1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* Portions Copyright 2007 Jeremy Teo */ 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <vm/kpm.h> 51 #include <vm/seg_kpm.h> 52 #include <sys/mman.h> 53 #include <sys/pathname.h> 54 #include <sys/cmn_err.h> 55 #include <sys/errno.h> 56 #include <sys/unistd.h> 57 #include <sys/zfs_dir.h> 58 #include <sys/zfs_acl.h> 59 #include <sys/zfs_ioctl.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/dmu.h> 62 #include <sys/dmu_objset.h> 63 #include <sys/spa.h> 64 #include <sys/txg.h> 65 #include <sys/dbuf.h> 66 #include <sys/zap.h> 67 #include <sys/sa.h> 68 #include <sys/dirent.h> 69 #include <sys/policy.h> 70 #include <sys/sunddi.h> 71 #include <sys/filio.h> 72 #include <sys/sid.h> 73 #include "fs/fs_subr.h" 74 #include <sys/zfs_ctldir.h> 75 #include <sys/zfs_fuid.h> 76 #include <sys/zfs_sa.h> 77 #include <sys/dnlc.h> 78 #include <sys/zfs_rlock.h> 79 #include <sys/extdirent.h> 80 #include <sys/kidmap.h> 81 #include <sys/cred.h> 82 #include <sys/attr.h> 83 #include <sys/zfs_events.h> 84 #include <sys/fs/zev.h> 85 86 /* 87 * Programming rules. 88 * 89 * Each vnode op performs some logical unit of work. To do this, the ZPL must 90 * properly lock its in-core state, create a DMU transaction, do the work, 91 * record this work in the intent log (ZIL), commit the DMU transaction, 92 * and wait for the intent log to commit if it is a synchronous operation. 93 * Moreover, the vnode ops must work in both normal and log replay context. 94 * The ordering of events is important to avoid deadlocks and references 95 * to freed memory. The example below illustrates the following Big Rules: 96 * 97 * (1) A check must be made in each zfs thread for a mounted file system. 98 * This is done avoiding races using ZFS_ENTER(zfsvfs). 99 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 100 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 101 * can return EIO from the calling function. 102 * 103 * (2) VN_RELE() should always be the last thing except for zil_commit() 104 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 105 * First, if it's the last reference, the vnode/znode 106 * can be freed, so the zp may point to freed memory. Second, the last 107 * reference will call zfs_zinactive(), which may induce a lot of work -- 108 * pushing cached pages (which acquires range locks) and syncing out 109 * cached atime changes. Third, zfs_zinactive() may require a new tx, 110 * which could deadlock the system if you were already holding one. 111 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 112 * 113 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 114 * as they can span dmu_tx_assign() calls. 115 * 116 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 117 * dmu_tx_assign(). This is critical because we don't want to block 118 * while holding locks. 119 * 120 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 121 * reduces lock contention and CPU usage when we must wait (note that if 122 * throughput is constrained by the storage, nearly every transaction 123 * must wait). 124 * 125 * Note, in particular, that if a lock is sometimes acquired before 126 * the tx assigns, and sometimes after (e.g. z_lock), then failing 127 * to use a non-blocking assign can deadlock the system. The scenario: 128 * 129 * Thread A has grabbed a lock before calling dmu_tx_assign(). 130 * Thread B is in an already-assigned tx, and blocks for this lock. 131 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 132 * forever, because the previous txg can't quiesce until B's tx commits. 133 * 134 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 135 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 136 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, 137 * to indicate that this operation has already called dmu_tx_wait(). 138 * This will ensure that we don't retry forever, waiting a short bit 139 * each time. 140 * 141 * (5) If the operation succeeded, generate the intent log entry for it 142 * before dropping locks. This ensures that the ordering of events 143 * in the intent log matches the order in which they actually occurred. 144 * During ZIL replay the zfs_log_* functions will update the sequence 145 * number to indicate the zil transaction has replayed. 146 * 147 * (6) At the end of each vnode op, the DMU tx must always commit, 148 * regardless of whether there were any errors. 149 * 150 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 151 * to ensure that synchronous semantics are provided when necessary. 