xref: /titanic_41/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision 448bf8594153765bb5fce82a8888e01e3f6c3bad)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /* Portions Copyright 2007 Jeremy Teo */
26 /* Portions Copyright 2010 Robert Milkowski */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/vnode.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/kmem.h>
40 #include <sys/taskq.h>
41 #include <sys/uio.h>
42 #include <sys/vmsystm.h>
43 #include <sys/atomic.h>
44 #include <sys/vm.h>
45 #include <vm/seg_vn.h>
46 #include <vm/pvn.h>
47 #include <vm/as.h>
48 #include <vm/kpm.h>
49 #include <vm/seg_kpm.h>
50 #include <sys/mman.h>
51 #include <sys/pathname.h>
52 #include <sys/cmn_err.h>
53 #include <sys/errno.h>
54 #include <sys/unistd.h>
55 #include <sys/zfs_dir.h>
56 #include <sys/zfs_acl.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/dmu.h>
60 #include <sys/dmu_objset.h>
61 #include <sys/spa.h>
62 #include <sys/txg.h>
63 #include <sys/dbuf.h>
64 #include <sys/zap.h>
65 #include <sys/sa.h>
66 #include <sys/dirent.h>
67 #include <sys/policy.h>
68 #include <sys/sunddi.h>
69 #include <sys/filio.h>
70 #include <sys/sid.h>
71 #include "fs/fs_subr.h"
72 #include <sys/zfs_ctldir.h>
73 #include <sys/zfs_fuid.h>
74 #include <sys/zfs_sa.h>
75 #include <sys/dnlc.h>
76 #include <sys/zfs_rlock.h>
77 #include <sys/extdirent.h>
78 #include <sys/kidmap.h>
79 #include <sys/cred.h>
80 #include <sys/attr.h>
81 
82 /*
83  * Programming rules.
84  *
85  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
86  * properly lock its in-core state, create a DMU transaction, do the work,
87  * record this work in the intent log (ZIL), commit the DMU transaction,
88  * and wait for the intent log to commit if it is a synchronous operation.
89  * Moreover, the vnode ops must work in both normal and log replay context.
90  * The ordering of events is important to avoid deadlocks and references
91  * to freed memory.  The example below illustrates the following Big Rules:
92  *
93  *  (1) A check must be made in each zfs thread for a mounted file system.
94  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
95  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
96  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
97  *      can return EIO from the calling function.
98  *
99  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
100  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
101  *	First, if it's the last reference, the vnode/znode
102  *	can be freed, so the zp may point to freed memory.  Second, the last
103  *	reference will call zfs_zinactive(), which may induce a lot of work --
104  *	pushing cached pages (which acquires range locks) and syncing out
105  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
106  *	which could deadlock the system if you were already holding one.
107  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
108  *
109  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
110  *	as they can span dmu_tx_assign() calls.
111  *
112  *  (4)	Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
113  *	This is critical because we don't want to block while holding locks.
114  *	Note, in particular, that if a lock is sometimes acquired before
115  *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
116  *	use a non-blocking assign can deadlock the system.  The scenario:
117  *
118  *	Thread A has grabbed a lock before calling dmu_tx_assign().
119  *	Thread B is in an already-assigned tx, and blocks for this lock.
120  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
121  *	forever, because the previous txg can't quiesce until B's tx commits.
122  *
123  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
124  *	then drop all locks, call dmu_tx_wait(), and try again.
125  *
126  *  (5)	If the operation succeeded, generate the intent log entry for it
127  *	before dropping locks.  This ensures that the ordering of events
128  *	in the intent log matches the order in which they actually occurred.
129  *      During ZIL replay the zfs_log_* functions will update the sequence
130  *	number to indicate the zil transaction has replayed.
131  *
132  *  (6)	At the end of each vnode op, the DMU tx must always commit,
133  *	regardless of whether there were any errors.
134  *
135  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
136  *	to ensure that synchronous semantics are provided when necessary.
137  *
138  * In general, this is how things should be ordered in each vnode op:
139  *
140  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
141  * top:
142  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
143  *	rw_enter(...);			// grab any other locks you need
144  *	tx = dmu_tx_create(...);	// get DMU tx
145  *	dmu_tx_hold_*();		// hold each object you might modify
146  *	error = dmu_tx_assign(tx, TXG_NOWAIT);	// try to assign
147  *	if (error) {
148  *		rw_exit(...);		// drop locks
149  *		zfs_dirent_unlock(dl);	// unlock directory entry
150  *		VN_RELE(...);		// release held vnodes
151  *		if (error == ERESTART) {
152  *			dmu_tx_wait(tx);
153  *			dmu_tx_abort(tx);
154  *			goto top;
155  *		}
156  *		dmu_tx_abort(tx);	// abort DMU tx
157  *		ZFS_EXIT(zfsvfs);	// finished in zfs
158  *		return (error);		// really out of space
159  *	}
160  *	error = do_real_work();		// do whatever this VOP does
161  *	if (error == 0)
162  *		zfs_log_*(...);		// on success, make ZIL entry
163  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
164  *	rw_exit(...);			// drop locks
165  *	zfs_dirent_unlock(dl);		// unlock directory entry
166  *	VN_RELE(...);			// release held vnodes
167  *	zil_commit(zilog, foid);	// synchronous when necessary
168  *	ZFS_EXIT(zfsvfs);		// finished in zfs
169  *	return (error);			// done, report error
170  */
171 
172 /* ARGSUSED */
173 static int
174 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
175 {
176 	znode_t	*zp = VTOZ(*vpp);
177 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
178 
179 	ZFS_ENTER(zfsvfs);
180 	ZFS_VERIFY_ZP(zp);
181 
182 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
183 	    ((flag & FAPPEND) == 0)) {
184 		ZFS_EXIT(zfsvfs);
185 		return (EPERM);
186 	}
187 
188 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
189 	    ZTOV(zp)->v_type == VREG &&
190 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
191 		if (fs_vscan(*vpp, cr, 0) != 0) {
192 			ZFS_EXIT(zfsvfs);
193 			return (EACCES);
194 		}
195 	}
196 
197 	/* Keep a count of the synchronous opens in the znode */
198 	if (flag & (FSYNC | FDSYNC))
199 		atomic_inc_32(&zp->z_sync_cnt);
200 
201 	ZFS_EXIT(zfsvfs);
202 	return (0);
203 }
204 
205 /* ARGSUSED */
206 static int
207 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
208     caller_context_t *ct)
209 {
210 	znode_t	*zp = VTOZ(vp);
211 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
212 
213 	/*
214 	 * Clean up any locks held by this process on the vp.
215 	 */
216 	cleanlocks(vp, ddi_get_pid(), 0);
217 	cleanshares(vp, ddi_get_pid());
218 
219 	ZFS_ENTER(zfsvfs);
220 	ZFS_VERIFY_ZP(zp);
221 
222 	/* Decrement the synchronous opens in the znode */
223 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
224 		atomic_dec_32(&zp->z_sync_cnt);
225 
226 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
227 	    ZTOV(zp)->v_type == VREG &&
228 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
229 		VERIFY(fs_vscan(vp, cr, 1) == 0);
230 
231 	ZFS_EXIT(zfsvfs);
232 	return (0);
233 }
234 
235 /*
236  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
237  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
238  */
239 static int
240 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
241 {
242 	znode_t	*zp = VTOZ(vp);
243 	uint64_t noff = (uint64_t)*off; /* new offset */
244 	uint64_t file_sz;
245 	int error;
246 	boolean_t hole;
247 
248 	file_sz = zp->z_size;
249 	if (noff >= file_sz)  {
250 		return (ENXIO);
251 	}
252 
253 	if (cmd == _FIO_SEEK_HOLE)
254 		hole = B_TRUE;
255 	else
256 		hole = B_FALSE;
257 
258 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
259 
260 	/* end of file? */
261 	if ((error == ESRCH) || (noff > file_sz)) {
262 		/*
263 		 * Handle the virtual hole at the end of file.
264 		 */
265 		if (hole) {
266 			*off = file_sz;
267 			return (0);
268 		}
269 		return (ENXIO);
270 	}
271 
272 	if (noff < *off)
273 		return (error);
274 	*off = noff;
275 	return (error);
276 }
277 
278 /* ARGSUSED */
279 static int
280 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
281     int *rvalp, caller_context_t *ct)
282 {
283 	offset_t off;
284 	int error;
285 	zfsvfs_t *zfsvfs;
286 	znode_t *zp;
287 
288 	switch (com) {
289 	case _FIOFFS:
290 		return (zfs_sync(vp->v_vfsp, 0, cred));
291 
292 		/*
293 		 * The following two ioctls are used by bfu.  Faking out,
294 		 * necessary to avoid bfu errors.
295 		 */
296 	case _FIOGDIO:
297 	case _FIOSDIO:
298 		return (0);
299 
300 	case _FIO_SEEK_DATA:
301 	case _FIO_SEEK_HOLE:
302 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
303 			return (EFAULT);
304 
305 		zp = VTOZ(vp);
306 		zfsvfs = zp->z_zfsvfs;
307 		ZFS_ENTER(zfsvfs);
308 		ZFS_VERIFY_ZP(zp);
309 
310 		/* offset parameter is in/out */
311 		error = zfs_holey(vp, com, &off);
312 		ZFS_EXIT(zfsvfs);
313 		if (error)
314 			return (error);
315 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
316 			return (EFAULT);
317 		return (0);
318 	}
319 	return (ENOTTY);
320 }
321 
322 /*
323  * Utility functions to map and unmap a single physical page.  These
324  * are used to manage the mappable copies of ZFS file data, and therefore
325  * do not update ref/mod bits.
326  */
327 caddr_t
328 zfs_map_page(page_t *pp, enum seg_rw rw)
329 {
330 	if (kpm_enable)
331 		return (hat_kpm_mapin(pp, 0));
332 	ASSERT(rw == S_READ || rw == S_WRITE);
333 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
334 	    (caddr_t)-1));
335 }
336 
337 void
338 zfs_unmap_page(page_t *pp, caddr_t addr)
339 {
340 	if (kpm_enable) {
341 		hat_kpm_mapout(pp, 0, addr);
342 	} else {
343 		ppmapout(addr);
344 	}
345 }
346 
347 /*
348  * When a file is memory mapped, we must keep the IO data synchronized
349  * between the DMU cache and the memory mapped pages.  What this means:
350  *
351  * On Write:	If we find a memory mapped page, we write to *both*
352  *		the page and the dmu buffer.
353  */
354 static void
355 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
356 {
357 	int64_t	off;
358 
359 	off = start & PAGEOFFSET;
360 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
361 		page_t *pp;
362 		uint64_t nbytes = MIN(PAGESIZE - off, len);
363 
364 		if (pp = page_lookup(vp, start, SE_SHARED)) {
365 			caddr_t va;
366 
367 			va = zfs_map_page(pp, S_WRITE);
368 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
369 			    DMU_READ_PREFETCH);
370 			zfs_unmap_page(pp, va);
371 			page_unlock(pp);
372 		}
373 		len -= nbytes;
374 		off = 0;
375 	}
376 }
377 
378 /*
379  * When a file is memory mapped, we must keep the IO data synchronized
380  * between the DMU cache and the memory mapped pages.  What this means:
381  *
382  * On Read:	We "read" preferentially from memory mapped pages,
383  *		else we default from the dmu buffer.
384  *
385  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
386  *	the file is memory mapped.
387  */
388 static int
389 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
390 {
391 	znode_t *zp = VTOZ(vp);
392 	objset_t *os = zp->z_zfsvfs->z_os;
393 	int64_t	start, off;
394 	int len = nbytes;
395 	int error = 0;
396 
397 	start = uio->uio_loffset;
398 	off = start & PAGEOFFSET;
399 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
400 		page_t *pp;
401 		uint64_t bytes = MIN(PAGESIZE - off, len);
402 
403 		if (pp = page_lookup(vp, start, SE_SHARED)) {
404 			caddr_t va;
405 
406 			va = zfs_map_page(pp, S_READ);
407 			error = uiomove(va + off, bytes, UIO_READ, uio);
408 			zfs_unmap_page(pp, va);
409 			page_unlock(pp);
410 		} else {
411 			error = dmu_read_uio(os, zp->z_id, uio, bytes);
412 		}
413 		len -= bytes;
414 		off = 0;
415 		if (error)
416 			break;
417 	}
418 	return (error);
419 }
420 
421 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
422 
423 /*
424  * Read bytes from specified file into supplied buffer.
425  *
426  *	IN:	vp	- vnode of file to be read from.
427  *		uio	- structure supplying read location, range info,
428  *			  and return buffer.
429  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
430  *		cr	- credentials of caller.
431  *		ct	- caller context
432  *
433  *	OUT:	uio	- updated offset and range, buffer filled.
434  *
435  *	RETURN:	0 if success
436  *		error code if failure
437  *
438  * Side Effects:
439  *	vp - atime updated if byte count > 0
440  */
441 /* ARGSUSED */
442 static int
443 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
444 {
445 	znode_t		*zp = VTOZ(vp);
446 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
447 	objset_t	*os;
448 	ssize_t		n, nbytes;
449 	int		error;
450 	rl_t		*rl;
451 	xuio_t		*xuio = NULL;
452 
453 	ZFS_ENTER(zfsvfs);
454 	ZFS_VERIFY_ZP(zp);
455 	os = zfsvfs->z_os;
456 
457 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
458 		ZFS_EXIT(zfsvfs);
459 		return (EACCES);
460 	}
461 
462 	/*
463 	 * Validate file offset
464 	 */
465 	if (uio->uio_loffset < (offset_t)0) {
466 		ZFS_EXIT(zfsvfs);
467 		return (EINVAL);
468 	}
469 
470 	/*
471 	 * Fasttrack empty reads
472 	 */
473 	if (uio->uio_resid == 0) {
474 		ZFS_EXIT(zfsvfs);
475 		return (0);
476 	}
477 
478 	/*
479 	 * Check for mandatory locks
480 	 */
481 	if (MANDMODE(zp->z_mode)) {
482 		if (error = chklock(vp, FREAD,
483 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
484 			ZFS_EXIT(zfsvfs);
485 			return (error);
486 		}
487 	}
488 
489 	/*
490 	 * If we're in FRSYNC mode, sync out this znode before reading it.
491 	 */
492 	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
493 		zil_commit(zfsvfs->z_log, zp->z_id);
494 
495 	/*
496 	 * Lock the range against changes.
497 	 */
498 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
499 
500 	/*
501 	 * If we are reading past end-of-file we can skip
502 	 * to the end; but we might still need to set atime.
503 	 */
504 	if (uio->uio_loffset >= zp->z_size) {
505 		error = 0;
506 		goto out;
507 	}
508 
509 	ASSERT(uio->uio_loffset < zp->z_size);
510 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
511 
512 	if ((uio->uio_extflg == UIO_XUIO) &&
513 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
514 		int nblk;
515 		int blksz = zp->z_blksz;
516 		uint64_t offset = uio->uio_loffset;
517 
518 		xuio = (xuio_t *)uio;
519 		if ((ISP2(blksz))) {
520 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
521 			    blksz)) / blksz;
522 		} else {
523 			ASSERT(offset + n <= blksz);
524 			nblk = 1;
525 		}
526 		(void) dmu_xuio_init(xuio, nblk);
527 
528 		if (vn_has_cached_data(vp)) {
529 			/*
530 			 * For simplicity, we always allocate a full buffer
531 			 * even if we only expect to read a portion of a block.
532 			 */
533 			while (--nblk >= 0) {
534 				(void) dmu_xuio_add(xuio,
535 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
536 				    blksz), 0, blksz);
537 			}
538 		}
539 	}
540 
541 	while (n > 0) {
542 		nbytes = MIN(n, zfs_read_chunk_size -
543 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
544 
545 		if (vn_has_cached_data(vp))
546 			error = mappedread(vp, nbytes, uio);
547 		else
548 			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
549 		if (error) {
550 			/* convert checksum errors into IO errors */
551 			if (error == ECKSUM)
552 				error = EIO;
553 			break;
554 		}
555 
556 		n -= nbytes;
557 	}
558 out:
559 	zfs_range_unlock(rl);
560 
561 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
562 	ZFS_EXIT(zfsvfs);
563 	return (error);
564 }
565 
566 /*
567  * Write the bytes to a file.
568  *
569  *	IN:	vp	- vnode of file to be written to.
570  *		uio	- structure supplying write location, range info,
571  *			  and data buffer.
572  *		ioflag	- FAPPEND flag set if in append mode.
573  *		cr	- credentials of caller.
574  *		ct	- caller context (NFS/CIFS fem monitor only)
575  *
576  *	OUT:	uio	- updated offset and range.
577  *
578  *	RETURN:	0 if success
579  *		error code if failure
580  *
581  * Timestamps:
582  *	vp - ctime|mtime updated if byte count > 0
583  */
584 
585 /* ARGSUSED */
586 static int
587 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
588 {
589 	znode_t		*zp = VTOZ(vp);
590 	rlim64_t	limit = uio->uio_llimit;
591 	ssize_t		start_resid = uio->uio_resid;
592 	ssize_t		tx_bytes;
593 	uint64_t	end_size;
594 	dmu_tx_t	*tx;
595 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
596 	zilog_t		*zilog;
597 	offset_t	woff;
598 	ssize_t		n, nbytes;
599 	rl_t		*rl;
600 	int		max_blksz = zfsvfs->z_max_blksz;
601 	int		error;
602 	arc_buf_t	*abuf;
603 	iovec_t		*aiov;
604 	xuio_t		*xuio = NULL;
605 	int		i_iov = 0;
606 	int		iovcnt = uio->uio_iovcnt;
607 	iovec_t		*iovp = uio->uio_iov;
608 	int		write_eof;
609 	int		count = 0;
610 	sa_bulk_attr_t	bulk[4];
611 	uint64_t	mtime[2], ctime[2];
612 
613 	/*
614 	 * Fasttrack empty write
615 	 */
616 	n = start_resid;
617 	if (n == 0)
618 		return (0);
619 
620 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
621 		limit = MAXOFFSET_T;
622 
623 	ZFS_ENTER(zfsvfs);
624 	ZFS_VERIFY_ZP(zp);
625 
626 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
627 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
628 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
629 	    &zp->z_size, 8);
630 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
631 	    &zp->z_pflags, 8);
632 
633 	/*
634 	 * If immutable or not appending then return EPERM
635 	 */
636 	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
637 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
638 	    (uio->uio_loffset < zp->z_size))) {
639 		ZFS_EXIT(zfsvfs);
640 		return (EPERM);
641 	}
642 
643 	zilog = zfsvfs->z_log;
644 
645 	/*
646 	 * Validate file offset
647 	 */
648 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
649 	if (woff < 0) {
650 		ZFS_EXIT(zfsvfs);
651 		return (EINVAL);
652 	}
653 
654 	/*
655 	 * Check for mandatory locks before calling zfs_range_lock()
656 	 * in order to prevent a deadlock with locks set via fcntl().
657 	 */
658 	if (MANDMODE((mode_t)zp->z_mode) &&
659 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
660 		ZFS_EXIT(zfsvfs);
661 		return (error);
662 	}
663 
664 	/*
665 	 * Pre-fault the pages to ensure slow (eg NFS) pages
666 	 * don't hold up txg.
667 	 * Skip this if uio contains loaned arc_buf.
