1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/vm.h> 45 #include <vm/seg_vn.h> 46 #include <vm/pvn.h> 47 #include <vm/as.h> 48 #include <vm/kpm.h> 49 #include <vm/seg_kpm.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include <sys/sid.h> 69 #include "fs/fs_subr.h" 70 #include <sys/zfs_ctldir.h> 71 #include <sys/zfs_fuid.h> 72 #include <sys/dnlc.h> 73 #include <sys/zfs_rlock.h> 74 #include <sys/extdirent.h> 75 #include <sys/kidmap.h> 76 #include <sys/cred_impl.h> 77 #include <sys/attr.h> 78 79 /* 80 * Programming rules. 81 * 82 * Each vnode op performs some logical unit of work. To do this, the ZPL must 83 * properly lock its in-core state, create a DMU transaction, do the work, 84 * record this work in the intent log (ZIL), commit the DMU transaction, 85 * and wait for the intent log to commit if it is a synchronous operation. 86 * Moreover, the vnode ops must work in both normal and log replay context. 87 * The ordering of events is important to avoid deadlocks and references 88 * to freed memory. The example below illustrates the following Big Rules: 89 * 90 * (1) A check must be made in each zfs thread for a mounted file system. 91 * This is done avoiding races using ZFS_ENTER(zfsvfs). 92 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 93 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 94 * can return EIO from the calling function. 95 * 96 * (2) VN_RELE() should always be the last thing except for zil_commit() 97 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 98 * First, if it's the last reference, the vnode/znode 99 * can be freed, so the zp may point to freed memory. Second, the last 100 * reference will call zfs_zinactive(), which may induce a lot of work -- 101 * pushing cached pages (which acquires range locks) and syncing out 102 * cached atime changes. Third, zfs_zinactive() may require a new tx, 103 * which could deadlock the system if you were already holding one. 104 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 105 * 106 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 107 * as they can span dmu_tx_assign() calls. 108 * 109 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 110 * This is critical because we don't want to block while holding locks. 111 * Note, in particular, that if a lock is sometimes acquired before 112 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 113 * use a non-blocking assign can deadlock the system. The scenario: 114 * 115 * Thread A has grabbed a lock before calling dmu_tx_assign(). 116 * Thread B is in an already-assigned tx, and blocks for this lock. 117 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 118 * forever, because the previous txg can't quiesce until B's tx commits. 119 * 120 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 121 * then drop all locks, call dmu_tx_wait(), and try again. 122 * 123 * (5) If the operation succeeded, generate the intent log entry for it 124 * before dropping locks. This ensures that the ordering of events 125 * in the intent log matches the order in which they actually occurred. 126 * During ZIL replay the zfs_log_* functions will update the sequence 127 * number to indicate the zil transaction has replayed. 128 * 129 * (6) At the end of each vnode op, the DMU tx must always commit, 130 * regardless of whether there were any errors. 131 * 132 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 133 * to ensure that synchronous semantics are provided when necessary. 134 * 135 * In general, this is how things should be ordered in each vnode op: 136 * 137 * ZFS_ENTER(zfsvfs); // exit if unmounted 138 * top: 139 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 140 * rw_enter(...); // grab any other locks you need 141 * tx = dmu_tx_create(...); // get DMU tx 142 * dmu_tx_hold_*(); // hold each object you might modify 143 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 144 * if (error) { 145 * rw_exit(...); // drop locks 146 * zfs_dirent_unlock(dl); // unlock directory entry 147 * VN_RELE(...); // release held vnodes 148 * if (error == ERESTART) { 149 * dmu_tx_wait(tx); 150 * dmu_tx_abort(tx); 151 * goto top; 152 * } 153 * dmu_tx_abort(tx); // abort DMU tx 154 * ZFS_EXIT(zfsvfs); // finished in zfs 155 * return (error); // really out of space 156 * } 157 * error = do_real_work(); // do whatever this VOP does 158 * if (error == 0) 159 * zfs_log_*(...); // on success, make ZIL entry 160 * dmu_tx_commit(tx); // commit DMU tx -- error or not 161 * rw_exit(...); // drop locks 162 * zfs_dirent_unlock(dl); // unlock directory entry 163 * VN_RELE(...); // release held vnodes 164 * zil_commit(zilog, seq, foid); // synchronous when necessary 165 * ZFS_EXIT(zfsvfs); // finished in zfs 166 * return (error); // done, report error 167 */ 168 169 /* ARGSUSED */ 170 static int 171 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 172 { 173 znode_t *zp = VTOZ(*vpp); 174 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 175 176 ZFS_ENTER(zfsvfs); 177 ZFS_VERIFY_ZP(zp); 178 179 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 180 ((flag & FAPPEND) == 0)) { 181 ZFS_EXIT(zfsvfs); 182 return (EPERM); 183 } 184 185 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 186 ZTOV(zp)->v_type == VREG && 187 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 188 zp->z_phys->zp_size > 0) { 189 if (fs_vscan(*vpp, cr, 0) != 0) { 190 ZFS_EXIT(zfsvfs); 191 return (EACCES); 192 } 193 } 194 195 /* Keep a count of the synchronous opens in the znode */ 196 if (flag & (FSYNC | FDSYNC)) 197 atomic_inc_32(&zp->z_sync_cnt); 198 199 ZFS_EXIT(zfsvfs); 200 return (0); 201 } 202 203 /* ARGSUSED */ 204 static int 205 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 206 caller_context_t *ct) 207 { 208 znode_t *zp = VTOZ(vp); 209 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 210 211 /* 212 * Clean up any locks held by this process on the vp. 213 */ 214 cleanlocks(vp, ddi_get_pid(), 0); 215 cleanshares(vp, ddi_get_pid()); 216 217 ZFS_ENTER(zfsvfs); 218 ZFS_VERIFY_ZP(zp); 219 220 /* Decrement the synchronous opens in the znode */ 221 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 222 atomic_dec_32(&zp->z_sync_cnt); 223 224 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 225 ZTOV(zp)->v_type == VREG && 226 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 227 zp->z_phys->zp_size > 0) 228 VERIFY(fs_vscan(vp, cr, 1) == 0); 229 230 ZFS_EXIT(zfsvfs); 231 return (0); 232 } 233 234 /* 235 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 236 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 237 */ 238 static int 239 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 240 { 241 znode_t *zp = VTOZ(vp); 242 uint64_t noff = (uint64_t)*off; /* new offset */ 243 uint64_t file_sz; 244 int error; 245 boolean_t hole; 246 247 file_sz = zp->z_phys->zp_size; 248 if (noff >= file_sz) { 249 return (ENXIO); 250 } 251 252 if (cmd == _FIO_SEEK_HOLE) 253 hole = B_TRUE; 254 else 255 hole = B_FALSE; 256 257 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 258 259 /* end of file? */ 260 if ((error == ESRCH) || (noff > file_sz)) { 261 /* 262 * Handle the virtual hole at the end of file. 263 */ 264 if (hole) { 265 *off = file_sz; 266 return (0); 267 } 268 return (ENXIO); 269 } 270 271 if (noff < *off) 272 return (error); 273 *off = noff; 274 return (error); 275 } 276 277 /* ARGSUSED */ 278 static int 279 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 280 int *rvalp, caller_context_t *ct) 281 { 282 offset_t off; 283 int error; 284 zfsvfs_t *zfsvfs; 285 znode_t *zp; 286 287 switch (com) { 288 case _FIOFFS: 289 return (zfs_sync(vp->v_vfsp, 0, cred)); 290 291 /* 292 * The following two ioctls are used by bfu. Faking out, 293 * necessary to avoid bfu errors. 294 */ 295 case _FIOGDIO: 296 case _FIOSDIO: 297 return (0); 298 299 case _FIO_SEEK_DATA: 300 case _FIO_SEEK_HOLE: 301 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 302 return (EFAULT); 303 304 zp = VTOZ(vp); 305 zfsvfs = zp->z_zfsvfs; 306 ZFS_ENTER(zfsvfs); 307 ZFS_VERIFY_ZP(zp); 308 309 /* offset parameter is in/out */ 310 error = zfs_holey(vp, com, &off); 311 ZFS_EXIT(zfsvfs); 312 if (error) 313 return (error); 314 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 315 return (EFAULT); 316 return (0); 317 } 318 return (ENOTTY); 319 } 320 321 /* 322 * Utility functions to map and unmap a single physical page. These 323 * are used to manage the mappable copies of ZFS file data, and therefore 324 * do not update ref/mod bits. 325 */ 326 caddr_t 327 zfs_map_page(page_t *pp, enum seg_rw rw) 328 { 329 if (kpm_enable) 330 return (hat_kpm_mapin(pp, 0)); 331 ASSERT(rw == S_READ || rw == S_WRITE); 332 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 333 (caddr_t)-1)); 334 } 335 336 void 337 zfs_unmap_page(page_t *pp, caddr_t addr) 338 { 339 if (kpm_enable) { 340 hat_kpm_mapout(pp, 0, addr); 341 } else { 342 ppmapout(addr); 343 } 344 } 345 346 /* 347 * When a file is memory mapped, we must keep the IO data synchronized 348 * between the DMU cache and the memory mapped pages. What this means: 349 * 350 * On Write: If we find a memory mapped page, we write to *both* 351 * the page and the dmu buffer. 352 */ 353 static void 354 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 355 { 356 int64_t off; 357 358 off = start & PAGEOFFSET; 359 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 360 page_t *pp; 361 uint64_t nbytes = MIN(PAGESIZE - off, len); 362 363 if (pp = page_lookup(vp, start, SE_SHARED)) { 364 caddr_t va; 365 366 va = zfs_map_page(pp, S_WRITE); 367 (void) dmu_read(os, oid, start+off, nbytes, va+off, 368 DMU_READ_PREFETCH); 369 zfs_unmap_page(pp, va); 370 page_unlock(pp); 371 } 372 len -= nbytes; 373 off = 0; 374 } 375 } 376 377 /* 378 * When a file is memory mapped, we must keep the IO data synchronized 379 * between the DMU cache and the memory mapped pages. What this means: 380 * 381 * On Read: We "read" preferentially from memory mapped pages, 382 * else we default from the dmu buffer. 383 * 384 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 385 * the file is memory mapped. 386 */ 387 static int 388 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 389 { 390 znode_t *zp = VTOZ(vp); 391 objset_t *os = zp->z_zfsvfs->z_os; 392 int64_t start, off; 393 int len = nbytes; 394 int error = 0; 395 396 start = uio->uio_loffset; 397 off = start & PAGEOFFSET; 398 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 399 page_t *pp; 400 uint64_t bytes = MIN(PAGESIZE - off, len); 401 402 if (pp = page_lookup(vp, start, SE_SHARED)) { 403 caddr_t va; 404 405 va = zfs_map_page(pp, S_READ); 406 error = uiomove(va + off, bytes, UIO_READ, uio); 407 zfs_unmap_page(pp, va); 408 page_unlock(pp); 409 } else { 410 error = dmu_read_uio(os, zp->z_id, uio, bytes); 411 } 412 len -= bytes; 413 off = 0; 414 if (error) 415 break; 416 } 417 return (error); 418 } 419 420 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 421 422 /* 423 * Read bytes from specified file into supplied buffer. 424 * 425 * IN: vp - vnode of file to be read from. 426 * uio - structure supplying read location, range info, 427 * and return buffer. 428 * ioflag - SYNC flags; used to provide FRSYNC semantics. 429 * cr - credentials of caller. 430 * ct - caller context 431 * 432 * OUT: uio - updated offset and range, buffer filled. 433 * 434 * RETURN: 0 if success 435 * error code if failure 436 * 437 * Side Effects: 438 * vp - atime updated if byte count > 0 439 */ 440 /* ARGSUSED */ 441 static int 442 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 443 { 444 znode_t *zp = VTOZ(vp); 445 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 446 objset_t *os; 447 ssize_t n, nbytes; 448 int error; 449 rl_t *rl; 450 451 ZFS_ENTER(zfsvfs); 452 ZFS_VERIFY_ZP(zp); 453 os = zfsvfs->z_os; 454 455 if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) { 456 ZFS_EXIT(zfsvfs); 457 return (EACCES); 458 } 459 460 /* 461 * Validate file offset 462 */ 463 if (uio->uio_loffset < (offset_t)0) { 464 ZFS_EXIT(zfsvfs); 465 return (EINVAL); 466 } 467 468 /* 469 * Fasttrack empty reads 470 */ 471 if (uio->uio_resid == 0) { 472 ZFS_EXIT(zfsvfs); 473 return (0); 474 } 475 476 /* 477 * Check for mandatory locks 478 */ 479 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 480 if (error = chklock(vp, FREAD, 481 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 482 ZFS_EXIT(zfsvfs); 483 return (error); 484 } 485 } 486 487 /* 488 * If we're in FRSYNC mode, sync out this znode before reading it. 489 */ 490 if (ioflag & FRSYNC) 491 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 492 493 /* 494 * Lock the range against changes. 495 */ 496 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 497 498 /* 499 * If we are reading past end-of-file we can skip 500 * to the end; but we might still need to set atime. 501 */ 502 if (uio->uio_loffset >= zp->z_phys->zp_size) { 503 error = 0; 504 goto out; 505 } 506 507 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 508 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 509 510 while (n > 0) { 511 nbytes = MIN(n, zfs_read_chunk_size - 512 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 513 514 if (vn_has_cached_data(vp)) 515 error = mappedread(vp, nbytes, uio); 516 else 517 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 518 if (error) { 519 /* convert checksum errors into IO errors */ 520 if (error == ECKSUM) 521 error = EIO; 522 break; 523 } 524 525 n -= nbytes; 526 } 527 528 out: 529 zfs_range_unlock(rl); 530 531 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 532 ZFS_EXIT(zfsvfs); 533 return (error); 534 } 535 536 /* 537 * Write the bytes to a file. 538 * 539 * IN: vp - vnode of file to be written to. 540 * uio - structure supplying write location, range info, 541 * and data buffer. 542 * ioflag - FAPPEND flag set if in append mode. 543 * cr - credentials of caller. 544 * ct - caller context (NFS/CIFS fem monitor only) 545 * 546 * OUT: uio - updated offset and range. 547 * 548 * RETURN: 0 if success 549 * error code if failure 550 * 551 * Timestamps: 552 * vp - ctime|mtime updated if byte count > 0 553 */ 554 /* ARGSUSED */ 555 static int 556 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 557 { 558 znode_t *zp = VTOZ(vp); 559 rlim64_t limit = uio->uio_llimit; 560 ssize_t start_resid = uio->uio_resid; 561 ssize_t tx_bytes; 562 uint64_t end_size; 563 dmu_tx_t *tx; 564 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 565 zilog_t *zilog; 566 offset_t woff; 567 ssize_t n, nbytes; 568 rl_t *rl; 569 int max_blksz = zfsvfs->z_max_blksz; 570 uint64_t pflags; 571 int error; 572 arc_buf_t *abuf; 573 574 /* 575 * Fasttrack empty write 576 */ 577 n = start_resid; 578 if (n == 0) 579 return (0); 580 581 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 582 limit = MAXOFFSET_T; 583 584 ZFS_ENTER(zfsvfs); 585 ZFS_VERIFY_ZP(zp); 586 587 /* 588 * If immutable or not appending then return EPERM 589 */ 590 pflags = zp->z_phys->zp_flags; 591 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 592 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 593 (uio->uio_loffset < zp->z_phys->zp_size))) { 594 ZFS_EXIT(zfsvfs); 595 return (EPERM); 596 } 597 598 zilog = zfsvfs->z_log; 599 600 /* 601 * Pre-fault the pages to ensure slow (eg NFS) pages 602 * don't hold up txg. 603 */ 604 uio_prefaultpages(n, uio); 605 606 /* 607 * If in append mode, set the io offset pointer to eof. 608 */ 609 if (ioflag & FAPPEND) { 610 /* 611 * Range lock for a file append: 612 * The value for the start of range will be determined by 613 * zfs_range_lock() (to guarantee append semantics). 614 * If this write will cause the block size to increase, 615 * zfs_range_lock() will lock the entire file, so we must 616 * later reduce the range after we grow the block size. 617 */ 618 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 619 if (rl->r_len == UINT64_MAX) { 620 /* overlocked, zp_size can't change */ 621 woff = uio->uio_loffset = zp->z_phys->zp_size; 622 } else { 623 woff = uio->uio_loffset = rl->r_off; 624 } 625 } else { 626 woff = uio->uio_loffset; 627 /* 628 * Validate file offset 629 */ 630 if (woff < 0) { 631 ZFS_EXIT(zfsvfs); 632 return (EINVAL); 633 } 634 635 /* 636 * If we need to grow the block size then zfs_range_lock() 637 * will lock a wider range than we request here. 638 * Later after growing the block size we reduce the range. 