152 * 153 * In general, this is how things should be ordered in each vnode op: 154 * 155 * ZFS_ENTER(zfsvfs); // exit if unmounted 156 * top: 157 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 158 * rw_enter(...); // grab any other locks you need 159 * tx = dmu_tx_create(...); // get DMU tx 160 * dmu_tx_hold_*(); // hold each object you might modify 161 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 162 * if (error) { 163 * rw_exit(...); // drop locks 164 * zfs_dirent_unlock(dl); // unlock directory entry 165 * VN_RELE(...); // release held vnodes 166 * if (error == ERESTART) { 167 * waited = B_TRUE; 168 * dmu_tx_wait(tx); 169 * dmu_tx_abort(tx); 170 * goto top; 171 * } 172 * dmu_tx_abort(tx); // abort DMU tx 173 * ZFS_EXIT(zfsvfs); // finished in zfs 174 * return (error); // really out of space 175 * } 176 * error = do_real_work(); // do whatever this VOP does 177 * if (error == 0) 178 * zfs_log_*(...); // on success, make ZIL entry 179 * dmu_tx_commit(tx); // commit DMU tx -- error or not 180 * rw_exit(...); // drop locks 181 * zfs_dirent_unlock(dl); // unlock directory entry 182 * VN_RELE(...); // release held vnodes 183 * zil_commit(zilog, foid); // synchronous when necessary 184 * ZFS_EXIT(zfsvfs); // finished in zfs 185 * return (error); // done, report error 186 */ 187 188 /* ARGSUSED */ 189 static int 190 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 191 { 192 znode_t *zp = VTOZ(*vpp); 193 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 194 195 ZFS_ENTER(zfsvfs); 196 ZFS_VERIFY_ZP(zp); 197 198 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 199 ((flag & FAPPEND) == 0)) { 200 ZFS_EXIT(zfsvfs); 201 return (SET_ERROR(EPERM)); 202 } 203 204 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 205 ZTOV(zp)->v_type == VREG && 206 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 207 if (fs_vscan(*vpp, cr, 0) != 0) { 208 ZFS_EXIT(zfsvfs); 209 return (SET_ERROR(EACCES)); 210 } 211 } 212 213 /* Keep a count of the synchronous opens in the znode */ 214 if (flag & (FSYNC | FDSYNC)) 215 atomic_inc_32(&zp->z_sync_cnt); 216 217 ZFS_EXIT(zfsvfs); 218 return (0); 219 } 220 221 /* ARGSUSED */ 222 static int 223 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 224 caller_context_t *ct) 225 { 226 znode_t *zp = VTOZ(vp); 227 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 228 229 /* 230 * Clean up any locks held by this process on the vp. 231 */ 232 cleanlocks(vp, ddi_get_pid(), 0); 233 cleanshares(vp, ddi_get_pid()); 234 235 ZFS_ENTER(zfsvfs); 236 ZFS_VERIFY_ZP(zp); 237 238 /* Decrement the synchronous opens in the znode */ 239 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 240 atomic_dec_32(&zp->z_sync_cnt); 241 242 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 243 ZTOV(zp)->v_type == VREG && 244 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 245 VERIFY(fs_vscan(vp, cr, 1) == 0); 246 247 if (ZTOV(zp)->v_type == VREG && zp->z_new_content) { 248 zp->z_new_content = 0; 249 rw_enter(&rz_zev_rwlock, RW_READER); 250 if (rz_zev_callbacks && 251 rz_zev_callbacks->rz_zev_znode_close_after_update) 252 rz_zev_callbacks->rz_zev_znode_close_after_update(zp); 253 rw_exit(&rz_zev_rwlock); 254 } 255 256 ZFS_EXIT(zfsvfs); 257 return (0); 258 } 259 260 /* 261 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 262 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 263 */ 264 static int 265 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 266 { 267 znode_t *zp = VTOZ(vp); 268 uint64_t noff = (uint64_t)*off; /* new offset */ 269 uint64_t file_sz; 270 int error; 271 boolean_t hole; 272 273 file_sz = zp->z_size; 274 if (noff >= file_sz) { 275 return (SET_ERROR(ENXIO)); 276 } 277 278 if (cmd == _FIO_SEEK_HOLE) 279 hole = B_TRUE; 280 else 281 hole = B_FALSE; 282 283 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 284 285 if (error == ESRCH) 286 return (SET_ERROR(ENXIO)); 287 288 /* 289 * We could find a hole that begins after the logical end-of-file, 290 * because dmu_offset_next() only works on whole blocks. If the 291 * EOF falls mid-block, then indicate that the "virtual hole" 292 * at the end of the file begins at the logical EOF, rather than 293 * at the end of the last block. 294 */ 295 if (noff > file_sz) { 296 ASSERT(hole); 297 noff = file_sz; 298 } 299 300 if (noff < *off) 301 return (error); 302 *off = noff; 303 return (error); 304 } 305 306 /* ARGSUSED */ 307 static int 308 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 309 int *rvalp, caller_context_t *ct) 310 { 311 offset_t off; 312 offset_t ndata; 313 dmu_object_info_t doi; 314 int error; 315 zfsvfs_t *zfsvfs; 316 znode_t *zp; 317 318 switch (com) { 319 case _FIOFFS: 320 { 321 return (zfs_sync(vp->v_vfsp, 0, cred)); 322 323 /* 324 * The following two ioctls are used by bfu. Faking out, 325 * necessary to avoid bfu errors. 326 */ 327 } 328 case _FIOGDIO: 329 case _FIOSDIO: 330 { 331 return (0); 332 } 333 334 case _FIO_SEEK_DATA: 335 case _FIO_SEEK_HOLE: 336 { 337 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 338 return (SET_ERROR(EFAULT)); 339 340 zp = VTOZ(vp); 341 zfsvfs = zp->z_zfsvfs; 342 ZFS_ENTER(zfsvfs); 343 ZFS_VERIFY_ZP(zp); 344 345 /* offset parameter is in/out */ 346 error = zfs_holey(vp, com, &off); 347 ZFS_EXIT(zfsvfs); 348 if (error) 349 return (error); 350 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 351 return (SET_ERROR(EFAULT)); 352 return (0); 353 } 354 case _FIO_COUNT_FILLED: 355 { 356 /* 357 * _FIO_COUNT_FILLED adds a new ioctl command which 358 * exposes the number of filled blocks in a 359 * ZFS object. 360 */ 361 zp = VTOZ(vp); 362 zfsvfs = zp->z_zfsvfs; 363 ZFS_ENTER(zfsvfs); 364 ZFS_VERIFY_ZP(zp); 365 366 /* 367 * Wait for all dirty blocks for this object 368 * to get synced out to disk, and the DMU info 369 * updated. 