668 	 */
669 	if ((uio->uio_extflg == UIO_XUIO) &&
670 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
671 		xuio = (xuio_t *)uio;
672 	else
673 		uio_prefaultpages(n, uio);
674 
675 	/*
676 	 * If in append mode, set the io offset pointer to eof.
677 	 */
678 	if (ioflag & FAPPEND) {
679 		/*
680 		 * Obtain an appending range lock to guarantee file append
681 		 * semantics.  We reset the write offset once we have the lock.
682 		 */
683 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
684 		woff = rl->r_off;
685 		if (rl->r_len == UINT64_MAX) {
686 			/*
687 			 * We overlocked the file because this write will cause
688 			 * the file block size to increase.
689 			 * Note that zp_size cannot change with this lock held.
690 			 */
691 			woff = zp->z_size;
692 		}
693 		uio->uio_loffset = woff;
694 	} else {
695 		/*
696 		 * Note that if the file block size will change as a result of
697 		 * this write, then this range lock will lock the entire file
698 		 * so that we can re-write the block safely.
699 		 */
700 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
701 	}
702 
703 	if (woff >= limit) {
704 		zfs_range_unlock(rl);
705 		ZFS_EXIT(zfsvfs);
706 		return (EFBIG);
707 	}
708 
709 	if ((woff + n) > limit || woff > (limit - n))
710 		n = limit - woff;
711 
712 	/* Will this write extend the file length? */
713 	write_eof = (woff + n > zp->z_size);
714 
715 	end_size = MAX(zp->z_size, woff + n);
716 
717 	/*
718 	 * Write the file in reasonable size chunks.  Each chunk is written
719 	 * in a separate transaction; this keeps the intent log records small
720 	 * and allows us to do more fine-grained space accounting.
721 	 */
722 	while (n > 0) {
723 		abuf = NULL;
724 		woff = uio->uio_loffset;
725 again:
726 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
727 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
728 			if (abuf != NULL)
729 				dmu_return_arcbuf(abuf);
730 			error = EDQUOT;
731 			break;
732 		}
733 
734 		if (xuio && abuf == NULL) {
735 			ASSERT(i_iov < iovcnt);
736 			aiov = &iovp[i_iov];
737 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
738 			dmu_xuio_clear(xuio, i_iov);
739 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
740 			    iovec_t *, aiov, arc_buf_t *, abuf);
741 			ASSERT((aiov->iov_base == abuf->b_data) ||
742 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
743 			    aiov->iov_len == arc_buf_size(abuf)));
744 			i_iov++;
745 		} else if (abuf == NULL && n >= max_blksz &&
746 		    woff >= zp->z_size &&
747 		    P2PHASE(woff, max_blksz) == 0 &&
748 		    zp->z_blksz == max_blksz) {
749 			/*
750 			 * This write covers a full block.  "Borrow" a buffer
751 			 * from the dmu so that we can fill it before we enter
752 			 * a transaction.  This avoids the possibility of
753 			 * holding up the transaction if the data copy hangs
754 			 * up on a pagefault (e.g., from an NFS server mapping).
755 			 */
756 			size_t cbytes;
757 
758 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
759 			    max_blksz);
760 			ASSERT(abuf != NULL);
761 			ASSERT(arc_buf_size(abuf) == max_blksz);
762 			if (error = uiocopy(abuf->b_data, max_blksz,
763 			    UIO_WRITE, uio, &cbytes)) {
764 				dmu_return_arcbuf(abuf);
765 				break;
766 			}
767 			ASSERT(cbytes == max_blksz);
768 		}
769 
770 		/*
771 		 * Start a transaction.
772 		 */
773 		tx = dmu_tx_create(zfsvfs->z_os);
774 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
775 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
776 		zfs_sa_upgrade_txholds(tx, zp);
777 		error = dmu_tx_assign(tx, TXG_NOWAIT);
778 		if (error) {
779 			if (error == ERESTART) {
780 				dmu_tx_wait(tx);
781 				dmu_tx_abort(tx);
782 				goto again;
783 			}
784 			dmu_tx_abort(tx);
785 			if (abuf != NULL)
786 				dmu_return_arcbuf(abuf);
787 			break;
788 		}
789 
790 		/*
791 		 * If zfs_range_lock() over-locked we grow the blocksize
792 		 * and then reduce the lock range.  This will only happen
793 		 * on the first iteration since zfs_range_reduce() will
794 		 * shrink down r_len to the appropriate size.
795 		 */
796 		if (rl->r_len == UINT64_MAX) {
797 			uint64_t new_blksz;
798 
799 			if (zp->z_blksz > max_blksz) {
800 				ASSERT(!ISP2(zp->z_blksz));
801 				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
802 			} else {
803 				new_blksz = MIN(end_size, max_blksz);
804 			}
805 			zfs_grow_blocksize(zp, new_blksz, tx);
806 			zfs_range_reduce(rl, woff, n);
807 		}
808 
809 		/*
810 		 * XXX - should we really limit each write to z_max_blksz?
811 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
812 		 */
813 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
814 
815 		if (abuf == NULL) {
816 			tx_bytes = uio->uio_resid;
817 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
818 			    uio, nbytes, tx);
819 			tx_bytes -= uio->uio_resid;
820 		} else {
821 			tx_bytes = nbytes;
822 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
823 			/*
824 			 * If this is not a full block write, but we are
825 			 * extending the file past EOF and this data starts
826 			 * block-aligned, use assign_arcbuf().  Otherwise,
827 			 * write via dmu_write().
828 			 */
829 			if (tx_bytes < max_blksz && (!write_eof ||
830 			    aiov->iov_base != abuf->b_data)) {
831 				ASSERT(xuio);
832 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
833 				    aiov->iov_len, aiov->iov_base, tx);
834 				dmu_return_arcbuf(abuf);
835 				xuio_stat_wbuf_copied();
836 			} else {
837 				ASSERT(xuio || tx_bytes == max_blksz);
838 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
839 				    woff, abuf, tx);
840 			}
841 			ASSERT(tx_bytes <= uio->uio_resid);
842 			uioskip(uio, tx_bytes);
843 		}
844 		if (tx_bytes && vn_has_cached_data(vp)) {
845 			update_pages(vp, woff,
846 			    tx_bytes, zfsvfs->z_os, zp->z_id);
847 		}
848 
849 		/*
850 		 * If we made no progress, we're done.  If we made even
851 		 * partial progress, update the znode and ZIL accordingly.
852 		 */
853 		if (tx_bytes == 0) {
854 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
855 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
856 			dmu_tx_commit(tx);
857 			ASSERT(error != 0);
858 			break;
859 		}
860 
861 		/*
862 		 * Clear Set-UID/Set-GID bits on successful write if not
863 		 * privileged and at least one of the excute bits is set.
864 		 *
865 		 * It would be nice to to this after all writes have
866 		 * been done, but that would still expose the ISUID/ISGID
867 		 * to another app after the partial write is committed.
868 		 *
869 		 */
870 		mutex_enter(&zp->z_acl_lock);
871 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
872 		    (S_IXUSR >> 6))) != 0 &&
873 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
874 		    secpolicy_vnode_setid_retain(cr,
875 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
876 			uint64_t newmode;
877 			zp->z_mode &= ~(S_ISUID | S_ISGID);
878 			newmode = zp->z_mode;
879 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
880 			    (void *)&newmode, sizeof (uint64_t), tx);
881 		}
882 		mutex_exit(&zp->z_acl_lock);
883 
884 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
885 		    B_TRUE);
886 
887 		/*
888 		 * Update the file size (zp_size) if it has changed;
889 		 * account for possible concurrent updates.
890 		 */
891 		while ((end_size = zp->z_size) < uio->uio_loffset) {
892 			(void) atomic_cas_64(&zp->z_size, end_size,
893 			    uio->uio_loffset);
894 			ASSERT(error == 0);
895 		}
896 		/*
897 		 * If we are replaying and eof is non zero then force
898 		 * the file size to the specified eof. Note, there's no
899 		 * concurrency during replay.
900 		 */
901 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
902 			zp->z_size = zfsvfs->z_replay_eof;
903 
904 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
905 
906 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
907 		dmu_tx_commit(tx);
908 
909 		if (error != 0)
910 			break;
911 		ASSERT(tx_bytes == nbytes);
912 		n -= nbytes;
913 	}
914 
915 	zfs_range_unlock(rl);
916 
917 	/*
918 	 * If we're in replay mode, or we made no progress, return error.
919 	 * Otherwise, it's at least a partial write, so it's successful.
920 	 */
921 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
922 		ZFS_EXIT(zfsvfs);
923 		return (error);
924 	}
925 
926 	if (ioflag & (FSYNC | FDSYNC) ||
927 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
928 		zil_commit(zilog, zp->z_id);
929 
930 	ZFS_EXIT(zfsvfs);
931 	return (0);
932 }
933 
934 void
935 zfs_get_done(zgd_t *zgd, int error)
936 {
937 	znode_t *zp = zgd->zgd_private;
938 	objset_t *os = zp->z_zfsvfs->z_os;
939 
940 	if (zgd->zgd_db)
941 		dmu_buf_rele(zgd->zgd_db, zgd);
942 
943 	zfs_range_unlock(zgd->zgd_rl);
944 
945 	/*
946 	 * Release the vnode asynchronously as we currently have the
947 	 * txg stopped from syncing.
948 	 */
949 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
950 
951 	if (error == 0 && zgd->zgd_bp)
952 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
953 
954 	kmem_free(zgd, sizeof (zgd_t));
955 }
956 
957 #ifdef DEBUG
958 static int zil_fault_io = 0;
959 #endif
960 
961 /*
962  * Get data to generate a TX_WRITE intent log record.
963  */
964 int
965 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
966 {
967 	zfsvfs_t *zfsvfs = arg;
968 	objset_t *os = zfsvfs->z_os;
969 	znode_t *zp;
970 	uint64_t object = lr->lr_foid;
971 	uint64_t offset = lr->lr_offset;
972 	uint64_t size = lr->lr_length;
973 	blkptr_t *bp = &lr->lr_blkptr;
974 	dmu_buf_t *db;
975 	zgd_t *zgd;
976 	int error = 0;
977 
978 	ASSERT(zio != NULL);
979 	ASSERT(size != 0);
980 
981 	/*
982 	 * Nothing to do if the file has been removed
983 	 */
984 	if (zfs_zget(zfsvfs, object, &zp) != 0)
985 		return (ENOENT);
986 	if (zp->z_unlinked) {
987 		/*
988 		 * Release the vnode asynchronously as we currently have the
989 		 * txg stopped from syncing.
990 		 */
991 		VN_RELE_ASYNC(ZTOV(zp),
992 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
993 		return (ENOENT);
994 	}
995 
996 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
997 	zgd->zgd_zilog = zfsvfs->z_log;
998 	zgd->zgd_private = zp;
999 
1000 	/*
1001 	 * Write records come in two flavors: immediate and indirect.
1002 	 * For small writes it's cheaper to store the data with the
1003 	 * log record (immediate); for large writes it's cheaper to
1004 	 * sync the data and get a pointer to it (indirect) so that
1005 	 * we don't have to write the data twice.
1006 	 */
1007 	if (buf != NULL) { /* immediate write */
1008 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1009 		/* test for truncation needs to be done while range locked */
1010 		if (offset >= zp->z_size) {
1011 			error = ENOENT;
1012 		} else {
1013 			error = dmu_read(os, object, offset, size, buf,
1014 			    DMU_READ_NO_PREFETCH);
1015 		}
1016 		ASSERT(error == 0 || error == ENOENT);
1017 	} else { /* indirect write */
1018 		/*
1019 		 * Have to lock the whole block to ensure when it's
1020 		 * written out and it's checksum is being calculated
1021 		 * that no one can change the data. We need to re-check
1022 		 * blocksize after we get the lock in case it's changed!
1023 		 */
1024 		for (;;) {
1025 			uint64_t blkoff;
1026 			size = zp->z_blksz;
1027 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1028 			offset -= blkoff;
1029 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1030 			    RL_READER);
1031 			if (zp->z_blksz == size)
1032 				break;
1033 			offset += blkoff;
1034 			zfs_range_unlock(zgd->zgd_rl);
1035 		}
1036 		/* test for truncation needs to be done while range locked */
1037 		if (lr->lr_offset >= zp->z_size)
1038 			error = ENOENT;
1039 #ifdef DEBUG
1040 		if (zil_fault_io) {
1041 			error = EIO;
1042 			zil_fault_io = 0;
1043 		}
1044 #endif
1045 		if (error == 0)
1046 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1047 			    DMU_READ_NO_PREFETCH);
1048 
1049 		if (error == 0) {
1050 			zgd->zgd_db = db;
1051 			zgd->zgd_bp = bp;
1052 
1053 			ASSERT(db->db_offset == offset);
1054 			ASSERT(db->db_size == size);
1055 
1056 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1057 			    zfs_get_done, zgd);
1058 			ASSERT(error || lr->lr_length <= zp->z_blksz);
1059 
1060 			/*
1061 			 * On success, we need to wait for the write I/O
1062 			 * initiated by dmu_sync() to complete before we can
1063 			 * release this dbuf.  We will finish everything up
1064 			 * in the zfs_get_done() callback.
1065 			 */
1066 			if (error == 0)
1067 				return (0);
1068 
1069 			if (error == EALREADY) {
1070 				lr->lr_common.lrc_txtype = TX_WRITE2;
1071 				error = 0;
1072 			}
1073 		}
1074 	}
1075 
1076 	zfs_get_done(zgd, error);
1077 
1078 	return (error);
1079 }
1080 
1081 /*ARGSUSED*/
1082 static int
1083 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1084     caller_context_t *ct)
1085 {
1086 	znode_t *zp = VTOZ(vp);
1087 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1088 	int error;
1089 
1090 	ZFS_ENTER(zfsvfs);
1091 	ZFS_VERIFY_ZP(zp);
1092 
1093 	if (flag & V_ACE_MASK)
1094 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1095 	else
1096 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1097 
1098 	ZFS_EXIT(zfsvfs);
1099 	return (error);
1100 }
1101 
1102 /*
1103  * If vnode is for a device return a specfs vnode instead.
1104  */
1105 static int
1106 specvp_check(vnode_t **vpp, cred_t *cr)
1107 {
1108 	int error = 0;
1109 
1110 	if (IS_DEVVP(*vpp)) {
1111 		struct vnode *svp;
1112 
1113 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1114 		VN_RELE(*vpp);
1115 		if (svp == NULL)
1116 			error = ENOSYS;
1117 		*vpp = svp;
1118 	}
1119 	return (error);
1120 }
1121 
1122 
1123 /*
1124  * Lookup an entry in a directory, or an extended attribute directory.
1125  * If it exists, return a held vnode reference for it.
1126  *
1127  *	IN:	dvp	- vnode of directory to search.
1128  *		nm	- name of entry to lookup.
1129  *		pnp	- full pathname to lookup [UNUSED].
1130  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1131  *		rdir	- root directory vnode [UNUSED].
1132  *		cr	- credentials of caller.
1133  *		ct	- caller context
1134  *		direntflags - directory lookup flags
1135  *		realpnp - returned pathname.
1136  *
1137  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1138  *
1139  *	RETURN:	0 if success
1140  *		error code if failure
1141  *
1142  * Timestamps:
1143  *	NA
1144  */
1145 /* ARGSUSED */
1146 static int
1147 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1148     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1149     int *direntflags, pathname_t *realpnp)
1150 {
1151 	znode_t *zdp = VTOZ(dvp);
1152 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1153 	int	error = 0;
1154 
1155 	/* fast path */
1156 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1157 
1158 		if (dvp->v_type != VDIR) {
1159 			return (ENOTDIR);
1160 		} else if (zdp->z_sa_hdl == NULL) {
1161 			return (EIO);
1162 		}
1163 
1164 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1165 			error = zfs_fastaccesschk_execute(zdp, cr);
1166 			if (!error) {
1167 				*vpp = dvp;
1168 				VN_HOLD(*vpp);
1169 				return (0);
1170 			}
1171 			return (error);
1172 		} else {
1173 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1174 
1175 			if (tvp) {
1176 				error = zfs_fastaccesschk_execute(zdp, cr);
1177 				if (error) {
1178 					VN_RELE(tvp);
1179 					return (error);
1180 				}
1181 				if (tvp == DNLC_NO_VNODE) {
1182 					VN_RELE(tvp);
1183 					return (ENOENT);
1184 				} else {
1185 					*vpp = tvp;
1186 					return (specvp_check(vpp, cr));
1187 				}
1188 			}
1189 		}
1190 	}
1191 
1192 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1193 
1194 	ZFS_ENTER(zfsvfs);
1195 	ZFS_VERIFY_ZP(zdp);
1196 
1197 	*vpp = NULL;
1198 
1199 	if (flags & LOOKUP_XATTR) {
1200 		/*
1201 		 * If the xattr property is off, refuse the lookup request.
1202 		 */
1203 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1204 			ZFS_EXIT(zfsvfs);
1205 			return (EINVAL);
1206 		}
1207 
1208 		/*
1209 		 * We don't allow recursive attributes..
1210 		 * Maybe someday we will.
1211 		 */
1212 		if (zdp->z_pflags & ZFS_XATTR) {
1213 			ZFS_EXIT(zfsvfs);
1214 			return (EINVAL);
1215 		}
1216 
1217 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1218 			ZFS_EXIT(zfsvfs);
1219 			return (error);
1220 		}
1221 
1222 		/*
1223 		 * Do we have permission to get into attribute directory?
1224 		 */
1225 
1226 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1227 		    B_FALSE, cr)) {
1228 			VN_RELE(*vpp);
1229 			*vpp = NULL;
1230 		}
1231 
1232 		ZFS_EXIT(zfsvfs);
1233 		return (error);
1234 	}
1235 
1236 	if (dvp->v_type != VDIR) {
1237 		ZFS_EXIT(zfsvfs);
1238 		return (ENOTDIR);
1239 	}
1240 
1241 	/*
1242 	 * Check accessibility of directory.
1243 	 */
1244 
1245 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1246 		ZFS_EXIT(zfsvfs);
1247 		return (error);
1248 	}
1249 
1250 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1251 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1252 		ZFS_EXIT(zfsvfs);
1253 		return (EILSEQ);
1254 	}
1255 
1256 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1257 	if (error == 0)
1258 		error = specvp_check(vpp, cr);
1259 
1260 	ZFS_EXIT(zfsvfs);
1261 	return (error);
1262 }
1263 
1264 /*
1265  * Attempt to create a new entry in a directory.  If the entry
1266  * already exists, truncate the file if permissible, else return
1267  * an error.  Return the vp of the created or trunc'd file.
1268  *
1269  *	IN:	dvp	- vnode of directory to put new file entry in.
1270  *		name	- name of new file entry.
1271  *		vap	- attributes of new file.
1272  *		excl	- flag indicating exclusive or non-exclusive mode.
1273  *		mode	- mode to open file with.
1274  *		cr	- credentials of caller.
1275  *		flag	- large file flag [UNUSED].
1276  *		ct	- caller context
1277  *		vsecp 	- ACL to be set
1278  *
1279  *	OUT:	vpp	- vnode of created or trunc'd entry.