639 */ 640 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 641 } 642 643 if (woff >= limit) { 644 zfs_range_unlock(rl); 645 ZFS_EXIT(zfsvfs); 646 return (EFBIG); 647 } 648 649 if ((woff + n) > limit || woff > (limit - n)) 650 n = limit - woff; 651 652 /* 653 * Check for mandatory locks 654 */ 655 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 656 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 657 zfs_range_unlock(rl); 658 ZFS_EXIT(zfsvfs); 659 return (error); 660 } 661 end_size = MAX(zp->z_phys->zp_size, woff + n); 662 663 /* 664 * Write the file in reasonable size chunks. Each chunk is written 665 * in a separate transaction; this keeps the intent log records small 666 * and allows us to do more fine-grained space accounting. 667 */ 668 while (n > 0) { 669 abuf = NULL; 670 woff = uio->uio_loffset; 671 672 again: 673 if (zfs_usergroup_overquota(zfsvfs, 674 B_FALSE, zp->z_phys->zp_uid) || 675 zfs_usergroup_overquota(zfsvfs, 676 B_TRUE, zp->z_phys->zp_gid)) { 677 if (abuf != NULL) 678 dmu_return_arcbuf(abuf); 679 error = EDQUOT; 680 break; 681 } 682 683 /* 684 * If dmu_assign_arcbuf() is expected to execute with minimum 685 * overhead loan an arc buffer and copy user data to it before 686 * we enter a txg. This avoids holding a txg forever while we 687 * pagefault on a hanging NFS server mapping. 688 */ 689 if (abuf == NULL && n >= max_blksz && 690 woff >= zp->z_phys->zp_size && 691 P2PHASE(woff, max_blksz) == 0 && 692 zp->z_blksz == max_blksz) { 693 size_t cbytes; 694 695 abuf = dmu_request_arcbuf(zp->z_dbuf, max_blksz); 696 ASSERT(abuf != NULL); 697 ASSERT(arc_buf_size(abuf) == max_blksz); 698 if (error = uiocopy(abuf->b_data, max_blksz, 699 UIO_WRITE, uio, &cbytes)) { 700 dmu_return_arcbuf(abuf); 701 break; 702 } 703 ASSERT(cbytes == max_blksz); 704 } 705 706 /* 707 * Start a transaction. 708 */ 709 tx = dmu_tx_create(zfsvfs->z_os); 710 dmu_tx_hold_bonus(tx, zp->z_id); 711 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 712 error = dmu_tx_assign(tx, TXG_NOWAIT); 713 if (error) { 714 if (error == ERESTART) { 715 dmu_tx_wait(tx); 716 dmu_tx_abort(tx); 717 goto again; 718 } 719 dmu_tx_abort(tx); 720 if (abuf != NULL) 721 dmu_return_arcbuf(abuf); 722 break; 723 } 724 725 /* 726 * If zfs_range_lock() over-locked we grow the blocksize 727 * and then reduce the lock range. This will only happen 728 * on the first iteration since zfs_range_reduce() will 729 * shrink down r_len to the appropriate size. 730 */ 731 if (rl->r_len == UINT64_MAX) { 732 uint64_t new_blksz; 733 734 if (zp->z_blksz > max_blksz) { 735 ASSERT(!ISP2(zp->z_blksz)); 736 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 737 } else { 738 new_blksz = MIN(end_size, max_blksz); 739 } 740 zfs_grow_blocksize(zp, new_blksz, tx); 741 zfs_range_reduce(rl, woff, n); 742 } 743 744 /* 745 * XXX - should we really limit each write to z_max_blksz? 746 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 747 */ 748 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 749 750 if (abuf == NULL) { 751 tx_bytes = uio->uio_resid; 752 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, uio, 753 nbytes, tx); 754 tx_bytes -= uio->uio_resid; 755 } else { 756 tx_bytes = nbytes; 757 ASSERT(tx_bytes == max_blksz); 758 dmu_assign_arcbuf(zp->z_dbuf, woff, abuf, tx); 759 ASSERT(tx_bytes <= uio->uio_resid); 760 uioskip(uio, tx_bytes); 761 } 762 if (tx_bytes && vn_has_cached_data(vp)) { 763 update_pages(vp, woff, 764 tx_bytes, zfsvfs->z_os, zp->z_id); 765 } 766 767 /* 768 * If we made no progress, we're done. If we made even 769 * partial progress, update the znode and ZIL accordingly. 770 */ 771 if (tx_bytes == 0) { 772 dmu_tx_commit(tx); 773 ASSERT(error != 0); 774 break; 775 } 776 777 /* 778 * Clear Set-UID/Set-GID bits on successful write if not 779 * privileged and at least one of the excute bits is set. 780 * 781 * It would be nice to to this after all writes have 782 * been done, but that would still expose the ISUID/ISGID 783 * to another app after the partial write is committed. 784 * 785 * Note: we don't call zfs_fuid_map_id() here because 786 * user 0 is not an ephemeral uid. 787 */ 788 mutex_enter(&zp->z_acl_lock); 789 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 790 (S_IXUSR >> 6))) != 0 && 791 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 792 secpolicy_vnode_setid_retain(cr, 793 (zp->z_phys->zp_mode & S_ISUID) != 0 && 794 zp->z_phys->zp_uid == 0) != 0) { 795 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 796 } 797 mutex_exit(&zp->z_acl_lock); 798 799 /* 800 * Update time stamp. NOTE: This marks the bonus buffer as 801 * dirty, so we don't have to do it again for zp_size. 802 */ 803 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 804 805 /* 806 * Update the file size (zp_size) if it has changed; 807 * account for possible concurrent updates. 808 */ 809 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 810 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 811 uio->uio_loffset); 812 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 813 dmu_tx_commit(tx); 814 815 if (error != 0) 816 break; 817 ASSERT(tx_bytes == nbytes); 818 n -= nbytes; 819 } 820 821 zfs_range_unlock(rl); 822 823 /* 824 * If we're in replay mode, or we made no progress, return error. 825 * Otherwise, it's at least a partial write, so it's successful. 826 */ 827 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 828 ZFS_EXIT(zfsvfs); 829 return (error); 830 } 831 832 if (ioflag & (FSYNC | FDSYNC)) 833 zil_commit(zilog, zp->z_last_itx, zp->z_id); 834 835 ZFS_EXIT(zfsvfs); 836 return (0); 837 } 838 839 void 840 zfs_get_done(dmu_buf_t *db, void *vzgd) 841 { 842 zgd_t *zgd = (zgd_t *)vzgd; 843 rl_t *rl = zgd->zgd_rl; 844 vnode_t *vp = ZTOV(rl->r_zp); 845 objset_t *os = rl->r_zp->z_zfsvfs->z_os; 846 847 dmu_buf_rele(db, vzgd); 848 zfs_range_unlock(rl); 849 /* 850 * Release the vnode asynchronously as we currently have the 851 * txg stopped from syncing. 852 */ 853 VN_RELE_ASYNC(vp, dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 854 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 855 kmem_free(zgd, sizeof (zgd_t)); 856 } 857 858 #ifdef DEBUG 859 static int zil_fault_io = 0; 860 #endif 861 862 /* 863 * Get data to generate a TX_WRITE intent log record. 864 */ 865 int 866 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 867 { 868 zfsvfs_t *zfsvfs = arg; 869 objset_t *os = zfsvfs->z_os; 870 znode_t *zp; 871 uint64_t off = lr->lr_offset; 872 dmu_buf_t *db; 873 rl_t *rl; 874 zgd_t *zgd; 875 int dlen = lr->lr_length; /* length of user data */ 876 int error = 0; 877 878 ASSERT(zio); 879 ASSERT(dlen != 0); 880 881 /* 882 * Nothing to do if the file has been removed 883 */ 884 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 885 return (ENOENT); 886 if (zp->z_unlinked) { 887 /* 888 * Release the vnode asynchronously as we currently have the 889 * txg stopped from syncing. 890 */ 891 VN_RELE_ASYNC(ZTOV(zp), 892 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 893 return (ENOENT); 894 } 895 896 /* 897 * Write records come in two flavors: immediate and indirect. 898 * For small writes it's cheaper to store the data with the 899 * log record (immediate); for large writes it's cheaper to 900 * sync the data and get a pointer to it (indirect) so that 901 * we don't have to write the data twice. 902 */ 903 if (buf != NULL) { /* immediate write */ 904 rl = zfs_range_lock(zp, off, dlen, RL_READER); 905 /* test for truncation needs to be done while range locked */ 906 if (off >= zp->z_phys->zp_size) { 907 error = ENOENT; 908 goto out; 909 } 910 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf, 911 DMU_READ_NO_PREFETCH)); 912 } else { /* indirect write */ 913 uint64_t boff; /* block starting offset */ 914 915 /* 916 * Have to lock the whole block to ensure when it's 917 * written out and it's checksum is being calculated 918 * that no one can change the data. We need to re-check 919 * blocksize after we get the lock in case it's changed! 920 */ 921 for (;;) { 922 if (ISP2(zp->z_blksz)) { 923 boff = P2ALIGN_TYPED(off, zp->z_blksz, 924 uint64_t); 925 } else { 926 boff = 0; 927 } 928 dlen = zp->z_blksz; 929 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 930 if (zp->z_blksz == dlen) 931 break; 932 zfs_range_unlock(rl); 933 } 934 /* test for truncation needs to be done while range locked */ 935 if (off >= zp->z_phys->zp_size) { 936 error = ENOENT; 937 goto out; 938 } 939 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 940 zgd->zgd_rl = rl; 941 zgd->zgd_zilog = zfsvfs->z_log; 942 zgd->zgd_bp = &lr->lr_blkptr; 943 #ifdef DEBUG 944 if (zil_fault_io) { 945 error = EIO; 946 zil_fault_io = 0; 947 } else { 948 error = dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db); 949 } 950 #else 951 error = dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db); 952 #endif 953 if (error != 0) { 954 kmem_free(zgd, sizeof (zgd_t)); 955 goto out; 956 } 957 958 ASSERT(boff == db->db_offset); 959 lr->lr_blkoff = off - boff; 960 error = dmu_sync(zio, db, &lr->lr_blkptr, 961 lr->lr_common.lrc_txg, zfs_get_done, zgd); 962 ASSERT((error && error != EINPROGRESS) || 963 lr->lr_length <= zp->z_blksz); 964 if (error == 0) 965 zil_add_block(zfsvfs->z_log, &lr->lr_blkptr); 966 /* 967 * If we get EINPROGRESS, then we need to wait for a 968 * write IO initiated by dmu_sync() to complete before 969 * we can release this dbuf. We will finish everything 970 * up in the zfs_get_done() callback. 971 */ 972 if (error == EINPROGRESS) 973 return (0); 974 dmu_buf_rele(db, zgd); 975 kmem_free(zgd, sizeof (zgd_t)); 976 } 977 out: 978 zfs_range_unlock(rl); 979 /* 980 * Release the vnode asynchronously as we currently have the 981 * txg stopped from syncing. 982 */ 983 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 984 return (error); 985 } 986 987 /*ARGSUSED*/ 988 static int 989 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 990 caller_context_t *ct) 991 { 992 znode_t *zp = VTOZ(vp); 993 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 994 int error; 995 996 ZFS_ENTER(zfsvfs); 997 ZFS_VERIFY_ZP(zp); 998 999 if (flag & V_ACE_MASK) 1000 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1001 else 1002 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1003 1004 ZFS_EXIT(zfsvfs); 1005 return (error); 1006 } 1007 1008 /* 1009 * If vnode is for a device return a specfs vnode instead. 1010 */ 1011 static int 1012 specvp_check(vnode_t **vpp, cred_t *cr) 1013 { 1014 int error = 0; 1015 1016 if (IS_DEVVP(*vpp)) { 1017 struct vnode *svp; 1018 1019 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1020 VN_RELE(*vpp); 1021 if (svp == NULL) 1022 error = ENOSYS; 1023 *vpp = svp; 1024 } 1025 return (error); 1026 } 1027 1028 1029 /* 1030 * Lookup an entry in a directory, or an extended attribute directory. 1031 * If it exists, return a held vnode reference for it. 1032 * 1033 * IN: dvp - vnode of directory to search. 1034 * nm - name of entry to lookup. 1035 * pnp - full pathname to lookup [UNUSED]. 1036 * flags - LOOKUP_XATTR set if looking for an attribute. 1037 * rdir - root directory vnode [UNUSED]. 1038 * cr - credentials of caller. 1039 * ct - caller context 1040 * direntflags - directory lookup flags 1041 * realpnp - returned pathname. 1042 * 1043 * OUT: vpp - vnode of located entry, NULL if not found. 1044 * 1045 * RETURN: 0 if success 1046 * error code if failure 1047 * 1048 * Timestamps: 1049 * NA 1050 */ 1051 /* ARGSUSED */ 1052 static int 1053 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1054 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1055 int *direntflags, pathname_t *realpnp) 1056 { 1057 znode_t *zdp = VTOZ(dvp); 1058 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1059 int error = 0; 1060 1061 /* fast path */ 1062 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1063 1064 if (dvp->v_type != VDIR) { 1065 return (ENOTDIR); 1066 } else if (zdp->z_dbuf == NULL) { 1067 return (EIO); 1068 } 1069 1070 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1071 error = zfs_fastaccesschk_execute(zdp, cr); 1072 if (!error) { 1073 *vpp = dvp; 1074 VN_HOLD(*vpp); 1075 return (0); 1076 } 1077 return (error); 1078 } else { 1079 vnode_t *tvp = dnlc_lookup(dvp, nm); 1080 1081 if (tvp) { 1082 error = zfs_fastaccesschk_execute(zdp, cr); 1083 if (error) { 1084 VN_RELE(tvp); 1085 return (error); 1086 } 1087 if (tvp == DNLC_NO_VNODE) { 1088 VN_RELE(tvp); 1089 return (ENOENT); 1090 } else { 1091 *vpp = tvp; 1092 return (specvp_check(vpp, cr)); 1093 } 1094 } 1095 } 1096 } 1097 1098 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1099 1100 ZFS_ENTER(zfsvfs); 1101 ZFS_VERIFY_ZP(zdp); 1102 1103 *vpp = NULL; 1104 1105 if (flags & LOOKUP_XATTR) { 1106 /* 1107 * If the xattr property is off, refuse the lookup request. 1108 */ 1109 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1110 ZFS_EXIT(zfsvfs); 1111 return (EINVAL); 1112 } 1113 1114 /* 1115 * We don't allow recursive attributes.. 1116 * Maybe someday we will. 1117 */ 1118 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1119 ZFS_EXIT(zfsvfs); 1120 return (EINVAL); 1121 } 1122 1123 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1124 ZFS_EXIT(zfsvfs); 1125 return (error); 1126 } 1127 1128 /* 1129 * Do we have permission to get into attribute directory? 1130 */ 1131 1132 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1133 B_FALSE, cr)) { 1134 VN_RELE(*vpp); 1135 *vpp = NULL; 1136 } 1137 1138 ZFS_EXIT(zfsvfs); 1139 return (error); 1140 } 1141 1142 if (dvp->v_type != VDIR) { 1143 ZFS_EXIT(zfsvfs); 1144 return (ENOTDIR); 1145 } 1146 1147 /* 1148 * Check accessibility of directory. 1149 */ 1150 1151 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1152 ZFS_EXIT(zfsvfs); 1153 return (error); 1154 } 1155 1156 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1157 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1158 ZFS_EXIT(zfsvfs); 1159 return (EILSEQ); 1160 } 1161 1162 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1163 if (error == 0) 1164 error = specvp_check(vpp, cr); 1165 1166 ZFS_EXIT(zfsvfs); 1167 return (error); 1168 } 1169 1170 /* 1171 * Attempt to create a new entry in a directory. If the entry 1172 * already exists, truncate the file if permissible, else return 1173 * an error. Return the vp of the created or trunc'd file. 1174 * 1175 * IN: dvp - vnode of directory to put new file entry in. 1176 * name - name of new file entry. 1177 * vap - attributes of new file. 1178 * excl - flag indicating exclusive or non-exclusive mode. 1179 * mode - mode to open file with. 1180 * cr - credentials of caller. 1181 * flag - large file flag [UNUSED]. 1182 * ct - caller context 1183 * vsecp - ACL to be set 1184 * 1185 * OUT: vpp - vnode of created or trunc'd entry. 1186 * 1187 * RETURN: 0 if success 1188 * error code if failure 1189 * 1190 * Timestamps: 1191 * dvp - ctime|mtime updated if new entry created 1192 * vp - ctime|mtime always, atime if new 1193 */ 1194 1195 /* ARGSUSED */ 1196 static int 1197 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1198 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1199 vsecattr_t *vsecp) 1200 { 1201 znode_t *zp, *dzp = VTOZ(dvp); 1202 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1203 zilog_t *zilog; 1204 objset_t *os; 1205 zfs_dirlock_t *dl; 1206 dmu_tx_t *tx; 1207 int error; 1208 ksid_t *ksid; 1209 uid_t uid; 1210 gid_t gid = crgetgid(cr); 1211 zfs_acl_ids_t acl_ids; 1212 boolean_t fuid_dirtied; 1213 1214 /* 1215 * If we have an ephemeral id, ACL, or XVATTR then 1216 * make sure file system is at proper version 1217 */ 1218 1219 ksid = crgetsid(cr, KSID_OWNER); 1220 if (ksid) 1221 uid = ksid_getid(ksid); 1222 else 1223 uid = crgetuid(cr); 1224 1225 if (zfsvfs->z_use_fuids == B_FALSE && 1226 (vsecp || (vap->va_mask & AT_XVATTR) || 1227 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1228 return (EINVAL); 1229 1230 ZFS_ENTER(zfsvfs); 1231 ZFS_VERIFY_ZP(dzp); 1232 os = zfsvfs->z_os; 1233 zilog = zfsvfs->z_log; 1234 1235 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1236 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1237 ZFS_EXIT(zfsvfs); 1238 return (EILSEQ); 1239 } 1240 1241 if (vap->va_mask & AT_XVATTR) { 1242 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1243 crgetuid(cr), cr, vap->va_type)) != 0) { 1244 ZFS_EXIT(zfsvfs); 1245 return (error); 1246 } 1247 } 1248 top: 1249 *vpp = NULL; 1250 1251 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1252 vap->va_mode &= ~VSVTX; 1253 1254 if (*name == '\0') { 1255 /* 1256 * Null component name refers to the directory itself. 