370 */ 371 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); 372 if (error) { 373 ZFS_EXIT(zfsvfs); 374 return (error); 375 } 376 377 /* 378 * Retrieve fill count from DMU object. 379 */ 380 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); 381 if (error) { 382 ZFS_EXIT(zfsvfs); 383 return (error); 384 } 385 386 ndata = doi.doi_fill_count; 387 388 ZFS_EXIT(zfsvfs); 389 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) 390 return (SET_ERROR(EFAULT)); 391 return (0); 392 } 393 } 394 return (SET_ERROR(ENOTTY)); 395 } 396 397 /* 398 * Utility functions to map and unmap a single physical page. These 399 * are used to manage the mappable copies of ZFS file data, and therefore 400 * do not update ref/mod bits. 401 */ 402 caddr_t 403 zfs_map_page(page_t *pp, enum seg_rw rw) 404 { 405 if (kpm_enable) 406 return (hat_kpm_mapin(pp, 0)); 407 ASSERT(rw == S_READ || rw == S_WRITE); 408 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 409 (caddr_t)-1)); 410 } 411 412 void 413 zfs_unmap_page(page_t *pp, caddr_t addr) 414 { 415 if (kpm_enable) { 416 hat_kpm_mapout(pp, 0, addr); 417 } else { 418 ppmapout(addr); 419 } 420 } 421 422 /* 423 * When a file is memory mapped, we must keep the IO data synchronized 424 * between the DMU cache and the memory mapped pages. What this means: 425 * 426 * On Write: If we find a memory mapped page, we write to *both* 427 * the page and the dmu buffer. 428 */ 429 static void 430 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 431 { 432 int64_t off; 433 434 off = start & PAGEOFFSET; 435 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 436 page_t *pp; 437 uint64_t nbytes = MIN(PAGESIZE - off, len); 438 439 if (pp = page_lookup(vp, start, SE_SHARED)) { 440 caddr_t va; 441 442 va = zfs_map_page(pp, S_WRITE); 443 (void) dmu_read(os, oid, start+off, nbytes, va+off, 444 DMU_READ_PREFETCH); 445 zfs_unmap_page(pp, va); 446 page_unlock(pp); 447 } 448 len -= nbytes; 449 off = 0; 450 } 451 } 452 453 /* 454 * When a file is memory mapped, we must keep the IO data synchronized 455 * between the DMU cache and the memory mapped pages. What this means: 456 * 457 * On Read: We "read" preferentially from memory mapped pages, 458 * else we default from the dmu buffer. 459 * 460 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 461 * the file is memory mapped. 462 */ 463 static int 464 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 465 { 466 znode_t *zp = VTOZ(vp); 467 int64_t start, off; 468 int len = nbytes; 469 int error = 0; 470 471 start = uio->uio_loffset; 472 off = start & PAGEOFFSET; 473 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 474 page_t *pp; 475 uint64_t bytes = MIN(PAGESIZE - off, len); 476 477 if (pp = page_lookup(vp, start, SE_SHARED)) { 478 caddr_t va; 479 480 va = zfs_map_page(pp, S_READ); 481 error = uiomove(va + off, bytes, UIO_READ, uio); 482 zfs_unmap_page(pp, va); 483 page_unlock(pp); 484 } else { 485 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 486 uio, bytes); 487 } 488 len -= bytes; 489 off = 0; 490 if (error) 491 break; 492 } 493 return (error); 494 } 495 496 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 497 498 /* 499 * Read bytes from specified file into supplied buffer. 500 * 501 * IN: vp - vnode of file to be read from. 502 * uio - structure supplying read location, range info, 503 * and return buffer. 504 * ioflag - SYNC flags; used to provide FRSYNC semantics. 505 * cr - credentials of caller. 506 * ct - caller context 507 * 508 * OUT: uio - updated offset and range, buffer filled. 509 * 510 * RETURN: 0 on success, error code on failure. 511 * 512 * Side Effects: 513 * vp - atime updated if byte count > 0 514 */ 515 /* ARGSUSED */ 516 static int 517 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 518 { 519 znode_t *zp = VTOZ(vp); 520 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 521 ssize_t n, nbytes; 522 int error = 0; 523 rl_t *rl; 524 xuio_t *xuio = NULL; 525 526 ZFS_ENTER(zfsvfs); 527 ZFS_VERIFY_ZP(zp); 528 529 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 530 ZFS_EXIT(zfsvfs); 531 return (SET_ERROR(EACCES)); 532 } 533 534 /* 535 * Validate file offset 536 */ 537 if (uio->uio_loffset < (offset_t)0) { 538 ZFS_EXIT(zfsvfs); 539 return (SET_ERROR(EINVAL)); 540 } 541 542 /* 543 * Fasttrack empty reads 544 */ 545 if (uio->uio_resid == 0) { 546 ZFS_EXIT(zfsvfs); 547 return (0); 548 } 549 550 /* 551 * Check for mandatory locks 552 */ 553 if (MANDMODE(zp->z_mode)) { 554 if (error = chklock(vp, FREAD, 555 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 556 ZFS_EXIT(zfsvfs); 557 return (error); 558 } 559 } 560 561 /* 562 * If we're in FRSYNC mode, sync out this znode before reading it. 563 */ 564 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 565 zil_commit(zfsvfs->z_log, zp->z_id); 566 567 /* 568 * Lock the range against changes. 569 */ 570 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 571 572 /* 573 * If we are reading past end-of-file we can skip 574 * to the end; but we might still need to set atime. 