1280  *
1281  *	RETURN:	0 if success
1282  *		error code if failure
1283  *
1284  * Timestamps:
1285  *	dvp - ctime|mtime updated if new entry created
1286  *	 vp - ctime|mtime always, atime if new
1287  */
1288 
1289 /* ARGSUSED */
1290 static int
1291 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1292     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1293     vsecattr_t *vsecp)
1294 {
1295 	znode_t		*zp, *dzp = VTOZ(dvp);
1296 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1297 	zilog_t		*zilog;
1298 	objset_t	*os;
1299 	zfs_dirlock_t	*dl;
1300 	dmu_tx_t	*tx;
1301 	int		error;
1302 	ksid_t		*ksid;
1303 	uid_t		uid;
1304 	gid_t		gid = crgetgid(cr);
1305 	zfs_acl_ids_t   acl_ids;
1306 	boolean_t	fuid_dirtied;
1307 	boolean_t	have_acl = B_FALSE;
1308 
1309 	/*
1310 	 * If we have an ephemeral id, ACL, or XVATTR then
1311 	 * make sure file system is at proper version
1312 	 */
1313 
1314 	ksid = crgetsid(cr, KSID_OWNER);
1315 	if (ksid)
1316 		uid = ksid_getid(ksid);
1317 	else
1318 		uid = crgetuid(cr);
1319 
1320 	if (zfsvfs->z_use_fuids == B_FALSE &&
1321 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1322 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1323 		return (EINVAL);
1324 
1325 	ZFS_ENTER(zfsvfs);
1326 	ZFS_VERIFY_ZP(dzp);
1327 	os = zfsvfs->z_os;
1328 	zilog = zfsvfs->z_log;
1329 
1330 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1331 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1332 		ZFS_EXIT(zfsvfs);
1333 		return (EILSEQ);
1334 	}
1335 
1336 	if (vap->va_mask & AT_XVATTR) {
1337 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1338 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1339 			ZFS_EXIT(zfsvfs);
1340 			return (error);
1341 		}
1342 	}
1343 top:
1344 	*vpp = NULL;
1345 
1346 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1347 		vap->va_mode &= ~VSVTX;
1348 
1349 	if (*name == '\0') {
1350 		/*
1351 		 * Null component name refers to the directory itself.
1352 		 */
1353 		VN_HOLD(dvp);
1354 		zp = dzp;
1355 		dl = NULL;
1356 		error = 0;
1357 	} else {
1358 		/* possible VN_HOLD(zp) */
1359 		int zflg = 0;
1360 
1361 		if (flag & FIGNORECASE)
1362 			zflg |= ZCILOOK;
1363 
1364 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1365 		    NULL, NULL);
1366 		if (error) {
1367 			if (strcmp(name, "..") == 0)
1368 				error = EISDIR;
1369 			ZFS_EXIT(zfsvfs);
1370 			return (error);
1371 		}
1372 	}
1373 
1374 	if (zp == NULL) {
1375 		uint64_t txtype;
1376 
1377 		/*
1378 		 * Create a new file object and update the directory
1379 		 * to reference it.
1380 		 */
1381 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1382 			goto out;
1383 		}
1384 
1385 		/*
1386 		 * We only support the creation of regular files in
1387 		 * extended attribute directories.
1388 		 */
1389 
1390 		if ((dzp->z_pflags & ZFS_XATTR) &&
1391 		    (vap->va_type != VREG)) {
1392 			error = EINVAL;
1393 			goto out;
1394 		}
1395 
1396 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1397 		    cr, vsecp, &acl_ids)) != 0)
1398 			goto out;
1399 		have_acl = B_TRUE;
1400 
1401 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1402 			zfs_acl_ids_free(&acl_ids);
1403 			error = EDQUOT;
1404 			goto out;
1405 		}
1406 
1407 		tx = dmu_tx_create(os);
1408 
1409 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1410 		    ZFS_SA_BASE_ATTR_SIZE);
1411 
1412 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1413 		if (fuid_dirtied)
1414 			zfs_fuid_txhold(zfsvfs, tx);
1415 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1416 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1417 		if (!zfsvfs->z_use_sa &&
1418 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1419 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1420 			    0, acl_ids.z_aclp->z_acl_bytes);
1421 		}
1422 		error = dmu_tx_assign(tx, TXG_NOWAIT);
1423 		if (error) {
1424 			zfs_dirent_unlock(dl);
1425 			if (error == ERESTART) {
1426 				dmu_tx_wait(tx);
1427 				dmu_tx_abort(tx);
1428 				goto top;
1429 			}
1430 			zfs_acl_ids_free(&acl_ids);
1431 			dmu_tx_abort(tx);
1432 			ZFS_EXIT(zfsvfs);
1433 			return (error);
1434 		}
1435 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1436 
1437 		if (fuid_dirtied)
1438 			zfs_fuid_sync(zfsvfs, tx);
1439 
1440 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1441 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1442 		if (flag & FIGNORECASE)
1443 			txtype |= TX_CI;
1444 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1445 		    vsecp, acl_ids.z_fuidp, vap);
1446 		zfs_acl_ids_free(&acl_ids);
1447 		dmu_tx_commit(tx);
1448 	} else {
1449 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1450 
1451 		/*
1452 		 * A directory entry already exists for this name.
1453 		 */
1454 		/*
1455 		 * Can't truncate an existing file if in exclusive mode.
1456 		 */
1457 		if (excl == EXCL) {
1458 			error = EEXIST;
1459 			goto out;
1460 		}
1461 		/*
1462 		 * Can't open a directory for writing.
1463 		 */
1464 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1465 			error = EISDIR;
1466 			goto out;
1467 		}
1468 		/*
1469 		 * Verify requested access to file.
1470 		 */
1471 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1472 			goto out;
1473 		}
1474 
1475 		mutex_enter(&dzp->z_lock);
1476 		dzp->z_seq++;
1477 		mutex_exit(&dzp->z_lock);
1478 
1479 		/*
1480 		 * Truncate regular files if requested.
1481 		 */
1482 		if ((ZTOV(zp)->v_type == VREG) &&
1483 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1484 			/* we can't hold any locks when calling zfs_freesp() */
1485 			zfs_dirent_unlock(dl);
1486 			dl = NULL;
1487 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1488 			if (error == 0) {
1489 				vnevent_create(ZTOV(zp), ct);
1490 			}
1491 		}
1492 	}
1493 out:
1494 
1495 	if (dl)
1496 		zfs_dirent_unlock(dl);
1497 
1498 	if (error) {
1499 		if (zp)
1500 			VN_RELE(ZTOV(zp));
1501 	} else {
1502 		*vpp = ZTOV(zp);
1503 		error = specvp_check(vpp, cr);
1504 	}
1505 
1506 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1507 		zil_commit(zilog, 0);
1508 
1509 	ZFS_EXIT(zfsvfs);
1510 	return (error);
1511 }
1512 
1513 /*
1514  * Remove an entry from a directory.
1515  *
1516  *	IN:	dvp	- vnode of directory to remove entry from.
1517  *		name	- name of entry to remove.
1518  *		cr	- credentials of caller.
1519  *		ct	- caller context
1520  *		flags	- case flags
1521  *
1522  *	RETURN:	0 if success
1523  *		error code if failure
1524  *
1525  * Timestamps:
1526  *	dvp - ctime|mtime
1527  *	 vp - ctime (if nlink > 0)
1528  */
1529 
1530 uint64_t null_xattr = 0;
1531 
1532 /*ARGSUSED*/
1533 static int
1534 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1535     int flags)
1536 {
1537 	znode_t		*zp, *dzp = VTOZ(dvp);
1538 	znode_t		*xzp = NULL;
1539 	vnode_t		*vp;
1540 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1541 	zilog_t		*zilog;
1542 	uint64_t	acl_obj, xattr_obj = 0;
1543 	uint64_t 	xattr_obj_unlinked = 0;
1544 	uint64_t	obj = 0;
1545 	zfs_dirlock_t	*dl;
1546 	dmu_tx_t	*tx;
1547 	boolean_t	may_delete_now, delete_now = FALSE;
1548 	boolean_t	unlinked, toobig = FALSE;
1549 	uint64_t	txtype;
1550 	pathname_t	*realnmp = NULL;
1551 	pathname_t	realnm;
1552 	int		error;
1553 	int		zflg = ZEXISTS;
1554 
1555 	ZFS_ENTER(zfsvfs);
1556 	ZFS_VERIFY_ZP(dzp);
1557 	zilog = zfsvfs->z_log;
1558 
1559 	if (flags & FIGNORECASE) {
1560 		zflg |= ZCILOOK;
1561 		pn_alloc(&realnm);
1562 		realnmp = &realnm;
1563 	}
1564 
1565 top:
1566 	/*
1567 	 * Attempt to lock directory; fail if entry doesn't exist.
1568 	 */
1569 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1570 	    NULL, realnmp)) {
1571 		if (realnmp)
1572 			pn_free(realnmp);
1573 		ZFS_EXIT(zfsvfs);
1574 		return (error);
1575 	}
1576 
1577 	vp = ZTOV(zp);
1578 
1579 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1580 		goto out;
1581 	}
1582 
1583 	/*
1584 	 * Need to use rmdir for removing directories.
1585 	 */
1586 	if (vp->v_type == VDIR) {
1587 		error = EPERM;
1588 		goto out;
1589 	}
1590 
1591 	vnevent_remove(vp, dvp, name, ct);
1592 
1593 	if (realnmp)
1594 		dnlc_remove(dvp, realnmp->pn_buf);
1595 	else
1596 		dnlc_remove(dvp, name);
1597 
1598 	mutex_enter(&vp->v_lock);
1599 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1600 	mutex_exit(&vp->v_lock);
1601 
1602 	/*
1603 	 * We may delete the znode now, or we may put it in the unlinked set;
1604 	 * it depends on whether we're the last link, and on whether there are
1605 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1606 	 * allow for either case.
1607 	 */
1608 	obj = zp->z_id;
1609 	tx = dmu_tx_create(zfsvfs->z_os);
1610 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1611 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1612 	zfs_sa_upgrade_txholds(tx, zp);
1613 	zfs_sa_upgrade_txholds(tx, dzp);
1614 	if (may_delete_now) {
1615 		toobig =
1616 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1617 		/* if the file is too big, only hold_free a token amount */
1618 		dmu_tx_hold_free(tx, zp->z_id, 0,
1619 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1620 	}
1621 
1622 	/* are there any extended attributes? */
1623 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1624 	    &xattr_obj, sizeof (xattr_obj));
1625 	if (xattr_obj) {
1626 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1627 		ASSERT3U(error, ==, 0);
1628 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1629 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1630 	}
1631 
1632 	mutex_enter(&zp->z_lock);
1633 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1634 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1635 	mutex_exit(&zp->z_lock);
1636 
1637 	/* charge as an update -- would be nice not to charge at all */
1638 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1639 
1640 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1641 	if (error) {
1642 		zfs_dirent_unlock(dl);
1643 		VN_RELE(vp);
1644 		if (error == ERESTART) {
1645 			dmu_tx_wait(tx);
1646 			dmu_tx_abort(tx);
1647 			goto top;
1648 		}
1649 		if (realnmp)
1650 			pn_free(realnmp);
1651 		dmu_tx_abort(tx);
1652 		ZFS_EXIT(zfsvfs);
1653 		return (error);
1654 	}
1655 
1656 	/*
1657 	 * Remove the directory entry.
1658 	 */
1659 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1660 
1661 	if (error) {
1662 		dmu_tx_commit(tx);
1663 		goto out;
1664 	}
1665 
1666 	if (unlinked) {
1667 
1668 		/*
1669 		 * Hold z_lock so that we can make sure that the ACL obj
1670 		 * hasn't changed.  Could have been deleted due to
1671 		 * zfs_sa_upgrade().
1672 		 */
1673 		mutex_enter(&zp->z_lock);
1674 		mutex_enter(&vp->v_lock);
1675 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1676 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1677 		delete_now = may_delete_now && !toobig &&
1678 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1679 		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1680 		    acl_obj;
1681 		mutex_exit(&vp->v_lock);
1682 	}
1683 
1684 	if (delete_now) {
1685 		if (xattr_obj_unlinked) {
1686 			ASSERT3U(xzp->z_links, ==, 2);
1687 			mutex_enter(&xzp->z_lock);
1688 			xzp->z_unlinked = 1;
1689 			xzp->z_links = 0;
1690 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1691 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1692 			ASSERT3U(error,  ==,  0);
1693 			mutex_exit(&xzp->z_lock);
1694 			zfs_unlinked_add(xzp, tx);
1695 
1696 			if (zp->z_is_sa)
1697 				error = sa_remove(zp->z_sa_hdl,
1698 				    SA_ZPL_XATTR(zfsvfs), tx);
1699 			else
1700 				error = sa_update(zp->z_sa_hdl,
1701 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1702 				    sizeof (uint64_t), tx);
1703 			ASSERT3U(error, ==, 0);
1704 		}
1705 		mutex_enter(&vp->v_lock);
1706 		vp->v_count--;
1707 		ASSERT3U(vp->v_count, ==, 0);
1708 		mutex_exit(&vp->v_lock);
1709 		mutex_exit(&zp->z_lock);
1710 		zfs_znode_delete(zp, tx);
1711 	} else if (unlinked) {
1712 		mutex_exit(&zp->z_lock);
1713 		zfs_unlinked_add(zp, tx);
1714 	}
1715 
1716 	txtype = TX_REMOVE;
1717 	if (flags & FIGNORECASE)
1718 		txtype |= TX_CI;
1719 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1720 
1721 	dmu_tx_commit(tx);
1722 out:
1723 	if (realnmp)
1724 		pn_free(realnmp);
1725 
1726 	zfs_dirent_unlock(dl);
1727 
1728 	if (!delete_now)
1729 		VN_RELE(vp);
1730 	if (xzp)
1731 		VN_RELE(ZTOV(xzp));
1732 
1733 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1734 		zil_commit(zilog, 0);
1735 
1736 	ZFS_EXIT(zfsvfs);
1737 	return (error);
1738 }
1739 
1740 /*
1741  * Create a new directory and insert it into dvp using the name
1742  * provided.  Return a pointer to the inserted directory.
1743  *
1744  *	IN:	dvp	- vnode of directory to add subdir to.
1745  *		dirname	- name of new directory.
1746  *		vap	- attributes of new directory.
1747  *		cr	- credentials of caller.
1748  *		ct	- caller context
1749  *		vsecp	- ACL to be set
1750  *
1751  *	OUT:	vpp	- vnode of created directory.
1752  *
1753  *	RETURN:	0 if success
1754  *		error code if failure
1755  *
1756  * Timestamps:
1757  *	dvp - ctime|mtime updated
1758  *	 vp - ctime|mtime|atime updated
1759  */
1760 /*ARGSUSED*/
1761 static int
1762 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1763     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1764 {
1765 	znode_t		*zp, *dzp = VTOZ(dvp);
1766 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1767 	zilog_t		*zilog;
1768 	zfs_dirlock_t	*dl;
1769 	uint64_t	txtype;
1770 	dmu_tx_t	*tx;
1771 	int		error;
1772 	int		zf = ZNEW;
1773 	ksid_t		*ksid;
1774 	uid_t		uid;
1775 	gid_t		gid = crgetgid(cr);
1776 	zfs_acl_ids_t   acl_ids;
1777 	boolean_t	fuid_dirtied;
1778 
1779 	ASSERT(vap->va_type == VDIR);
1780 
1781 	/*
1782 	 * If we have an ephemeral id, ACL, or XVATTR then
1783 	 * make sure file system is at proper version
1784 	 */
1785 
1786 	ksid = crgetsid(cr, KSID_OWNER);
1787 	if (ksid)
1788 		uid = ksid_getid(ksid);
1789 	else
1790 		uid = crgetuid(cr);
1791 	if (zfsvfs->z_use_fuids == B_FALSE &&
1792 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1793 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1794 		return (EINVAL);
1795 
1796 	ZFS_ENTER(zfsvfs);
1797 	ZFS_VERIFY_ZP(dzp);
1798 	zilog = zfsvfs->z_log;
1799 
1800 	if (dzp->z_pflags & ZFS_XATTR) {
1801 		ZFS_EXIT(zfsvfs);
1802 		return (EINVAL);
1803 	}
1804 
1805 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1806 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1807 		ZFS_EXIT(zfsvfs);
1808 		return (EILSEQ);
1809 	}
1810 	if (flags & FIGNORECASE)
1811 		zf |= ZCILOOK;
1812 
1813 	if (vap->va_mask & AT_XVATTR) {
1814 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1815 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1816 			ZFS_EXIT(zfsvfs);
1817 			return (error);
1818 		}
1819 	}
1820 
1821 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1822 	    vsecp, &acl_ids)) != 0) {
1823 		ZFS_EXIT(zfsvfs);
1824 		return (error);
1825 	}
1826 	/*
1827 	 * First make sure the new directory doesn't exist.
1828 	 *
1829 	 * Existence is checked first to make sure we don't return
1830 	 * EACCES instead of EEXIST which can cause some applications
1831 	 * to fail.
1832 	 */
1833 top:
1834 	*vpp = NULL;
1835 
1836 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1837 	    NULL, NULL)) {
1838 		zfs_acl_ids_free(&acl_ids);
1839 		ZFS_EXIT(zfsvfs);
1840 		return (error);
1841 	}
1842 
1843 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1844 		zfs_acl_ids_free(&acl_ids);
1845 		zfs_dirent_unlock(dl);
1846 		ZFS_EXIT(zfsvfs);
1847 		return (error);
1848 	}
1849 
1850 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1851 		zfs_acl_ids_free(&acl_ids);
1852 		zfs_dirent_unlock(dl);
1853 		ZFS_EXIT(zfsvfs);
1854 		return (EDQUOT);
1855 	}
1856 
1857 	/*
1858 	 * Add a new entry to the directory.
1859 	 */
1860 	tx = dmu_tx_create(zfsvfs->z_os);
1861 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1862 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1863 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1864 	if (fuid_dirtied)
1865 		zfs_fuid_txhold(zfsvfs, tx);
1866 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1867 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1868 		    acl_ids.z_aclp->z_acl_bytes);
1869 	}
1870 
1871 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1872 	    ZFS_SA_BASE_ATTR_SIZE);
1873 
1874 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1875 	if (error) {
1876 		zfs_dirent_unlock(dl);
1877 		if (error == ERESTART) {
1878 			dmu_tx_wait(tx);
1879 			dmu_tx_abort(tx);
1880 			goto top;
1881 		}
1882 		zfs_acl_ids_free(&acl_ids);
1883 		dmu_tx_abort(tx);
1884 		ZFS_EXIT(zfsvfs);
1885 		return (error);
1886 	}
1887 
1888 	/*
1889 	 * Create new node.
1890 	 */
1891 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1892 
1893 	if (fuid_dirtied)
1894 		zfs_fuid_sync(zfsvfs, tx);
1895 
1896 	/*
1897 	 * Now put new name in parent dir.
1898 	 */
1899 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1900 
1901 	*vpp = ZTOV(zp);
1902 
1903 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1904 	if (flags & FIGNORECASE)
1905 		txtype |= TX_CI;
1906 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1907 	    acl_ids.z_fuidp, vap);
1908 
1909 	zfs_acl_ids_free(&acl_ids);
1910 
1911 	dmu_tx_commit(tx);
1912 
1913 	zfs_dirent_unlock(dl);
1914 
1915 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1916 		zil_commit(zilog, 0);
1917 
1918 	ZFS_EXIT(zfsvfs);
1919 	return (0);
1920 }
1921 
1922 /*
1923  * Remove a directory subdir entry.  If the current working
1924  * directory is the same as the subdir to be removed, the
1925  * remove will fail.