1257 */ 1258 VN_HOLD(dvp); 1259 zp = dzp; 1260 dl = NULL; 1261 error = 0; 1262 } else { 1263 /* possible VN_HOLD(zp) */ 1264 int zflg = 0; 1265 1266 if (flag & FIGNORECASE) 1267 zflg |= ZCILOOK; 1268 1269 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1270 NULL, NULL); 1271 if (error) { 1272 if (strcmp(name, "..") == 0) 1273 error = EISDIR; 1274 ZFS_EXIT(zfsvfs); 1275 return (error); 1276 } 1277 } 1278 if (zp == NULL) { 1279 uint64_t txtype; 1280 1281 /* 1282 * Create a new file object and update the directory 1283 * to reference it. 1284 */ 1285 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1286 goto out; 1287 } 1288 1289 /* 1290 * We only support the creation of regular files in 1291 * extended attribute directories. 1292 */ 1293 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1294 (vap->va_type != VREG)) { 1295 error = EINVAL; 1296 goto out; 1297 } 1298 1299 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1300 &acl_ids)) != 0) 1301 goto out; 1302 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1303 zfs_acl_ids_free(&acl_ids); 1304 error = EDQUOT; 1305 goto out; 1306 } 1307 1308 tx = dmu_tx_create(os); 1309 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1310 fuid_dirtied = zfsvfs->z_fuid_dirty; 1311 if (fuid_dirtied) 1312 zfs_fuid_txhold(zfsvfs, tx); 1313 dmu_tx_hold_bonus(tx, dzp->z_id); 1314 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1315 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1316 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1317 0, SPA_MAXBLOCKSIZE); 1318 } 1319 error = dmu_tx_assign(tx, TXG_NOWAIT); 1320 if (error) { 1321 zfs_acl_ids_free(&acl_ids); 1322 zfs_dirent_unlock(dl); 1323 if (error == ERESTART) { 1324 dmu_tx_wait(tx); 1325 dmu_tx_abort(tx); 1326 goto top; 1327 } 1328 dmu_tx_abort(tx); 1329 ZFS_EXIT(zfsvfs); 1330 return (error); 1331 } 1332 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 1333 1334 if (fuid_dirtied) 1335 zfs_fuid_sync(zfsvfs, tx); 1336 1337 (void) zfs_link_create(dl, zp, tx, ZNEW); 1338 1339 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1340 if (flag & FIGNORECASE) 1341 txtype |= TX_CI; 1342 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1343 vsecp, acl_ids.z_fuidp, vap); 1344 zfs_acl_ids_free(&acl_ids); 1345 dmu_tx_commit(tx); 1346 } else { 1347 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1348 1349 /* 1350 * A directory entry already exists for this name. 1351 */ 1352 /* 1353 * Can't truncate an existing file if in exclusive mode. 1354 */ 1355 if (excl == EXCL) { 1356 error = EEXIST; 1357 goto out; 1358 } 1359 /* 1360 * Can't open a directory for writing. 1361 */ 1362 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1363 error = EISDIR; 1364 goto out; 1365 } 1366 /* 1367 * Verify requested access to file. 1368 */ 1369 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1370 goto out; 1371 } 1372 1373 mutex_enter(&dzp->z_lock); 1374 dzp->z_seq++; 1375 mutex_exit(&dzp->z_lock); 1376 1377 /* 1378 * Truncate regular files if requested. 1379 */ 1380 if ((ZTOV(zp)->v_type == VREG) && 1381 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1382 /* we can't hold any locks when calling zfs_freesp() */ 1383 zfs_dirent_unlock(dl); 1384 dl = NULL; 1385 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1386 if (error == 0) { 1387 vnevent_create(ZTOV(zp), ct); 1388 } 1389 } 1390 } 1391 out: 1392 1393 if (dl) 1394 zfs_dirent_unlock(dl); 1395 1396 if (error) { 1397 if (zp) 1398 VN_RELE(ZTOV(zp)); 1399 } else { 1400 *vpp = ZTOV(zp); 1401 error = specvp_check(vpp, cr); 1402 } 1403 1404 ZFS_EXIT(zfsvfs); 1405 return (error); 1406 } 1407 1408 /* 1409 * Remove an entry from a directory. 1410 * 1411 * IN: dvp - vnode of directory to remove entry from. 1412 * name - name of entry to remove. 1413 * cr - credentials of caller. 1414 * ct - caller context 1415 * flags - case flags 1416 * 1417 * RETURN: 0 if success 1418 * error code if failure 1419 * 1420 * Timestamps: 1421 * dvp - ctime|mtime 1422 * vp - ctime (if nlink > 0) 1423 */ 1424 /*ARGSUSED*/ 1425 static int 1426 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1427 int flags) 1428 { 1429 znode_t *zp, *dzp = VTOZ(dvp); 1430 znode_t *xzp = NULL; 1431 vnode_t *vp; 1432 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1433 zilog_t *zilog; 1434 uint64_t acl_obj, xattr_obj; 1435 zfs_dirlock_t *dl; 1436 dmu_tx_t *tx; 1437 boolean_t may_delete_now, delete_now = FALSE; 1438 boolean_t unlinked, toobig = FALSE; 1439 uint64_t txtype; 1440 pathname_t *realnmp = NULL; 1441 pathname_t realnm; 1442 int error; 1443 int zflg = ZEXISTS; 1444 1445 ZFS_ENTER(zfsvfs); 1446 ZFS_VERIFY_ZP(dzp); 1447 zilog = zfsvfs->z_log; 1448 1449 if (flags & FIGNORECASE) { 1450 zflg |= ZCILOOK; 1451 pn_alloc(&realnm); 1452 realnmp = &realnm; 1453 } 1454 1455 top: 1456 /* 1457 * Attempt to lock directory; fail if entry doesn't exist. 1458 */ 1459 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1460 NULL, realnmp)) { 1461 if (realnmp) 1462 pn_free(realnmp); 1463 ZFS_EXIT(zfsvfs); 1464 return (error); 1465 } 1466 1467 vp = ZTOV(zp); 1468 1469 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1470 goto out; 1471 } 1472 1473 /* 1474 * Need to use rmdir for removing directories. 1475 */ 1476 if (vp->v_type == VDIR) { 1477 error = EPERM; 1478 goto out; 1479 } 1480 1481 vnevent_remove(vp, dvp, name, ct); 1482 1483 if (realnmp) 1484 dnlc_remove(dvp, realnmp->pn_buf); 1485 else 1486 dnlc_remove(dvp, name); 1487 1488 mutex_enter(&vp->v_lock); 1489 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1490 mutex_exit(&vp->v_lock); 1491 1492 /* 1493 * We may delete the znode now, or we may put it in the unlinked set; 1494 * it depends on whether we're the last link, and on whether there are 1495 * other holds on the vnode. So we dmu_tx_hold() the right things to 1496 * allow for either case. 1497 */ 1498 tx = dmu_tx_create(zfsvfs->z_os); 1499 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1500 dmu_tx_hold_bonus(tx, zp->z_id); 1501 if (may_delete_now) { 1502 toobig = 1503 zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1504 /* if the file is too big, only hold_free a token amount */ 1505 dmu_tx_hold_free(tx, zp->z_id, 0, 1506 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1507 } 1508 1509 /* are there any extended attributes? */ 1510 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1511 /* XXX - do we need this if we are deleting? */ 1512 dmu_tx_hold_bonus(tx, xattr_obj); 1513 } 1514 1515 /* are there any additional acls */ 1516 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1517 may_delete_now) 1518 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1519 1520 /* charge as an update -- would be nice not to charge at all */ 1521 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1522 1523 error = dmu_tx_assign(tx, TXG_NOWAIT); 1524 if (error) { 1525 zfs_dirent_unlock(dl); 1526 VN_RELE(vp); 1527 if (error == ERESTART) { 1528 dmu_tx_wait(tx); 1529 dmu_tx_abort(tx); 1530 goto top; 1531 } 1532 if (realnmp) 1533 pn_free(realnmp); 1534 dmu_tx_abort(tx); 1535 ZFS_EXIT(zfsvfs); 1536 return (error); 1537 } 1538 1539 /* 1540 * Remove the directory entry. 1541 */ 1542 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1543 1544 if (error) { 1545 dmu_tx_commit(tx); 1546 goto out; 1547 } 1548 1549 if (unlinked) { 1550 mutex_enter(&vp->v_lock); 1551 delete_now = may_delete_now && !toobig && 1552 vp->v_count == 1 && !vn_has_cached_data(vp) && 1553 zp->z_phys->zp_xattr == xattr_obj && 1554 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1555 mutex_exit(&vp->v_lock); 1556 } 1557 1558 if (delete_now) { 1559 if (zp->z_phys->zp_xattr) { 1560 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1561 ASSERT3U(error, ==, 0); 1562 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1563 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1564 mutex_enter(&xzp->z_lock); 1565 xzp->z_unlinked = 1; 1566 xzp->z_phys->zp_links = 0; 1567 mutex_exit(&xzp->z_lock); 1568 zfs_unlinked_add(xzp, tx); 1569 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1570 } 1571 mutex_enter(&zp->z_lock); 1572 mutex_enter(&vp->v_lock); 1573 vp->v_count--; 1574 ASSERT3U(vp->v_count, ==, 0); 1575 mutex_exit(&vp->v_lock); 1576 mutex_exit(&zp->z_lock); 1577 zfs_znode_delete(zp, tx); 1578 } else if (unlinked) { 1579 zfs_unlinked_add(zp, tx); 1580 } 1581 1582 txtype = TX_REMOVE; 1583 if (flags & FIGNORECASE) 1584 txtype |= TX_CI; 1585 zfs_log_remove(zilog, tx, txtype, dzp, name); 1586 1587 dmu_tx_commit(tx); 1588 out: 1589 if (realnmp) 1590 pn_free(realnmp); 1591 1592 zfs_dirent_unlock(dl); 1593 1594 if (!delete_now) { 1595 VN_RELE(vp); 1596 } else if (xzp) { 1597 /* this rele is delayed to prevent nesting transactions */ 1598 VN_RELE(ZTOV(xzp)); 1599 } 1600 1601 ZFS_EXIT(zfsvfs); 1602 return (error); 1603 } 1604 1605 /* 1606 * Create a new directory and insert it into dvp using the name 1607 * provided. Return a pointer to the inserted directory. 1608 * 1609 * IN: dvp - vnode of directory to add subdir to. 1610 * dirname - name of new directory. 1611 * vap - attributes of new directory. 1612 * cr - credentials of caller. 1613 * ct - caller context 1614 * vsecp - ACL to be set 1615 * 1616 * OUT: vpp - vnode of created directory. 1617 * 1618 * RETURN: 0 if success 1619 * error code if failure 1620 * 1621 * Timestamps: 1622 * dvp - ctime|mtime updated 1623 * vp - ctime|mtime|atime updated 1624 */ 1625 /*ARGSUSED*/ 1626 static int 1627 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1628 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1629 { 1630 znode_t *zp, *dzp = VTOZ(dvp); 1631 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1632 zilog_t *zilog; 1633 zfs_dirlock_t *dl; 1634 uint64_t txtype; 1635 dmu_tx_t *tx; 1636 int error; 1637 int zf = ZNEW; 1638 ksid_t *ksid; 1639 uid_t uid; 1640 gid_t gid = crgetgid(cr); 1641 zfs_acl_ids_t acl_ids; 1642 boolean_t fuid_dirtied; 1643 1644 ASSERT(vap->va_type == VDIR); 1645 1646 /* 1647 * If we have an ephemeral id, ACL, or XVATTR then 1648 * make sure file system is at proper version 1649 */ 1650 1651 ksid = crgetsid(cr, KSID_OWNER); 1652 if (ksid) 1653 uid = ksid_getid(ksid); 1654 else 1655 uid = crgetuid(cr); 1656 if (zfsvfs->z_use_fuids == B_FALSE && 1657 (vsecp || (vap->va_mask & AT_XVATTR) || 1658 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1659 return (EINVAL); 1660 1661 ZFS_ENTER(zfsvfs); 1662 ZFS_VERIFY_ZP(dzp); 1663 zilog = zfsvfs->z_log; 1664 1665 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1666 ZFS_EXIT(zfsvfs); 1667 return (EINVAL); 1668 } 1669 1670 if (zfsvfs->z_utf8 && u8_validate(dirname, 1671 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1672 ZFS_EXIT(zfsvfs); 1673 return (EILSEQ); 1674 } 1675 if (flags & FIGNORECASE) 1676 zf |= ZCILOOK; 1677 1678 if (vap->va_mask & AT_XVATTR) 1679 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1680 crgetuid(cr), cr, vap->va_type)) != 0) { 1681 ZFS_EXIT(zfsvfs); 1682 return (error); 1683 } 1684 1685 /* 1686 * First make sure the new directory doesn't exist. 1687 */ 1688 top: 1689 *vpp = NULL; 1690 1691 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1692 NULL, NULL)) { 1693 ZFS_EXIT(zfsvfs); 1694 return (error); 1695 } 1696 1697 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1698 zfs_dirent_unlock(dl); 1699 ZFS_EXIT(zfsvfs); 1700 return (error); 1701 } 1702 1703 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1704 &acl_ids)) != 0) { 1705 zfs_dirent_unlock(dl); 1706 ZFS_EXIT(zfsvfs); 1707 return (error); 1708 } 1709 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1710 zfs_acl_ids_free(&acl_ids); 1711 zfs_dirent_unlock(dl); 1712 ZFS_EXIT(zfsvfs); 1713 return (EDQUOT); 1714 } 1715 1716 /* 1717 * Add a new entry to the directory. 1718 */ 1719 tx = dmu_tx_create(zfsvfs->z_os); 1720 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1721 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1722 fuid_dirtied = zfsvfs->z_fuid_dirty; 1723 if (fuid_dirtied) 1724 zfs_fuid_txhold(zfsvfs, tx); 1725 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) 1726 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1727 0, SPA_MAXBLOCKSIZE); 1728 error = dmu_tx_assign(tx, TXG_NOWAIT); 1729 if (error) { 1730 zfs_acl_ids_free(&acl_ids); 1731 zfs_dirent_unlock(dl); 1732 if (error == ERESTART) { 1733 dmu_tx_wait(tx); 1734 dmu_tx_abort(tx); 1735 goto top; 1736 } 1737 dmu_tx_abort(tx); 1738 ZFS_EXIT(zfsvfs); 1739 return (error); 1740 } 1741 1742 /* 1743 * Create new node. 1744 */ 1745 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 1746 1747 if (fuid_dirtied) 1748 zfs_fuid_sync(zfsvfs, tx); 1749 /* 1750 * Now put new name in parent dir. 1751 */ 1752 (void) zfs_link_create(dl, zp, tx, ZNEW); 1753 1754 *vpp = ZTOV(zp); 1755 1756 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1757 if (flags & FIGNORECASE) 1758 txtype |= TX_CI; 1759 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1760 acl_ids.z_fuidp, vap); 1761 1762 zfs_acl_ids_free(&acl_ids); 1763 dmu_tx_commit(tx); 1764 1765 zfs_dirent_unlock(dl); 1766 1767 ZFS_EXIT(zfsvfs); 1768 return (0); 1769 } 1770 1771 /* 1772 * Remove a directory subdir entry. If the current working 1773 * directory is the same as the subdir to be removed, the 1774 * remove will fail. 1775 * 1776 * IN: dvp - vnode of directory to remove from. 1777 * name - name of directory to be removed. 1778 * cwd - vnode of current working directory. 1779 * cr - credentials of caller. 1780 * ct - caller context 1781 * flags - case flags 1782 * 1783 * RETURN: 0 if success 1784 * error code if failure 1785 * 1786 * Timestamps: 1787 * dvp - ctime|mtime updated 1788 */ 1789 /*ARGSUSED*/ 1790 static int 1791 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1792 caller_context_t *ct, int flags) 1793 { 1794 znode_t *dzp = VTOZ(dvp); 1795 znode_t *zp; 1796 vnode_t *vp; 1797 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1798 zilog_t *zilog; 1799 zfs_dirlock_t *dl; 1800 dmu_tx_t *tx; 1801 int error; 1802 int zflg = ZEXISTS; 1803 1804 ZFS_ENTER(zfsvfs); 1805 ZFS_VERIFY_ZP(dzp); 1806 zilog = zfsvfs->z_log; 1807 1808 if (flags & FIGNORECASE) 1809 zflg |= ZCILOOK; 1810 top: 1811 zp = NULL; 1812 1813 /* 1814 * Attempt to lock directory; fail if entry doesn't exist. 1815 */ 1816 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1817 NULL, NULL)) { 1818 ZFS_EXIT(zfsvfs); 1819 return (error); 1820 } 1821 1822 vp = ZTOV(zp); 1823 1824 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1825 goto out; 1826 } 1827 1828 if (vp->v_type != VDIR) { 1829 error = ENOTDIR; 1830 goto out; 1831 } 1832 1833 if (vp == cwd) { 1834 error = EINVAL; 1835 goto out; 1836 } 1837 1838 vnevent_rmdir(vp, dvp, name, ct); 1839 1840 /* 1841 * Grab a lock on the directory to make sure that noone is 1842 * trying to add (or lookup) entries while we are removing it. 1843 */ 1844 rw_enter(&zp->z_name_lock, RW_WRITER); 1845 1846 /* 1847 * Grab a lock on the parent pointer to make sure we play well 1848 * with the treewalk and directory rename code. 1849 */ 1850 rw_enter(&zp->z_parent_lock, RW_WRITER); 1851 1852 tx = dmu_tx_create(zfsvfs->z_os); 1853 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1854 dmu_tx_hold_bonus(tx, zp->z_id); 1855 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1856 error = dmu_tx_assign(tx, TXG_NOWAIT); 1857 if (error) { 1858 rw_exit(&zp->z_parent_lock); 1859 rw_exit(&zp->z_name_lock); 1860 zfs_dirent_unlock(dl); 1861 VN_RELE(vp); 1862 if (error == ERESTART) { 1863 dmu_tx_wait(tx); 1864 dmu_tx_abort(tx); 1865 goto top; 1866 } 1867 dmu_tx_abort(tx); 1868 ZFS_EXIT(zfsvfs); 1869 return (error); 1870 } 1871 1872 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1873 1874 if (error == 0) { 1875 uint64_t txtype = TX_RMDIR; 1876 if (flags & FIGNORECASE) 1877 txtype |= TX_CI; 1878 zfs_log_remove(zilog, tx, txtype, dzp, name); 1879 } 1880 1881 dmu_tx_commit(tx); 1882 1883 rw_exit(&zp->z_parent_lock); 1884 rw_exit(&zp->z_name_lock); 1885 out: 1886 zfs_dirent_unlock(dl); 1887 1888 VN_RELE(vp); 1889 1890 ZFS_EXIT(zfsvfs); 1891 return (error); 1892 } 1893 1894 /* 1895 * Read as many directory entries as will fit into the provided 1896 * buffer from the given directory cursor position (specified in 1897 * the uio structure. 