caller. 3828 * ct - caller context 3829 * 3830 * RETURN: 0 if success 3831 * error code if failure 3832 * 3833 * Timestamps: 3834 * tdvp - ctime|mtime updated 3835 * svp - ctime updated 3836 */ 3837 /* ARGSUSED */ 3838 static int 3839 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3840 caller_context_t *ct, int flags) 3841 { 3842 znode_t *dzp = VTOZ(tdvp); 3843 znode_t *tzp, *szp; 3844 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3845 zilog_t *zilog; 3846 zfs_dirlock_t *dl; 3847 dmu_tx_t *tx; 3848 vnode_t *realvp; 3849 int error; 3850 int zf = ZNEW; 3851 uint64_t parent; 3852 3853 ASSERT(tdvp->v_type == VDIR); 3854 3855 ZFS_ENTER(zfsvfs); 3856 ZFS_VERIFY_ZP(dzp); 3857 zilog = zfsvfs->z_log; 3858 3859 if (VOP_REALVP(svp, &realvp, ct) == 0) 3860 svp = realvp; 3861 3862 /* 3863 * POSIX dictates that we return EPERM here. 3864 * Better choices include ENOTSUP or EISDIR. 3865 */ 3866 if (svp->v_type == VDIR) { 3867 ZFS_EXIT(zfsvfs); 3868 return (EPERM); 3869 } 3870 3871 if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) { 3872 ZFS_EXIT(zfsvfs); 3873 return (EXDEV); 3874 } 3875 3876 szp = VTOZ(svp); 3877 ZFS_VERIFY_ZP(szp); 3878 3879 /* Prevent links to .zfs/shares files */ 3880 3881 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 3882 &parent, sizeof (uint64_t))) != 0) { 3883 ZFS_EXIT(zfsvfs); 3884 return (error); 3885 } 3886 if (parent == zfsvfs->z_shares_dir) { 3887 ZFS_EXIT(zfsvfs); 3888 return (EPERM); 3889 } 3890 3891 if (zfsvfs->z_utf8 && u8_validate(name, 3892 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3893 ZFS_EXIT(zfsvfs); 3894 return (EILSEQ); 3895 } 3896 if (flags & FIGNORECASE) 3897 zf |= ZCILOOK; 3898 3899 /* 3900 * We do not support links between attributes and non-attributes 3901 * because of the potential security risk of creating links 3902 * into "normal" file space in order to circumvent restrictions 3903 * imposed in attribute space. 3904 */ 3905 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 3906 ZFS_EXIT(zfsvfs); 3907 return (EINVAL); 3908 } 3909 3910 3911 if (szp->z_uid != crgetuid(cr) && 3912 secpolicy_basic_link(cr) != 0) { 3913 ZFS_EXIT(zfsvfs); 3914 return (EPERM); 3915 } 3916 3917 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3918 ZFS_EXIT(zfsvfs); 3919 return (error); 3920 } 3921 3922 top: 3923 /* 3924 * Attempt to lock directory; fail if entry already exists. 3925 */ 3926 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3927 if (error) { 3928 ZFS_EXIT(zfsvfs); 3929 return (error); 3930 } 3931 3932 tx = dmu_tx_create(zfsvfs->z_os); 3933 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3934 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3935 zfs_sa_upgrade_txholds(tx, szp); 3936 zfs_sa_upgrade_txholds(tx, dzp); 3937 error = dmu_tx_assign(tx, TXG_NOWAIT); 3938 if (error) { 3939 zfs_dirent_unlock(dl); 3940 if (error == ERESTART) { 3941 dmu_tx_wait(tx); 3942 dmu_tx_abort(tx); 3943 goto top; 3944 } 3945 dmu_tx_abort(tx); 3946 ZFS_EXIT(zfsvfs); 3947 return (error); 3948 } 3949 3950 error = zfs_link_create(dl, szp, tx, 0); 3951 3952 if (error == 0) { 3953 uint64_t txtype = TX_LINK; 3954 if (flags & FIGNORECASE) 3955 txtype |= TX_CI; 3956 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3957 } 3958 3959 dmu_tx_commit(tx); 3960 3961 zfs_dirent_unlock(dl); 3962 3963 if (error == 0) { 3964 vnevent_link(svp, ct); 3965 } 3966 3967 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3968 zil_commit(zilog, UINT64_MAX, 0); 3969 3970 ZFS_EXIT(zfsvfs); 3971 return (error); 3972 } 3973 3974 /* 3975 * zfs_null_putapage() is used when the file system has been force 3976 * unmounted. It just drops the pages. 3977 */ 3978 /* ARGSUSED */ 3979 static int 3980 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3981 size_t *lenp, int flags, cred_t *cr) 3982 { 3983 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3984 return (0); 3985 } 3986 3987 /* 3988 * Push a page out to disk, klustering if possible. 3989 * 3990 * IN: vp - file to push page to. 3991 * pp - page to push. 3992 * flags - additional flags. 3993 * cr - credentials of caller. 3994 * 3995 * OUT: offp - start of range pushed. 3996 * lenp - len of range pushed. 3997 * 3998 * RETURN: 0 if success 3999 * error code if failure 4000 * 4001 * NOTE: callers must have locked the page to be pushed. On 4002 * exit, the page (and all other pages in the kluster) must be 4003 * unlocked. 4004 */ 4005 /* ARGSUSED */ 4006 static int 4007 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4008 size_t *lenp, int flags, cred_t *cr) 4009 { 4010 znode_t *zp = VTOZ(vp); 4011 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4012 dmu_tx_t *tx; 4013 u_offset_t off, koff; 4014 size_t len, klen; 4015 int err; 4016 4017 off = pp->p_offset; 4018 len = PAGESIZE; 4019 /* 4020 * If our blocksize is bigger than the page size, try to kluster 4021 * multiple pages so that we write a full block (thus avoiding 4022 * a read-modify-write). 