1926  *
1927  *	IN:	dvp	- vnode of directory to remove from.
1928  *		name	- name of directory to be removed.
1929  *		cwd	- vnode of current working directory.
1930  *		cr	- credentials of caller.
1931  *		ct	- caller context
1932  *		flags	- case flags
1933  *
1934  *	RETURN:	0 if success
1935  *		error code if failure
1936  *
1937  * Timestamps:
1938  *	dvp - ctime|mtime updated
1939  */
1940 /*ARGSUSED*/
1941 static int
1942 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1943     caller_context_t *ct, int flags)
1944 {
1945 	znode_t		*dzp = VTOZ(dvp);
1946 	znode_t		*zp;
1947 	vnode_t		*vp;
1948 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1949 	zilog_t		*zilog;
1950 	zfs_dirlock_t	*dl;
1951 	dmu_tx_t	*tx;
1952 	int		error;
1953 	int		zflg = ZEXISTS;
1954 
1955 	ZFS_ENTER(zfsvfs);
1956 	ZFS_VERIFY_ZP(dzp);
1957 	zilog = zfsvfs->z_log;
1958 
1959 	if (flags & FIGNORECASE)
1960 		zflg |= ZCILOOK;
1961 top:
1962 	zp = NULL;
1963 
1964 	/*
1965 	 * Attempt to lock directory; fail if entry doesn't exist.
1966 	 */
1967 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1968 	    NULL, NULL)) {
1969 		ZFS_EXIT(zfsvfs);
1970 		return (error);
1971 	}
1972 
1973 	vp = ZTOV(zp);
1974 
1975 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1976 		goto out;
1977 	}
1978 
1979 	if (vp->v_type != VDIR) {
1980 		error = ENOTDIR;
1981 		goto out;
1982 	}
1983 
1984 	if (vp == cwd) {
1985 		error = EINVAL;
1986 		goto out;
1987 	}
1988 
1989 	vnevent_rmdir(vp, dvp, name, ct);
1990 
1991 	/*
1992 	 * Grab a lock on the directory to make sure that noone is
1993 	 * trying to add (or lookup) entries while we are removing it.
1994 	 */
1995 	rw_enter(&zp->z_name_lock, RW_WRITER);
1996 
1997 	/*
1998 	 * Grab a lock on the parent pointer to make sure we play well
1999 	 * with the treewalk and directory rename code.
2000 	 */
2001 	rw_enter(&zp->z_parent_lock, RW_WRITER);
2002 
2003 	tx = dmu_tx_create(zfsvfs->z_os);
2004 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2005 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2006 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2007 	zfs_sa_upgrade_txholds(tx, zp);
2008 	zfs_sa_upgrade_txholds(tx, dzp);
2009 	error = dmu_tx_assign(tx, TXG_NOWAIT);
2010 	if (error) {
2011 		rw_exit(&zp->z_parent_lock);
2012 		rw_exit(&zp->z_name_lock);
2013 		zfs_dirent_unlock(dl);
2014 		VN_RELE(vp);
2015 		if (error == ERESTART) {
2016 			dmu_tx_wait(tx);
2017 			dmu_tx_abort(tx);
2018 			goto top;
2019 		}
2020 		dmu_tx_abort(tx);
2021 		ZFS_EXIT(zfsvfs);
2022 		return (error);
2023 	}
2024 
2025 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2026 
2027 	if (error == 0) {
2028 		uint64_t txtype = TX_RMDIR;
2029 		if (flags & FIGNORECASE)
2030 			txtype |= TX_CI;
2031 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2032 	}
2033 
2034 	dmu_tx_commit(tx);
2035 
2036 	rw_exit(&zp->z_parent_lock);
2037 	rw_exit(&zp->z_name_lock);
2038 out:
2039 	zfs_dirent_unlock(dl);
2040 
2041 	VN_RELE(vp);
2042 
2043 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2044 		zil_commit(zilog, 0);
2045 
2046 	ZFS_EXIT(zfsvfs);
2047 	return (error);
2048 }
2049 
2050 /*
2051  * Read as many directory entries as will fit into the provided
2052  * buffer from the given directory cursor position (specified in
2053  * the uio structure.
2054  *
2055  *	IN:	vp	- vnode of directory to read.
2056  *		uio	- structure supplying read location, range info,
2057  *			  and return buffer.
2058  *		cr	- credentials of caller.
2059  *		ct	- caller context
2060  *		flags	- case flags
2061  *
2062  *	OUT:	uio	- updated offset and range, buffer filled.
2063  *		eofp	- set to true if end-of-file detected.
2064  *
2065  *	RETURN:	0 if success
2066  *		error code if failure
2067  *
2068  * Timestamps:
2069  *	vp - atime updated
2070  *
2071  * Note that the low 4 bits of the cookie returned by zap is always zero.
2072  * This allows us to use the low range for "special" directory entries:
2073  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2074  * we use the offset 2 for the '.zfs' directory.
2075  */
2076 /* ARGSUSED */
2077 static int
2078 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2079     caller_context_t *ct, int flags)
2080 {
2081 	znode_t		*zp = VTOZ(vp);
2082 	iovec_t		*iovp;
2083 	edirent_t	*eodp;
2084 	dirent64_t	*odp;
2085 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2086 	objset_t	*os;
2087 	caddr_t		outbuf;
2088 	size_t		bufsize;
2089 	zap_cursor_t	zc;
2090 	zap_attribute_t	zap;
2091 	uint_t		bytes_wanted;
2092 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2093 	uint64_t	parent;
2094 	int		local_eof;
2095 	int		outcount;
2096 	int		error;
2097 	uint8_t		prefetch;
2098 	boolean_t	check_sysattrs;
2099 
2100 	ZFS_ENTER(zfsvfs);
2101 	ZFS_VERIFY_ZP(zp);
2102 
2103 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2104 	    &parent, sizeof (parent))) != 0) {
2105 		ZFS_EXIT(zfsvfs);
2106 		return (error);
2107 	}
2108 
2109 	/*
2110 	 * If we are not given an eof variable,
2111 	 * use a local one.
2112 	 */
2113 	if (eofp == NULL)
2114 		eofp = &local_eof;
2115 
2116 	/*
2117 	 * Check for valid iov_len.
2118 	 */
2119 	if (uio->uio_iov->iov_len <= 0) {
2120 		ZFS_EXIT(zfsvfs);
2121 		return (EINVAL);
2122 	}
2123 
2124 	/*
2125 	 * Quit if directory has been removed (posix)
2126 	 */
2127 	if ((*eofp = zp->z_unlinked) != 0) {
2128 		ZFS_EXIT(zfsvfs);
2129 		return (0);
2130 	}
2131 
2132 	error = 0;
2133 	os = zfsvfs->z_os;
2134 	offset = uio->uio_loffset;
2135 	prefetch = zp->z_zn_prefetch;
2136 
2137 	/*
2138 	 * Initialize the iterator cursor.
2139 	 */
2140 	if (offset <= 3) {
2141 		/*
2142 		 * Start iteration from the beginning of the directory.
2143 		 */
2144 		zap_cursor_init(&zc, os, zp->z_id);
2145 	} else {
2146 		/*
2147 		 * The offset is a serialized cursor.
2148 		 */
2149 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2150 	}
2151 
2152 	/*
2153 	 * Get space to change directory entries into fs independent format.
2154 	 */
2155 	iovp = uio->uio_iov;
2156 	bytes_wanted = iovp->iov_len;
2157 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2158 		bufsize = bytes_wanted;
2159 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2160 		odp = (struct dirent64 *)outbuf;
2161 	} else {
2162 		bufsize = bytes_wanted;
2163 		odp = (struct dirent64 *)iovp->iov_base;
2164 	}
2165 	eodp = (struct edirent *)odp;
2166 
2167 	/*
2168 	 * If this VFS supports the system attribute view interface; and
2169 	 * we're looking at an extended attribute directory; and we care
2170 	 * about normalization conflicts on this vfs; then we must check
2171 	 * for normalization conflicts with the sysattr name space.
2172 	 */
2173 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2174 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2175 	    (flags & V_RDDIR_ENTFLAGS);
2176 
2177 	/*
2178 	 * Transform to file-system independent format
2179 	 */
2180 	outcount = 0;
2181 	while (outcount < bytes_wanted) {
2182 		ino64_t objnum;
2183 		ushort_t reclen;
2184 		off64_t *next;
2185 
2186 		/*
2187 		 * Special case `.', `..', and `.zfs'.
2188 		 */
2189 		if (offset == 0) {
2190 			(void) strcpy(zap.za_name, ".");
2191 			zap.za_normalization_conflict = 0;
2192 			objnum = zp->z_id;
2193 		} else if (offset == 1) {
2194 			(void) strcpy(zap.za_name, "..");
2195 			zap.za_normalization_conflict = 0;
2196 			objnum = parent;
2197 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2198 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2199 			zap.za_normalization_conflict = 0;
2200 			objnum = ZFSCTL_INO_ROOT;
2201 		} else {
2202 			/*
2203 			 * Grab next entry.
2204 			 */
2205 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2206 				if ((*eofp = (error == ENOENT)) != 0)
2207 					break;
2208 				else
2209 					goto update;
2210 			}
2211 
2212 			if (zap.za_integer_length != 8 ||
2213 			    zap.za_num_integers != 1) {
2214 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2215 				    "entry, obj = %lld, offset = %lld\n",
2216 				    (u_longlong_t)zp->z_id,
2217 				    (u_longlong_t)offset);
2218 				error = ENXIO;
2219 				goto update;
2220 			}
2221 
2222 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2223 			/*
2224 			 * MacOS X can extract the object type here such as:
2225 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2226 			 */
2227 
2228 			if (check_sysattrs && !zap.za_normalization_conflict) {
2229 				zap.za_normalization_conflict =
2230 				    xattr_sysattr_casechk(zap.za_name);
2231 			}
2232 		}
2233 
2234 		if (flags & V_RDDIR_ACCFILTER) {
2235 			/*
2236 			 * If we have no access at all, don't include
2237 			 * this entry in the returned information
2238 			 */
2239 			znode_t	*ezp;
2240 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2241 				goto skip_entry;
2242 			if (!zfs_has_access(ezp, cr)) {
2243 				VN_RELE(ZTOV(ezp));
2244 				goto skip_entry;
2245 			}
2246 			VN_RELE(ZTOV(ezp));
2247 		}
2248 
2249 		if (flags & V_RDDIR_ENTFLAGS)
2250 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2251 		else
2252 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2253 
2254 		/*
2255 		 * Will this entry fit in the buffer?
2256 		 */
2257 		if (outcount + reclen > bufsize) {
2258 			/*
2259 			 * Did we manage to fit anything in the buffer?
2260 			 */
2261 			if (!outcount) {
2262 				error = EINVAL;
2263 				goto update;
2264 			}
2265 			break;
2266 		}
2267 		if (flags & V_RDDIR_ENTFLAGS) {
2268 			/*
2269 			 * Add extended flag entry:
2270 			 */
2271 			eodp->ed_ino = objnum;
2272 			eodp->ed_reclen = reclen;
2273 			/* NOTE: ed_off is the offset for the *next* entry */
2274 			next = &(eodp->ed_off);
2275 			eodp->ed_eflags = zap.za_normalization_conflict ?
2276 			    ED_CASE_CONFLICT : 0;
2277 			(void) strncpy(eodp->ed_name, zap.za_name,
2278 			    EDIRENT_NAMELEN(reclen));
2279 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2280 		} else {
2281 			/*
2282 			 * Add normal entry:
2283 			 */
2284 			odp->d_ino = objnum;
2285 			odp->d_reclen = reclen;
2286 			/* NOTE: d_off is the offset for the *next* entry */
2287 			next = &(odp->d_off);
2288 			(void) strncpy(odp->d_name, zap.za_name,
2289 			    DIRENT64_NAMELEN(reclen));
2290 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2291 		}
2292 		outcount += reclen;
2293 
2294 		ASSERT(outcount <= bufsize);
2295 
2296 		/* Prefetch znode */
2297 		if (prefetch)
2298 			dmu_prefetch(os, objnum, 0, 0);
2299 
2300 	skip_entry:
2301 		/*
2302 		 * Move to the next entry, fill in the previous offset.
2303 		 */
2304 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2305 			zap_cursor_advance(&zc);
2306 			offset = zap_cursor_serialize(&zc);
2307 		} else {
2308 			offset += 1;
2309 		}
2310 		*next = offset;
2311 	}
2312 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2313 
2314 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2315 		iovp->iov_base += outcount;
2316 		iovp->iov_len -= outcount;
2317 		uio->uio_resid -= outcount;
2318 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2319 		/*
2320 		 * Reset the pointer.
2321 		 */
2322 		offset = uio->uio_loffset;
2323 	}
2324 
2325 update:
2326 	zap_cursor_fini(&zc);
2327 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2328 		kmem_free(outbuf, bufsize);
2329 
2330 	if (error == ENOENT)
2331 		error = 0;
2332 
2333 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2334 
2335 	uio->uio_loffset = offset;
2336 	ZFS_EXIT(zfsvfs);
2337 	return (error);
2338 }
2339 
2340 ulong_t zfs_fsync_sync_cnt = 4;
2341 
2342 static int
2343 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2344 {
2345 	znode_t	*zp = VTOZ(vp);
2346 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2347 
2348 	/*
2349 	 * Regardless of whether this is required for standards conformance,
2350 	 * this is the logical behavior when fsync() is called on a file with
2351 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2352 	 * going to be pushed out as part of the zil_commit().
2353 	 */
2354 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2355 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2356 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2357 
2358 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2359 
2360 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2361 		ZFS_ENTER(zfsvfs);
2362 		ZFS_VERIFY_ZP(zp);
2363 		zil_commit(zfsvfs->z_log, zp->z_id);
2364 		ZFS_EXIT(zfsvfs);
2365 	}
2366 	return (0);
2367 }
2368 
2369 
2370 /*
2371  * Get the requested file attributes and place them in the provided
2372  * vattr structure.
2373  *
2374  *	IN:	vp	- vnode of file.
2375  *		vap	- va_mask identifies requested attributes.
2376  *			  If AT_XVATTR set, then optional attrs are requested
2377  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2378  *		cr	- credentials of caller.
2379  *		ct	- caller context
2380  *
2381  *	OUT:	vap	- attribute values.
2382  *
2383  *	RETURN:	0 (always succeeds)
2384  */
2385 /* ARGSUSED */
2386 static int
2387 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2388     caller_context_t *ct)
2389 {
2390 	znode_t *zp = VTOZ(vp);
2391 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2392 	int	error = 0;
2393 	uint64_t links;
2394 	uint64_t mtime[2], ctime[2];
2395 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2396 	xoptattr_t *xoap = NULL;
2397 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2398 	sa_bulk_attr_t bulk[2];
2399 	int count = 0;
2400 
2401 	ZFS_ENTER(zfsvfs);
2402 	ZFS_VERIFY_ZP(zp);
2403 
2404 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2405 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2406 
2407 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2408 		ZFS_EXIT(zfsvfs);
2409 		return (error);
2410 	}
2411 
2412 	/*
2413 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2414 	 * Also, if we are the owner don't bother, since owner should
2415 	 * always be allowed to read basic attributes of file.
2416 	 */
2417 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && (zp->z_uid != crgetuid(cr))) {
2418 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2419 		    skipaclchk, cr)) {
2420 			ZFS_EXIT(zfsvfs);
2421 			return (error);
2422 		}
2423 	}
2424 
2425 	/*
2426 	 * Return all attributes.  It's cheaper to provide the answer
2427 	 * than to determine whether we were asked the question.
2428 	 */
2429 
2430 	mutex_enter(&zp->z_lock);
2431 	vap->va_type = vp->v_type;
2432 	vap->va_mode = zp->z_mode & MODEMASK;
2433 	vap->va_uid = zp->z_uid;
2434 	vap->va_gid = zp->z_gid;
2435 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2436 	vap->va_nodeid = zp->z_id;
2437 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2438 		links = zp->z_links + 1;
2439 	else
2440 		links = zp->z_links;
2441 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2442 	vap->va_size = zp->z_size;
2443 	vap->va_rdev = vp->v_rdev;
2444 	vap->va_seq = zp->z_seq;
2445 
2446 	/*
2447 	 * Add in any requested optional attributes and the create time.
2448 	 * Also set the corresponding bits in the returned attribute bitmap.
2449 	 */
2450 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2451 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2452 			xoap->xoa_archive =
2453 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2454 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2455 		}
2456 
2457 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2458 			xoap->xoa_readonly =
2459 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2460 			XVA_SET_RTN(xvap, XAT_READONLY);
2461 		}
2462 
2463 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2464 			xoap->xoa_system =
2465 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2466 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2467 		}
2468 
2469 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2470 			xoap->xoa_hidden =
2471 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2472 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2473 		}
2474 
2475 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2476 			xoap->xoa_nounlink =
2477 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2478 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2479 		}
2480 
2481 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2482 			xoap->xoa_immutable =
2483 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2484 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2485 		}
2486 
2487 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2488 			xoap->xoa_appendonly =
2489 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2490 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2491 		}
2492 
2493 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2494 			xoap->xoa_nodump =
2495 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2496 			XVA_SET_RTN(xvap, XAT_NODUMP);
2497 		}
2498 
2499 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2500 			xoap->xoa_opaque =
2501 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2502 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2503 		}
2504 
2505 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2506 			xoap->xoa_av_quarantined =
2507 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2508 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2509 		}
2510 
2511 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2512 			xoap->xoa_av_modified =
2513 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2514 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2515 		}
2516 
2517 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2518 		    vp->v_type == VREG) {
2519 			zfs_sa_get_scanstamp(zp, xvap);
2520 		}
2521 
2522 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2523 			uint64_t times[2];
2524 
2525 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2526 			    times, sizeof (times));
2527 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2528 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2529 		}
2530 
2531 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2532 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2533 			XVA_SET_RTN(xvap, XAT_REPARSE);
2534 		}
2535 	}
2536 
2537 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2538 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2539 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2540 
2541 	mutex_exit(&zp->z_lock);
2542 
2543 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2544 
2545 	if (zp->z_blksz == 0) {
2546 		/*
2547 		 * Block size hasn't been set; suggest maximal I/O transfers.
2548 		 */
2549 		vap->va_blksize = zfsvfs->z_max_blksz;
2550 	}
2551 
2552 	ZFS_EXIT(zfsvfs);
2553 	return (0);
2554 }
2555 
2556 /*
2557  * Set the file attributes to the values contained in the
2558  * vattr structure.
2559  *
2560  *	IN:	vp	- vnode of file to be modified.
2561  *		vap	- new attribute values.
2562  *			  If AT_XVATTR set, then optional attrs are being set
2563  *		flags	- ATTR_UTIME set if non-default time values provided.
2564  *			- ATTR_NOACLCHECK (CIFS context only).
2565  *		cr	- credentials of caller.
2566  *		ct	- caller context
2567  *
2568  *	RETURN:	0 if success
2569  *		error code if failure
2570  *
2571  * Timestamps:
2572  *	vp - ctime updated, mtime updated if size changed.