1898 * 1899 * IN: vp - vnode of directory to read. 1900 * uio - structure supplying read location, range info, 1901 * and return buffer. 1902 * cr - credentials of caller. 1903 * ct - caller context 1904 * flags - case flags 1905 * 1906 * OUT: uio - updated offset and range, buffer filled. 1907 * eofp - set to true if end-of-file detected. 1908 * 1909 * RETURN: 0 if success 1910 * error code if failure 1911 * 1912 * Timestamps: 1913 * vp - atime updated 1914 * 1915 * Note that the low 4 bits of the cookie returned by zap is always zero. 1916 * This allows us to use the low range for "special" directory entries: 1917 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1918 * we use the offset 2 for the '.zfs' directory. 1919 */ 1920 /* ARGSUSED */ 1921 static int 1922 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 1923 caller_context_t *ct, int flags) 1924 { 1925 znode_t *zp = VTOZ(vp); 1926 iovec_t *iovp; 1927 edirent_t *eodp; 1928 dirent64_t *odp; 1929 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1930 objset_t *os; 1931 caddr_t outbuf; 1932 size_t bufsize; 1933 zap_cursor_t zc; 1934 zap_attribute_t zap; 1935 uint_t bytes_wanted; 1936 uint64_t offset; /* must be unsigned; checks for < 1 */ 1937 int local_eof; 1938 int outcount; 1939 int error; 1940 uint8_t prefetch; 1941 boolean_t check_sysattrs; 1942 1943 ZFS_ENTER(zfsvfs); 1944 ZFS_VERIFY_ZP(zp); 1945 1946 /* 1947 * If we are not given an eof variable, 1948 * use a local one. 1949 */ 1950 if (eofp == NULL) 1951 eofp = &local_eof; 1952 1953 /* 1954 * Check for valid iov_len. 1955 */ 1956 if (uio->uio_iov->iov_len <= 0) { 1957 ZFS_EXIT(zfsvfs); 1958 return (EINVAL); 1959 } 1960 1961 /* 1962 * Quit if directory has been removed (posix) 1963 */ 1964 if ((*eofp = zp->z_unlinked) != 0) { 1965 ZFS_EXIT(zfsvfs); 1966 return (0); 1967 } 1968 1969 error = 0; 1970 os = zfsvfs->z_os; 1971 offset = uio->uio_loffset; 1972 prefetch = zp->z_zn_prefetch; 1973 1974 /* 1975 * Initialize the iterator cursor. 1976 */ 1977 if (offset <= 3) { 1978 /* 1979 * Start iteration from the beginning of the directory. 1980 */ 1981 zap_cursor_init(&zc, os, zp->z_id); 1982 } else { 1983 /* 1984 * The offset is a serialized cursor. 1985 */ 1986 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1987 } 1988 1989 /* 1990 * Get space to change directory entries into fs independent format. 1991 */ 1992 iovp = uio->uio_iov; 1993 bytes_wanted = iovp->iov_len; 1994 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1995 bufsize = bytes_wanted; 1996 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1997 odp = (struct dirent64 *)outbuf; 1998 } else { 1999 bufsize = bytes_wanted; 2000 odp = (struct dirent64 *)iovp->iov_base; 2001 } 2002 eodp = (struct edirent *)odp; 2003 2004 /* 2005 * If this VFS supports the system attribute view interface; and 2006 * we're looking at an extended attribute directory; and we care 2007 * about normalization conflicts on this vfs; then we must check 2008 * for normalization conflicts with the sysattr name space. 2009 */ 2010 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2011 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2012 (flags & V_RDDIR_ENTFLAGS); 2013 2014 /* 2015 * Transform to file-system independent format 2016 */ 2017 outcount = 0; 2018 while (outcount < bytes_wanted) { 2019 ino64_t objnum; 2020 ushort_t reclen; 2021 off64_t *next; 2022 2023 /* 2024 * Special case `.', `..', and `.zfs'. 2025 */ 2026 if (offset == 0) { 2027 (void) strcpy(zap.za_name, "."); 2028 zap.za_normalization_conflict = 0; 2029 objnum = zp->z_id; 2030 } else if (offset == 1) { 2031 (void) strcpy(zap.za_name, ".."); 2032 zap.za_normalization_conflict = 0; 2033 objnum = zp->z_phys->zp_parent; 2034 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2035 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2036 zap.za_normalization_conflict = 0; 2037 objnum = ZFSCTL_INO_ROOT; 2038 } else { 2039 /* 2040 * Grab next entry. 2041 */ 2042 if (error = zap_cursor_retrieve(&zc, &zap)) { 2043 if ((*eofp = (error == ENOENT)) != 0) 2044 break; 2045 else 2046 goto update; 2047 } 2048 2049 if (zap.za_integer_length != 8 || 2050 zap.za_num_integers != 1) { 2051 cmn_err(CE_WARN, "zap_readdir: bad directory " 2052 "entry, obj = %lld, offset = %lld\n", 2053 (u_longlong_t)zp->z_id, 2054 (u_longlong_t)offset); 2055 error = ENXIO; 2056 goto update; 2057 } 2058 2059 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2060 /* 2061 * MacOS X can extract the object type here such as: 2062 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2063 */ 2064 2065 if (check_sysattrs && !zap.za_normalization_conflict) { 2066 zap.za_normalization_conflict = 2067 xattr_sysattr_casechk(zap.za_name); 2068 } 2069 } 2070 2071 if (flags & V_RDDIR_ACCFILTER) { 2072 /* 2073 * If we have no access at all, don't include 2074 * this entry in the returned information 2075 */ 2076 znode_t *ezp; 2077 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2078 goto skip_entry; 2079 if (!zfs_has_access(ezp, cr)) { 2080 VN_RELE(ZTOV(ezp)); 2081 goto skip_entry; 2082 } 2083 VN_RELE(ZTOV(ezp)); 2084 } 2085 2086 if (flags & V_RDDIR_ENTFLAGS) 2087 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2088 else 2089 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2090 2091 /* 2092 * Will this entry fit in the buffer? 2093 */ 2094 if (outcount + reclen > bufsize) { 2095 /* 2096 * Did we manage to fit anything in the buffer? 2097 */ 2098 if (!outcount) { 2099 error = EINVAL; 2100 goto update; 2101 } 2102 break; 2103 } 2104 if (flags & V_RDDIR_ENTFLAGS) { 2105 /* 2106 * Add extended flag entry: 2107 */ 2108 eodp->ed_ino = objnum; 2109 eodp->ed_reclen = reclen; 2110 /* NOTE: ed_off is the offset for the *next* entry */ 2111 next = &(eodp->ed_off); 2112 eodp->ed_eflags = zap.za_normalization_conflict ? 2113 ED_CASE_CONFLICT : 0; 2114 (void) strncpy(eodp->ed_name, zap.za_name, 2115 EDIRENT_NAMELEN(reclen)); 2116 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2117 } else { 2118 /* 2119 * Add normal entry: 2120 */ 2121 odp->d_ino = objnum; 2122 odp->d_reclen = reclen; 2123 /* NOTE: d_off is the offset for the *next* entry */ 2124 next = &(odp->d_off); 2125 (void) strncpy(odp->d_name, zap.za_name, 2126 DIRENT64_NAMELEN(reclen)); 2127 odp = (dirent64_t *)((intptr_t)odp + reclen); 2128 } 2129 outcount += reclen; 2130 2131 ASSERT(outcount <= bufsize); 2132 2133 /* Prefetch znode */ 2134 if (prefetch) 2135 dmu_prefetch(os, objnum, 0, 0); 2136 2137 skip_entry: 2138 /* 2139 * Move to the next entry, fill in the previous offset. 2140 */ 2141 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2142 zap_cursor_advance(&zc); 2143 offset = zap_cursor_serialize(&zc); 2144 } else { 2145 offset += 1; 2146 } 2147 *next = offset; 2148 } 2149 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2150 2151 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2152 iovp->iov_base += outcount; 2153 iovp->iov_len -= outcount; 2154 uio->uio_resid -= outcount; 2155 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2156 /* 2157 * Reset the pointer. 2158 */ 2159 offset = uio->uio_loffset; 2160 } 2161 2162 update: 2163 zap_cursor_fini(&zc); 2164 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2165 kmem_free(outbuf, bufsize); 2166 2167 if (error == ENOENT) 2168 error = 0; 2169 2170 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2171 2172 uio->uio_loffset = offset; 2173 ZFS_EXIT(zfsvfs); 2174 return (error); 2175 } 2176 2177 ulong_t zfs_fsync_sync_cnt = 4; 2178 2179 static int 2180 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2181 { 2182 znode_t *zp = VTOZ(vp); 2183 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2184 2185 /* 2186 * Regardless of whether this is required for standards conformance, 2187 * this is the logical behavior when fsync() is called on a file with 2188 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2189 * going to be pushed out as part of the zil_commit(). 2190 */ 2191 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2192 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2193 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2194 2195 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2196 2197 ZFS_ENTER(zfsvfs); 2198 ZFS_VERIFY_ZP(zp); 2199 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2200 ZFS_EXIT(zfsvfs); 2201 return (0); 2202 } 2203 2204 2205 /* 2206 * Get the requested file attributes and place them in the provided 2207 * vattr structure. 2208 * 2209 * IN: vp - vnode of file. 2210 * vap - va_mask identifies requested attributes. 2211 * If AT_XVATTR set, then optional attrs are requested 2212 * flags - ATTR_NOACLCHECK (CIFS server context) 2213 * cr - credentials of caller. 2214 * ct - caller context 2215 * 2216 * OUT: vap - attribute values. 2217 * 2218 * RETURN: 0 (always succeeds) 2219 */ 2220 /* ARGSUSED */ 2221 static int 2222 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2223 caller_context_t *ct) 2224 { 2225 znode_t *zp = VTOZ(vp); 2226 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2227 znode_phys_t *pzp; 2228 int error = 0; 2229 uint64_t links; 2230 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2231 xoptattr_t *xoap = NULL; 2232 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2233 2234 ZFS_ENTER(zfsvfs); 2235 ZFS_VERIFY_ZP(zp); 2236 pzp = zp->z_phys; 2237 2238 /* 2239 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2240 * Also, if we are the owner don't bother, since owner should 2241 * always be allowed to read basic attributes of file. 2242 */ 2243 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2244 (pzp->zp_uid != crgetuid(cr))) { 2245 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2246 skipaclchk, cr)) { 2247 ZFS_EXIT(zfsvfs); 2248 return (error); 2249 } 2250 } 2251 2252 /* 2253 * Return all attributes. It's cheaper to provide the answer 2254 * than to determine whether we were asked the question. 2255 */ 2256 2257 mutex_enter(&zp->z_lock); 2258 vap->va_type = vp->v_type; 2259 vap->va_mode = pzp->zp_mode & MODEMASK; 2260 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2261 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2262 vap->va_nodeid = zp->z_id; 2263 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2264 links = pzp->zp_links + 1; 2265 else 2266 links = pzp->zp_links; 2267 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2268 vap->va_size = pzp->zp_size; 2269 vap->va_rdev = vp->v_rdev; 2270 vap->va_seq = zp->z_seq; 2271 2272 /* 2273 * Add in any requested optional attributes and the create time. 2274 * Also set the corresponding bits in the returned attribute bitmap. 2275 */ 2276 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2277 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2278 xoap->xoa_archive = 2279 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2280 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2281 } 2282 2283 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2284 xoap->xoa_readonly = 2285 ((pzp->zp_flags & ZFS_READONLY) != 0); 2286 XVA_SET_RTN(xvap, XAT_READONLY); 2287 } 2288 2289 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2290 xoap->xoa_system = 2291 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2292 XVA_SET_RTN(xvap, XAT_SYSTEM); 2293 } 2294 2295 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2296 xoap->xoa_hidden = 2297 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2298 XVA_SET_RTN(xvap, XAT_HIDDEN); 2299 } 2300 2301 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2302 xoap->xoa_nounlink = 2303 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2304 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2305 } 2306 2307 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2308 xoap->xoa_immutable = 2309 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2310 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2311 } 2312 2313 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2314 xoap->xoa_appendonly = 2315 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2316 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2317 } 2318 2319 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2320 xoap->xoa_nodump = 2321 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2322 XVA_SET_RTN(xvap, XAT_NODUMP); 2323 } 2324 2325 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2326 xoap->xoa_opaque = 2327 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2328 XVA_SET_RTN(xvap, XAT_OPAQUE); 2329 } 2330 2331 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2332 xoap->xoa_av_quarantined = 2333 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2334 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2335 } 2336 2337 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2338 xoap->xoa_av_modified = 2339 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2340 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2341 } 2342 2343 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2344 vp->v_type == VREG && 2345 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2346 size_t len; 2347 dmu_object_info_t doi; 2348 2349 /* 2350 * Only VREG files have anti-virus scanstamps, so we 2351 * won't conflict with symlinks in the bonus buffer. 2352 */ 2353 dmu_object_info_from_db(zp->z_dbuf, &doi); 2354 len = sizeof (xoap->xoa_av_scanstamp) + 2355 sizeof (znode_phys_t); 2356 if (len <= doi.doi_bonus_size) { 2357 /* 2358 * pzp points to the start of the 2359 * znode_phys_t. pzp + 1 points to the 2360 * first byte after the znode_phys_t. 2361 */ 2362 (void) memcpy(xoap->xoa_av_scanstamp, 2363 pzp + 1, 2364 sizeof (xoap->xoa_av_scanstamp)); 2365 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2366 } 2367 } 2368 2369 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2370 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2371 XVA_SET_RTN(xvap, XAT_CREATETIME); 2372 } 2373 } 2374 2375 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2376 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2377 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2378 2379 mutex_exit(&zp->z_lock); 2380 2381 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 2382 2383 if (zp->z_blksz == 0) { 2384 /* 2385 * Block size hasn't been set; suggest maximal I/O transfers. 2386 */ 2387 vap->va_blksize = zfsvfs->z_max_blksz; 2388 } 2389 2390 ZFS_EXIT(zfsvfs); 2391 return (0); 2392 } 2393 2394 /* 2395 * Set the file attributes to the values contained in the 2396 * vattr structure. 2397 * 2398 * IN: vp - vnode of file to be modified. 2399 * vap - new attribute values. 2400 * If AT_XVATTR set, then optional attrs are being set 2401 * flags - ATTR_UTIME set if non-default time values provided. 2402 * - ATTR_NOACLCHECK (CIFS context only). 2403 * cr - credentials of caller. 2404 * ct - caller context 2405 * 2406 * RETURN: 0 if success 2407 * error code if failure 2408 * 2409 * Timestamps: 2410 * vp - ctime updated, mtime updated if size changed. 