4023 */ 4024 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4025 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4026 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4027 ASSERT(koff <= zp->z_size); 4028 if (koff + klen > zp->z_size) 4029 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4030 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4031 } 4032 ASSERT3U(btop(len), ==, btopr(len)); 4033 4034 /* 4035 * Can't push pages past end-of-file. 4036 */ 4037 if (off >= zp->z_size) { 4038 /* ignore all pages */ 4039 err = 0; 4040 goto out; 4041 } else if (off + len > zp->z_size) { 4042 int npages = btopr(zp->z_size - off); 4043 page_t *trunc; 4044 4045 page_list_break(&pp, &trunc, npages); 4046 /* ignore pages past end of file */ 4047 if (trunc) 4048 pvn_write_done(trunc, flags); 4049 len = zp->z_size - off; 4050 } 4051 4052 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4053 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4054 err = EDQUOT; 4055 goto out; 4056 } 4057 top: 4058 tx = dmu_tx_create(zfsvfs->z_os); 4059 dmu_tx_hold_write(tx, zp->z_id, off, len); 4060 4061 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4062 zfs_sa_upgrade_txholds(tx, zp); 4063 err = dmu_tx_assign(tx, TXG_NOWAIT); 4064 if (err != 0) { 4065 if (err == ERESTART) { 4066 dmu_tx_wait(tx); 4067 dmu_tx_abort(tx); 4068 goto top; 4069 } 4070 dmu_tx_abort(tx); 4071 goto out; 4072 } 4073 4074 if (zp->z_blksz <= PAGESIZE) { 4075 caddr_t va = zfs_map_page(pp, S_READ); 4076 ASSERT3U(len, <=, PAGESIZE); 4077 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4078 zfs_unmap_page(pp, va); 4079 } else { 4080 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4081 } 4082 4083 if (err == 0) { 4084 uint64_t mtime[2], ctime[2]; 4085 sa_bulk_attr_t bulk[3]; 4086 int count = 0; 4087 4088 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4089 &mtime, 16); 4090 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4091 &ctime, 16); 4092 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4093 &zp->z_pflags, 8); 4094 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4095 B_TRUE); 4096 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4097 } 4098 dmu_tx_commit(tx); 4099 4100 out: 4101 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4102 if (offp) 4103 *offp = off; 4104 if (lenp) 4105 *lenp = len; 4106 4107 return (err); 4108 } 4109 4110 /* 4111 * Copy the portion of the file indicated from pages into the file. 4112 * The pages are stored in a page list attached to the files vnode. 4113 * 4114 * IN: vp - vnode of file to push page data to. 4115 * off - position in file to put data. 4116 * len - amount of data to write. 4117 * flags - flags to control the operation. 4118 * cr - credentials of caller. 4119 * ct - caller context. 4120 * 4121 * RETURN: 0 if success 4122 * error code if failure 4123 * 4124 * Timestamps: 4125 * vp - ctime|mtime updated 4126 */ 4127 /*ARGSUSED*/ 4128 static int 4129 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4130 caller_context_t *ct) 4131 { 4132 znode_t *zp = VTOZ(vp); 4133 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4134 page_t *pp; 4135 size_t io_len; 4136 u_offset_t io_off; 4137 uint_t blksz; 4138 rl_t *rl; 4139 int error = 0; 4140 4141 ZFS_ENTER(zfsvfs); 4142 ZFS_VERIFY_ZP(zp); 4143 4144 /* 4145 * Align this request to the file block size in case we kluster. 4146 * XXX - this can result in pretty aggresive locking, which can 4147 * impact simultanious read/write access. One option might be 4148 * to break up long requests (len == 0) into block-by-block 4149 * operations to get narrower locking. 4150 */ 4151 blksz = zp->z_blksz; 4152 if (ISP2(blksz)) 4153 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4154 else 4155 io_off = 0; 4156 if (len > 0 && ISP2(blksz)) 4157 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4158 else 4159 io_len = 0; 4160 4161 if (io_len == 0) { 4162 /* 4163 * Search the entire vp list for pages >= io_off. 4164 */ 4165 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4166 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4167 goto out; 4168 } 4169 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4170 4171 if (off > zp->z_size) { 4172 /* past end of file */ 4173 zfs_range_unlock(rl); 4174 ZFS_EXIT(zfsvfs); 4175 return (0); 4176 } 4177 4178 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4179 4180 for (off = io_off; io_off < off + len; io_off += io_len) { 4181 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4182 pp = page_lookup(vp, io_off, 4183 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4184 } else { 4185 pp = page_lookup_nowait(vp, io_off, 4186 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4187 } 4188 4189 if (pp != NULL && pvn_getdirty(pp, flags)) { 4190 int err; 4191 4192 /* 4193 * Found a dirty page to push 4194 */ 4195 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4196 if (err) 4197 error = err; 4198 } else { 4199 io_len = PAGESIZE; 4200 } 4201 } 4202 out: 4203 zfs_range_unlock(rl); 4204 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4205 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 4206 ZFS_EXIT(zfsvfs); 4207 return (error); 4208 } 4209 4210 /*ARGSUSED*/ 4211 void 4212 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4213 { 4214 znode_t *zp = VTOZ(vp); 4215 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4216 int error; 4217 4218 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4219 if (zp->z_sa_hdl == NULL) { 4220 /* 4221 * The fs has been unmounted, or we did a 4222 * suspend/resume and this file no longer exists. 