2573  */
2574 /* ARGSUSED */
2575 static int
2576 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2577 	caller_context_t *ct)
2578 {
2579 	znode_t		*zp = VTOZ(vp);
2580 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2581 	zilog_t		*zilog;
2582 	dmu_tx_t	*tx;
2583 	vattr_t		oldva;
2584 	xvattr_t	tmpxvattr;
2585 	uint_t		mask = vap->va_mask;
2586 	uint_t		saved_mask;
2587 	int		trim_mask = 0;
2588 	uint64_t	new_mode;
2589 	uint64_t	new_uid, new_gid;
2590 	uint64_t	xattr_obj = 0;
2591 	uint64_t	mtime[2], ctime[2];
2592 	znode_t		*attrzp;
2593 	int		need_policy = FALSE;
2594 	int		err, err2;
2595 	zfs_fuid_info_t *fuidp = NULL;
2596 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2597 	xoptattr_t	*xoap;
2598 	zfs_acl_t	*aclp = NULL;
2599 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2600 	boolean_t	fuid_dirtied = B_FALSE;
2601 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2602 	int		count = 0, xattr_count = 0;
2603 
2604 	if (mask == 0)
2605 		return (0);
2606 
2607 	if (mask & AT_NOSET)
2608 		return (EINVAL);
2609 
2610 	ZFS_ENTER(zfsvfs);
2611 	ZFS_VERIFY_ZP(zp);
2612 
2613 	zilog = zfsvfs->z_log;
2614 
2615 	/*
2616 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2617 	 * that file system is at proper version level
2618 	 */
2619 
2620 	if (zfsvfs->z_use_fuids == B_FALSE &&
2621 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2622 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2623 	    (mask & AT_XVATTR))) {
2624 		ZFS_EXIT(zfsvfs);
2625 		return (EINVAL);
2626 	}
2627 
2628 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2629 		ZFS_EXIT(zfsvfs);
2630 		return (EISDIR);
2631 	}
2632 
2633 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2634 		ZFS_EXIT(zfsvfs);
2635 		return (EINVAL);
2636 	}
2637 
2638 	/*
2639 	 * If this is an xvattr_t, then get a pointer to the structure of
2640 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2641 	 */
2642 	xoap = xva_getxoptattr(xvap);
2643 
2644 	xva_init(&tmpxvattr);
2645 
2646 	/*
2647 	 * Immutable files can only alter immutable bit and atime
2648 	 */
2649 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2650 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2651 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2652 		ZFS_EXIT(zfsvfs);
2653 		return (EPERM);
2654 	}
2655 
2656 	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2657 		ZFS_EXIT(zfsvfs);
2658 		return (EPERM);
2659 	}
2660 
2661 	/*
2662 	 * Verify timestamps doesn't overflow 32 bits.
2663 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2664 	 * handle times greater than 2039.  This check should be removed
2665 	 * once large timestamps are fully supported.
2666 	 */
2667 	if (mask & (AT_ATIME | AT_MTIME)) {
2668 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2669 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2670 			ZFS_EXIT(zfsvfs);
2671 			return (EOVERFLOW);
2672 		}
2673 	}
2674 
2675 top:
2676 	attrzp = NULL;
2677 
2678 	/* Can this be moved to before the top label? */
2679 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2680 		ZFS_EXIT(zfsvfs);
2681 		return (EROFS);
2682 	}
2683 
2684 	/*
2685 	 * First validate permissions
2686 	 */
2687 
2688 	if (mask & AT_SIZE) {
2689 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2690 		if (err) {
2691 			ZFS_EXIT(zfsvfs);
2692 			return (err);
2693 		}
2694 		/*
2695 		 * XXX - Note, we are not providing any open
2696 		 * mode flags here (like FNDELAY), so we may
2697 		 * block if there are locks present... this
2698 		 * should be addressed in openat().
2699 		 */
2700 		/* XXX - would it be OK to generate a log record here? */
2701 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2702 		if (err) {
2703 			ZFS_EXIT(zfsvfs);
2704 			return (err);
2705 		}
2706 	}
2707 
2708 	if (mask & (AT_ATIME|AT_MTIME) ||
2709 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2710 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2711 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2712 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2713 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2714 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2715 		    skipaclchk, cr);
2716 	}
2717 
2718 	if (mask & (AT_UID|AT_GID)) {
2719 		int	idmask = (mask & (AT_UID|AT_GID));
2720 		int	take_owner;
2721 		int	take_group;
2722 
2723 		/*
2724 		 * NOTE: even if a new mode is being set,
2725 		 * we may clear S_ISUID/S_ISGID bits.
2726 		 */
2727 
2728 		if (!(mask & AT_MODE))
2729 			vap->va_mode = zp->z_mode;
2730 
2731 		/*
2732 		 * Take ownership or chgrp to group we are a member of
2733 		 */
2734 
2735 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2736 		take_group = (mask & AT_GID) &&
2737 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2738 
2739 		/*
2740 		 * If both AT_UID and AT_GID are set then take_owner and
2741 		 * take_group must both be set in order to allow taking
2742 		 * ownership.
2743 		 *
2744 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2745 		 *
2746 		 */
2747 
2748 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2749 		    ((idmask == AT_UID) && take_owner) ||
2750 		    ((idmask == AT_GID) && take_group)) {
2751 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2752 			    skipaclchk, cr) == 0) {
2753 				/*
2754 				 * Remove setuid/setgid for non-privileged users
2755 				 */
2756 				secpolicy_setid_clear(vap, cr);
2757 				trim_mask = (mask & (AT_UID|AT_GID));
2758 			} else {
2759 				need_policy =  TRUE;
2760 			}
2761 		} else {
2762 			need_policy =  TRUE;
2763 		}
2764 	}
2765 
2766 	mutex_enter(&zp->z_lock);
2767 	oldva.va_mode = zp->z_mode;
2768 	oldva.va_uid = zp->z_uid;
2769 	oldva.va_gid = zp->z_gid;
2770 	if (mask & AT_XVATTR) {
2771 		/*
2772 		 * Update xvattr mask to include only those attributes
2773 		 * that are actually changing.
2774 		 *
2775 		 * the bits will be restored prior to actually setting
2776 		 * the attributes so the caller thinks they were set.
2777 		 */
2778 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2779 			if (xoap->xoa_appendonly !=
2780 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2781 				need_policy = TRUE;
2782 			} else {
2783 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2784 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2785 			}
2786 		}
2787 
2788 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2789 			if (xoap->xoa_nounlink !=
2790 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2791 				need_policy = TRUE;
2792 			} else {
2793 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2794 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2795 			}
2796 		}
2797 
2798 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2799 			if (xoap->xoa_immutable !=
2800 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2801 				need_policy = TRUE;
2802 			} else {
2803 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2804 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2805 			}
2806 		}
2807 
2808 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2809 			if (xoap->xoa_nodump !=
2810 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2811 				need_policy = TRUE;
2812 			} else {
2813 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2814 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2815 			}
2816 		}
2817 
2818 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2819 			if (xoap->xoa_av_modified !=
2820 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2821 				need_policy = TRUE;
2822 			} else {
2823 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2824 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2825 			}
2826 		}
2827 
2828 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2829 			if ((vp->v_type != VREG &&
2830 			    xoap->xoa_av_quarantined) ||
2831 			    xoap->xoa_av_quarantined !=
2832 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2833 				need_policy = TRUE;
2834 			} else {
2835 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2836 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2837 			}
2838 		}
2839 
2840 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2841 			mutex_exit(&zp->z_lock);
2842 			ZFS_EXIT(zfsvfs);
2843 			return (EPERM);
2844 		}
2845 
2846 		if (need_policy == FALSE &&
2847 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2848 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2849 			need_policy = TRUE;
2850 		}
2851 	}
2852 
2853 	mutex_exit(&zp->z_lock);
2854 
2855 	if (mask & AT_MODE) {
2856 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2857 			err = secpolicy_setid_setsticky_clear(vp, vap,
2858 			    &oldva, cr);
2859 			if (err) {
2860 				ZFS_EXIT(zfsvfs);
2861 				return (err);
2862 			}
2863 			trim_mask |= AT_MODE;
2864 		} else {
2865 			need_policy = TRUE;
2866 		}
2867 	}
2868 
2869 	if (need_policy) {
2870 		/*
2871 		 * If trim_mask is set then take ownership
2872 		 * has been granted or write_acl is present and user
2873 		 * has the ability to modify mode.  In that case remove
2874 		 * UID|GID and or MODE from mask so that
2875 		 * secpolicy_vnode_setattr() doesn't revoke it.
2876 		 */
2877 
2878 		if (trim_mask) {
2879 			saved_mask = vap->va_mask;
2880 			vap->va_mask &= ~trim_mask;
2881 		}
2882 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2883 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2884 		if (err) {
2885 			ZFS_EXIT(zfsvfs);
2886 			return (err);
2887 		}
2888 
2889 		if (trim_mask)
2890 			vap->va_mask |= saved_mask;
2891 	}
2892 
2893 	/*
2894 	 * secpolicy_vnode_setattr, or take ownership may have
2895 	 * changed va_mask
2896 	 */
2897 	mask = vap->va_mask;
2898 
2899 	if ((mask & (AT_UID | AT_GID))) {
2900 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj,
2901 		    sizeof (xattr_obj));
2902 
2903 		if (xattr_obj) {
2904 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2905 			if (err)
2906 				goto out2;
2907 		}
2908 		if (mask & AT_UID) {
2909 			new_uid = zfs_fuid_create(zfsvfs,
2910 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2911 			if (vap->va_uid != zp->z_uid &&
2912 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2913 				err = EDQUOT;
2914 				goto out2;
2915 			}
2916 		}
2917 
2918 		if (mask & AT_GID) {
2919 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2920 			    cr, ZFS_GROUP, &fuidp);
2921 			if (new_gid != zp->z_gid &&
2922 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
2923 				err = EDQUOT;
2924 				goto out2;
2925 			}
2926 		}
2927 	}
2928 	tx = dmu_tx_create(zfsvfs->z_os);
2929 
2930 	if (mask & AT_MODE) {
2931 		uint64_t pmode = zp->z_mode;
2932 		uint64_t acl_obj;
2933 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2934 
2935 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
2936 			goto out;
2937 
2938 		mutex_enter(&zp->z_lock);
2939 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2940 			/*
2941 			 * Are we upgrading ACL from old V0 format
2942 			 * to V1 format?
2943 			 */
2944 			if (zfsvfs->z_version <= ZPL_VERSION_FUID &&
2945 			    zfs_znode_acl_version(zp) ==
2946 			    ZFS_ACL_VERSION_INITIAL) {
2947 				dmu_tx_hold_free(tx, acl_obj, 0,
2948 				    DMU_OBJECT_END);
2949 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2950 				    0, aclp->z_acl_bytes);
2951 			} else {
2952 				dmu_tx_hold_write(tx, acl_obj, 0,
2953 				    aclp->z_acl_bytes);
2954 			}
2955 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2956 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2957 			    0, aclp->z_acl_bytes);
2958 		}
2959 		mutex_exit(&zp->z_lock);
2960 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2961 	} else {
2962 		if ((mask & AT_XVATTR) &&
2963 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2964 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2965 		else
2966 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2967 	}
2968 
2969 	if (attrzp) {
2970 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2971 	}
2972 
2973 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2974 	if (fuid_dirtied)
2975 		zfs_fuid_txhold(zfsvfs, tx);
2976 
2977 	zfs_sa_upgrade_txholds(tx, zp);
2978 
2979 	err = dmu_tx_assign(tx, TXG_NOWAIT);
2980 	if (err) {
2981 		if (err == ERESTART)
2982 			dmu_tx_wait(tx);
2983 		goto out;
2984 	}
2985 
2986 	count = 0;
2987 	/*
2988 	 * Set each attribute requested.
2989 	 * We group settings according to the locks they need to acquire.
2990 	 *
2991 	 * Note: you cannot set ctime directly, although it will be
2992 	 * updated as a side-effect of calling this function.
2993 	 */
2994 
2995 
2996 	if (mask & (AT_UID|AT_GID|AT_MODE))
2997 		mutex_enter(&zp->z_acl_lock);
2998 	mutex_enter(&zp->z_lock);
2999 
3000 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3001 	    &zp->z_pflags, sizeof (zp->z_pflags));
3002 
3003 	if (attrzp) {
3004 		if (mask & (AT_UID|AT_GID|AT_MODE))
3005 			mutex_enter(&attrzp->z_acl_lock);
3006 		mutex_enter(&attrzp->z_lock);
3007 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3008 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3009 		    sizeof (attrzp->z_pflags));
3010 	}
3011 
3012 	if (mask & (AT_UID|AT_GID)) {
3013 
3014 		if (mask & AT_UID) {
3015 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3016 			    &new_uid, sizeof (new_uid));
3017 			zp->z_uid = zfs_fuid_map_id(zfsvfs, new_uid,
3018 			    cr, ZFS_OWNER);
3019 			if (attrzp) {
3020 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3021 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3022 				    sizeof (new_uid));
3023 				attrzp->z_uid = zp->z_uid;
3024 			}
3025 		}
3026 
3027 		if (mask & AT_GID) {
3028 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3029 			    NULL, &new_gid, sizeof (new_gid));
3030 			zp->z_gid = zfs_fuid_map_id(zfsvfs, new_gid, cr,
3031 			    ZFS_GROUP);
3032 			if (attrzp) {
3033 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3034 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3035 				    sizeof (new_gid));
3036 				attrzp->z_gid = zp->z_gid;
3037 			}
3038 		}
3039 		if (!(mask & AT_MODE)) {
3040 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3041 			    NULL, &new_mode, sizeof (new_mode));
3042 			new_mode = zp->z_mode;
3043 		}
3044 		err = zfs_acl_chown_setattr(zp);
3045 		ASSERT(err == 0);
3046 		if (attrzp) {
3047 			err = zfs_acl_chown_setattr(attrzp);
3048 			ASSERT(err == 0);
3049 		}
3050 	}
3051 
3052 	if (mask & AT_MODE) {
3053 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3054 		    &new_mode, sizeof (new_mode));
3055 		zp->z_mode = new_mode;
3056 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3057 		err = zfs_aclset_common(zp, aclp, cr, tx);
3058 		ASSERT3U(err, ==, 0);
3059 		zp->z_acl_cached = aclp;
3060 		aclp = NULL;
3061 	}
3062 
3063 
3064 	if (mask & AT_ATIME) {
3065 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3066 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3067 		    &zp->z_atime, sizeof (zp->z_atime));
3068 	}
3069 
3070 	if (mask & AT_MTIME) {
3071 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3072 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3073 		    mtime, sizeof (mtime));
3074 	}
3075 
3076 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3077 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3078 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3079 		    NULL, mtime, sizeof (mtime));
3080 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3081 		    &ctime, sizeof (ctime));
3082 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3083 		    B_TRUE);
3084 	} else if (mask != 0) {
3085 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3086 		    &ctime, sizeof (ctime));
3087 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3088 		    B_TRUE);
3089 		if (attrzp) {
3090 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3091 			    SA_ZPL_CTIME(zfsvfs), NULL,
3092 			    &ctime, sizeof (ctime));
3093 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3094 			    mtime, ctime, B_TRUE);
3095 		}
3096 	}
3097 	/*
3098 	 * Do this after setting timestamps to prevent timestamp
3099 	 * update from toggling bit
3100 	 */
3101 
3102 	if (xoap && (mask & AT_XVATTR)) {
3103 
3104 		/*
3105 		 * restore trimmed off masks
3106 		 * so that return masks can be set for caller.
3107 		 */
3108 
3109 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3110 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3111 		}
3112 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3113 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3114 		}
3115 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3116 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3117 		}
3118 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3119 			XVA_SET_REQ(xvap, XAT_NODUMP);
3120 		}
3121 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3122 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3123 		}
3124 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3125 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3126 		}
3127 
3128 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3129 			ASSERT(vp->v_type == VREG);
3130 
3131 		zfs_xvattr_set(zp, xvap, tx);
3132 	}
3133 
3134 	if (fuid_dirtied)
3135 		zfs_fuid_sync(zfsvfs, tx);
3136 
3137 	if (mask != 0)
3138 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3139 
3140 	mutex_exit(&zp->z_lock);
3141 	if (mask & (AT_UID|AT_GID|AT_MODE))
3142 		mutex_exit(&zp->z_acl_lock);
3143 
3144 	if (attrzp) {
3145 		if (mask & (AT_UID|AT_GID|AT_MODE))
3146 			mutex_exit(&attrzp->z_acl_lock);
3147 		mutex_exit(&attrzp->z_lock);
3148 	}
3149 out:
3150 	if (err == 0 && attrzp) {
3151 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3152 		    xattr_count, tx);
3153 		ASSERT(err2 == 0);
3154 	}
3155 
3156 	if (attrzp)
3157 		VN_RELE(ZTOV(attrzp));
3158 	if (aclp)
3159 		zfs_acl_free(aclp);
3160 
3161 	if (fuidp) {
3162 		zfs_fuid_info_free(fuidp);
3163 		fuidp = NULL;
3164 	}
3165 
3166 	if (err) {
3167 		dmu_tx_abort(tx);
3168 		if (err == ERESTART)
3169 			goto top;
3170 	} else {
3171 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3172 		dmu_tx_commit(tx);
3173 	}
3174 
3175 
3176 out2:
3177 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3178 		zil_commit(zilog, 0);
3179 
3180 	ZFS_EXIT(zfsvfs);
3181 	return (err);
3182 }
3183 
3184 typedef struct zfs_zlock {
3185 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3186 	znode_t		*zl_znode;	/* znode we held */
3187 	struct zfs_zlock *zl_next;	/* next in list */
3188 } zfs_zlock_t;
3189 
3190 /*
3191  * Drop locks and release vnodes that were held by zfs_rename_lock().
3192  */
3193 static void
3194 zfs_rename_unlock(zfs_zlock_t **zlpp)
3195 {
3196 	zfs_zlock_t *zl;
3197 
3198 	while ((zl = *zlpp) != NULL) {
3199 		if (zl->zl_znode != NULL)
3200 			VN_RELE(ZTOV(zl->zl_znode));
3201 		rw_exit(zl->zl_rwlock);
3202 		*zlpp = zl->zl_next;
3203 		kmem_free(zl, sizeof (*zl));
3204 	}
3205 }
3206 
3207 /*
3208  * Search back through the directory tree, using the ".." entries.
3209  * Lock each directory in the chain to prevent concurrent renames.
3210  * Fail any attempt to move a directory into one of its own descendants.
3211  * XXX - z_parent_lock can overlap with map or grow locks
3212  */
3213 static int
3214 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3215 {
3216 	zfs_zlock_t	*zl;
3217 	znode_t		*zp = tdzp;
3218 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3219 	uint64_t	oidp = zp->z_id;
3220 	krwlock_t	*rwlp = &szp->z_parent_lock;
3221 	krw_t		rw = RW_WRITER;
3222 
3223 	/*
3224 	 * First pass write-locks szp and compares to zp->z_id.
3225 	 * Later passes read-lock zp and compare to zp->z_parent.
3226 	 */
3227 	do {
3228 		if (!rw_tryenter(rwlp, rw)) {
3229 			/*
3230 			 * Another thread is renaming in this path.
3231 			 * Note that if we are a WRITER, we don't have any
3232 			 * parent_locks held yet.