2411 */ 2412 /* ARGSUSED */ 2413 static int 2414 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2415 caller_context_t *ct) 2416 { 2417 znode_t *zp = VTOZ(vp); 2418 znode_phys_t *pzp; 2419 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2420 zilog_t *zilog; 2421 dmu_tx_t *tx; 2422 vattr_t oldva; 2423 xvattr_t tmpxvattr; 2424 uint_t mask = vap->va_mask; 2425 uint_t saved_mask; 2426 int trim_mask = 0; 2427 uint64_t new_mode; 2428 uint64_t new_uid, new_gid; 2429 znode_t *attrzp; 2430 int need_policy = FALSE; 2431 int err; 2432 zfs_fuid_info_t *fuidp = NULL; 2433 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2434 xoptattr_t *xoap; 2435 zfs_acl_t *aclp = NULL; 2436 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2437 boolean_t fuid_dirtied = B_FALSE; 2438 2439 if (mask == 0) 2440 return (0); 2441 2442 if (mask & AT_NOSET) 2443 return (EINVAL); 2444 2445 ZFS_ENTER(zfsvfs); 2446 ZFS_VERIFY_ZP(zp); 2447 2448 pzp = zp->z_phys; 2449 zilog = zfsvfs->z_log; 2450 2451 /* 2452 * Make sure that if we have ephemeral uid/gid or xvattr specified 2453 * that file system is at proper version level 2454 */ 2455 2456 if (zfsvfs->z_use_fuids == B_FALSE && 2457 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2458 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2459 (mask & AT_XVATTR))) { 2460 ZFS_EXIT(zfsvfs); 2461 return (EINVAL); 2462 } 2463 2464 if (mask & AT_SIZE && vp->v_type == VDIR) { 2465 ZFS_EXIT(zfsvfs); 2466 return (EISDIR); 2467 } 2468 2469 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2470 ZFS_EXIT(zfsvfs); 2471 return (EINVAL); 2472 } 2473 2474 /* 2475 * If this is an xvattr_t, then get a pointer to the structure of 2476 * optional attributes. If this is NULL, then we have a vattr_t. 2477 */ 2478 xoap = xva_getxoptattr(xvap); 2479 2480 xva_init(&tmpxvattr); 2481 2482 /* 2483 * Immutable files can only alter immutable bit and atime 2484 */ 2485 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2486 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2487 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2488 ZFS_EXIT(zfsvfs); 2489 return (EPERM); 2490 } 2491 2492 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2493 ZFS_EXIT(zfsvfs); 2494 return (EPERM); 2495 } 2496 2497 /* 2498 * Verify timestamps doesn't overflow 32 bits. 2499 * ZFS can handle large timestamps, but 32bit syscalls can't 2500 * handle times greater than 2039. This check should be removed 2501 * once large timestamps are fully supported. 2502 */ 2503 if (mask & (AT_ATIME | AT_MTIME)) { 2504 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2505 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2506 ZFS_EXIT(zfsvfs); 2507 return (EOVERFLOW); 2508 } 2509 } 2510 2511 top: 2512 attrzp = NULL; 2513 2514 /* Can this be moved to before the top label? */ 2515 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2516 ZFS_EXIT(zfsvfs); 2517 return (EROFS); 2518 } 2519 2520 /* 2521 * First validate permissions 2522 */ 2523 2524 if (mask & AT_SIZE) { 2525 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2526 if (err) { 2527 ZFS_EXIT(zfsvfs); 2528 return (err); 2529 } 2530 /* 2531 * XXX - Note, we are not providing any open 2532 * mode flags here (like FNDELAY), so we may 2533 * block if there are locks present... this 2534 * should be addressed in openat(). 2535 */ 2536 /* XXX - would it be OK to generate a log record here? */ 2537 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2538 if (err) { 2539 ZFS_EXIT(zfsvfs); 2540 return (err); 2541 } 2542 } 2543 2544 if (mask & (AT_ATIME|AT_MTIME) || 2545 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2546 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2547 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2548 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2549 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2550 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2551 skipaclchk, cr); 2552 2553 if (mask & (AT_UID|AT_GID)) { 2554 int idmask = (mask & (AT_UID|AT_GID)); 2555 int take_owner; 2556 int take_group; 2557 2558 /* 2559 * NOTE: even if a new mode is being set, 2560 * we may clear S_ISUID/S_ISGID bits. 2561 */ 2562 2563 if (!(mask & AT_MODE)) 2564 vap->va_mode = pzp->zp_mode; 2565 2566 /* 2567 * Take ownership or chgrp to group we are a member of 2568 */ 2569 2570 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2571 take_group = (mask & AT_GID) && 2572 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2573 2574 /* 2575 * If both AT_UID and AT_GID are set then take_owner and 2576 * take_group must both be set in order to allow taking 2577 * ownership. 2578 * 2579 * Otherwise, send the check through secpolicy_vnode_setattr() 2580 * 2581 */ 2582 2583 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2584 ((idmask == AT_UID) && take_owner) || 2585 ((idmask == AT_GID) && take_group)) { 2586 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2587 skipaclchk, cr) == 0) { 2588 /* 2589 * Remove setuid/setgid for non-privileged users 2590 */ 2591 secpolicy_setid_clear(vap, cr); 2592 trim_mask = (mask & (AT_UID|AT_GID)); 2593 } else { 2594 need_policy = TRUE; 2595 } 2596 } else { 2597 need_policy = TRUE; 2598 } 2599 } 2600 2601 mutex_enter(&zp->z_lock); 2602 oldva.va_mode = pzp->zp_mode; 2603 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2604 if (mask & AT_XVATTR) { 2605 /* 2606 * Update xvattr mask to include only those attributes 2607 * that are actually changing. 2608 * 2609 * the bits will be restored prior to actually setting 2610 * the attributes so the caller thinks they were set. 2611 */ 2612 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2613 if (xoap->xoa_appendonly != 2614 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) { 2615 need_policy = TRUE; 2616 } else { 2617 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2618 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2619 } 2620 } 2621 2622 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2623 if (xoap->xoa_nounlink != 2624 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) { 2625 need_policy = TRUE; 2626 } else { 2627 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2628 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2629 } 2630 } 2631 2632 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2633 if (xoap->xoa_immutable != 2634 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) { 2635 need_policy = TRUE; 2636 } else { 2637 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2638 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2639 } 2640 } 2641 2642 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2643 if (xoap->xoa_nodump != 2644 ((pzp->zp_flags & ZFS_NODUMP) != 0)) { 2645 need_policy = TRUE; 2646 } else { 2647 XVA_CLR_REQ(xvap, XAT_NODUMP); 2648 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2649 } 2650 } 2651 2652 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2653 if (xoap->xoa_av_modified != 2654 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) { 2655 need_policy = TRUE; 2656 } else { 2657 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2658 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2659 } 2660 } 2661 2662 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2663 if ((vp->v_type != VREG && 2664 xoap->xoa_av_quarantined) || 2665 xoap->xoa_av_quarantined != 2666 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)) { 2667 need_policy = TRUE; 2668 } else { 2669 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2670 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2671 } 2672 } 2673 2674 if (need_policy == FALSE && 2675 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2676 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2677 need_policy = TRUE; 2678 } 2679 } 2680 2681 mutex_exit(&zp->z_lock); 2682 2683 if (mask & AT_MODE) { 2684 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2685 err = secpolicy_setid_setsticky_clear(vp, vap, 2686 &oldva, cr); 2687 if (err) { 2688 ZFS_EXIT(zfsvfs); 2689 return (err); 2690 } 2691 trim_mask |= AT_MODE; 2692 } else { 2693 need_policy = TRUE; 2694 } 2695 } 2696 2697 if (need_policy) { 2698 /* 2699 * If trim_mask is set then take ownership 2700 * has been granted or write_acl is present and user 2701 * has the ability to modify mode. In that case remove 2702 * UID|GID and or MODE from mask so that 2703 * secpolicy_vnode_setattr() doesn't revoke it. 2704 */ 2705 2706 if (trim_mask) { 2707 saved_mask = vap->va_mask; 2708 vap->va_mask &= ~trim_mask; 2709 } 2710 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2711 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2712 if (err) { 2713 ZFS_EXIT(zfsvfs); 2714 return (err); 2715 } 2716 2717 if (trim_mask) 2718 vap->va_mask |= saved_mask; 2719 } 2720 2721 /* 2722 * secpolicy_vnode_setattr, or take ownership may have 2723 * changed va_mask 2724 */ 2725 mask = vap->va_mask; 2726 2727 tx = dmu_tx_create(zfsvfs->z_os); 2728 dmu_tx_hold_bonus(tx, zp->z_id); 2729 2730 if (mask & AT_MODE) { 2731 uint64_t pmode = pzp->zp_mode; 2732 2733 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2734 2735 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 2736 goto out; 2737 if (pzp->zp_acl.z_acl_extern_obj) { 2738 /* Are we upgrading ACL from old V0 format to new V1 */ 2739 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2740 pzp->zp_acl.z_acl_version == 2741 ZFS_ACL_VERSION_INITIAL) { 2742 dmu_tx_hold_free(tx, 2743 pzp->zp_acl.z_acl_extern_obj, 0, 2744 DMU_OBJECT_END); 2745 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2746 0, aclp->z_acl_bytes); 2747 } else { 2748 dmu_tx_hold_write(tx, 2749 pzp->zp_acl.z_acl_extern_obj, 0, 2750 aclp->z_acl_bytes); 2751 } 2752 } else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2753 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2754 0, aclp->z_acl_bytes); 2755 } 2756 } 2757 2758 if (mask & (AT_UID | AT_GID)) { 2759 if (pzp->zp_xattr) { 2760 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2761 if (err) 2762 goto out; 2763 dmu_tx_hold_bonus(tx, attrzp->z_id); 2764 } 2765 if (mask & AT_UID) { 2766 new_uid = zfs_fuid_create(zfsvfs, 2767 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2768 if (new_uid != pzp->zp_uid && 2769 zfs_usergroup_overquota(zfsvfs, B_FALSE, new_uid)) { 2770 err = EDQUOT; 2771 goto out; 2772 } 2773 } 2774 2775 if (mask & AT_GID) { 2776 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2777 cr, ZFS_GROUP, &fuidp); 2778 if (new_gid != pzp->zp_gid && 2779 zfs_usergroup_overquota(zfsvfs, B_TRUE, new_gid)) { 2780 err = EDQUOT; 2781 goto out; 2782 } 2783 } 2784 fuid_dirtied = zfsvfs->z_fuid_dirty; 2785 if (fuid_dirtied) { 2786 if (zfsvfs->z_fuid_obj == 0) { 2787 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2788 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2789 FUID_SIZE_ESTIMATE(zfsvfs)); 2790 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 2791 FALSE, NULL); 2792 } else { 2793 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 2794 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 2795 FUID_SIZE_ESTIMATE(zfsvfs)); 2796 } 2797 } 2798 } 2799 2800 err = dmu_tx_assign(tx, TXG_NOWAIT); 2801 if (err) { 2802 if (err == ERESTART) 2803 dmu_tx_wait(tx); 2804 goto out; 2805 } 2806 2807 dmu_buf_will_dirty(zp->z_dbuf, tx); 2808 2809 /* 2810 * Set each attribute requested. 2811 * We group settings according to the locks they need to acquire. 2812 * 2813 * Note: you cannot set ctime directly, although it will be 2814 * updated as a side-effect of calling this function. 2815 */ 2816 2817 mutex_enter(&zp->z_lock); 2818 2819 if (mask & AT_MODE) { 2820 mutex_enter(&zp->z_acl_lock); 2821 zp->z_phys->zp_mode = new_mode; 2822 err = zfs_aclset_common(zp, aclp, cr, tx); 2823 ASSERT3U(err, ==, 0); 2824 zp->z_acl_cached = aclp; 2825 aclp = NULL; 2826 mutex_exit(&zp->z_acl_lock); 2827 } 2828 2829 if (attrzp) 2830 mutex_enter(&attrzp->z_lock); 2831 2832 if (mask & AT_UID) { 2833 pzp->zp_uid = new_uid; 2834 if (attrzp) 2835 attrzp->z_phys->zp_uid = new_uid; 2836 } 2837 2838 if (mask & AT_GID) { 2839 pzp->zp_gid = new_gid; 2840 if (attrzp) 2841 attrzp->z_phys->zp_gid = new_gid; 2842 } 2843 2844 if (attrzp) 2845 mutex_exit(&attrzp->z_lock); 2846 2847 if (mask & AT_ATIME) 2848 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2849 2850 if (mask & AT_MTIME) 2851 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2852 2853 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 2854 if (mask & AT_SIZE) 2855 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2856 else if (mask != 0) 2857 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2858 /* 2859 * Do this after setting timestamps to prevent timestamp 2860 * update from toggling bit 2861 */ 2862 2863 if (xoap && (mask & AT_XVATTR)) { 2864 2865 /* 2866 * restore trimmed off masks 2867 * so that return masks can be set for caller. 2868 */ 2869 2870 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 2871 XVA_SET_REQ(xvap, XAT_APPENDONLY); 2872 } 2873 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 2874 XVA_SET_REQ(xvap, XAT_NOUNLINK); 2875 } 2876 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 2877 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 2878 } 2879 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 2880 XVA_SET_REQ(xvap, XAT_NODUMP); 2881 } 2882 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 2883 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 2884 } 2885 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 2886 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 2887 } 2888 2889 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 2890 size_t len; 2891 dmu_object_info_t doi; 2892 2893 ASSERT(vp->v_type == VREG); 2894 2895 /* Grow the bonus buffer if necessary. */ 2896 dmu_object_info_from_db(zp->z_dbuf, &doi); 2897 len = sizeof (xoap->xoa_av_scanstamp) + 2898 sizeof (znode_phys_t); 2899 if (len > doi.doi_bonus_size) 2900 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 2901 } 2902 zfs_xvattr_set(zp, xvap); 2903 } 2904 2905 if (fuid_dirtied) 2906 zfs_fuid_sync(zfsvfs, tx); 2907 2908 if (mask != 0) 2909 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2910 2911 mutex_exit(&zp->z_lock); 2912 2913 out: 2914 if (attrzp) 2915 VN_RELE(ZTOV(attrzp)); 2916 2917 if (aclp) 2918 zfs_acl_free(aclp); 2919 2920 if (fuidp) { 2921 zfs_fuid_info_free(fuidp); 2922 fuidp = NULL; 2923 } 2924 2925 if (err) 2926 dmu_tx_abort(tx); 2927 else 2928 dmu_tx_commit(tx); 2929 2930 if (err == ERESTART) 2931 goto top; 2932 2933 ZFS_EXIT(zfsvfs); 2934 return (err); 2935 } 2936 2937 typedef struct zfs_zlock { 2938 krwlock_t *zl_rwlock; /* lock we acquired */ 2939 znode_t *zl_znode; /* znode we held */ 2940 struct zfs_zlock *zl_next; /* next in list */ 2941 } zfs_zlock_t; 2942 2943 /* 2944 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2945 */ 2946 static void 2947 zfs_rename_unlock(zfs_zlock_t **zlpp) 2948 { 2949 zfs_zlock_t *zl; 2950 2951 while ((zl = *zlpp) != NULL) { 2952 if (zl->zl_znode != NULL) 2953 VN_RELE(ZTOV(zl->zl_znode)); 2954 rw_exit(zl->zl_rwlock); 2955 *zlpp = zl->zl_next; 2956 kmem_free(zl, sizeof (*zl)); 2957 } 2958 } 2959 2960 /* 2961 * Search back through the directory tree, using the ".." entries. 2962 * Lock each directory in the chain to prevent concurrent renames. 2963 * Fail any attempt to move a directory into one of its own descendants. 2964 * XXX - z_parent_lock can overlap with map or grow locks 2965 */ 2966 static int 2967 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2968 { 2969 zfs_zlock_t *zl; 2970 znode_t *zp = tdzp; 2971 uint64_t rootid = zp->z_zfsvfs->z_root; 2972 uint64_t *oidp = &zp->z_id; 2973 krwlock_t *rwlp = &szp->z_parent_lock; 2974 krw_t rw = RW_WRITER; 2975 2976 /* 2977 * First pass write-locks szp and compares to zp->z_id. 2978 * Later passes read-lock zp and compare to zp->z_parent. 