4223 */ 4224 if (vn_has_cached_data(vp)) { 4225 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4226 B_INVAL, cr); 4227 } 4228 4229 mutex_enter(&zp->z_lock); 4230 mutex_enter(&vp->v_lock); 4231 ASSERT(vp->v_count == 1); 4232 vp->v_count = 0; 4233 mutex_exit(&vp->v_lock); 4234 mutex_exit(&zp->z_lock); 4235 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4236 zfs_znode_free(zp); 4237 return; 4238 } 4239 4240 /* 4241 * Attempt to push any data in the page cache. If this fails 4242 * we will get kicked out later in zfs_zinactive(). 4243 */ 4244 if (vn_has_cached_data(vp)) { 4245 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4246 cr); 4247 } 4248 4249 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4250 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4251 4252 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4253 zfs_sa_upgrade_txholds(tx, zp); 4254 error = dmu_tx_assign(tx, TXG_WAIT); 4255 if (error) { 4256 dmu_tx_abort(tx); 4257 } else { 4258 mutex_enter(&zp->z_lock); 4259 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4260 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4261 zp->z_atime_dirty = 0; 4262 mutex_exit(&zp->z_lock); 4263 dmu_tx_commit(tx); 4264 } 4265 } 4266 4267 zfs_zinactive(zp); 4268 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4269 } 4270 4271 /* 4272 * Bounds-check the seek operation. 4273 * 4274 * IN: vp - vnode seeking within 4275 * ooff - old file offset 4276 * noffp - pointer to new file offset 4277 * ct - caller context 4278 * 4279 * RETURN: 0 if success 4280 * EINVAL if new offset invalid 4281 */ 4282 /* ARGSUSED */ 4283 static int 4284 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4285 caller_context_t *ct) 4286 { 4287 if (vp->v_type == VDIR) 4288 return (0); 4289 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4290 } 4291 4292 /* 4293 * Pre-filter the generic locking function to trap attempts to place 4294 * a mandatory lock on a memory mapped file. 4295 */ 4296 static int 4297 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4298 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4299 { 4300 znode_t *zp = VTOZ(vp); 4301 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4302 4303 ZFS_ENTER(zfsvfs); 4304 ZFS_VERIFY_ZP(zp); 4305 4306 /* 4307 * We are following the UFS semantics with respect to mapcnt 4308 * here: If we see that the file is mapped already, then we will 4309 * return an error, but we don't worry about races between this 4310 * function and zfs_map(). 4311 */ 4312 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4313 ZFS_EXIT(zfsvfs); 4314 return (EAGAIN); 4315 } 4316 ZFS_EXIT(zfsvfs); 4317 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4318 } 4319 4320 /* 4321 * If we can't find a page in the cache, we will create a new page 4322 * and fill it with file data. For efficiency, we may try to fill 4323 * multiple pages at once (klustering) to fill up the supplied page 4324 * list. Note that the pages to be filled are held with an exclusive 4325 * lock to prevent access by other threads while they are being filled. 4326 */ 4327 static int 4328 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4329 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4330 { 4331 znode_t *zp = VTOZ(vp); 4332 page_t *pp, *cur_pp; 4333 objset_t *os = zp->z_zfsvfs->z_os; 4334 u_offset_t io_off, total; 4335 size_t io_len; 4336 int err; 4337 4338 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4339 /* 4340 * We only have a single page, don't bother klustering 4341 */ 4342 io_off = off; 4343 io_len = PAGESIZE; 4344 pp = page_create_va(vp, io_off, io_len, 4345 PG_EXCL | PG_WAIT, seg, addr); 4346 } else { 4347 /* 4348 * Try to find enough pages to fill the page list 4349 */ 4350 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4351 &io_len, off, plsz, 0); 4352 } 4353 if (pp == NULL) { 4354 /* 4355 * The page already exists, nothing to do here. 4356 */ 4357 *pl = NULL; 4358 return (0); 4359 } 4360 4361 /* 4362 * Fill the pages in the kluster. 