575 */ 576 if (uio->uio_loffset >= zp->z_size) { 577 error = 0; 578 goto out; 579 } 580 581 ASSERT(uio->uio_loffset < zp->z_size); 582 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 583 584 if ((uio->uio_extflg == UIO_XUIO) && 585 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 586 int nblk; 587 int blksz = zp->z_blksz; 588 uint64_t offset = uio->uio_loffset; 589 590 xuio = (xuio_t *)uio; 591 if ((ISP2(blksz))) { 592 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 593 blksz)) / blksz; 594 } else { 595 ASSERT(offset + n <= blksz); 596 nblk = 1; 597 } 598 (void) dmu_xuio_init(xuio, nblk); 599 600 if (vn_has_cached_data(vp)) { 601 /* 602 * For simplicity, we always allocate a full buffer 603 * even if we only expect to read a portion of a block. 604 */ 605 while (--nblk >= 0) { 606 (void) dmu_xuio_add(xuio, 607 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 608 blksz), 0, blksz); 609 } 610 } 611 } 612 613 while (n > 0) { 614 nbytes = MIN(n, zfs_read_chunk_size - 615 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 616 617 if (vn_has_cached_data(vp)) { 618 error = mappedread(vp, nbytes, uio); 619 } else { 620 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 621 uio, nbytes); 622 } 623 if (error) { 624 /* convert checksum errors into IO errors */ 625 if (error == ECKSUM) 626 error = SET_ERROR(EIO); 627 break; 628 } 629 630 n -= nbytes; 631 } 632 out: 633 zfs_range_unlock(rl); 634 635 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 636 ZFS_EXIT(zfsvfs); 637 return (error); 638 } 639 640 /* 641 * Write the bytes to a file. 642 * 643 * IN: vp - vnode of file to be written to. 644 * uio - structure supplying write location, range info, 645 * and data buffer. 646 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 647 * set if in append mode. 648 * cr - credentials of caller. 649 * ct - caller context (NFS/CIFS fem monitor only) 650 * 651 * OUT: uio - updated offset and range. 652 * 653 * RETURN: 0 on success, error code on failure. 654 * 655 * Timestamps: 656 * vp - ctime|mtime updated if byte count > 0 657 */ 658 659 /* ARGSUSED */ 660 static int 661 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 662 { 663 znode_t *zp = VTOZ(vp); 664 rlim64_t limit = uio->uio_llimit; 665 ssize_t start_resid = uio->uio_resid; 666 ssize_t tx_bytes; 667 uint64_t end_size; 668 dmu_tx_t *tx; 669 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 670 zilog_t *zilog; 671 offset_t woff; 672 ssize_t n, nbytes; 673 rl_t *rl; 674 int max_blksz = zfsvfs->z_max_blksz; 675 int error = 0; 676 arc_buf_t *abuf; 677 iovec_t *aiov = NULL; 678 xuio_t *xuio = NULL; 679 int i_iov = 0; 680 int iovcnt = uio->uio_iovcnt; 681 iovec_t *iovp = uio->uio_iov; 682 int write_eof; 683 int count = 0; 684 sa_bulk_attr_t bulk[4]; 685 uint64_t mtime[2], ctime[2]; 686 ssize_t lock_off, lock_len; 687 688 /* 689 * Fasttrack empty write 690 */ 691 n = start_resid; 692 if (n == 0) 693 return (0); 694 695 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 696 limit = MAXOFFSET_T; 697 698 ZFS_ENTER(zfsvfs); 699 ZFS_VERIFY_ZP(zp); 700 701 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 702 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 703 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 704 &zp->z_size, 8); 705 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 706 &zp->z_pflags, 8); 707 708 /* 709 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 710 * callers might not be able to detect properly that we are read-only, 711 * so check it explicitly here. 712 */ 713 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 714 ZFS_EXIT(zfsvfs); 715 return (SET_ERROR(EROFS)); 716 } 717 718 /* 719 * If immutable or not appending then return EPERM 720 */ 721 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 722 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 723 (uio->uio_loffset < zp->z_size))) { 724 ZFS_EXIT(zfsvfs); 725 return (SET_ERROR(EPERM)); 726 } 727 728 zilog = zfsvfs->z_log; 729 730 /* 731 * Validate file offset 732 */ 733 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 734 if (woff < 0) { 735 ZFS_EXIT(zfsvfs); 736 return (SET_ERROR(EINVAL)); 737 } 738 739 /* 740 * Check for mandatory locks before calling zfs_range_lock() 741 * in order to prevent a deadlock with locks set via fcntl(). 742 */ 743 if (MANDMODE((mode_t)zp->z_mode) && 744 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 745 ZFS_EXIT(zfsvfs); 746 return (error); 747 } 748 749 /* 750 * Pre-fault the pages to ensure slow (eg NFS) pages 751 * don't hold up txg. 752 * Skip this if uio contains loaned arc_buf. 753 */ 754 if ((uio->uio_extflg == UIO_XUIO) && 755 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 756 xuio = (xuio_t *)uio; 757 else 758 uio_prefaultpages(MIN(n, max_blksz), uio); 759 760 /* 761 * If in append mode, set the io offset pointer to eof. 762 */ 763 if (ioflag & FAPPEND) { 764 /* 765 * Obtain an appending range lock to guarantee file append 766 * semantics. We reset the write offset once we have the lock. 767 */ 768 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 769 woff = rl->r_off; 770 if (rl->r_len == UINT64_MAX) { 771 /* 772 * We overlocked the file because this write will cause 773 * the file block size to increase. 