3233 			 */
3234 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3235 				/*
3236 				 * Drop our locks and restart
3237 				 */
3238 				zfs_rename_unlock(&zl);
3239 				*zlpp = NULL;
3240 				zp = tdzp;
3241 				oidp = zp->z_id;
3242 				rwlp = &szp->z_parent_lock;
3243 				rw = RW_WRITER;
3244 				continue;
3245 			} else {
3246 				/*
3247 				 * Wait for other thread to drop its locks
3248 				 */
3249 				rw_enter(rwlp, rw);
3250 			}
3251 		}
3252 
3253 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3254 		zl->zl_rwlock = rwlp;
3255 		zl->zl_znode = NULL;
3256 		zl->zl_next = *zlpp;
3257 		*zlpp = zl;
3258 
3259 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3260 			return (EINVAL);
3261 
3262 		if (oidp == rootid)		/* We've hit the top */
3263 			return (0);
3264 
3265 		if (rw == RW_READER) {		/* i.e. not the first pass */
3266 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3267 			if (error)
3268 				return (error);
3269 			zl->zl_znode = zp;
3270 		}
3271 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3272 		    &oidp, sizeof (oidp));
3273 		rwlp = &zp->z_parent_lock;
3274 		rw = RW_READER;
3275 
3276 	} while (zp->z_id != sdzp->z_id);
3277 
3278 	return (0);
3279 }
3280 
3281 /*
3282  * Move an entry from the provided source directory to the target
3283  * directory.  Change the entry name as indicated.
3284  *
3285  *	IN:	sdvp	- Source directory containing the "old entry".
3286  *		snm	- Old entry name.
3287  *		tdvp	- Target directory to contain the "new entry".
3288  *		tnm	- New entry name.
3289  *		cr	- credentials of caller.
3290  *		ct	- caller context
3291  *		flags	- case flags
3292  *
3293  *	RETURN:	0 if success
3294  *		error code if failure
3295  *
3296  * Timestamps:
3297  *	sdvp,tdvp - ctime|mtime updated
3298  */
3299 /*ARGSUSED*/
3300 static int
3301 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3302     caller_context_t *ct, int flags)
3303 {
3304 	znode_t		*tdzp, *szp, *tzp;
3305 	znode_t		*sdzp = VTOZ(sdvp);
3306 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3307 	zilog_t		*zilog;
3308 	vnode_t		*realvp;
3309 	zfs_dirlock_t	*sdl, *tdl;
3310 	dmu_tx_t	*tx;
3311 	zfs_zlock_t	*zl;
3312 	int		cmp, serr, terr;
3313 	int		error = 0;
3314 	int		zflg = 0;
3315 
3316 	ZFS_ENTER(zfsvfs);
3317 	ZFS_VERIFY_ZP(sdzp);
3318 	zilog = zfsvfs->z_log;
3319 
3320 	/*
3321 	 * Make sure we have the real vp for the target directory.
3322 	 */
3323 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3324 		tdvp = realvp;
3325 
3326 	if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) {
3327 		ZFS_EXIT(zfsvfs);
3328 		return (EXDEV);
3329 	}
3330 
3331 	tdzp = VTOZ(tdvp);
3332 	ZFS_VERIFY_ZP(tdzp);
3333 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3334 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3335 		ZFS_EXIT(zfsvfs);
3336 		return (EILSEQ);
3337 	}
3338 
3339 	if (flags & FIGNORECASE)
3340 		zflg |= ZCILOOK;
3341 
3342 top:
3343 	szp = NULL;
3344 	tzp = NULL;
3345 	zl = NULL;
3346 
3347 	/*
3348 	 * This is to prevent the creation of links into attribute space
3349 	 * by renaming a linked file into/outof an attribute directory.
3350 	 * See the comment in zfs_link() for why this is considered bad.
3351 	 */
3352 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3353 		ZFS_EXIT(zfsvfs);
3354 		return (EINVAL);
3355 	}
3356 
3357 	/*
3358 	 * Lock source and target directory entries.  To prevent deadlock,
3359 	 * a lock ordering must be defined.  We lock the directory with
3360 	 * the smallest object id first, or if it's a tie, the one with
3361 	 * the lexically first name.
3362 	 */
3363 	if (sdzp->z_id < tdzp->z_id) {
3364 		cmp = -1;
3365 	} else if (sdzp->z_id > tdzp->z_id) {
3366 		cmp = 1;
3367 	} else {
3368 		/*
3369 		 * First compare the two name arguments without
3370 		 * considering any case folding.
3371 		 */
3372 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3373 
3374 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3375 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3376 		if (cmp == 0) {
3377 			/*
3378 			 * POSIX: "If the old argument and the new argument
3379 			 * both refer to links to the same existing file,
3380 			 * the rename() function shall return successfully
3381 			 * and perform no other action."
3382 			 */
3383 			ZFS_EXIT(zfsvfs);
3384 			return (0);
3385 		}
3386 		/*
3387 		 * If the file system is case-folding, then we may
3388 		 * have some more checking to do.  A case-folding file
3389 		 * system is either supporting mixed case sensitivity
3390 		 * access or is completely case-insensitive.  Note
3391 		 * that the file system is always case preserving.
3392 		 *
3393 		 * In mixed sensitivity mode case sensitive behavior
3394 		 * is the default.  FIGNORECASE must be used to
3395 		 * explicitly request case insensitive behavior.
3396 		 *
3397 		 * If the source and target names provided differ only
3398 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3399 		 * we will treat this as a special case in the
3400 		 * case-insensitive mode: as long as the source name
3401 		 * is an exact match, we will allow this to proceed as
3402 		 * a name-change request.
3403 		 */
3404 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3405 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3406 		    flags & FIGNORECASE)) &&
3407 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3408 		    &error) == 0) {
3409 			/*
3410 			 * case preserving rename request, require exact
3411 			 * name matches
3412 			 */
3413 			zflg |= ZCIEXACT;
3414 			zflg &= ~ZCILOOK;
3415 		}
3416 	}
3417 
3418 	/*
3419 	 * If the source and destination directories are the same, we should
3420 	 * grab the z_name_lock of that directory only once.
3421 	 */
3422 	if (sdzp == tdzp) {
3423 		zflg |= ZHAVELOCK;
3424 		rw_enter(&sdzp->z_name_lock, RW_READER);
3425 	}
3426 
3427 	if (cmp < 0) {
3428 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3429 		    ZEXISTS | zflg, NULL, NULL);
3430 		terr = zfs_dirent_lock(&tdl,
3431 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3432 	} else {
3433 		terr = zfs_dirent_lock(&tdl,
3434 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3435 		serr = zfs_dirent_lock(&sdl,
3436 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3437 		    NULL, NULL);
3438 	}
3439 
3440 	if (serr) {
3441 		/*
3442 		 * Source entry invalid or not there.
3443 		 */
3444 		if (!terr) {
3445 			zfs_dirent_unlock(tdl);
3446 			if (tzp)
3447 				VN_RELE(ZTOV(tzp));
3448 		}
3449 
3450 		if (sdzp == tdzp)
3451 			rw_exit(&sdzp->z_name_lock);
3452 
3453 		if (strcmp(snm, "..") == 0)
3454 			serr = EINVAL;
3455 		ZFS_EXIT(zfsvfs);
3456 		return (serr);
3457 	}
3458 	if (terr) {
3459 		zfs_dirent_unlock(sdl);
3460 		VN_RELE(ZTOV(szp));
3461 
3462 		if (sdzp == tdzp)
3463 			rw_exit(&sdzp->z_name_lock);
3464 
3465 		if (strcmp(tnm, "..") == 0)
3466 			terr = EINVAL;
3467 		ZFS_EXIT(zfsvfs);
3468 		return (terr);
3469 	}
3470 
3471 	/*
3472 	 * Must have write access at the source to remove the old entry
3473 	 * and write access at the target to create the new entry.
3474 	 * Note that if target and source are the same, this can be
3475 	 * done in a single check.
3476 	 */
3477 
3478 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3479 		goto out;
3480 
3481 	if (ZTOV(szp)->v_type == VDIR) {
3482 		/*
3483 		 * Check to make sure rename is valid.
3484 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3485 		 */
3486 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3487 			goto out;
3488 	}
3489 
3490 	/*
3491 	 * Does target exist?
3492 	 */
3493 	if (tzp) {
3494 		/*
3495 		 * Source and target must be the same type.
3496 		 */
3497 		if (ZTOV(szp)->v_type == VDIR) {
3498 			if (ZTOV(tzp)->v_type != VDIR) {
3499 				error = ENOTDIR;
3500 				goto out;
3501 			}
3502 		} else {
3503 			if (ZTOV(tzp)->v_type == VDIR) {
3504 				error = EISDIR;
3505 				goto out;
3506 			}
3507 		}
3508 		/*
3509 		 * POSIX dictates that when the source and target
3510 		 * entries refer to the same file object, rename
3511 		 * must do nothing and exit without error.
3512 		 */
3513 		if (szp->z_id == tzp->z_id) {
3514 			error = 0;
3515 			goto out;
3516 		}
3517 	}
3518 
3519 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3520 	if (tzp)
3521 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3522 
3523 	/*
3524 	 * notify the target directory if it is not the same
3525 	 * as source directory.
3526 	 */
3527 	if (tdvp != sdvp) {
3528 		vnevent_rename_dest_dir(tdvp, ct);
3529 	}
3530 
3531 	tx = dmu_tx_create(zfsvfs->z_os);
3532 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3533 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3534 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3535 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3536 	if (sdzp != tdzp) {
3537 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3538 		zfs_sa_upgrade_txholds(tx, tdzp);
3539 	}
3540 	if (tzp) {
3541 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3542 		zfs_sa_upgrade_txholds(tx, tzp);
3543 	}
3544 
3545 	zfs_sa_upgrade_txholds(tx, szp);
3546 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3547 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3548 	if (error) {
3549 		if (zl != NULL)
3550 			zfs_rename_unlock(&zl);
3551 		zfs_dirent_unlock(sdl);
3552 		zfs_dirent_unlock(tdl);
3553 
3554 		if (sdzp == tdzp)
3555 			rw_exit(&sdzp->z_name_lock);
3556 
3557 		VN_RELE(ZTOV(szp));
3558 		if (tzp)
3559 			VN_RELE(ZTOV(tzp));
3560 		if (error == ERESTART) {
3561 			dmu_tx_wait(tx);
3562 			dmu_tx_abort(tx);
3563 			goto top;
3564 		}
3565 		dmu_tx_abort(tx);
3566 		ZFS_EXIT(zfsvfs);
3567 		return (error);
3568 	}
3569 
3570 	if (tzp)	/* Attempt to remove the existing target */
3571 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3572 
3573 	if (error == 0) {
3574 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3575 		if (error == 0) {
3576 			szp->z_pflags |= ZFS_AV_MODIFIED;
3577 
3578 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3579 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3580 			ASSERT3U(error, ==, 0);
3581 
3582 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3583 			if (error == 0) {
3584 				zfs_log_rename(zilog, tx, TX_RENAME |
3585 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3586 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
3587 
3588 				/*
3589 				 * Update path information for the target vnode
3590 				 */
3591 				vn_renamepath(tdvp, ZTOV(szp), tnm,
3592 				    strlen(tnm));
3593 			} else {
3594 				/*
3595 				 * At this point, we have successfully created
3596 				 * the target name, but have failed to remove
3597 				 * the source name.  Since the create was done
3598 				 * with the ZRENAMING flag, there are
3599 				 * complications; for one, the link count is
3600 				 * wrong.  The easiest way to deal with this
3601 				 * is to remove the newly created target, and
3602 				 * return the original error.  This must
3603 				 * succeed; fortunately, it is very unlikely to
3604 				 * fail, since we just created it.
3605 				 */
3606 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3607 				    ZRENAMING, NULL), ==, 0);
3608 			}
3609 		}
3610 	}
3611 
3612 	dmu_tx_commit(tx);
3613 out:
3614 	if (zl != NULL)
3615 		zfs_rename_unlock(&zl);
3616 
3617 	zfs_dirent_unlock(sdl);
3618 	zfs_dirent_unlock(tdl);
3619 
3620 	if (sdzp == tdzp)
3621 		rw_exit(&sdzp->z_name_lock);
3622 
3623 
3624 	VN_RELE(ZTOV(szp));
3625 	if (tzp)
3626 		VN_RELE(ZTOV(tzp));
3627 
3628 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3629 		zil_commit(zilog, 0);
3630 
3631 	ZFS_EXIT(zfsvfs);
3632 	return (error);
3633 }
3634 
3635 /*
3636  * Insert the indicated symbolic reference entry into the directory.
3637  *
3638  *	IN:	dvp	- Directory to contain new symbolic link.
3639  *		link	- Name for new symlink entry.
3640  *		vap	- Attributes of new entry.
3641  *		target	- Target path of new symlink.
3642  *		cr	- credentials of caller.
3643  *		ct	- caller context
3644  *		flags	- case flags
3645  *
3646  *	RETURN:	0 if success
3647  *		error code if failure
3648  *
3649  * Timestamps:
3650  *	dvp - ctime|mtime updated
3651  */
3652 /*ARGSUSED*/
3653 static int
3654 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3655     caller_context_t *ct, int flags)
3656 {
3657 	znode_t		*zp, *dzp = VTOZ(dvp);
3658 	zfs_dirlock_t	*dl;
3659 	dmu_tx_t	*tx;
3660 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3661 	zilog_t		*zilog;
3662 	uint64_t	len = strlen(link);
3663 	int		error;
3664 	int		zflg = ZNEW;
3665 	zfs_acl_ids_t	acl_ids;
3666 	boolean_t	fuid_dirtied;
3667 	uint64_t	txtype = TX_SYMLINK;
3668 
3669 	ASSERT(vap->va_type == VLNK);
3670 
3671 	ZFS_ENTER(zfsvfs);
3672 	ZFS_VERIFY_ZP(dzp);
3673 	zilog = zfsvfs->z_log;
3674 
3675 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3676 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3677 		ZFS_EXIT(zfsvfs);
3678 		return (EILSEQ);
3679 	}
3680 	if (flags & FIGNORECASE)
3681 		zflg |= ZCILOOK;
3682 
3683 	if (len > MAXPATHLEN) {
3684 		ZFS_EXIT(zfsvfs);
3685 		return (ENAMETOOLONG);
3686 	}
3687 
3688 	if ((error = zfs_acl_ids_create(dzp, 0,
3689 	    vap, cr, NULL, &acl_ids)) != 0) {
3690 		ZFS_EXIT(zfsvfs);
3691 		return (error);
3692 	}
3693 top:
3694 	/*
3695 	 * Attempt to lock directory; fail if entry already exists.
3696 	 */
3697 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3698 	if (error) {
3699 		zfs_acl_ids_free(&acl_ids);
3700 		ZFS_EXIT(zfsvfs);
3701 		return (error);
3702 	}
3703 
3704 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3705 		zfs_acl_ids_free(&acl_ids);
3706 		zfs_dirent_unlock(dl);
3707 		ZFS_EXIT(zfsvfs);
3708 		return (error);
3709 	}
3710 
3711 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3712 		zfs_acl_ids_free(&acl_ids);
3713 		zfs_dirent_unlock(dl);
3714 		ZFS_EXIT(zfsvfs);
3715 		return (EDQUOT);
3716 	}
3717 	tx = dmu_tx_create(zfsvfs->z_os);
3718 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3719 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3720 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3721 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3722 	    ZFS_SA_BASE_ATTR_SIZE + len);
3723 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3724 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3725 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3726 		    acl_ids.z_aclp->z_acl_bytes);
3727 	}
3728 	if (fuid_dirtied)
3729 		zfs_fuid_txhold(zfsvfs, tx);
3730 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3731 	if (error) {
3732 		zfs_dirent_unlock(dl);
3733 		if (error == ERESTART) {
3734 			dmu_tx_wait(tx);
3735 			dmu_tx_abort(tx);
3736 			goto top;
3737 		}
3738 		zfs_acl_ids_free(&acl_ids);
3739 		dmu_tx_abort(tx);
3740 		ZFS_EXIT(zfsvfs);
3741 		return (error);
3742 	}
3743 
3744 	/*
3745 	 * Create a new object for the symlink.
3746 	 * for version 4 ZPL datsets the symlink will be an SA attribute
3747 	 */
3748 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3749 
3750 	if (fuid_dirtied)
3751 		zfs_fuid_sync(zfsvfs, tx);
3752 
3753 	mutex_enter(&zp->z_lock);
3754 	if (zp->z_is_sa)
3755 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3756 		    link, len, tx);
3757 	else
3758 		zfs_sa_symlink(zp, link, len, tx);
3759 	mutex_exit(&zp->z_lock);
3760 
3761 	zp->z_size = len;
3762 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3763 	    &zp->z_size, sizeof (zp->z_size), tx);
3764 	/*
3765 	 * Insert the new object into the directory.
3766 	 */
3767 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3768 
3769 	if (flags & FIGNORECASE)
3770 		txtype |= TX_CI;
3771 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3772 
3773 	zfs_acl_ids_free(&acl_ids);
3774 
3775 	dmu_tx_commit(tx);
3776 
3777 	zfs_dirent_unlock(dl);
3778 
3779 	VN_RELE(ZTOV(zp));
3780 
3781 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3782 		zil_commit(zilog, 0);
3783 
3784 	ZFS_EXIT(zfsvfs);
3785 	return (error);
3786 }
3787 
3788 /*
3789  * Return, in the buffer contained in the provided uio structure,
3790  * the symbolic path referred to by vp.
3791  *
3792  *	IN:	vp	- vnode of symbolic link.
3793  *		uoip	- structure to contain the link path.
3794  *		cr	- credentials of caller.
3795  *		ct	- caller context
3796  *
3797  *	OUT:	uio	- structure to contain the link path.
3798  *
3799  *	RETURN:	0 if success
3800  *		error code if failure
3801  *
3802  * Timestamps:
3803  *	vp - atime updated
3804  */
3805 /* ARGSUSED */
3806 static int
3807 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3808 {
3809 	znode_t		*zp = VTOZ(vp);
3810 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3811 	int		error;
3812 
3813 	ZFS_ENTER(zfsvfs);
3814 	ZFS_VERIFY_ZP(zp);
3815 
3816 	mutex_enter(&zp->z_lock);
3817 	if (zp->z_is_sa)
3818 		error = sa_lookup_uio(zp->z_sa_hdl,
3819 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3820 	else
3821 		error = zfs_sa_readlink(zp, uio);
3822 	mutex_exit(&zp->z_lock);
3823 
3824 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3825 
3826 	ZFS_EXIT(zfsvfs);
3827 	return (error);
3828 }
3829 
3830 /*
3831  * Insert a new entry into directory tdvp referencing svp.
3832  *
3833  *	IN:	tdvp	- Directory to contain new entry.
3834  *		svp	- vnode of new entry.
3835  *		name	- name of new entry.
3836  *		cr	- credentials of caller.
3837  *		ct	- caller context
3838  *
3839  *	RETURN:	0 if success
3840  *		error code if failure
3841  *
3842  * Timestamps:
3843  *	tdvp - ctime|mtime updated
3844  *	 svp - ctime updated
3845  */
3846 /* ARGSUSED */
3847 static int
3848 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3849     caller_context_t *ct, int flags)
3850 {
3851 	znode_t		*dzp = VTOZ(tdvp);
3852 	znode_t		*tzp, *szp;
3853 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3854 	zilog_t		*zilog;
3855 	zfs_dirlock_t	*dl;
3856 	dmu_tx_t	*tx;
3857 	vnode_t		*realvp;
3858 	int		error;
3859 	int		zf = ZNEW;
3860 	uint64_t	parent;
3861 
3862 	ASSERT(tdvp->v_type == VDIR);
3863 
3864 	ZFS_ENTER(zfsvfs);
3865 	ZFS_VERIFY_ZP(dzp);
3866 	zilog = zfsvfs->z_log;
3867 
3868 	if (VOP_REALVP(svp, &realvp, ct) == 0)
3869 		svp = realvp;
3870 
3871 	/*
3872 	 * POSIX dictates that we return EPERM here.