4363 */ 4364 cur_pp = pp; 4365 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4366 caddr_t va; 4367 4368 ASSERT3U(io_off, ==, cur_pp->p_offset); 4369 va = zfs_map_page(cur_pp, S_WRITE); 4370 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4371 DMU_READ_PREFETCH); 4372 zfs_unmap_page(cur_pp, va); 4373 if (err) { 4374 /* On error, toss the entire kluster */ 4375 pvn_read_done(pp, B_ERROR); 4376 /* convert checksum errors into IO errors */ 4377 if (err == ECKSUM) 4378 err = EIO; 4379 return (err); 4380 } 4381 cur_pp = cur_pp->p_next; 4382 } 4383 4384 /* 4385 * Fill in the page list array from the kluster starting 4386 * from the desired offset `off'. 4387 * NOTE: the page list will always be null terminated. 4388 */ 4389 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4390 ASSERT(pl == NULL || (*pl)->p_offset == off); 4391 4392 return (0); 4393 } 4394 4395 /* 4396 * Return pointers to the pages for the file region [off, off + len] 4397 * in the pl array. If plsz is greater than len, this function may 4398 * also return page pointers from after the specified region 4399 * (i.e. the region [off, off + plsz]). These additional pages are 4400 * only returned if they are already in the cache, or were created as 4401 * part of a klustered read. 4402 * 4403 * IN: vp - vnode of file to get data from. 4404 * off - position in file to get data from. 4405 * len - amount of data to retrieve. 4406 * plsz - length of provided page list. 4407 * seg - segment to obtain pages for. 4408 * addr - virtual address of fault. 4409 * rw - mode of created pages. 4410 * cr - credentials of caller. 4411 * ct - caller context. 4412 * 4413 * OUT: protp - protection mode of created pages. 4414 * pl - list of pages created. 4415 * 4416 * RETURN: 0 if success 4417 * error code if failure 4418 * 4419 * Timestamps: 4420 * vp - atime updated 4421 */ 4422 /* ARGSUSED */ 4423 static int 4424 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4425 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4426 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4427 { 4428 znode_t *zp = VTOZ(vp); 4429 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4430 page_t **pl0 = pl; 4431 int err = 0; 4432 4433 /* we do our own caching, faultahead is unnecessary */ 4434 if (pl == NULL) 4435 return (0); 4436 else if (len > plsz) 4437 len = plsz; 4438 else 4439 len = P2ROUNDUP(len, PAGESIZE); 4440 ASSERT(plsz >= len); 4441 4442 ZFS_ENTER(zfsvfs); 4443 ZFS_VERIFY_ZP(zp); 4444 4445 if (protp) 4446 *protp = PROT_ALL; 4447 4448 /* 4449 * Loop through the requested range [off, off + len) looking 4450 * for pages. If we don't find a page, we will need to create 4451 * a new page and fill it with data from the file. 4452 */ 4453 while (len > 0) { 4454 if (*pl = page_lookup(vp, off, SE_SHARED)) 4455 *(pl+1) = NULL; 4456 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4457 goto out; 4458 while (*pl) { 4459 ASSERT3U((*pl)->p_offset, ==, off); 4460 off += PAGESIZE; 4461 addr += PAGESIZE; 4462 if (len > 0) { 4463 ASSERT3U(len, >=, PAGESIZE); 4464 len -= PAGESIZE; 4465 } 4466 ASSERT3U(plsz, >=, PAGESIZE); 4467 plsz -= PAGESIZE; 4468 pl++; 4469 } 4470 } 4471 4472 /* 4473 * Fill out the page array with any pages already in the cache. 4474 */ 4475 while (plsz > 0 && 4476 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4477 off += PAGESIZE; 4478 plsz -= PAGESIZE; 4479 } 4480 out: 4481 if (err) { 4482 /* 4483 * Release any pages we have previously locked. 4484 */ 4485 while (pl > pl0) 4486 page_unlock(*--pl); 4487 } else { 4488 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4489 } 4490 4491 *pl = NULL; 4492 4493 ZFS_EXIT(zfsvfs); 4494 return (err); 4495 } 4496 4497 /* 4498 * Request a memory map for a section of a file. This code interacts 4499 * with common code and the VM system as follows: 4500 * 4501 * common code calls mmap(), which ends up in smmap_common() 4502 * 4503 * this calls VOP_MAP(), which takes you into (say) zfs 4504 * 4505 * zfs_map() calls as_map(), passing segvn_create() as the callback 4506 * 4507 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4508 * 4509 * zfs_addmap() updates z_mapcnt 4510 */ 4511 /*ARGSUSED*/ 4512 static int 4513 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4514 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4515 caller_context_t *ct) 4516 { 4517 znode_t *zp = VTOZ(vp); 4518 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4519 segvn_crargs_t vn_a; 4520 int error; 4521 4522 ZFS_ENTER(zfsvfs); 4523 ZFS_VERIFY_ZP(zp); 4524 4525 if ((prot & PROT_WRITE) && (zp->z_pflags & 4526 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4527 ZFS_EXIT(zfsvfs); 4528 return (EPERM); 4529 } 4530 4531 if ((prot & (PROT_READ | PROT_EXEC)) && 4532 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4533 ZFS_EXIT(zfsvfs); 4534 return (EACCES); 4535 } 4536 4537 if (vp->v_flag & VNOMAP) { 4538 ZFS_EXIT(zfsvfs); 4539 return (ENOSYS); 4540 } 4541 4542 if (off < 0 || len > MAXOFFSET_T - off) { 4543 ZFS_EXIT(zfsvfs); 4544 return (ENXIO); 4545 } 4546 4547 if (vp->v_type != VREG) { 4548 ZFS_EXIT(zfsvfs); 4549 return (ENODEV); 4550 } 4551 4552 /* 4553 * If file is locked, disallow mapping. 