774 * Note that zp_size cannot change with this lock held. 775 */ 776 woff = zp->z_size; 777 } 778 uio->uio_loffset = woff; 779 } else { 780 /* 781 * Note that if the file block size will change as a result of 782 * this write, then this range lock will lock the entire file 783 * so that we can re-write the block safely. 784 */ 785 786 /* 787 * If in zev mode, lock offsets are quantized to 1MB chunks 788 * so that we can calculate level 1 checksums later on. 789 */ 790 if (rz_zev_active()) { 791 /* start of this megabyte */ 792 lock_off = P2ALIGN(woff, ZEV_L1_SIZE); 793 /* full megabytes */ 794 lock_len = n + (woff - lock_off); 795 lock_len = P2ROUNDUP(lock_len, ZEV_L1_SIZE); 796 } else { 797 lock_off = woff; 798 lock_len = n; 799 } 800 801 rl = zfs_range_lock(zp, lock_off, lock_len, RL_WRITER); 802 } 803 804 if (woff >= limit) { 805 zfs_range_unlock(rl); 806 ZFS_EXIT(zfsvfs); 807 return (SET_ERROR(EFBIG)); 808 } 809 810 if ((woff + n) > limit || woff > (limit - n)) 811 n = limit - woff; 812 813 /* Will this write extend the file length? */ 814 write_eof = (woff + n > zp->z_size); 815 816 end_size = MAX(zp->z_size, woff + n); 817 818 /* 819 * Write the file in reasonable size chunks. Each chunk is written 820 * in a separate transaction; this keeps the intent log records small 821 * and allows us to do more fine-grained space accounting. 822 */ 823 while (n > 0) { 824 abuf = NULL; 825 woff = uio->uio_loffset; 826 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 827 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 828 if (abuf != NULL) 829 dmu_return_arcbuf(abuf); 830 error = SET_ERROR(EDQUOT); 831 break; 832 } 833 834 if (xuio && abuf == NULL) { 835 ASSERT(i_iov < iovcnt); 836 aiov = &iovp[i_iov]; 837 abuf = dmu_xuio_arcbuf(xuio, i_iov); 838 dmu_xuio_clear(xuio, i_iov); 839 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 840 iovec_t *, aiov, arc_buf_t *, abuf); 841 ASSERT((aiov->iov_base == abuf->b_data) || 842 ((char *)aiov->iov_base - (char *)abuf->b_data + 843 aiov->iov_len == arc_buf_size(abuf))); 844 i_iov++; 845 } else if (abuf == NULL && n >= max_blksz && 846 woff >= zp->z_size && 847 P2PHASE(woff, max_blksz) == 0 && 848 zp->z_blksz == max_blksz) { 849 /* 850 * This write covers a full block. "Borrow" a buffer 851 * from the dmu so that we can fill it before we enter 852 * a transaction. This avoids the possibility of 853 * holding up the transaction if the data copy hangs 854 * up on a pagefault (e.g., from an NFS server mapping). 855 */ 856 size_t cbytes; 857 858 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 859 max_blksz); 860 ASSERT(abuf != NULL); 861 ASSERT(arc_buf_size(abuf) == max_blksz); 862 if (error = uiocopy(abuf->b_data, max_blksz, 863 UIO_WRITE, uio, &cbytes)) { 864 dmu_return_arcbuf(abuf); 865 break; 866 } 867 ASSERT(cbytes == max_blksz); 868 } 869 870 /* 871 * Start a transaction. 872 */ 873 tx = dmu_tx_create(zfsvfs->z_os); 874 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 875 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 876 zfs_sa_upgrade_txholds(tx, zp); 877 error = dmu_tx_assign(tx, TXG_WAIT); 878 if (error) { 879 dmu_tx_abort(tx); 880 if (abuf != NULL) 881 dmu_return_arcbuf(abuf); 882 break; 883 } 884 885 /* 886 * If zfs_range_lock() over-locked we grow the blocksize 887 * and then reduce the lock range. This will only happen 888 * on the first iteration since zfs_range_reduce() will 889 * shrink down r_len to the appropriate size. 890 */ 891 if (rl->r_len == UINT64_MAX) { 892 uint64_t new_blksz; 893 894 if (zp->z_blksz > max_blksz) { 895 /* 896 * File's blocksize is already larger than the 897 * "recordsize" property. Only let it grow to 898 * the next power of 2. 899 */ 900 ASSERT(!ISP2(zp->z_blksz)); 901 new_blksz = MIN(end_size, 902 1 << highbit64(zp->z_blksz)); 903 } else { 904 new_blksz = MIN(end_size, max_blksz); 905 } 906 zfs_grow_blocksize(zp, new_blksz, tx); 907 zfs_range_reduce(rl, woff, n); 908 } 909 910 /* 911 * XXX - should we really limit each write to z_max_blksz? 912 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 913 */ 914 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 915 916 if (abuf == NULL) { 917 tx_bytes = uio->uio_resid; 918 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 919 uio, nbytes, tx); 920 tx_bytes -= uio->uio_resid; 921 } else { 922 tx_bytes = nbytes; 923 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 924 /* 925 * If this is not a full block write, but we are 926 * extending the file past EOF and this data starts 927 * block-aligned, use assign_arcbuf(). Otherwise, 928 * write via dmu_write(). 929 */ 930 if (tx_bytes < max_blksz && (!write_eof || 931 aiov->iov_base != abuf->b_data)) { 932 ASSERT(xuio); 933 dmu_write(zfsvfs->z_os, zp->z_id, woff, 934 aiov->iov_len, aiov->iov_base, tx); 935 dmu_return_arcbuf(abuf); 936 xuio_stat_wbuf_copied(); 937 } else { 938 ASSERT(xuio || tx_bytes == max_blksz); 939 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 940 woff, abuf, tx); 941 } 942 ASSERT(tx_bytes <= uio->uio_resid); 943 uioskip(uio, tx_bytes); 944 } 945 if (tx_bytes && vn_has_cached_data(vp)) { 946 update_pages(vp, woff, 947 tx_bytes, zfsvfs->z_os, zp->z_id); 948 } 949 950 /* 951 * If we made no progress, we're done. If we made even 952 * partial progress, update the znode and ZIL accordingly. 