3873 	 * Better choices include ENOTSUP or EISDIR.
3874 	 */
3875 	if (svp->v_type == VDIR) {
3876 		ZFS_EXIT(zfsvfs);
3877 		return (EPERM);
3878 	}
3879 
3880 	if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) {
3881 		ZFS_EXIT(zfsvfs);
3882 		return (EXDEV);
3883 	}
3884 
3885 	szp = VTOZ(svp);
3886 	ZFS_VERIFY_ZP(szp);
3887 
3888 	/* Prevent links to .zfs/shares files */
3889 
3890 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3891 	    &parent, sizeof (uint64_t))) != 0) {
3892 		ZFS_EXIT(zfsvfs);
3893 		return (error);
3894 	}
3895 	if (parent == zfsvfs->z_shares_dir) {
3896 		ZFS_EXIT(zfsvfs);
3897 		return (EPERM);
3898 	}
3899 
3900 	if (zfsvfs->z_utf8 && u8_validate(name,
3901 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3902 		ZFS_EXIT(zfsvfs);
3903 		return (EILSEQ);
3904 	}
3905 	if (flags & FIGNORECASE)
3906 		zf |= ZCILOOK;
3907 
3908 	/*
3909 	 * We do not support links between attributes and non-attributes
3910 	 * because of the potential security risk of creating links
3911 	 * into "normal" file space in order to circumvent restrictions
3912 	 * imposed in attribute space.
3913 	 */
3914 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3915 		ZFS_EXIT(zfsvfs);
3916 		return (EINVAL);
3917 	}
3918 
3919 
3920 	if (szp->z_uid != crgetuid(cr) &&
3921 	    secpolicy_basic_link(cr) != 0) {
3922 		ZFS_EXIT(zfsvfs);
3923 		return (EPERM);
3924 	}
3925 
3926 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3927 		ZFS_EXIT(zfsvfs);
3928 		return (error);
3929 	}
3930 
3931 top:
3932 	/*
3933 	 * Attempt to lock directory; fail if entry already exists.
3934 	 */
3935 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3936 	if (error) {
3937 		ZFS_EXIT(zfsvfs);
3938 		return (error);
3939 	}
3940 
3941 	tx = dmu_tx_create(zfsvfs->z_os);
3942 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3943 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3944 	zfs_sa_upgrade_txholds(tx, szp);
3945 	zfs_sa_upgrade_txholds(tx, dzp);
3946 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3947 	if (error) {
3948 		zfs_dirent_unlock(dl);
3949 		if (error == ERESTART) {
3950 			dmu_tx_wait(tx);
3951 			dmu_tx_abort(tx);
3952 			goto top;
3953 		}
3954 		dmu_tx_abort(tx);
3955 		ZFS_EXIT(zfsvfs);
3956 		return (error);
3957 	}
3958 
3959 	error = zfs_link_create(dl, szp, tx, 0);
3960 
3961 	if (error == 0) {
3962 		uint64_t txtype = TX_LINK;
3963 		if (flags & FIGNORECASE)
3964 			txtype |= TX_CI;
3965 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
3966 	}
3967 
3968 	dmu_tx_commit(tx);
3969 
3970 	zfs_dirent_unlock(dl);
3971 
3972 	if (error == 0) {
3973 		vnevent_link(svp, ct);
3974 	}
3975 
3976 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3977 		zil_commit(zilog, 0);
3978 
3979 	ZFS_EXIT(zfsvfs);
3980 	return (error);
3981 }
3982 
3983 /*
3984  * zfs_null_putapage() is used when the file system has been force
3985  * unmounted. It just drops the pages.
3986  */
3987 /* ARGSUSED */
3988 static int
3989 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3990 		size_t *lenp, int flags, cred_t *cr)
3991 {
3992 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
3993 	return (0);
3994 }
3995 
3996 /*
3997  * Push a page out to disk, klustering if possible.
3998  *
3999  *	IN:	vp	- file to push page to.
4000  *		pp	- page to push.
4001  *		flags	- additional flags.
4002  *		cr	- credentials of caller.
4003  *
4004  *	OUT:	offp	- start of range pushed.
4005  *		lenp	- len of range pushed.
4006  *
4007  *	RETURN:	0 if success
4008  *		error code if failure
4009  *
4010  * NOTE: callers must have locked the page to be pushed.  On
4011  * exit, the page (and all other pages in the kluster) must be
4012  * unlocked.
4013  */
4014 /* ARGSUSED */
4015 static int
4016 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4017 		size_t *lenp, int flags, cred_t *cr)
4018 {
4019 	znode_t		*zp = VTOZ(vp);
4020 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4021 	dmu_tx_t	*tx;
4022 	u_offset_t	off, koff;
4023 	size_t		len, klen;
4024 	int		err;
4025 
4026 	off = pp->p_offset;
4027 	len = PAGESIZE;
4028 	/*
4029 	 * If our blocksize is bigger than the page size, try to kluster
4030 	 * multiple pages so that we write a full block (thus avoiding
4031 	 * a read-modify-write).
4032 	 */
4033 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4034 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4035 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4036 		ASSERT(koff <= zp->z_size);
4037 		if (koff + klen > zp->z_size)
4038 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4039 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4040 	}
4041 	ASSERT3U(btop(len), ==, btopr(len));
4042 
4043 	/*
4044 	 * Can't push pages past end-of-file.
4045 	 */
4046 	if (off >= zp->z_size) {
4047 		/* ignore all pages */
4048 		err = 0;
4049 		goto out;
4050 	} else if (off + len > zp->z_size) {
4051 		int npages = btopr(zp->z_size - off);
4052 		page_t *trunc;
4053 
4054 		page_list_break(&pp, &trunc, npages);
4055 		/* ignore pages past end of file */
4056 		if (trunc)
4057 			pvn_write_done(trunc, flags);
4058 		len = zp->z_size - off;
4059 	}
4060 
4061 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4062 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4063 		err = EDQUOT;
4064 		goto out;
4065 	}
4066 top:
4067 	tx = dmu_tx_create(zfsvfs->z_os);
4068 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4069 
4070 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4071 	zfs_sa_upgrade_txholds(tx, zp);
4072 	err = dmu_tx_assign(tx, TXG_NOWAIT);
4073 	if (err != 0) {
4074 		if (err == ERESTART) {
4075 			dmu_tx_wait(tx);
4076 			dmu_tx_abort(tx);
4077 			goto top;
4078 		}
4079 		dmu_tx_abort(tx);
4080 		goto out;
4081 	}
4082 
4083 	if (zp->z_blksz <= PAGESIZE) {
4084 		caddr_t va = zfs_map_page(pp, S_READ);
4085 		ASSERT3U(len, <=, PAGESIZE);
4086 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4087 		zfs_unmap_page(pp, va);
4088 	} else {
4089 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4090 	}
4091 
4092 	if (err == 0) {
4093 		uint64_t mtime[2], ctime[2];
4094 		sa_bulk_attr_t bulk[3];
4095 		int count = 0;
4096 
4097 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4098 		    &mtime, 16);
4099 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4100 		    &ctime, 16);
4101 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4102 		    &zp->z_pflags, 8);
4103 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4104 		    B_TRUE);
4105 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4106 	}
4107 	dmu_tx_commit(tx);
4108 
4109 out:
4110 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4111 	if (offp)
4112 		*offp = off;
4113 	if (lenp)
4114 		*lenp = len;
4115 
4116 	return (err);
4117 }
4118 
4119 /*
4120  * Copy the portion of the file indicated from pages into the file.
4121  * The pages are stored in a page list attached to the files vnode.
4122  *
4123  *	IN:	vp	- vnode of file to push page data to.
4124  *		off	- position in file to put data.
4125  *		len	- amount of data to write.
4126  *		flags	- flags to control the operation.
4127  *		cr	- credentials of caller.
4128  *		ct	- caller context.
4129  *
4130  *	RETURN:	0 if success
4131  *		error code if failure
4132  *
4133  * Timestamps:
4134  *	vp - ctime|mtime updated
4135  */
4136 /*ARGSUSED*/
4137 static int
4138 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4139     caller_context_t *ct)
4140 {
4141 	znode_t		*zp = VTOZ(vp);
4142 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4143 	page_t		*pp;
4144 	size_t		io_len;
4145 	u_offset_t	io_off;
4146 	uint_t		blksz;
4147 	rl_t		*rl;
4148 	int		error = 0;
4149 
4150 	ZFS_ENTER(zfsvfs);
4151 	ZFS_VERIFY_ZP(zp);
4152 
4153 	/*
4154 	 * Align this request to the file block size in case we kluster.
4155 	 * XXX - this can result in pretty aggresive locking, which can
4156 	 * impact simultanious read/write access.  One option might be
4157 	 * to break up long requests (len == 0) into block-by-block
4158 	 * operations to get narrower locking.
4159 	 */
4160 	blksz = zp->z_blksz;
4161 	if (ISP2(blksz))
4162 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4163 	else
4164 		io_off = 0;
4165 	if (len > 0 && ISP2(blksz))
4166 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4167 	else
4168 		io_len = 0;
4169 
4170 	if (io_len == 0) {
4171 		/*
4172 		 * Search the entire vp list for pages >= io_off.
4173 		 */
4174 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4175 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4176 		goto out;
4177 	}
4178 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4179 
4180 	if (off > zp->z_size) {
4181 		/* past end of file */
4182 		zfs_range_unlock(rl);
4183 		ZFS_EXIT(zfsvfs);
4184 		return (0);
4185 	}
4186 
4187 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4188 
4189 	for (off = io_off; io_off < off + len; io_off += io_len) {
4190 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4191 			pp = page_lookup(vp, io_off,
4192 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4193 		} else {
4194 			pp = page_lookup_nowait(vp, io_off,
4195 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4196 		}
4197 
4198 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4199 			int err;
4200 
4201 			/*
4202 			 * Found a dirty page to push
4203 			 */
4204 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4205 			if (err)
4206 				error = err;
4207 		} else {
4208 			io_len = PAGESIZE;
4209 		}
4210 	}
4211 out:
4212 	zfs_range_unlock(rl);
4213 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4214 		zil_commit(zfsvfs->z_log, zp->z_id);
4215 	ZFS_EXIT(zfsvfs);
4216 	return (error);
4217 }
4218 
4219 /*ARGSUSED*/
4220 void
4221 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4222 {
4223 	znode_t	*zp = VTOZ(vp);
4224 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4225 	int error;
4226 
4227 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4228 	if (zp->z_sa_hdl == NULL) {
4229 		/*
4230 		 * The fs has been unmounted, or we did a
4231 		 * suspend/resume and this file no longer exists.
4232 		 */
4233 		if (vn_has_cached_data(vp)) {
4234 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4235 			    B_INVAL, cr);
4236 		}
4237 
4238 		mutex_enter(&zp->z_lock);
4239 		mutex_enter(&vp->v_lock);
4240 		ASSERT(vp->v_count == 1);
4241 		vp->v_count = 0;
4242 		mutex_exit(&vp->v_lock);
4243 		mutex_exit(&zp->z_lock);
4244 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4245 		zfs_znode_free(zp);
4246 		return;
4247 	}
4248 
4249 	/*
4250 	 * Attempt to push any data in the page cache.  If this fails
4251 	 * we will get kicked out later in zfs_zinactive().
4252 	 */
4253 	if (vn_has_cached_data(vp)) {
4254 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4255 		    cr);
4256 	}
4257 
4258 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4259 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4260 
4261 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4262 		zfs_sa_upgrade_txholds(tx, zp);
4263 		error = dmu_tx_assign(tx, TXG_WAIT);
4264 		if (error) {
4265 			dmu_tx_abort(tx);
4266 		} else {
4267 			mutex_enter(&zp->z_lock);
4268 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4269 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4270 			zp->z_atime_dirty = 0;
4271 			mutex_exit(&zp->z_lock);
4272 			dmu_tx_commit(tx);
4273 		}
4274 	}
4275 
4276 	zfs_zinactive(zp);
4277 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4278 }
4279 
4280 /*
4281  * Bounds-check the seek operation.
4282  *
4283  *	IN:	vp	- vnode seeking within
4284  *		ooff	- old file offset
4285  *		noffp	- pointer to new file offset
4286  *		ct	- caller context
4287  *
4288  *	RETURN:	0 if success
4289  *		EINVAL if new offset invalid
4290  */
4291 /* ARGSUSED */
4292 static int
4293 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4294     caller_context_t *ct)
4295 {
4296 	if (vp->v_type == VDIR)
4297 		return (0);
4298 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4299 }
4300 
4301 /*
4302  * Pre-filter the generic locking function to trap attempts to place
4303  * a mandatory lock on a memory mapped file.
4304  */
4305 static int
4306 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4307     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4308 {
4309 	znode_t *zp = VTOZ(vp);
4310 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4311 
4312 	ZFS_ENTER(zfsvfs);
4313 	ZFS_VERIFY_ZP(zp);
4314 
4315 	/*
4316 	 * We are following the UFS semantics with respect to mapcnt
4317 	 * here: If we see that the file is mapped already, then we will
4318 	 * return an error, but we don't worry about races between this
4319 	 * function and zfs_map().
4320 	 */
4321 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4322 		ZFS_EXIT(zfsvfs);
4323 		return (EAGAIN);
4324 	}
4325 	ZFS_EXIT(zfsvfs);
4326 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4327 }
4328 
4329 /*
4330  * If we can't find a page in the cache, we will create a new page
4331  * and fill it with file data.  For efficiency, we may try to fill
4332  * multiple pages at once (klustering) to fill up the supplied page
4333  * list.  Note that the pages to be filled are held with an exclusive
4334  * lock to prevent access by other threads while they are being filled.
4335  */
4336 static int
4337 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4338     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4339 {
4340 	znode_t *zp = VTOZ(vp);
4341 	page_t *pp, *cur_pp;
4342 	objset_t *os = zp->z_zfsvfs->z_os;
4343 	u_offset_t io_off, total;
4344 	size_t io_len;
4345 	int err;
4346 
4347 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4348 		/*
4349 		 * We only have a single page, don't bother klustering
4350 		 */
4351 		io_off = off;
4352 		io_len = PAGESIZE;
4353 		pp = page_create_va(vp, io_off, io_len,
4354 		    PG_EXCL | PG_WAIT, seg, addr);
4355 	} else {
4356 		/*
4357 		 * Try to find enough pages to fill the page list
4358 		 */
4359 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4360 		    &io_len, off, plsz, 0);
4361 	}
4362 	if (pp == NULL) {
4363 		/*
4364 		 * The page already exists, nothing to do here.
4365 		 */
4366 		*pl = NULL;
4367 		return (0);
4368 	}
4369 
4370 	/*
4371 	 * Fill the pages in the kluster.
4372 	 */
4373 	cur_pp = pp;
4374 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4375 		caddr_t va;
4376 
4377 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4378 		va = zfs_map_page(cur_pp, S_WRITE);
4379 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4380 		    DMU_READ_PREFETCH);
4381 		zfs_unmap_page(cur_pp, va);
4382 		if (err) {
4383 			/* On error, toss the entire kluster */
4384 			pvn_read_done(pp, B_ERROR);
4385 			/* convert checksum errors into IO errors */
4386 			if (err == ECKSUM)
4387 				err = EIO;
4388 			return (err);
4389 		}
4390 		cur_pp = cur_pp->p_next;
4391 	}
4392 
4393 	/*
4394 	 * Fill in the page list array from the kluster starting
4395 	 * from the desired offset `off'.
4396 	 * NOTE: the page list will always be null terminated.
4397 	 */
4398 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4399 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4400 
4401 	return (0);
4402 }
4403 
4404 /*
4405  * Return pointers to the pages for the file region [off, off + len]
4406  * in the pl array.  If plsz is greater than len, this function may
4407  * also return page pointers from after the specified region
4408  * (i.e. the region [off, off + plsz]).  These additional pages are
4409  * only returned if they are already in the cache, or were created as
4410  * part of a klustered read.
4411  *
4412  *	IN:	vp	- vnode of file to get data from.
4413  *		off	- position in file to get data from.
4414  *		len	- amount of data to retrieve.
4415  *		plsz	- length of provided page list.
4416  *		seg	- segment to obtain pages for.
4417  *		addr	- virtual address of fault.
4418  *		rw	- mode of created pages.
4419  *		cr	- credentials of caller.
4420  *		ct	- caller context.
4421  *
4422  *	OUT:	protp	- protection mode of created pages.
4423  *		pl	- list of pages created.
4424  *
4425  *	RETURN:	0 if success
4426  *		error code if failure
4427  *
4428  * Timestamps:
4429  *	vp - atime updated
4430  */
4431 /* ARGSUSED */
4432 static int
4433 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4434 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4435 	enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4436 {
4437 	znode_t		*zp = VTOZ(vp);
4438 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4439 	page_t		**pl0 = pl;
4440 	int		err = 0;
4441 
4442 	/* we do our own caching, faultahead is unnecessary */
4443 	if (pl == NULL)
4444 		return (0);
4445 	else if (len > plsz)
4446 		len = plsz;
4447 	else
4448 		len = P2ROUNDUP(len, PAGESIZE);
4449 	ASSERT(plsz >= len);
4450 
4451 	ZFS_ENTER(zfsvfs);
4452 	ZFS_VERIFY_ZP(zp);
4453 
4454 	if (protp)
4455 		*protp = PROT_ALL;
4456 
4457 	/*
4458 	 * Loop through the requested range [off, off + len) looking
4459 	 * for pages.  If we don't find a page, we will need to create
4460 	 * a new page and fill it with data from the file.
4461 	 */
4462 	while (len > 0) {
4463 		if (*pl = page_lookup(vp, off, SE_SHARED))
4464 			*(pl+1) = NULL;
4465 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4466 			goto out;
4467 		while (*pl) {
4468 			ASSERT3U((*pl)->p_offset, ==, off);
4469 			off += PAGESIZE;
4470 			addr += PAGESIZE;
4471 			if (len > 0) {
4472 				ASSERT3U(len, >=, PAGESIZE);
4473 				len -= PAGESIZE;
4474 			}
4475 			ASSERT3U(plsz, >=, PAGESIZE);
4476 			plsz -= PAGESIZE;
4477 			pl++;
4478 		}
4479 	}
4480 
4481 	/*
4482 	 * Fill out the page array with any pages already in the cache.
4483 	 */
4484 	while (plsz > 0 &&
4485 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4486 			off += PAGESIZE;
4487 			plsz -= PAGESIZE;
4488 	}
4489 out:
4490 	if (err) {
4491 		/*
4492 		 * Release any pages we have previously locked.