4554 */ 4555 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4556 ZFS_EXIT(zfsvfs); 4557 return (EAGAIN); 4558 } 4559 4560 as_rangelock(as); 4561 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4562 if (error != 0) { 4563 as_rangeunlock(as); 4564 ZFS_EXIT(zfsvfs); 4565 return (error); 4566 } 4567 4568 vn_a.vp = vp; 4569 vn_a.offset = (u_offset_t)off; 4570 vn_a.type = flags & MAP_TYPE; 4571 vn_a.prot = prot; 4572 vn_a.maxprot = maxprot; 4573 vn_a.cred = cr; 4574 vn_a.amp = NULL; 4575 vn_a.flags = flags & ~MAP_TYPE; 4576 vn_a.szc = 0; 4577 vn_a.lgrp_mem_policy_flags = 0; 4578 4579 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4580 4581 as_rangeunlock(as); 4582 ZFS_EXIT(zfsvfs); 4583 return (error); 4584 } 4585 4586 /* ARGSUSED */ 4587 static int 4588 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4589 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4590 caller_context_t *ct) 4591 { 4592 uint64_t pages = btopr(len); 4593 4594 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4595 return (0); 4596 } 4597 4598 /* 4599 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4600 * more accurate mtime for the associated file. Since we don't have a way of 4601 * detecting when the data was actually modified, we have to resort to 4602 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4603 * last page is pushed. The problem occurs when the msync() call is omitted, 4604 * which by far the most common case: 4605 * 4606 * open() 4607 * mmap() 4608 * <modify memory> 4609 * munmap() 4610 * close() 4611 * <time lapse> 4612 * putpage() via fsflush 4613 * 4614 * If we wait until fsflush to come along, we can have a modification time that 4615 * is some arbitrary point in the future. In order to prevent this in the 4616 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4617 * torn down. 4618 */ 4619 /* ARGSUSED */ 4620 static int 4621 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4622 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4623 caller_context_t *ct) 4624 { 4625 uint64_t pages = btopr(len); 4626 4627 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4628 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4629 4630 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4631 vn_has_cached_data(vp)) 4632 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4633 4634 return (0); 4635 } 4636 4637 /* 4638 * Free or allocate space in a file. Currently, this function only 4639 * supports the `F_FREESP' command. However, this command is somewhat 4640 * misnamed, as its functionality includes the ability to allocate as 4641 * well as free space. 4642 * 4643 * IN: vp - vnode of file to free data in. 4644 * cmd - action to take (only F_FREESP supported). 4645 * bfp - section of file to free/alloc. 4646 * flag - current file open mode flags. 4647 * offset - current file offset. 4648 * cr - credentials of caller [UNUSED]. 4649 * ct - caller context. 4650 * 4651 * RETURN: 0 if success 4652 * error code if failure 4653 * 4654 * Timestamps: 4655 * vp - ctime|mtime updated 4656 */ 4657 /* ARGSUSED */ 4658 static int 4659 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4660 offset_t offset, cred_t *cr, caller_context_t *ct) 4661 { 4662 znode_t *zp = VTOZ(vp); 4663 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4664 uint64_t off, len; 4665 int error; 4666 4667 ZFS_ENTER(zfsvfs); 4668 ZFS_VERIFY_ZP(zp); 4669 4670 if (cmd != F_FREESP) { 4671 ZFS_EXIT(zfsvfs); 4672 return (EINVAL); 4673 } 4674 4675 if (error = convoff(vp, bfp, 0, offset)) { 4676 ZFS_EXIT(zfsvfs); 4677 return (error); 4678 } 4679 4680 if (bfp->l_len < 0) { 4681 ZFS_EXIT(zfsvfs); 4682 return (EINVAL); 4683 } 4684 4685 off = bfp->l_start; 4686 len = bfp->l_len; /* 0 means from off to end of file */ 4687 4688 error = zfs_freesp(zp, off, len, flag, TRUE); 4689 4690 ZFS_EXIT(zfsvfs); 4691 return (error); 4692 } 4693 4694 /*ARGSUSED*/ 4695 static int 4696 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4697 { 4698 znode_t *zp = VTOZ(vp); 4699 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4700 uint32_t gen; 4701 uint64_t gen64; 4702 uint64_t object = zp->z_id; 4703 zfid_short_t *zfid; 4704 int size, i, error; 4705 4706 ZFS_ENTER(zfsvfs); 4707 ZFS_VERIFY_ZP(zp); 4708 4709 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4710 &gen64, sizeof (uint64_t))) != 0) { 4711 ZFS_EXIT(zfsvfs); 4712 return (error); 4713 } 4714 4715 gen = (uint32_t)gen64; 4716 4717 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4718 if (fidp->fid_len < size) { 4719 fidp->fid_len = size; 4720 ZFS_EXIT(zfsvfs); 4721 return (ENOSPC); 4722 } 4723 4724 zfid = (zfid_short_t *)fidp; 4725 4726 zfid->zf_len = size; 4727 4728 for (i = 0; i < sizeof (zfid->zf_object); i++) 4729 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4730 4731 /* Must have a non-zero generation number to distinguish from .zfs */ 4732 if (gen == 