953 */ 954 if (tx_bytes == 0) { 955 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 956 (void *)&zp->z_size, sizeof (uint64_t), tx); 957 dmu_tx_commit(tx); 958 ASSERT(error != 0); 959 break; 960 } 961 962 /* 963 * Clear Set-UID/Set-GID bits on successful write if not 964 * privileged and at least one of the excute bits is set. 965 * 966 * It would be nice to to this after all writes have 967 * been done, but that would still expose the ISUID/ISGID 968 * to another app after the partial write is committed. 969 * 970 * Note: we don't call zfs_fuid_map_id() here because 971 * user 0 is not an ephemeral uid. 972 */ 973 mutex_enter(&zp->z_acl_lock); 974 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 975 (S_IXUSR >> 6))) != 0 && 976 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 977 secpolicy_vnode_setid_retain(cr, 978 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 979 uint64_t newmode; 980 zp->z_mode &= ~(S_ISUID | S_ISGID); 981 newmode = zp->z_mode; 982 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 983 (void *)&newmode, sizeof (uint64_t), tx); 984 } 985 mutex_exit(&zp->z_acl_lock); 986 987 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 988 B_TRUE); 989 990 /* 991 * Update the file size (zp_size) if it has changed; 992 * account for possible concurrent updates. 993 */ 994 while ((end_size = zp->z_size) < uio->uio_loffset) { 995 (void) atomic_cas_64(&zp->z_size, end_size, 996 uio->uio_loffset); 997 ASSERT(error == 0); 998 } 999 /* 1000 * If we are replaying and eof is non zero then force 1001 * the file size to the specified eof. Note, there's no 1002 * concurrency during replay. 1003 */ 1004 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 1005 zp->z_size = zfsvfs->z_replay_eof; 1006 1007 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1008 1009 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 1010 dmu_tx_commit(tx); 1011 1012 if (error != 0) 1013 break; 1014 ASSERT(tx_bytes == nbytes); 1015 n -= nbytes; 1016 1017 if (!xuio && n > 0) 1018 uio_prefaultpages(MIN(n, max_blksz), uio); 1019 } 1020 1021 zfs_range_unlock(rl); 1022 1023 /* 1024 * If we're in replay mode, or we made no progress, return error. 1025 * Otherwise, it's at least a partial write, so it's successful. 1026 */ 1027 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 1028 ZFS_EXIT(zfsvfs); 1029 return (error); 1030 } 1031 1032 if (ioflag & (FSYNC | FDSYNC) || 1033 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1034 zil_commit(zilog, zp->z_id); 1035 1036 ZFS_EXIT(zfsvfs); 1037 return (0); 1038 } 1039 1040 void 1041 zfs_get_done(zgd_t *zgd, int error) 1042 { 1043 znode_t *zp = zgd->zgd_private; 1044 objset_t *os = zp->z_zfsvfs->z_os; 1045 1046 if (zgd->zgd_db) 1047 dmu_buf_rele(zgd->zgd_db, zgd); 1048 1049 zfs_range_unlock(zgd->zgd_rl); 1050 1051 /* 1052 * Release the vnode asynchronously as we currently have the 1053 * txg stopped from syncing. 1054 */ 1055 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1056 1057 if (error == 0 && zgd->zgd_bp) 1058 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1059 1060 kmem_free(zgd, sizeof (zgd_t)); 1061 } 1062 1063 #ifdef DEBUG 1064 static int zil_fault_io = 0; 1065 #endif 1066 1067 /* 1068 * Get data to generate a TX_WRITE intent log record. 1069 */ 1070 int 1071 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1072 { 1073 zfsvfs_t *zfsvfs = arg; 1074 objset_t *os = zfsvfs->z_os; 1075 znode_t *zp; 1076 uint64_t object = lr->lr_foid; 1077 uint64_t offset = lr->lr_offset; 1078 uint64_t size = lr->lr_length; 1079 blkptr_t *bp = &lr->lr_blkptr; 1080 dmu_buf_t *db; 1081 zgd_t *zgd; 1082 int error = 0; 1083 1084 ASSERT(zio != NULL); 1085 ASSERT(size != 0); 1086 1087 /* 1088 * Nothing to do if the file has been removed 1089 */ 1090 if (zfs_zget(zfsvfs, object, &zp) != 0) 1091 return (SET_ERROR(ENOENT)); 1092 if (zp->z_unlinked) { 1093 /* 1094 * Release the vnode asynchronously as we currently have the 1095 * txg stopped from syncing. 1096 */ 1097 VN_RELE_ASYNC(ZTOV(zp), 1098 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1099 return (SET_ERROR(ENOENT)); 1100 } 1101 1102 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1103 zgd->zgd_zilog = zfsvfs->z_log; 1104 zgd->zgd_private = zp; 1105 1106 /* 1107 * Write records come in two flavors: immediate and indirect. 1108 * For small writes it's cheaper to store the data with the 1109 * log record (immediate); for large writes it's cheaper to 1110 * sync the data and get a pointer to it (indirect) so that 1111 * we don't have to write the data twice. 