2979 */ 2980 do { 2981 if (!rw_tryenter(rwlp, rw)) { 2982 /* 2983 * Another thread is renaming in this path. 2984 * Note that if we are a WRITER, we don't have any 2985 * parent_locks held yet. 2986 */ 2987 if (rw == RW_READER && zp->z_id > szp->z_id) { 2988 /* 2989 * Drop our locks and restart 2990 */ 2991 zfs_rename_unlock(&zl); 2992 *zlpp = NULL; 2993 zp = tdzp; 2994 oidp = &zp->z_id; 2995 rwlp = &szp->z_parent_lock; 2996 rw = RW_WRITER; 2997 continue; 2998 } else { 2999 /* 3000 * Wait for other thread to drop its locks 3001 */ 3002 rw_enter(rwlp, rw); 3003 } 3004 } 3005 3006 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3007 zl->zl_rwlock = rwlp; 3008 zl->zl_znode = NULL; 3009 zl->zl_next = *zlpp; 3010 *zlpp = zl; 3011 3012 if (*oidp == szp->z_id) /* We're a descendant of szp */ 3013 return (EINVAL); 3014 3015 if (*oidp == rootid) /* We've hit the top */ 3016 return (0); 3017 3018 if (rw == RW_READER) { /* i.e. not the first pass */ 3019 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 3020 if (error) 3021 return (error); 3022 zl->zl_znode = zp; 3023 } 3024 oidp = &zp->z_phys->zp_parent; 3025 rwlp = &zp->z_parent_lock; 3026 rw = RW_READER; 3027 3028 } while (zp->z_id != sdzp->z_id); 3029 3030 return (0); 3031 } 3032 3033 /* 3034 * Move an entry from the provided source directory to the target 3035 * directory. Change the entry name as indicated. 3036 * 3037 * IN: sdvp - Source directory containing the "old entry". 3038 * snm - Old entry name. 3039 * tdvp - Target directory to contain the "new entry". 3040 * tnm - New entry name. 3041 * cr - credentials of caller. 3042 * ct - caller context 3043 * flags - case flags 3044 * 3045 * RETURN: 0 if success 3046 * error code if failure 3047 * 3048 * Timestamps: 3049 * sdvp,tdvp - ctime|mtime updated 3050 */ 3051 /*ARGSUSED*/ 3052 static int 3053 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3054 caller_context_t *ct, int flags) 3055 { 3056 znode_t *tdzp, *szp, *tzp; 3057 znode_t *sdzp = VTOZ(sdvp); 3058 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3059 zilog_t *zilog; 3060 vnode_t *realvp; 3061 zfs_dirlock_t *sdl, *tdl; 3062 dmu_tx_t *tx; 3063 zfs_zlock_t *zl; 3064 int cmp, serr, terr; 3065 int error = 0; 3066 int zflg = 0; 3067 3068 ZFS_ENTER(zfsvfs); 3069 ZFS_VERIFY_ZP(sdzp); 3070 zilog = zfsvfs->z_log; 3071 3072 /* 3073 * Make sure we have the real vp for the target directory. 3074 */ 3075 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3076 tdvp = realvp; 3077 3078 if (tdvp->v_vfsp != sdvp->v_vfsp) { 3079 ZFS_EXIT(zfsvfs); 3080 return (EXDEV); 3081 } 3082 3083 tdzp = VTOZ(tdvp); 3084 ZFS_VERIFY_ZP(tdzp); 3085 if (zfsvfs->z_utf8 && u8_validate(tnm, 3086 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3087 ZFS_EXIT(zfsvfs); 3088 return (EILSEQ); 3089 } 3090 3091 if (flags & FIGNORECASE) 3092 zflg |= ZCILOOK; 3093 3094 top: 3095 szp = NULL; 3096 tzp = NULL; 3097 zl = NULL; 3098 3099 /* 3100 * This is to prevent the creation of links into attribute space 3101 * by renaming a linked file into/outof an attribute directory. 3102 * See the comment in zfs_link() for why this is considered bad. 3103 */ 3104 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 3105 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 3106 ZFS_EXIT(zfsvfs); 3107 return (EINVAL); 3108 } 3109 3110 /* 3111 * Lock source and target directory entries. To prevent deadlock, 3112 * a lock ordering must be defined. We lock the directory with 3113 * the smallest object id first, or if it's a tie, the one with 3114 * the lexically first name. 3115 */ 3116 if (sdzp->z_id < tdzp->z_id) { 3117 cmp = -1; 3118 } else if (sdzp->z_id > tdzp->z_id) { 3119 cmp = 1; 3120 } else { 3121 /* 3122 * First compare the two name arguments without 3123 * considering any case folding. 3124 */ 3125 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3126 3127 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3128 ASSERT(error == 0 || !zfsvfs->z_utf8); 3129 if (cmp == 0) { 3130 /* 3131 * POSIX: "If the old argument and the new argument 3132 * both refer to links to the same existing file, 3133 * the rename() function shall return successfully 3134 * and perform no other action." 3135 */ 3136 ZFS_EXIT(zfsvfs); 3137 return (0); 3138 } 3139 /* 3140 * If the file system is case-folding, then we may 3141 * have some more checking to do. A case-folding file 3142 * system is either supporting mixed case sensitivity 3143 * access or is completely case-insensitive. Note 3144 * that the file system is always case preserving. 3145 * 3146 * In mixed sensitivity mode case sensitive behavior 3147 * is the default. FIGNORECASE must be used to 3148 * explicitly request case insensitive behavior. 3149 * 3150 * If the source and target names provided differ only 3151 * by case (e.g., a request to rename 'tim' to 'Tim'), 3152 * we will treat this as a special case in the 3153 * case-insensitive mode: as long as the source name 3154 * is an exact match, we will allow this to proceed as 3155 * a name-change request. 3156 */ 3157 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3158 (zfsvfs->z_case == ZFS_CASE_MIXED && 3159 flags & FIGNORECASE)) && 3160 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3161 &error) == 0) { 3162 /* 3163 * case preserving rename request, require exact 3164 * name matches 3165 */ 3166 zflg |= ZCIEXACT; 3167 zflg &= ~ZCILOOK; 3168 } 3169 } 3170 3171 if (cmp < 0) { 3172 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3173 ZEXISTS | zflg, NULL, NULL); 3174 terr = zfs_dirent_lock(&tdl, 3175 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3176 } else { 3177 terr = zfs_dirent_lock(&tdl, 3178 tdzp, tnm, &tzp, zflg, NULL, NULL); 3179 serr = zfs_dirent_lock(&sdl, 3180 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3181 NULL, NULL); 3182 } 3183 3184 if (serr) { 3185 /* 3186 * Source entry invalid or not there. 3187 */ 3188 if (!terr) { 3189 zfs_dirent_unlock(tdl); 3190 if (tzp) 3191 VN_RELE(ZTOV(tzp)); 3192 } 3193 if (strcmp(snm, "..") == 0) 3194 serr = EINVAL; 3195 ZFS_EXIT(zfsvfs); 3196 return (serr); 3197 } 3198 if (terr) { 3199 zfs_dirent_unlock(sdl); 3200 VN_RELE(ZTOV(szp)); 3201 if (strcmp(tnm, "..") == 0) 3202 terr = EINVAL; 3203 ZFS_EXIT(zfsvfs); 3204 return (terr); 3205 } 3206 3207 /* 3208 * Must have write access at the source to remove the old entry 3209 * and write access at the target to create the new entry. 3210 * Note that if target and source are the same, this can be 3211 * done in a single check. 3212 */ 3213 3214 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3215 goto out; 3216 3217 if (ZTOV(szp)->v_type == VDIR) { 3218 /* 3219 * Check to make sure rename is valid. 3220 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3221 */ 3222 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3223 goto out; 3224 } 3225 3226 /* 3227 * Does target exist? 3228 */ 3229 if (tzp) { 3230 /* 3231 * Source and target must be the same type. 3232 */ 3233 if (ZTOV(szp)->v_type == VDIR) { 3234 if (ZTOV(tzp)->v_type != VDIR) { 3235 error = ENOTDIR; 3236 goto out; 3237 } 3238 } else { 3239 if (ZTOV(tzp)->v_type == VDIR) { 3240 error = EISDIR; 3241 goto out; 3242 } 3243 } 3244 /* 3245 * POSIX dictates that when the source and target 3246 * entries refer to the same file object, rename 3247 * must do nothing and exit without error. 3248 */ 3249 if (szp->z_id == tzp->z_id) { 3250 error = 0; 3251 goto out; 3252 } 3253 } 3254 3255 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3256 if (tzp) 3257 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3258 3259 /* 3260 * notify the target directory if it is not the same 3261 * as source directory. 3262 */ 3263 if (tdvp != sdvp) { 3264 vnevent_rename_dest_dir(tdvp, ct); 3265 } 3266 3267 tx = dmu_tx_create(zfsvfs->z_os); 3268 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3269 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3270 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3271 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3272 if (sdzp != tdzp) 3273 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3274 if (tzp) 3275 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3276 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3277 error = dmu_tx_assign(tx, TXG_NOWAIT); 3278 if (error) { 3279 if (zl != NULL) 3280 zfs_rename_unlock(&zl); 3281 zfs_dirent_unlock(sdl); 3282 zfs_dirent_unlock(tdl); 3283 VN_RELE(ZTOV(szp)); 3284 if (tzp) 3285 VN_RELE(ZTOV(tzp)); 3286 if (error == ERESTART) { 3287 dmu_tx_wait(tx); 3288 dmu_tx_abort(tx); 3289 goto top; 3290 } 3291 dmu_tx_abort(tx); 3292 ZFS_EXIT(zfsvfs); 3293 return (error); 3294 } 3295 3296 if (tzp) /* Attempt to remove the existing target */ 3297 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3298 3299 if (error == 0) { 3300 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3301 if (error == 0) { 3302 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3303 3304 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3305 ASSERT(error == 0); 3306 3307 zfs_log_rename(zilog, tx, 3308 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3309 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3310 3311 /* Update path information for the target vnode */ 3312 vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm)); 3313 } 3314 } 3315 3316 dmu_tx_commit(tx); 3317 out: 3318 if (zl != NULL) 3319 zfs_rename_unlock(&zl); 3320 3321 zfs_dirent_unlock(sdl); 3322 zfs_dirent_unlock(tdl); 3323 3324 VN_RELE(ZTOV(szp)); 3325 if (tzp) 3326 VN_RELE(ZTOV(tzp)); 3327 3328 ZFS_EXIT(zfsvfs); 3329 return (error); 3330 } 3331 3332 /* 3333 * Insert the indicated symbolic reference entry into the directory. 3334 * 3335 * IN: dvp - Directory to contain new symbolic link. 3336 * link - Name for new symlink entry. 3337 * vap - Attributes of new entry. 3338 * target - Target path of new symlink. 3339 * cr - credentials of caller. 3340 * ct - caller context 3341 * flags - case flags 3342 * 3343 * RETURN: 0 if success 3344 * error code if failure 3345 * 3346 * Timestamps: 3347 * dvp - ctime|mtime updated 3348 */ 3349 /*ARGSUSED*/ 3350 static int 3351 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3352 caller_context_t *ct, int flags) 3353 { 3354 znode_t *zp, *dzp = VTOZ(dvp); 3355 zfs_dirlock_t *dl; 3356 dmu_tx_t *tx; 3357 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3358 zilog_t *zilog; 3359 int len = strlen(link); 3360 int error; 3361 int zflg = ZNEW; 3362 zfs_acl_ids_t acl_ids; 3363 boolean_t fuid_dirtied; 3364 3365 ASSERT(vap->va_type == VLNK); 3366 3367 ZFS_ENTER(zfsvfs); 3368 ZFS_VERIFY_ZP(dzp); 3369 zilog = zfsvfs->z_log; 3370 3371 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3372 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3373 ZFS_EXIT(zfsvfs); 3374 return (EILSEQ); 3375 } 3376 if (flags & FIGNORECASE) 3377 zflg |= ZCILOOK; 3378 top: 3379 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3380 ZFS_EXIT(zfsvfs); 3381 return (error); 3382 } 3383 3384 if (len > MAXPATHLEN) { 3385 ZFS_EXIT(zfsvfs); 3386 return (ENAMETOOLONG); 3387 } 3388 3389 /* 3390 * Attempt to lock directory; fail if entry already exists. 3391 */ 3392 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3393 if (error) { 3394 ZFS_EXIT(zfsvfs); 3395 return (error); 3396 } 3397 3398 VERIFY(0 == zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids)); 3399 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3400 zfs_acl_ids_free(&acl_ids); 3401 zfs_dirent_unlock(dl); 3402 ZFS_EXIT(zfsvfs); 3403 return (EDQUOT); 3404 } 3405 tx = dmu_tx_create(zfsvfs->z_os); 3406 fuid_dirtied = zfsvfs->z_fuid_dirty; 3407 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3408 dmu_tx_hold_bonus(tx, dzp->z_id); 3409 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3410 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) 3411 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3412 if (fuid_dirtied) 3413 zfs_fuid_txhold(zfsvfs, tx); 3414 error = dmu_tx_assign(tx, TXG_NOWAIT); 3415 if (error) { 3416 zfs_acl_ids_free(&acl_ids); 3417 zfs_dirent_unlock(dl); 3418 if (error == ERESTART) { 3419 dmu_tx_wait(tx); 3420 dmu_tx_abort(tx); 3421 goto top; 3422 } 3423 dmu_tx_abort(tx); 3424 ZFS_EXIT(zfsvfs); 3425 return (error); 3426 } 3427 3428 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3429 3430 /* 3431 * Create a new object for the symlink. 3432 * Put the link content into bonus buffer if it will fit; 3433 * otherwise, store it just like any other file data. 3434 */ 3435 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3436 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, &acl_ids); 3437 if (len != 0) 3438 bcopy(link, zp->z_phys + 1, len); 3439 } else { 3440 dmu_buf_t *dbp; 3441 3442 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 3443 3444 if (fuid_dirtied) 3445 zfs_fuid_sync(zfsvfs, tx); 3446 /* 3447 * Nothing can access the znode yet so no locking needed 3448 * for growing the znode's blocksize. 3449 */ 3450 zfs_grow_blocksize(zp, len, tx); 3451 3452 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3453 zp->z_id, 0, FTAG, &dbp)); 3454 dmu_buf_will_dirty(dbp, tx); 3455 3456 ASSERT3U(len, <=, dbp->db_size); 3457 bcopy(link, dbp->db_data, len); 3458 dmu_buf_rele(dbp, FTAG); 3459 } 3460 zp->z_phys->zp_size = len; 3461 3462 /* 3463 * Insert the new object into the directory. 3464 */ 3465 (void) zfs_link_create(dl, zp, tx, ZNEW); 3466 if (error == 0) { 3467 uint64_t txtype = TX_SYMLINK; 3468 if (flags & FIGNORECASE) 3469 txtype |= TX_CI; 3470 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3471 } 3472 3473 zfs_acl_ids_free(&acl_ids); 3474 3475 dmu_tx_commit(tx); 3476 3477 zfs_dirent_unlock(dl); 3478 3479 VN_RELE(ZTOV(zp)); 3480 3481 ZFS_EXIT(zfsvfs); 3482 return (error); 3483 } 3484 3485 /* 3486 * Return, in the buffer contained in the provided uio structure, 3487 * the symbolic path referred to by vp. 3488 * 3489 * IN: vp - vnode of symbolic link. 3490 * uoip - structure to contain the link path. 3491 * cr - credentials of caller. 3492 * ct - caller context 3493 * 3494 * OUT: uio - structure to contain the link path. 3495 * 3496 * RETURN: 0 if success 3497 * error code if failure 3498 * 3499 * Timestamps: 3500 * vp - atime updated 3501 */ 3502 /* ARGSUSED */ 3503 static int 3504 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3505 { 3506 znode_t *zp = VTOZ(vp); 3507 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3508 size_t bufsz; 3509 int error; 3510 3511 ZFS_ENTER(zfsvfs); 3512 ZFS_VERIFY_ZP(zp); 3513 3514 bufsz = (size_t)zp->z_phys->zp_size; 3515 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3516 error = uiomove(zp->z_phys + 1, 3517 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3518 } else { 3519 dmu_buf_t *dbp; 3520 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3521 if (error) { 3522 ZFS_EXIT(zfsvfs); 3523 return (error); 3524 } 3525 error = uiomove(dbp->db_data, 3526 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3527 dmu_buf_rele(dbp, FTAG); 3528 } 3529 3530 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3531 ZFS_EXIT(zfsvfs); 3532 return (error); 3533 } 3534 3535 /* 3536 * Insert a new entry into directory tdvp referencing svp. 3537 * 3538 * IN: tdvp - Directory to contain new entry. 3539 * svp - vnode of new entry. 3540 * name - name of new entry. 3541 * cr - credentials of caller. 3542 * ct - caller context 3543 * 3544 * RETURN: 0 if success 3545 * error code if failure 3546 * 3547 * Timestamps: 3548 * tdvp - ctime|mtime updated 3549 * svp - ctime updated 3550 */ 3551 /* ARGSUSED */ 3552 static int 3553 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3554 caller_context_t *ct, int flags) 3555 { 3556 znode_t *dzp = VTOZ(tdvp); 3557 znode_t *tzp, *szp; 3558 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3559 zilog_t *zilog; 3560 zfs_dirlock_t *dl; 3561 dmu_tx_t *tx; 3562 vnode_t *realvp; 3563 int error; 3564 int zf = ZNEW; 3565 uid_t owner; 3566 3567 ASSERT(tdvp->v_type == VDIR); 3568 3569 ZFS_ENTER(zfsvfs); 3570 ZFS_VERIFY_ZP(dzp); 3571 zilog = zfsvfs->z_log; 3572 3573 if (VOP_REALVP(svp, &realvp, ct) == 0) 3574 svp = realvp; 3575 3576 if (svp->v_vfsp != tdvp->v_vfsp) { 3577 ZFS_EXIT(zfsvfs); 3578 return (EXDEV); 3579 } 3580 szp = VTOZ(svp); 3581 ZFS_VERIFY_ZP(szp); 3582 3583 if (zfsvfs->z_utf8 && u8_validate(name, 3584 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3585 ZFS_EXIT(zfsvfs); 3586 return (EILSEQ); 3587 } 3588 if (flags & FIGNORECASE) 3589 zf |= ZCILOOK; 3590 3591 top: 3592 /* 3593 * We do not support links between attributes and non-attributes 3594 * because of the potential security risk of creating links 3595 * into "normal" file space in order to circumvent restrictions 3596 * imposed in attribute space. 