0) 4733 gen = 1; 4734 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4735 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4736 4737 if (size == LONG_FID_LEN) { 4738 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4739 zfid_long_t *zlfid; 4740 4741 zlfid = (zfid_long_t *)fidp; 4742 4743 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4744 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4745 4746 /* XXX - this should be the generation number for the objset */ 4747 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4748 zlfid->zf_setgen[i] = 0; 4749 } 4750 4751 ZFS_EXIT(zfsvfs); 4752 return (0); 4753 } 4754 4755 static int 4756 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4757 caller_context_t *ct) 4758 { 4759 znode_t *zp, *xzp; 4760 zfsvfs_t *zfsvfs; 4761 zfs_dirlock_t *dl; 4762 int error; 4763 4764 switch (cmd) { 4765 case _PC_LINK_MAX: 4766 *valp = ULONG_MAX; 4767 return (0); 4768 4769 case _PC_FILESIZEBITS: 4770 *valp = 64; 4771 return (0); 4772 4773 case _PC_XATTR_EXISTS: 4774 zp = VTOZ(vp); 4775 zfsvfs = zp->z_zfsvfs; 4776 ZFS_ENTER(zfsvfs); 4777 ZFS_VERIFY_ZP(zp); 4778 *valp = 0; 4779 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4780 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4781 if (error == 0) { 4782 zfs_dirent_unlock(dl); 4783 if (!zfs_dirempty(xzp)) 4784 *valp = 1; 4785 VN_RELE(ZTOV(xzp)); 4786 } else if (error == ENOENT) { 4787 /* 4788 * If there aren't extended attributes, it's the 4789 * same as having zero of them. 4790 */ 4791 error = 0; 4792 } 4793 ZFS_EXIT(zfsvfs); 4794 return (error); 4795 4796 case _PC_SATTR_ENABLED: 4797 case _PC_SATTR_EXISTS: 4798 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4799 (vp->v_type == VREG || vp->v_type == VDIR); 4800 return (0); 4801 4802 case _PC_ACCESS_FILTERING: 4803 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4804 vp->v_type == VDIR; 4805 return (0); 4806 4807 case _PC_ACL_ENABLED: 4808 *valp = _ACL_ACE_ENABLED; 4809 return (0); 4810 4811 case _PC_MIN_HOLE_SIZE: 4812 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4813 return (0); 4814 4815 case _PC_TIMESTAMP_RESOLUTION: 4816 /* nanosecond timestamp resolution */ 4817 *valp = 1L; 4818 return (0); 4819 4820 default: 4821 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4822 } 4823 } 4824 4825 /*ARGSUSED*/ 4826 static int 4827 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4828 caller_context_t *ct) 4829 { 4830 znode_t *zp = VTOZ(vp); 4831 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4832 int error; 4833 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4834 4835 ZFS_ENTER(zfsvfs); 4836 ZFS_VERIFY_ZP(zp); 4837 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4838 ZFS_EXIT(zfsvfs); 4839 4840 return (error); 4841 } 4842 4843 /*ARGSUSED*/ 4844 static int 4845 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4846 caller_context_t *ct) 4847 { 4848 znode_t *zp = VTOZ(vp); 4849 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4850 int error; 4851 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4852 zilog_t *zilog = zfsvfs->z_log; 4853 4854 ZFS_ENTER(zfsvfs); 4855 ZFS_VERIFY_ZP(zp); 4856 4857 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4858 4859 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4860 zil_commit(zilog, UINT64_MAX, 0); 4861 4862 ZFS_EXIT(zfsvfs); 4863 return (error); 4864 } 4865 4866 /* 4867 * Tunable, both must be a power of 2. 4868 * 4869 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf 4870 * zcr_blksz_max: if set to less than the file block size, allow loaning out of 4871 * an arcbuf for a partial block read 4872 */ 4873 int zcr_blksz_min = (1 << 10); /* 1K */ 4874 int zcr_blksz_max = (1 << 17); /* 128K */ 4875 4876 /*ARGSUSED*/ 4877 static int 4878 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 4879 caller_context_t *ct) 4880 { 4881 znode_t *zp = VTOZ(vp); 4882 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4883 int max_blksz = zfsvfs->z_max_blksz; 4884 uio_t *uio = &xuio->xu_uio; 4885 ssize_t size = uio->uio_resid; 4886 offset_t offset = uio->uio_loffset; 4887 int blksz; 4888 int fullblk, i; 4889 arc_buf_t *abuf; 4890 ssize_t maxsize; 4891 int preamble, postamble; 4892 4893 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 4894 return (EINVAL); 4895 4896 ZFS_ENTER(zfsvfs); 4897 ZFS_VERIFY_ZP(zp); 4898 switch (ioflag) { 4899 case UIO_WRITE: 4900 /* 4901 * Loan out an arc_buf for write if write size is bigger than 4902 * max_blksz, and the file's block size is also max_blksz. 4903 */ 4904 blksz = max_blksz; 4905 if (size < blksz || zp->z_blksz != blksz) { 4906 ZFS_EXIT(zfsvfs); 4907 return (EINVAL); 4908 } 4909 /* 4910 * Caller requests buffers for write before knowing where the 4911 * write offset might be (e.g. NFS TCP write). 