4493 		 */
4494 		while (pl > pl0)
4495 			page_unlock(*--pl);
4496 	} else {
4497 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4498 	}
4499 
4500 	*pl = NULL;
4501 
4502 	ZFS_EXIT(zfsvfs);
4503 	return (err);
4504 }
4505 
4506 /*
4507  * Request a memory map for a section of a file.  This code interacts
4508  * with common code and the VM system as follows:
4509  *
4510  *	common code calls mmap(), which ends up in smmap_common()
4511  *
4512  *	this calls VOP_MAP(), which takes you into (say) zfs
4513  *
4514  *	zfs_map() calls as_map(), passing segvn_create() as the callback
4515  *
4516  *	segvn_create() creates the new segment and calls VOP_ADDMAP()
4517  *
4518  *	zfs_addmap() updates z_mapcnt
4519  */
4520 /*ARGSUSED*/
4521 static int
4522 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4523     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4524     caller_context_t *ct)
4525 {
4526 	znode_t *zp = VTOZ(vp);
4527 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4528 	segvn_crargs_t	vn_a;
4529 	int		error;
4530 
4531 	ZFS_ENTER(zfsvfs);
4532 	ZFS_VERIFY_ZP(zp);
4533 
4534 	if ((prot & PROT_WRITE) && (zp->z_pflags &
4535 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4536 		ZFS_EXIT(zfsvfs);
4537 		return (EPERM);
4538 	}
4539 
4540 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4541 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4542 		ZFS_EXIT(zfsvfs);
4543 		return (EACCES);
4544 	}
4545 
4546 	if (vp->v_flag & VNOMAP) {
4547 		ZFS_EXIT(zfsvfs);
4548 		return (ENOSYS);
4549 	}
4550 
4551 	if (off < 0 || len > MAXOFFSET_T - off) {
4552 		ZFS_EXIT(zfsvfs);
4553 		return (ENXIO);
4554 	}
4555 
4556 	if (vp->v_type != VREG) {
4557 		ZFS_EXIT(zfsvfs);
4558 		return (ENODEV);
4559 	}
4560 
4561 	/*
4562 	 * If file is locked, disallow mapping.
4563 	 */
4564 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4565 		ZFS_EXIT(zfsvfs);
4566 		return (EAGAIN);
4567 	}
4568 
4569 	as_rangelock(as);
4570 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4571 	if (error != 0) {
4572 		as_rangeunlock(as);
4573 		ZFS_EXIT(zfsvfs);
4574 		return (error);
4575 	}
4576 
4577 	vn_a.vp = vp;
4578 	vn_a.offset = (u_offset_t)off;
4579 	vn_a.type = flags & MAP_TYPE;
4580 	vn_a.prot = prot;
4581 	vn_a.maxprot = maxprot;
4582 	vn_a.cred = cr;
4583 	vn_a.amp = NULL;
4584 	vn_a.flags = flags & ~MAP_TYPE;
4585 	vn_a.szc = 0;
4586 	vn_a.lgrp_mem_policy_flags = 0;
4587 
4588 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4589 
4590 	as_rangeunlock(as);
4591 	ZFS_EXIT(zfsvfs);
4592 	return (error);
4593 }
4594 
4595 /* ARGSUSED */
4596 static int
4597 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4598     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4599     caller_context_t *ct)
4600 {
4601 	uint64_t pages = btopr(len);
4602 
4603 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4604 	return (0);
4605 }
4606 
4607 /*
4608  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4609  * more accurate mtime for the associated file.  Since we don't have a way of
4610  * detecting when the data was actually modified, we have to resort to
4611  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4612  * last page is pushed.  The problem occurs when the msync() call is omitted,
4613  * which by far the most common case:
4614  *
4615  * 	open()
4616  * 	mmap()
4617  * 	<modify memory>
4618  * 	munmap()
4619  * 	close()
4620  * 	<time lapse>
4621  * 	putpage() via fsflush
4622  *
4623  * If we wait until fsflush to come along, we can have a modification time that
4624  * is some arbitrary point in the future.  In order to prevent this in the
4625  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4626  * torn down.
4627  */
4628 /* ARGSUSED */
4629 static int
4630 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4631     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4632     caller_context_t *ct)
4633 {
4634 	uint64_t pages = btopr(len);
4635 
4636 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4637 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4638 
4639 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4640 	    vn_has_cached_data(vp))
4641 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4642 
4643 	return (0);
4644 }
4645 
4646 /*
4647  * Free or allocate space in a file.  Currently, this function only
4648  * supports the `F_FREESP' command.  However, this command is somewhat
4649  * misnamed, as its functionality includes the ability to allocate as
4650  * well as free space.
4651  *
4652  *	IN:	vp	- vnode of file to free data in.
4653  *		cmd	- action to take (only F_FREESP supported).
4654  *		bfp	- section of file to free/alloc.
4655  *		flag	- current file open mode flags.
4656  *		offset	- current file offset.
4657  *		cr	- credentials of caller [UNUSED].
4658  *		ct	- caller context.
4659  *
4660  *	RETURN:	0 if success
4661  *		error code if failure
4662  *
4663  * Timestamps:
4664  *	vp - ctime|mtime updated
4665  */
4666 /* ARGSUSED */
4667 static int
4668 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4669     offset_t offset, cred_t *cr, caller_context_t *ct)
4670 {
4671 	znode_t		*zp = VTOZ(vp);
4672 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4673 	uint64_t	off, len;
4674 	int		error;
4675 
4676 	ZFS_ENTER(zfsvfs);
4677 	ZFS_VERIFY_ZP(zp);
4678 
4679 	if (cmd != F_FREESP) {
4680 		ZFS_EXIT(zfsvfs);
4681 		return (EINVAL);
4682 	}
4683 
4684 	if (error = convoff(vp, bfp, 0, offset)) {
4685 		ZFS_EXIT(zfsvfs);
4686 		return (error);
4687 	}
4688 
4689 	if (bfp->l_len < 0) {
4690 		ZFS_EXIT(zfsvfs);
4691 		return (EINVAL);
4692 	}
4693 
4694 	off = bfp->l_start;
4695 	len = bfp->l_len; /* 0 means from off to end of file */
4696 
4697 	error = zfs_freesp(zp, off, len, flag, TRUE);
4698 
4699 	ZFS_EXIT(zfsvfs);
4700 	return (error);
4701 }
4702 
4703 /*ARGSUSED*/
4704 static int
4705 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4706 {
4707 	znode_t		*zp = VTOZ(vp);
4708 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4709 	uint32_t	gen;
4710 	uint64_t	gen64;
4711 	uint64_t	object = zp->z_id;
4712 	zfid_short_t	*zfid;
4713 	int		size, i, error;
4714 
4715 	ZFS_ENTER(zfsvfs);
4716 	ZFS_VERIFY_ZP(zp);
4717 
4718 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4719 	    &gen64, sizeof (uint64_t))) != 0) {
4720 		ZFS_EXIT(zfsvfs);
4721 		return (error);
4722 	}
4723 
4724 	gen = (uint32_t)gen64;
4725 
4726 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4727 	if (fidp->fid_len < size) {
4728 		fidp->fid_len = size;
4729 		ZFS_EXIT(zfsvfs);
4730 		return (ENOSPC);
4731 	}
4732 
4733 	zfid = (zfid_short_t *)fidp;
4734 
4735 	zfid->zf_len = size;
4736 
4737 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4738 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4739 
4740 	/* Must have a non-zero generation number to distinguish from .zfs */
4741 	if (gen == 0)
4742 		gen = 1;
4743 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4744 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4745 
4746 	if (size == LONG_FID_LEN) {
4747 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4748 		zfid_long_t	*zlfid;
4749 
4750 		zlfid = (zfid_long_t *)fidp;
4751 
4752 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4753 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4754 
4755 		/* XXX - this should be the generation number for the objset */
4756 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4757 			zlfid->zf_setgen[i] = 0;
4758 	}
4759 
4760 	ZFS_EXIT(zfsvfs);
4761 	return (0);
4762 }
4763 
4764 static int
4765 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4766     caller_context_t *ct)
4767 {
4768 	znode_t		*zp, *xzp;
4769 	zfsvfs_t	*zfsvfs;
4770 	zfs_dirlock_t	*dl;
4771 	int		error;
4772 
4773 	switch (cmd) {
4774 	case _PC_LINK_MAX:
4775 		*valp = ULONG_MAX;
4776 		return (0);
4777 
4778 	case _PC_FILESIZEBITS:
4779 		*valp = 64;
4780 		return (0);
4781 
4782 	case _PC_XATTR_EXISTS:
4783 		zp = VTOZ(vp);
4784 		zfsvfs = zp->z_zfsvfs;
4785 		ZFS_ENTER(zfsvfs);
4786 		ZFS_VERIFY_ZP(zp);
4787 		*valp = 0;
4788 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4789 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4790 		if (error == 0) {
4791 			zfs_dirent_unlock(dl);
4792 			if (!zfs_dirempty(xzp))
4793 				*valp = 1;
4794 			VN_RELE(ZTOV(xzp));
4795 		} else if (error == ENOENT) {
4796 			/*
4797 			 * If there aren't extended attributes, it's the
4798 			 * same as having zero of them.
4799 			 */
4800 			error = 0;
4801 		}
4802 		ZFS_EXIT(zfsvfs);
4803 		return (error);
4804 
4805 	case _PC_SATTR_ENABLED:
4806 	case _PC_SATTR_EXISTS:
4807 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4808 		    (vp->v_type == VREG || vp->v_type == VDIR);
4809 		return (0);
4810 
4811 	case _PC_ACCESS_FILTERING:
4812 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4813 		    vp->v_type == VDIR;
4814 		return (0);
4815 
4816 	case _PC_ACL_ENABLED:
4817 		*valp = _ACL_ACE_ENABLED;
4818 		return (0);
4819 
4820 	case _PC_MIN_HOLE_SIZE:
4821 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4822 		return (0);
4823 
4824 	case _PC_TIMESTAMP_RESOLUTION:
4825 		/* nanosecond timestamp resolution */
4826 		*valp = 1L;
4827 		return (0);
4828 
4829 	default:
4830 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4831 	}
4832 }
4833 
4834 /*ARGSUSED*/
4835 static int
4836 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4837     caller_context_t *ct)
4838 {
4839 	znode_t *zp = VTOZ(vp);
4840 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4841 	int error;
4842 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4843 
4844 	ZFS_ENTER(zfsvfs);
4845 	ZFS_VERIFY_ZP(zp);
4846 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4847 	ZFS_EXIT(zfsvfs);
4848 
4849 	return (error);
4850 }
4851 
4852 /*ARGSUSED*/
4853 static int
4854 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4855     caller_context_t *ct)
4856 {
4857 	znode_t *zp = VTOZ(vp);
4858 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4859 	int error;
4860 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4861 	zilog_t	*zilog = zfsvfs->z_log;
4862 
4863 	ZFS_ENTER(zfsvfs);
4864 	ZFS_VERIFY_ZP(zp);
4865 
4866 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4867 
4868 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4869 		zil_commit(zilog, 0);
4870 
4871 	ZFS_EXIT(zfsvfs);
4872 	return (error);
4873 }
4874 
4875 /*
4876  * Tunable, both must be a power of 2.
4877  *
4878  * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4879  * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4880  *                an arcbuf for a partial block read
4881  */
4882 int zcr_blksz_min = (1 << 10);	/* 1K */
4883 int zcr_blksz_max = (1 << 17);	/* 128K */
4884 
4885 /*ARGSUSED*/
4886 static int
4887 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4888     caller_context_t *ct)
4889 {
4890 	znode_t	*zp = VTOZ(vp);
4891 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4892 	int max_blksz = zfsvfs->z_max_blksz;
4893 	uio_t *uio = &xuio->xu_uio;
4894 	ssize_t size = uio->uio_resid;
4895 	offset_t offset = uio->uio_loffset;
4896 	int blksz;
4897 	int fullblk, i;
4898 	arc_buf_t *abuf;
4899 	ssize_t maxsize;
4900 	int preamble, postamble;
4901 
4902 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4903 		return (EINVAL);
4904 
4905 	ZFS_ENTER(zfsvfs);
4906 	ZFS_VERIFY_ZP(zp);
4907 	switch (ioflag) {
4908 	case UIO_WRITE:
4909 		/*
4910 		 * Loan out an arc_buf for write if write size is bigger than
4911 		 * max_blksz, and the file's block size is also max_blksz.
4912 		 */
4913 		blksz = max_blksz;
4914 		if (size < blksz || zp->z_blksz != blksz) {
4915 			ZFS_EXIT(zfsvfs);
4916 			return (EINVAL);
4917 		}
4918 		/*
4919 		 * Caller requests buffers for write before knowing where the
4920 		 * write offset might be (e.g. NFS TCP write).
4921 		 */
4922 		if (offset == -1) {
4923 			preamble = 0;
4924 		} else {
4925 			preamble = P2PHASE(offset, blksz);
4926 			if (preamble) {
4927 				preamble = blksz - preamble;
4928 				size -= preamble;
4929 			}
4930 		}
4931 
4932 		postamble = P2PHASE(size, blksz);
4933 		size -= postamble;
4934 
4935 		fullblk = size / blksz;
4936 		(void) dmu_xuio_init(xuio,
4937 		    (preamble != 0) + fullblk + (postamble != 0));
4938 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
4939 		    int, postamble, int,
4940 		    (preamble != 0) + fullblk + (postamble != 0));
4941 
4942 		/*
4943 		 * Have to fix iov base/len for partial buffers.  They
4944 		 * currently represent full arc_buf's.
4945 		 */
4946 		if (preamble) {
4947 			/* data begins in the middle of the arc_buf */
4948 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4949 			    blksz);
4950 			ASSERT(abuf);
4951 			(void) dmu_xuio_add(xuio, abuf,
4952 			    blksz - preamble, preamble);
4953 		}
4954 
4955 		for (i = 0; i < fullblk; i++) {
4956 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4957 			    blksz);
4958 			ASSERT(abuf);
4959 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
4960 		}
4961 
4962 		if (postamble) {
4963 			/* data ends in the middle of the arc_buf */
4964 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4965 			    blksz);
4966 			ASSERT(abuf);
4967 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
4968 		}
4969 		break;
4970 	case UIO_READ:
4971 		/*
4972 		 * Loan out an arc_buf for read if the read size is larger than
4973 		 * the current file block size.  Block alignment is not
4974 		 * considered.  Partial arc_buf will be loaned out for read.
4975 		 */
4976 		blksz = zp->z_blksz;
4977 		if (blksz < zcr_blksz_min)
4978 			blksz = zcr_blksz_min;
4979 		if (blksz > zcr_blksz_max)
4980 			blksz = zcr_blksz_max;
4981 		/* avoid potential complexity of dealing with it */
4982 		if (blksz > max_blksz) {
4983 			ZFS_EXIT(zfsvfs);
4984 			return (EINVAL);
4985 		}
4986 
4987 		maxsize = zp->z_size - uio->uio_loffset;
4988 		if (size > maxsize)
4989 			size = maxsize;
4990 
4991 		if (size < blksz || vn_has_cached_data(vp)) {
4992 			ZFS_EXIT(zfsvfs);
4993 			return (EINVAL);
4994 		}
4995 		break;
4996 	default:
4997 		ZFS_EXIT(zfsvfs);
4998 		return (EINVAL);
4999 	}
5000 
5001 	uio->uio_extflg = UIO_XUIO;
5002 	XUIO_XUZC_RW(xuio) = ioflag;
5003 	ZFS_EXIT(zfsvfs);
5004 	return (0);
5005 }
5006 
5007 /*ARGSUSED*/
5008 static int
5009 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5010 {
5011 	int i;
5012 	arc_buf_t *abuf;
5013 	int ioflag = XUIO_XUZC_RW(xuio);
5014 
5015 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5016 
5017 	i = dmu_xuio_cnt(xuio);
5018 	while (i-- > 0) {
5019 		abuf = dmu_xuio_arcbuf(xuio, i);
5020 		/*
5021 		 * if abuf == NULL, it must be a write buffer
5022 		 * that has been returned in zfs_write().
5023 		 */
5024 		if (abuf)
5025 			dmu_return_arcbuf(abuf);
5026 		ASSERT(abuf || ioflag == UIO_WRITE);
5027 	}
5028 
5029 	dmu_xuio_fini(xuio);
5030 	return (0);
5031 }
5032 
5033 /*
5034  * Predeclare these here so that the compiler assumes that
5035  * this is an "old style" function declaration that does
5036  * not include arguments => we won't get type mismatch errors
5037  * in the initializations that follow.
5038  */
5039 static int zfs_inval();
5040 static int zfs_isdir();
5041 
5042 static int
5043 zfs_inval()
5044 {
5045 	return (EINVAL);
5046 }
5047 
5048 static int
5049 zfs_isdir()
5050 {
5051 	return (EISDIR);
5052 }
5053 /*
5054  * Directory vnode operations template
5055  */
5056 vnodeops_t *zfs_dvnodeops;
5057 const fs_operation_def_t zfs_dvnodeops_template[] = {
5058 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5059 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5060 	VOPNAME_READ,		{ .error = zfs_isdir },
5061 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5062 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5063 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5064 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5065 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5066 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5067 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5068 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5069 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5070 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5071 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5072 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5073 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5074 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5075 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5076 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5077 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5078 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5079 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5080 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5081 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5082 	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
5083 	NULL,			NULL
5084 };
5085 
5086 /*
5087  * Regular file vnode operations template
5088  */
5089 vnodeops_t *zfs_fvnodeops;
5090 const fs_operation_def_t zfs_fvnodeops_template[] = {
5091 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5092 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5093 	VOPNAME_READ,		{ .vop_read = zfs_read },
5094 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5095 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5096 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5097 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5098 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5099 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5100 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5101 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5102 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5103 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5104 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5105 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5106 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5107 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5108 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5109 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5110 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5111 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5112 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5113 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5114 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5115 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5116 	VOPNAME_REQZCBUF, 	{ .vop_reqzcbuf = zfs_reqzcbuf },
5117 	VOPNAME_RETZCBUF, 	{ .vop_retzcbuf = zfs_retzcbuf },
5118 	NULL,			NULL
5119 };
5120 
5121 /*
5122  * Symbolic link vnode operations template
5123  */
5124 vnodeops_t *zfs_symvnodeops;
5125 const fs_operation_def_t zfs_symvnodeops_template[] = {
5126 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5127 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5128 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5129 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5130 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5131 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5132 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5133 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5134 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5135 	NULL,			NULL
5136 };
5137 
5138 /*
5139  * special share hidden files vnode operations template
5140  */
5141 vnodeops_t *zfs_sharevnodeops;
5142 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5143 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5144 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5145 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5146 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5147 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5148 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5149 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5150 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5151 	NULL,			NULL
5152 };
5153 
5154 /*
5155  * Extended attribute directory vnode operations template
5156  *	This template is identical to the directory vnodes
5157  *	operation template except for restricted operations:
5158  *		VOP_MKDIR()
5159  *		VOP_SYMLINK()
5160  * Note that there are other restrictions embedded in:
5161  *	zfs_create()	- restrict type to VREG
5162  *	zfs_link()	- no links into/out of attribute space
5163  *	zfs_rename()	- no moves into/out of attribute space
5164  */
5165 vnodeops_t *zfs_xdvnodeops;
5166 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5167 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5168 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5169 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5170 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5171 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5172 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5173 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5174 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5175 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5176 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5177 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5178 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5179 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5180 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5181 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5182 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5183 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5184 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5185 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5186 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5187 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5188 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5189 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5190 	NULL,			NULL
5191 };
5192 
5193 /*
5194  * Error vnode operations template
5195  */
5196 vnodeops_t *zfs_evnodeops;
5197 const fs_operation_def_t zfs_evnodeops_template[] = {
5198 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5199 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5200 	NULL,			NULL
5201 };
5202