1112 */ 1113 if (buf != NULL) { /* immediate write */ 1114 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1115 /* test for truncation needs to be done while range locked */ 1116 if (offset >= zp->z_size) { 1117 error = SET_ERROR(ENOENT); 1118 } else { 1119 error = dmu_read(os, object, offset, size, buf, 1120 DMU_READ_NO_PREFETCH); 1121 } 1122 ASSERT(error == 0 || error == ENOENT); 1123 } else { /* indirect write */ 1124 /* 1125 * Have to lock the whole block to ensure when it's 1126 * written out and it's checksum is being calculated 1127 * that no one can change the data. We need to re-check 1128 * blocksize after we get the lock in case it's changed! 1129 */ 1130 for (;;) { 1131 uint64_t blkoff; 1132 size = zp->z_blksz; 1133 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1134 offset -= blkoff; 1135 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1136 RL_READER); 1137 if (zp->z_blksz == size) 1138 break; 1139 offset += blkoff; 1140 zfs_range_unlock(zgd->zgd_rl); 1141 } 1142 /* test for truncation needs to be done while range locked */ 1143 if (lr->lr_offset >= zp->z_size) 1144 error = SET_ERROR(ENOENT); 1145 #ifdef DEBUG 1146 if (zil_fault_io) { 1147 error = SET_ERROR(EIO); 1148 zil_fault_io = 0; 1149 } 1150 #endif 1151 if (error == 0) 1152 error = dmu_buf_hold(os, object, offset, zgd, &db, 1153 DMU_READ_NO_PREFETCH); 1154 1155 if (error == 0) { 1156 blkptr_t *obp = dmu_buf_get_blkptr(db); 1157 if (obp) { 1158 ASSERT(BP_IS_HOLE(bp)); 1159 *bp = *obp; 1160 } 1161 1162 zgd->zgd_db = db; 1163 zgd->zgd_bp = bp; 1164 1165 ASSERT(db->db_offset == offset); 1166 ASSERT(db->db_size == size); 1167 1168 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1169 zfs_get_done, zgd); 1170 ASSERT(error || lr->lr_length <= zp->z_blksz); 1171 1172 /* 1173 * On success, we need to wait for the write I/O 1174 * initiated by dmu_sync() to complete before we can 1175 * release this dbuf. We will finish everything up 1176 * in the zfs_get_done() callback. 1177 */ 1178 if (error == 0) 1179 return (0); 1180 1181 if (error == EALREADY) { 1182 lr->lr_common.lrc_txtype = TX_WRITE2; 1183 error = 0; 1184 } 1185 } 1186 } 1187 1188 zfs_get_done(zgd, error); 1189 1190 return (error); 1191 } 1192 1193 /*ARGSUSED*/ 1194 static int 1195 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1196 caller_context_t *ct) 1197 { 1198 znode_t *zp = VTOZ(vp); 1199 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1200 int error; 1201 1202 ZFS_ENTER(zfsvfs); 1203 ZFS_VERIFY_ZP(zp); 1204 1205 if (flag & V_ACE_MASK) 1206 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1207 else 1208 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1209 1210 ZFS_EXIT(zfsvfs); 1211 return (error); 1212 } 1213 1214 /* 1215 * If vnode is for a device return a specfs vnode instead. 1216 */ 1217 static int 1218 specvp_check(vnode_t **vpp, cred_t *cr) 1219 { 1220 int error = 0; 1221 1222 if (IS_DEVVP(*vpp)) { 1223 struct vnode *svp; 1224 1225 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1226 VN_RELE(*vpp); 1227 if (svp == NULL) 1228 error = SET_ERROR(ENOSYS); 1229 *vpp = svp; 1230 } 1231 return (error); 1232 } 1233 1234 1235 /* 1236 * Lookup an entry in a directory, or an extended attribute directory. 1237 * If it exists, return a held vnode reference for it. 1238 * 1239 * IN: dvp - vnode of directory to search. 1240 * nm - name of entry to lookup. 1241 * pnp - full pathname to lookup [UNUSED]. 1242 * flags - LOOKUP_XATTR set if looking for an attribute. 1243 * rdir - root directory vnode [UNUSED]. 1244 * cr - credentials of caller. 1245 * ct - caller context 1246 * direntflags - directory lookup flags 1247 * realpnp - returned pathname. 1248 * 1249 * OUT: vpp - vnode of located entry, NULL if not found. 1250 * 1251 * RETURN: 0 on success, error code on failure. 1252 * 1253 * Timestamps: 1254 * NA 1255 */ 1256 /* ARGSUSED */ 1257 static int 1258 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1259 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1260 int *direntflags, pathname_t *realpnp) 1261 { 1262 znode_t *zdp = VTOZ(dvp); 1263 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1264 int error = 0; 1265 1266 /* fast path */ 1267 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1268 1269 if (dvp->v_type != VDIR) { 1270 return (SET_ERROR(ENOTDIR)); 1271 } else if (zdp->z_sa_hdl == NULL) { 1272 return (SET_ERROR(EIO)); 1273 } 1274 1275 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1276 error = zfs_fastaccesschk_execute(zdp, cr); 1277 if (!error) { 1278 *vpp = dvp; 1279 VN_HOLD(*vpp); 1280 return (0); 1281 } 1282 return (error); 1283 } else { 1284 vnode_t *tvp = dnlc_lookup(dvp, nm); 1285 1286 if (tvp) { 1287 error = zfs_fastaccesschk_execute(zdp, cr); 1288 if (error) { 1289 VN_RELE(tvp); 1290 return (error); 1291 } 1292 if (tvp == DNLC_NO_VNODE) { 1293 VN_RELE(tvp); 1294 return (SET_ERROR(ENOENT)); 1295 } else { 1296 *vpp = tvp; 1297 return (specvp_check(vpp, cr)); 1298 } 1299 } 1300 } 1301 } 1302 1303 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1304 1305 ZFS_ENTER(zfsvfs); 1306 ZFS_VERIFY_ZP(zdp); 1307 1308 *vpp = NULL; 1309 1310 if (flags & LOOKUP_XATTR) { 1311 /* 1312 * If the xattr property is off, refuse the lookup request. 1313 */ 1314 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1315 ZFS_EXIT(zfsvfs); 1316 return (SET_ERROR(EINVAL)); 1317 } 1318 1319 /* 1320 * We don't allow recursive attributes.. 