4912 */ 4913 if (offset == -1) { 4914 preamble = 0; 4915 } else { 4916 preamble = P2PHASE(offset, blksz); 4917 if (preamble) { 4918 preamble = blksz - preamble; 4919 size -= preamble; 4920 } 4921 } 4922 4923 postamble = P2PHASE(size, blksz); 4924 size -= postamble; 4925 4926 fullblk = size / blksz; 4927 (void) dmu_xuio_init(xuio, 4928 (preamble != 0) + fullblk + (postamble != 0)); 4929 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 4930 int, postamble, int, 4931 (preamble != 0) + fullblk + (postamble != 0)); 4932 4933 /* 4934 * Have to fix iov base/len for partial buffers. They 4935 * currently represent full arc_buf's. 4936 */ 4937 if (preamble) { 4938 /* data begins in the middle of the arc_buf */ 4939 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4940 blksz); 4941 ASSERT(abuf); 4942 (void) dmu_xuio_add(xuio, abuf, 4943 blksz - preamble, preamble); 4944 } 4945 4946 for (i = 0; i < fullblk; i++) { 4947 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4948 blksz); 4949 ASSERT(abuf); 4950 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 4951 } 4952 4953 if (postamble) { 4954 /* data ends in the middle of the arc_buf */ 4955 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4956 blksz); 4957 ASSERT(abuf); 4958 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 4959 } 4960 break; 4961 case UIO_READ: 4962 /* 4963 * Loan out an arc_buf for read if the read size is larger than 4964 * the current file block size. Block alignment is not 4965 * considered. Partial arc_buf will be loaned out for read. 4966 */ 4967 blksz = zp->z_blksz; 4968 if (blksz < zcr_blksz_min) 4969 blksz = zcr_blksz_min; 4970 if (blksz > zcr_blksz_max) 4971 blksz = zcr_blksz_max; 4972 /* avoid potential complexity of dealing with it */ 4973 if (blksz > max_blksz) { 4974 ZFS_EXIT(zfsvfs); 4975 return (EINVAL); 4976 } 4977 4978 maxsize = zp->z_size - uio->uio_loffset; 4979 if (size > maxsize) 4980 size = maxsize; 4981 4982 if (size < blksz || vn_has_cached_data(vp)) { 4983 ZFS_EXIT(zfsvfs); 4984 return (EINVAL); 4985 } 4986 break; 4987 default: 4988 ZFS_EXIT(zfsvfs); 4989 return (EINVAL); 4990 } 4991 4992 uio->uio_extflg = UIO_XUIO; 4993 XUIO_XUZC_RW(xuio) = ioflag; 4994 ZFS_EXIT(zfsvfs); 4995 return (0); 4996 } 4997 4998 /*ARGSUSED*/ 4999 static int 5000 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5001 { 5002 int i; 5003 arc_buf_t *abuf; 5004 int ioflag = XUIO_XUZC_RW(xuio); 5005 5006 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5007 5008 i = dmu_xuio_cnt(xuio); 5009 while (i-- > 0) { 5010 abuf = dmu_xuio_arcbuf(xuio, i); 5011 /* 5012 * if abuf == NULL, it must be a write buffer 5013 * that has been returned in zfs_write(). 5014 */ 5015 if (abuf) 5016 dmu_return_arcbuf(abuf); 5017 ASSERT(abuf || ioflag == UIO_WRITE); 5018 } 5019 5020 dmu_xuio_fini(xuio); 5021 return (0); 5022 } 5023 5024 /* 5025 * Predeclare these here so that the compiler assumes that 5026 * this is an "old style" function declaration that does 5027 * not include arguments => we won't get type mismatch errors 5028 * in the initializations that follow. 5029 */ 5030 static int zfs_inval(); 5031 static int zfs_isdir(); 5032 5033 static int 5034 zfs_inval() 5035 { 5036 return (EINVAL); 5037 } 5038 5039 static int 5040 zfs_isdir() 5041 { 5042 return (EISDIR); 5043 } 5044 /* 5045 * Directory vnode operations template 5046 */ 5047 vnodeops_t *zfs_dvnodeops; 5048 const fs_operation_def_t zfs_dvnodeops_template[] = { 5049 VOPNAME_OPEN, { .vop_open = zfs_open }, 5050 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5051 VOPNAME_READ, { .error = zfs_isdir }, 5052 VOPNAME_WRITE, { .error = zfs_isdir }, 5053 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5054 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5055 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5056 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5057 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5058 VOPNAME_CREATE, { .vop_create = zfs_create }, 5059 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5060 VOPNAME_LINK, { .vop_link = zfs_link }, 5061 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5062 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5063 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5064 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5065 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5066 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5067 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5068 VOPNAME_FID, { .vop_fid = zfs_fid }, 5069 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5070 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5071 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5072 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5073 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5074 NULL, NULL 5075 }; 5076 5077 /* 5078 * Regular file vnode operations template 5079 */ 5080 vnodeops_t *zfs_fvnodeops; 5081 const fs_operation_def_t zfs_fvnodeops_template[] = { 5082 VOPNAME_OPEN, { .vop_open = zfs_open }, 5083 