3597 */ 3598 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3599 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3600 ZFS_EXIT(zfsvfs); 3601 return (EINVAL); 3602 } 3603 3604 /* 3605 * POSIX dictates that we return EPERM here. 3606 * Better choices include ENOTSUP or EISDIR. 3607 */ 3608 if (svp->v_type == VDIR) { 3609 ZFS_EXIT(zfsvfs); 3610 return (EPERM); 3611 } 3612 3613 owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER); 3614 if (owner != crgetuid(cr) && 3615 secpolicy_basic_link(cr) != 0) { 3616 ZFS_EXIT(zfsvfs); 3617 return (EPERM); 3618 } 3619 3620 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3621 ZFS_EXIT(zfsvfs); 3622 return (error); 3623 } 3624 3625 /* 3626 * Attempt to lock directory; fail if entry already exists. 3627 */ 3628 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3629 if (error) { 3630 ZFS_EXIT(zfsvfs); 3631 return (error); 3632 } 3633 3634 tx = dmu_tx_create(zfsvfs->z_os); 3635 dmu_tx_hold_bonus(tx, szp->z_id); 3636 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3637 error = dmu_tx_assign(tx, TXG_NOWAIT); 3638 if (error) { 3639 zfs_dirent_unlock(dl); 3640 if (error == ERESTART) { 3641 dmu_tx_wait(tx); 3642 dmu_tx_abort(tx); 3643 goto top; 3644 } 3645 dmu_tx_abort(tx); 3646 ZFS_EXIT(zfsvfs); 3647 return (error); 3648 } 3649 3650 error = zfs_link_create(dl, szp, tx, 0); 3651 3652 if (error == 0) { 3653 uint64_t txtype = TX_LINK; 3654 if (flags & FIGNORECASE) 3655 txtype |= TX_CI; 3656 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3657 } 3658 3659 dmu_tx_commit(tx); 3660 3661 zfs_dirent_unlock(dl); 3662 3663 if (error == 0) { 3664 vnevent_link(svp, ct); 3665 } 3666 3667 ZFS_EXIT(zfsvfs); 3668 return (error); 3669 } 3670 3671 /* 3672 * zfs_null_putapage() is used when the file system has been force 3673 * unmounted. It just drops the pages. 3674 */ 3675 /* ARGSUSED */ 3676 static int 3677 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3678 size_t *lenp, int flags, cred_t *cr) 3679 { 3680 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3681 return (0); 3682 } 3683 3684 /* 3685 * Push a page out to disk, klustering if possible. 3686 * 3687 * IN: vp - file to push page to. 3688 * pp - page to push. 3689 * flags - additional flags. 3690 * cr - credentials of caller. 3691 * 3692 * OUT: offp - start of range pushed. 3693 * lenp - len of range pushed. 3694 * 3695 * RETURN: 0 if success 3696 * error code if failure 3697 * 3698 * NOTE: callers must have locked the page to be pushed. On 3699 * exit, the page (and all other pages in the kluster) must be 3700 * unlocked. 3701 */ 3702 /* ARGSUSED */ 3703 static int 3704 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3705 size_t *lenp, int flags, cred_t *cr) 3706 { 3707 znode_t *zp = VTOZ(vp); 3708 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3709 dmu_tx_t *tx; 3710 u_offset_t off, koff; 3711 size_t len, klen; 3712 uint64_t filesz; 3713 int err; 3714 3715 filesz = zp->z_phys->zp_size; 3716 off = pp->p_offset; 3717 len = PAGESIZE; 3718 /* 3719 * If our blocksize is bigger than the page size, try to kluster 3720 * multiple pages so that we write a full block (thus avoiding 3721 * a read-modify-write). 3722 */ 3723 if (off < filesz && zp->z_blksz > PAGESIZE) { 3724 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3725 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 3726 ASSERT(koff <= filesz); 3727 if (koff + klen > filesz) 3728 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 3729 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3730 } 3731 ASSERT3U(btop(len), ==, btopr(len)); 3732 3733 /* 3734 * Can't push pages past end-of-file. 3735 */ 3736 if (off >= filesz) { 3737 /* ignore all pages */ 3738 err = 0; 3739 goto out; 3740 } else if (off + len > filesz) { 3741 int npages = btopr(filesz - off); 3742 page_t *trunc; 3743 3744 page_list_break(&pp, &trunc, npages); 3745 /* ignore pages past end of file */ 3746 if (trunc) 3747 pvn_write_done(trunc, flags); 3748 len = filesz - off; 3749 } 3750 3751 if (zfs_usergroup_overquota(zfsvfs, B_FALSE, zp->z_phys->zp_uid) || 3752 zfs_usergroup_overquota(zfsvfs, B_TRUE, zp->z_phys->zp_gid)) { 3753 err = EDQUOT; 3754 goto out; 3755 } 3756 top: 3757 tx = dmu_tx_create(zfsvfs->z_os); 3758 dmu_tx_hold_write(tx, zp->z_id, off, len); 3759 dmu_tx_hold_bonus(tx, zp->z_id); 3760 err = dmu_tx_assign(tx, TXG_NOWAIT); 3761 if (err != 0) { 3762 if (err == ERESTART) { 3763 dmu_tx_wait(tx); 3764 dmu_tx_abort(tx); 3765 goto top; 3766 } 3767 dmu_tx_abort(tx); 3768 goto out; 3769 } 3770 3771 if (zp->z_blksz <= PAGESIZE) { 3772 caddr_t va = zfs_map_page(pp, S_READ); 3773 ASSERT3U(len, <=, PAGESIZE); 3774 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3775 zfs_unmap_page(pp, va); 3776 } else { 3777 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3778 } 3779 3780 if (err == 0) { 3781 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3782 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 3783 } 3784 dmu_tx_commit(tx); 3785 3786 out: 3787 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3788 if (offp) 3789 *offp = off; 3790 if (lenp) 3791 *lenp = len; 3792 3793 return (err); 3794 } 3795 3796 /* 3797 * Copy the portion of the file indicated from pages into the file. 3798 * The pages are stored in a page list attached to the files vnode. 3799 * 3800 * IN: vp - vnode of file to push page data to. 3801 * off - position in file to put data. 3802 * len - amount of data to write. 3803 * flags - flags to control the operation. 3804 * cr - credentials of caller. 3805 * ct - caller context. 3806 * 3807 * RETURN: 0 if success 3808 * error code if failure 3809 * 3810 * Timestamps: 3811 * vp - ctime|mtime updated 3812 */ 3813 /*ARGSUSED*/ 3814 static int 3815 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 3816 caller_context_t *ct) 3817 { 3818 znode_t *zp = VTOZ(vp); 3819 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3820 page_t *pp; 3821 size_t io_len; 3822 u_offset_t io_off; 3823 uint_t blksz; 3824 rl_t *rl; 3825 int error = 0; 3826 3827 ZFS_ENTER(zfsvfs); 3828 ZFS_VERIFY_ZP(zp); 3829 3830 /* 3831 * Align this request to the file block size in case we kluster. 3832 * XXX - this can result in pretty aggresive locking, which can 3833 * impact simultanious read/write access. One option might be 3834 * to break up long requests (len == 0) into block-by-block 3835 * operations to get narrower locking. 3836 */ 3837 blksz = zp->z_blksz; 3838 if (ISP2(blksz)) 3839 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 3840 else 3841 io_off = 0; 3842 if (len > 0 && ISP2(blksz)) 3843 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 3844 else 3845 io_len = 0; 3846 3847 if (io_len == 0) { 3848 /* 3849 * Search the entire vp list for pages >= io_off. 3850 */ 3851 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 3852 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 3853 goto out; 3854 } 3855 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 3856 3857 if (off > zp->z_phys->zp_size) { 3858 /* past end of file */ 3859 zfs_range_unlock(rl); 3860 ZFS_EXIT(zfsvfs); 3861 return (0); 3862 } 3863 3864 len = MIN(io_len, P2ROUNDUP(zp->z_phys->zp_size, PAGESIZE) - io_off); 3865 3866 for (off = io_off; io_off < off + len; io_off += io_len) { 3867 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 3868 pp = page_lookup(vp, io_off, 3869 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 3870 } else { 3871 pp = page_lookup_nowait(vp, io_off, 3872 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3873 } 3874 3875 if (pp != NULL && pvn_getdirty(pp, flags)) { 3876 int err; 3877 3878 /* 3879 * Found a dirty page to push 3880 */ 3881 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3882 if (err) 3883 error = err; 3884 } else { 3885 io_len = PAGESIZE; 3886 } 3887 } 3888 out: 3889 zfs_range_unlock(rl); 3890 if ((flags & B_ASYNC) == 0) 3891 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3892 ZFS_EXIT(zfsvfs); 3893 return (error); 3894 } 3895 3896 /*ARGSUSED*/ 3897 void 3898 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 3899 { 3900 znode_t *zp = VTOZ(vp); 3901 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3902 int error; 3903 3904 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 3905 if (zp->z_dbuf == NULL) { 3906 /* 3907 * The fs has been unmounted, or we did a 3908 * suspend/resume and this file no longer exists. 3909 */ 3910 if (vn_has_cached_data(vp)) { 3911 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3912 B_INVAL, cr); 3913 } 3914 3915 mutex_enter(&zp->z_lock); 3916 vp->v_count = 0; /* count arrives as 1 */ 3917 mutex_exit(&zp->z_lock); 3918 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3919 zfs_znode_free(zp); 3920 return; 3921 } 3922 3923 /* 3924 * Attempt to push any data in the page cache. If this fails 3925 * we will get kicked out later in zfs_zinactive(). 3926 */ 3927 if (vn_has_cached_data(vp)) { 3928 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3929 cr); 3930 } 3931 3932 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3933 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3934 3935 dmu_tx_hold_bonus(tx, zp->z_id); 3936 error = dmu_tx_assign(tx, TXG_WAIT); 3937 if (error) { 3938 dmu_tx_abort(tx); 3939 } else { 3940 dmu_buf_will_dirty(zp->z_dbuf, tx); 3941 mutex_enter(&zp->z_lock); 3942 zp->z_atime_dirty = 0; 3943 mutex_exit(&zp->z_lock); 3944 dmu_tx_commit(tx); 3945 } 3946 } 3947 3948 zfs_zinactive(zp); 3949 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3950 } 3951 3952 /* 3953 * Bounds-check the seek operation. 3954 * 3955 * IN: vp - vnode seeking within 3956 * ooff - old file offset 3957 * noffp - pointer to new file offset 3958 * ct - caller context 3959 * 3960 * RETURN: 0 if success 3961 * EINVAL if new offset invalid 3962 */ 3963 /* ARGSUSED */ 3964 static int 3965 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 3966 caller_context_t *ct) 3967 { 3968 if (vp->v_type == VDIR) 3969 return (0); 3970 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3971 } 3972 3973 /* 3974 * Pre-filter the generic locking function to trap attempts to place 3975 * a mandatory lock on a memory mapped file. 3976 */ 3977 static int 3978 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3979 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 3980 { 3981 znode_t *zp = VTOZ(vp); 3982 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3983 int error; 3984 3985 ZFS_ENTER(zfsvfs); 3986 ZFS_VERIFY_ZP(zp); 3987 3988 /* 3989 * We are following the UFS semantics with respect to mapcnt 3990 * here: If we see that the file is mapped already, then we will 3991 * return an error, but we don't worry about races between this 3992 * function and zfs_map(). 3993 */ 3994 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3995 ZFS_EXIT(zfsvfs); 3996 return (EAGAIN); 3997 } 3998 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 3999 ZFS_EXIT(zfsvfs); 4000 return (error); 4001 } 4002 4003 /* 4004 * If we can't find a page in the cache, we will create a new page 4005 * and fill it with file data. For efficiency, we may try to fill 4006 * multiple pages at once (klustering) to fill up the supplied page 4007 * list. Note that the pages to be filled are held with an exclusive 4008 * lock to prevent access by other threads while they are being filled. 4009 */ 4010 static int 4011 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4012 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4013 { 4014 znode_t *zp = VTOZ(vp); 4015 page_t *pp, *cur_pp; 4016 objset_t *os = zp->z_zfsvfs->z_os; 4017 u_offset_t io_off, total; 4018 size_t io_len; 4019 int err; 4020 4021 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4022 /* 4023 * We only have a single page, don't bother klustering 4024 */ 4025 io_off = off; 4026 io_len = PAGESIZE; 4027 pp = page_create_va(vp, io_off, io_len, 4028 PG_EXCL | PG_WAIT, seg, addr); 4029 } else { 4030 /* 4031 * Try to find enough pages to fill the page list 4032 */ 4033 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4034 &io_len, off, plsz, 0); 4035 } 4036 if (pp == NULL) { 4037 /* 4038 * The page already exists, nothing to do here. 4039 */ 4040 *pl = NULL; 4041 return (0); 4042 } 4043 4044 /* 4045 * Fill the pages in the kluster. 4046 */ 4047 cur_pp = pp; 4048 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4049 caddr_t va; 4050 4051 ASSERT3U(io_off, ==, cur_pp->p_offset); 4052 va = zfs_map_page(cur_pp, S_WRITE); 4053 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4054 DMU_READ_PREFETCH); 4055 zfs_unmap_page(cur_pp, va); 4056 if (err) { 4057 /* On error, toss the entire kluster */ 4058 pvn_read_done(pp, B_ERROR); 4059 /* convert checksum errors into IO errors */ 4060 if (err == ECKSUM) 4061 err = EIO; 4062 return (err); 4063 } 4064 cur_pp = cur_pp->p_next; 4065 } 4066 4067 /* 4068 * Fill in the page list array from the kluster starting 4069 * from the desired offset `off'. 4070 * NOTE: the page list will always be null terminated. 4071 */ 4072 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4073 ASSERT(pl == NULL || (*pl)->p_offset == off); 4074 4075 return (0); 4076 } 4077 4078 /* 4079 * Return pointers to the pages for the file region [off, off + len] 4080 * in the pl array. If plsz is greater than len, this function may 4081 * also return page pointers from after the specified region 4082 * (i.e. the region [off, off + plsz]). These additional pages are 4083 * only returned if they are already in the cache, or were created as 4084 * part of a klustered read. 4085 * 4086 * IN: vp - vnode of file to get data from. 4087 * off - position in file to get data from. 4088 * len - amount of data to retrieve. 4089 * plsz - length of provided page list. 4090 * seg - segment to obtain pages for. 4091 * addr - virtual address of fault. 4092 * rw - mode of created pages. 4093 * cr - credentials of caller. 4094 * ct - caller context. 4095 * 4096 * OUT: protp - protection mode of created pages. 4097 * pl - list of pages created. 4098 * 4099 * RETURN: 0 if success 4100 * error code if failure 4101 * 4102 * Timestamps: 4103 * vp - atime updated 4104 */ 4105 /* ARGSUSED */ 4106 static int 4107 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4108 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4109 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4110 { 4111 znode_t *zp = VTOZ(vp); 4112 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4113 page_t **pl0 = pl; 4114 int err = 0; 4115 4116 /* we do our own caching, faultahead is unnecessary */ 4117 if (pl == NULL) 4118 return (0); 4119 else if (len > plsz) 4120 len = plsz; 4121 else 4122 len = P2ROUNDUP(len, PAGESIZE); 4123 ASSERT(plsz >= len); 4124 4125 ZFS_ENTER(zfsvfs); 4126 ZFS_VERIFY_ZP(zp); 4127 4128 if (protp) 4129 *protp = PROT_ALL; 4130 4131 /* 4132 * Loop through the requested range [off, off + len) looking 4133 * for pages. If we don't find a page, we will need to create 4134 * a new page and fill it with data from the file. 4135 */ 4136 while (len > 0) { 4137 if (*pl = page_lookup(vp, off, SE_SHARED)) 4138 *(pl+1) = NULL; 4139 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4140 goto out; 4141 while (*pl) { 4142 ASSERT3U((*pl)->p_offset, ==, off); 4143 off += PAGESIZE; 4144 addr += PAGESIZE; 4145 if (len > 0) { 4146 ASSERT3U(len, >=, PAGESIZE); 4147 len -= PAGESIZE; 4148 } 4149 ASSERT3U(plsz, >=, PAGESIZE); 4150 plsz -= PAGESIZE; 4151 pl++; 4152 } 4153 } 4154 4155 /* 4156 * Fill out the page array with any pages already in the cache. 4157 */ 4158 while (plsz > 0 && 4159 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4160 off += PAGESIZE; 4161 plsz -= PAGESIZE; 4162 } 4163 out: 4164 if (err) { 4165 /* 4166 * Release any pages we have previously locked. 4167 */ 4168 while (pl > pl0) 4169 page_unlock(*--pl); 4170 } else { 4171 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4172 } 4173 4174 *pl = NULL; 4175 4176 ZFS_EXIT(zfsvfs); 4177 return (err); 4178 } 4179 4180 /* 4181 * Request a memory map for a section of a file. This code interacts 4182 * with common code and the VM system as follows: 4183 * 4184 * common code calls mmap(), which ends up in smmap_common() 4185 * 4186 * this calls VOP_MAP(), which takes you into (say) zfs 4187 * 4188 * zfs_map() calls as_map(), passing segvn_create() as the callback 4189 * 4190 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4191 * 4192 * zfs_addmap() updates z_mapcnt 4193 */ 4194 /*ARGSUSED*/ 4195 static int 4196 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4197 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4198 caller_context_t *ct) 4199 { 4200 znode_t *zp = VTOZ(vp); 4201 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4202 segvn_crargs_t vn_a; 4203 int error; 4204 4205 ZFS_ENTER(zfsvfs); 4206 ZFS_VERIFY_ZP(zp); 4207 4208 if ((prot & PROT_WRITE) && 4209 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4210 ZFS_APPENDONLY))) { 4211 ZFS_EXIT(zfsvfs); 4212 return (EPERM); 4213 } 4214 4215 if ((prot & (PROT_READ | PROT_EXEC)) && 4216 (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) { 4217 ZFS_EXIT(zfsvfs); 4218 return (EACCES); 4219 } 4220 4221 if (vp->v_flag & VNOMAP) { 4222 ZFS_EXIT(zfsvfs); 4223 return (ENOSYS); 4224 } 4225 4226 if (off < 0 || len > MAXOFFSET_T - off) { 4227 ZFS_EXIT(zfsvfs); 4228 return (ENXIO); 4229 } 4230 4231 if (vp->v_type != VREG) { 4232 ZFS_EXIT(zfsvfs); 4233 return (ENODEV); 4234 } 4235 4236 /* 4237 * If file is locked, disallow mapping. 4238 */ 4239 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4240 ZFS_EXIT(zfsvfs); 4241 return (EAGAIN); 4242 } 4243 4244 as_rangelock(as); 4245 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4246 if (error != 0) { 4247 as_rangeunlock(as); 4248 ZFS_EXIT(zfsvfs); 4249 return (error); 4250 } 4251 4252 vn_a.vp = vp; 4253 vn_a.offset = (u_offset_t)off; 4254 vn_a.type = flags & MAP_TYPE; 4255 vn_a.prot = prot; 4256 vn_a.maxprot = maxprot; 4257 vn_a.cred = cr; 4258 vn_a.amp = NULL; 4259 vn_a.flags = flags & ~MAP_TYPE; 4260 vn_a.szc = 0; 4261 vn_a.lgrp_mem_policy_flags = 0; 4262 4263 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4264 4265 as_rangeunlock(as); 4266 ZFS_EXIT(zfsvfs); 4267 return (error); 4268 } 4269 4270 /* ARGSUSED */ 4271 static int 4272 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4273 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4274 caller_context_t *ct) 4275 { 4276 uint64_t pages = btopr(len); 4277 4278 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4279 return (0); 4280 } 4281 4282 /* 4283 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4284 * more accurate mtime for the associated file. Since we don't have a way of 4285 * detecting when the data was actually modified, we have to resort to 4286 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4287 * last page is pushed. The problem occurs when the msync() call is omitted, 4288 * which by far the most common case: 4289 * 4290 * open() 4291 * mmap() 4292 * <modify memory> 4293 * munmap() 4294 * close() 4295 * <time lapse> 4296 * putpage() via fsflush 4297 * 4298 * If we wait until fsflush to come along, we can have a modification time that 4299 * is some arbitrary point in the future. In order to prevent this in the 4300 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4301 * torn down. 4302 */ 4303 /* ARGSUSED */ 4304 static int 4305 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4306 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4307 caller_context_t *ct) 4308 { 4309 uint64_t pages = btopr(len); 4310 4311 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4312 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4313 4314 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4315 vn_has_cached_data(vp)) 4316 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4317 4318 return (0); 4319 } 4320 4321 /* 4322 * Free or allocate space in a file. Currently, this function only 4323 * supports the `F_FREESP' command. However, this command is somewhat 4324 * misnamed, as its functionality includes the ability to allocate as 4325 * well as free space. 4326 * 4327 * IN: vp - vnode of file to free data in. 4328 * cmd - action to take (only F_FREESP supported). 4329 * bfp - section of file to free/alloc. 4330 * flag - current file open mode flags. 4331 * offset - current file offset. 4332 * cr - credentials of caller [UNUSED]. 4333 * ct - caller context. 4334 * 4335 * RETURN: 0 if success 4336 * error code if failure 4337 * 4338 * Timestamps: 4339 * vp - ctime|mtime updated 4340 */ 4341 /* ARGSUSED */ 4342 static int 4343 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4344 offset_t offset, cred_t *cr, caller_context_t *ct) 4345 { 4346 znode_t *zp = VTOZ(vp); 4347 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4348 uint64_t off, len; 4349 int error; 4350 4351 ZFS_ENTER(zfsvfs); 4352 ZFS_VERIFY_ZP(zp); 4353 4354 if (cmd != F_FREESP) { 4355 ZFS_EXIT(zfsvfs); 4356 return (EINVAL); 4357 } 4358 4359 if (error = convoff(vp, bfp, 0, offset)) { 4360 ZFS_EXIT(zfsvfs); 4361 return (error); 4362 } 4363 4364 if (bfp->l_len < 0) { 4365 ZFS_EXIT(zfsvfs); 4366 return (EINVAL); 4367 } 4368 4369 off = bfp->l_start; 4370 len = bfp->l_len; /* 0 means from off to end of file */ 4371 4372 error = zfs_freesp(zp, off, len, flag, TRUE); 4373 4374 ZFS_EXIT(zfsvfs); 4375 return (error); 4376 } 4377 4378 /*ARGSUSED*/ 4379 static int 4380 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4381 { 4382 znode_t *zp = VTOZ(vp); 4383 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4384 uint32_t gen; 4385 uint64_t object = zp->z_id; 4386 zfid_short_t *zfid; 4387 int size, i; 4388 4389 ZFS_ENTER(zfsvfs); 4390 ZFS_VERIFY_ZP(zp); 4391 gen = (uint32_t)zp->z_gen; 4392 4393 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4394 if (fidp->fid_len < size) { 4395 fidp->fid_len = size; 4396 ZFS_EXIT(zfsvfs); 4397 return (ENOSPC); 4398 } 4399 4400 zfid = (zfid_short_t *)fidp; 4401 4402 zfid->zf_len = size; 4403 4404 for (i = 0; i < sizeof (zfid->zf_object); i++) 4405 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4406 4407 /* Must have a non-zero generation number to distinguish from .zfs */ 4408 if (gen == 0) 4409 gen = 1; 4410 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4411 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4412 4413 if (size == LONG_FID_LEN) { 4414 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4415 zfid_long_t *zlfid; 4416 4417 zlfid = (zfid_long_t *)fidp; 4418 4419 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4420 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4421 4422 /* XXX - this should be the generation number for the objset */ 4423 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4424 zlfid->zf_setgen[i] = 0; 4425 } 4426 4427 ZFS_EXIT(zfsvfs); 4428 return (0); 4429 } 4430 4431 static int 4432 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4433 caller_context_t *ct) 4434 { 4435 znode_t *zp, *xzp; 4436 zfsvfs_t *zfsvfs; 4437 zfs_dirlock_t *dl; 4438 int error; 4439 4440 switch (cmd) { 4441 case _PC_LINK_MAX: 4442 *valp = ULONG_MAX; 4443 return (0); 4444 4445 case _PC_FILESIZEBITS: 4446 *valp = 64; 4447 return (0); 4448 4449 case _PC_XATTR_EXISTS: 4450 zp = VTOZ(vp); 4451 zfsvfs = zp->z_zfsvfs; 4452 ZFS_ENTER(zfsvfs); 4453 ZFS_VERIFY_ZP(zp); 4454 *valp = 0; 4455 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4456 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4457 if (error == 0) { 4458 zfs_dirent_unlock(dl); 4459 if (!zfs_dirempty(xzp)) 4460 *valp = 1; 4461 VN_RELE(ZTOV(xzp)); 4462 } else if (error == ENOENT) { 4463 /* 4464 * If there aren't extended attributes, it's the 4465 * same as having zero of them. 4466 */ 4467 error = 0; 4468 } 4469 ZFS_EXIT(zfsvfs); 4470 return (error); 4471 4472 case _PC_SATTR_ENABLED: 4473 case _PC_SATTR_EXISTS: 4474 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4475 (vp->v_type == VREG || vp->v_type == VDIR); 4476 return (0); 4477 4478 case _PC_ACCESS_FILTERING: 4479 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4480 vp->v_type == VDIR; 4481 return (0); 4482 4483 case _PC_ACL_ENABLED: 4484 *valp = _ACL_ACE_ENABLED; 4485 return (0); 4486 4487 case _PC_MIN_HOLE_SIZE: 4488 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4489 return (0); 4490 4491 default: 4492 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4493 } 4494 } 4495 4496 /*ARGSUSED*/ 4497 static int 4498 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4499 caller_context_t *ct) 4500 { 4501 znode_t *zp = VTOZ(vp); 4502 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4503 int error; 4504 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4505 4506 ZFS_ENTER(zfsvfs); 4507 ZFS_VERIFY_ZP(zp); 4508 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4509 ZFS_EXIT(zfsvfs); 4510 4511 return (error); 4512 } 4513 4514 /*ARGSUSED*/ 4515 static int 4516 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4517 caller_context_t *ct) 4518 { 4519 znode_t *zp = VTOZ(vp); 4520 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4521 int error; 4522 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4523 4524 ZFS_ENTER(zfsvfs); 4525 ZFS_VERIFY_ZP(zp); 4526 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4527 ZFS_EXIT(zfsvfs); 4528 return (error); 4529 } 4530 4531 /* 4532 * Predeclare these here so that the compiler assumes that 4533 * this is an "old style" function declaration that does 4534 * not include arguments => we won't get type mismatch errors 4535 * in the initializations that follow. 4536 */ 4537 static int zfs_inval(); 4538 static int zfs_isdir(); 4539 4540 static int 4541 zfs_inval() 4542 { 4543 return (EINVAL); 4544 } 4545 4546 static int 4547 zfs_isdir() 4548 { 4549 return (EISDIR); 4550 } 4551 /* 4552 * Directory vnode operations template 4553 */ 4554 vnodeops_t *zfs_dvnodeops; 4555 const fs_operation_def_t zfs_dvnodeops_template[] = { 4556 VOPNAME_OPEN, { .vop_open = zfs_open }, 4557 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4558 VOPNAME_READ, { .error = zfs_isdir }, 4559 VOPNAME_WRITE, { .error = zfs_isdir }, 4560 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4561 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4562 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4563 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4564 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4565 VOPNAME_CREATE, { .vop_create = zfs_create }, 4566 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4567 VOPNAME_LINK, { .vop_link = zfs_link }, 4568 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4569 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4570 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4571 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4572 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4573 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4574 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4575 VOPNAME_FID, { .vop_fid = zfs_fid }, 4576 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4577 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4578 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4579 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4580 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4581 NULL, NULL 4582 }; 4583 4584 /* 4585 * Regular file vnode operations template 4586 */ 4587 vnodeops_t *zfs_fvnodeops; 4588 const fs_operation_def_t zfs_fvnodeops_template[] = { 4589 VOPNAME_OPEN, { .vop_open = zfs_open }, 4590 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4591 VOPNAME_READ, { .vop_read = zfs_read }, 4592 VOPNAME_WRITE, { .vop_write = zfs_write }, 4593 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4594 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4595 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4596 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4597 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4598 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4599 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4600 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4601 VOPNAME_FID, { .vop_fid = zfs_fid }, 4602 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4603 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4604 VOPNAME_SPACE, { .vop_space = zfs_space }, 4605 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4606 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4607 VOPNAME_MAP, { .vop_map = zfs_map }, 4608 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4609 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4610 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4611 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4612 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4613 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4614 NULL, NULL 4615 }; 4616 4617 /* 4618 * Symbolic link vnode operations template 4619 */ 4620 vnodeops_t *zfs_symvnodeops; 4621 const fs_operation_def_t zfs_symvnodeops_template[] = { 4622 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4623 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4624 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4625 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4626 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4627 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4628 VOPNAME_FID, { .vop_fid = zfs_fid }, 4629 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4630 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4631 NULL, NULL 4632 }; 4633 4634 /* 4635 * special share hidden files vnode operations template 4636 */ 4637 vnodeops_t *zfs_sharevnodeops; 4638 const fs_operation_def_t zfs_sharevnodeops_template[] = { 4639 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4640 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4641 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4642 VOPNAME_FID, { .vop_fid = zfs_fid }, 4643 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4644 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4645 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4646 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4647 NULL, NULL 4648 }; 4649 4650 /* 4651 * Extended attribute directory vnode operations template 4652 * This template is identical to the directory vnodes 4653 * operation template except for restricted operations: 4654 * VOP_MKDIR() 4655 * VOP_SYMLINK() 4656 * Note that there are other restrictions embedded in: 4657 * zfs_create() - restrict type to VREG 4658 * zfs_link() - no links into/out of attribute space 4659 * zfs_rename() - no moves into/out of attribute space 4660 */ 4661 vnodeops_t *zfs_xdvnodeops; 4662 const fs_operation_def_t zfs_xdvnodeops_template[] = { 4663 VOPNAME_OPEN, { .vop_open = zfs_open }, 4664 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4665 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4666 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4667 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4668 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4669 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4670 VOPNAME_CREATE, { .vop_create = zfs_create }, 4671 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4672 VOPNAME_LINK, { .vop_link = zfs_link }, 4673 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4674 VOPNAME_MKDIR, { .error = zfs_inval }, 4675 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4676 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4677 VOPNAME_SYMLINK, { .error = zfs_inval }, 4678 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4679 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4680 VOPNAME_FID, { .vop_fid = zfs_fid }, 4681 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4682 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4683 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4684 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4685 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4686 NULL, NULL 4687 }; 4688 4689 /* 4690 * Error vnode operations template 4691 */ 4692 vnodeops_t *zfs_evnodeops; 4693 const fs_operation_def_t zfs_evnodeops_template[] = { 4694 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4695 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4696 NULL, NULL 4697 }; 4698