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5084 VOPNAME_READ, { .vop_read = zfs_read }, 5085 VOPNAME_WRITE, { .vop_write = zfs_write }, 5086 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5087 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5088 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5089 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5090 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5091 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5092 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5093 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5094 VOPNAME_FID, { .vop_fid = zfs_fid }, 5095 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5096 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5097 VOPNAME_SPACE, { .vop_space = zfs_space }, 5098 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5099 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5100 VOPNAME_MAP, { .vop_map = zfs_map }, 5101 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5102 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5103 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5104 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5105 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5106 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5107 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5108 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5109 NULL, NULL 5110 }; 5111 5112 /* 5113 * Symbolic link vnode operations template 5114 */ 5115 vnodeops_t *zfs_symvnodeops; 5116 const fs_operation_def_t zfs_symvnodeops_template[] = { 5117 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5118 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5119 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5120 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5121 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5122 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5123 VOPNAME_FID, { .vop_fid = zfs_fid }, 5124 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5125 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5126 NULL, NULL 5127 }; 5128 5129 /* 5130 * special share hidden files vnode operations template 5131 */ 5132 vnodeops_t *zfs_sharevnodeops; 5133 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5134 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5135 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5136 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5137 VOPNAME_FID, { .vop_fid = zfs_fid }, 5138 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5139 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5140 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5141 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5142 NULL, NULL 5143 }; 5144 5145 /* 5146 * Extended attribute directory vnode operations template 5147 * This template is identical to the directory vnodes 5148 * operation template except for restricted operations: 5149 * VOP_MKDIR() 5150 * VOP_SYMLINK() 5151 * Note that there are other restrictions embedded in: 5152 * zfs_create() - restrict type to VREG 5153 * zfs_link() - no links into/out of attribute space 5154 * zfs_rename() - no moves into/out of attribute space 5155 */ 5156 vnodeops_t *zfs_xdvnodeops; 5157 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5158 VOPNAME_OPEN, { .vop_open = zfs_open }, 5159 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5160 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5161 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5162 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5163 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5164 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5165 VOPNAME_CREATE, { .vop_create = zfs_create }, 5166 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5167 VOPNAME_LINK, { .vop_link = zfs_link }, 5168 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5169 VOPNAME_MKDIR, { .error = zfs_inval }, 5170 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5171 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5172 VOPNAME_SYMLINK, { .error = zfs_inval }, 5173 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5174 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5175 VOPNAME_FID, { .vop_fid = zfs_fid }, 5176 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5177 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5178 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5179 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5180 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5181 NULL, NULL 5182 }; 5183 5184 /* 5185 * Error vnode operations template 5186 */ 5187 vnodeops_t *zfs_evnodeops; 5188 const fs_operation_def_t zfs_evnodeops_template[] = { 5189 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5190 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5191 NULL, NULL 5192 }; 5193