1321 * Maybe someday we will. 1322 */ 1323 if (zdp->z_pflags & ZFS_XATTR) { 1324 ZFS_EXIT(zfsvfs); 1325 return (SET_ERROR(EINVAL)); 1326 } 1327 1328 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1329 ZFS_EXIT(zfsvfs); 1330 return (error); 1331 } 1332 1333 /* 1334 * Do we have permission to get into attribute directory? 1335 */ 1336 1337 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1338 B_FALSE, cr)) { 1339 VN_RELE(*vpp); 1340 *vpp = NULL; 1341 } 1342 1343 ZFS_EXIT(zfsvfs); 1344 return (error); 1345 } 1346 1347 if (dvp->v_type != VDIR) { 1348 ZFS_EXIT(zfsvfs); 1349 return (SET_ERROR(ENOTDIR)); 1350 } 1351 1352 /* 1353 * Check accessibility of directory. 1354 */ 1355 1356 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1357 ZFS_EXIT(zfsvfs); 1358 return (error); 1359 } 1360 1361 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1362 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1363 ZFS_EXIT(zfsvfs); 1364 return (SET_ERROR(EILSEQ)); 1365 } 1366 1367 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1368 if (error == 0) 1369 error = specvp_check(vpp, cr); 1370 1371 ZFS_EXIT(zfsvfs); 1372 return (error); 1373 } 1374 1375 /* 1376 * Attempt to create a new entry in a directory. If the entry 1377 * already exists, truncate the file if permissible, else return 1378 * an error. Return the vp of the created or trunc'd file. 1379 * 1380 * IN: dvp - vnode of directory to put new file entry in. 1381 * name - name of new file entry. 1382 * vap - attributes of new file. 1383 * excl - flag indicating exclusive or non-exclusive mode. 1384 * mode - mode to open file with. 1385 * cr - credentials of caller. 1386 * flag - large file flag [UNUSED]. 1387 * ct - caller context 1388 * vsecp - ACL to be set 1389 * 1390 * OUT: vpp - vnode of created or trunc'd entry. 1391 * 1392 * RETURN: 0 on success, error code on failure. 1393 * 1394 * Timestamps: 1395 * dvp - ctime|mtime updated if new entry created 1396 * vp - ctime|mtime always, atime if new 1397 */ 1398 1399 /* ARGSUSED */ 1400 static int 1401 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1402 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1403 vsecattr_t *vsecp) 1404 { 1405 znode_t *zp, *dzp = VTOZ(dvp); 1406 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1407 zilog_t *zilog; 1408 objset_t *os; 1409 zfs_dirlock_t *dl; 1410 dmu_tx_t *tx; 1411 int error; 1412 ksid_t *ksid; 1413 uid_t uid; 1414 gid_t gid = crgetgid(cr); 1415 zfs_acl_ids_t acl_ids; 1416 boolean_t fuid_dirtied; 1417 boolean_t have_acl = B_FALSE; 1418 boolean_t waited = B_FALSE; 1419 1420 /* 1421 * If we have an ephemeral id, ACL, or XVATTR then 1422 * make sure file system is at proper version 1423 */ 1424 1425 ksid = crgetsid(cr, KSID_OWNER); 1426 if (ksid) 1427 uid = ksid_getid(ksid); 1428 else 1429 uid = crgetuid(cr); 1430 1431 if (zfsvfs->z_use_fuids == B_FALSE && 1432 (vsecp || (vap->va_mask & AT_XVATTR) || 1433 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1434 return (SET_ERROR(EINVAL)); 1435 1436 ZFS_ENTER(zfsvfs); 1437 ZFS_VERIFY_ZP(dzp); 1438 os = zfsvfs->z_os; 1439 zilog = zfsvfs->z_log; 1440 1441 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1442 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1443 ZFS_EXIT(zfsvfs); 1444 return (SET_ERROR(EILSEQ)); 1445 } 1446 1447 if (vap->va_mask & AT_XVATTR) { 1448 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1449 crgetuid(cr), cr, vap->va_type)) != 0) { 1450 ZFS_EXIT(zfsvfs); 1451 return (error); 1452 } 1453 } 1454 top: 1455 *vpp = NULL; 1456 1457 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1458 vap->va_mode &= ~VSVTX; 1459 1460 if (*name == '\0') { 1461 /* 1462 * Null component name refers to the directory itself. 1463 */ 1464 VN_HOLD(dvp); 1465 zp = dzp; 1466 dl = NULL; 1467 error = 0; 1468 } else { 1469 /* possible VN_HOLD(zp) */ 1470 int zflg = 0; 1471 1472 if (flag & FIGNORECASE) 1473 zflg |= ZCILOOK; 1474 1475 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1476 NULL, NULL); 1477 if (error) { 1478 if (have_acl) 1479 zfs_acl_ids_free(&acl_ids); 1480 if (strcmp(name, "..") == 0) 1481 error = SET_ERROR(EISDIR); 1482 ZFS_EXIT(zfsvfs); 1483 return (error); 1484 } 1485 } 1486 1487 if (zp == NULL) { 1488 uint64_t txtype; 1489 1490 /* 1491 * Create a new file object and update the directory 1492 * to reference it. 1493 */ 1494 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1495 if (have_acl) 1496 zfs_acl_ids_free(&acl_ids); 1497 goto out; 1498 } 1499 1500 /* 1501 * We only support the creation of regular files in 1502 * extended attribute directories. 1503 */ 1504 1505 if ((dzp->z_pflags & ZFS_XATTR) && 1506 (vap->va_type != VREG)) { 1507 if (have_acl) 1508 zfs_acl_ids_free(&acl_ids); 1509 error = SET_ERROR(EINVAL); 1510 goto out; 1511 } 1512 1513 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1514 cr, vsecp, &acl_ids)) != 0) 1515 goto out; 1516 have_acl = B_TRUE; 1517 1518 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1519 zfs_acl_ids_free(&acl_ids); 1520 error = SET_ERROR(EDQUOT); 1521 goto out; 1522 } 1523 1524 tx = dmu_tx_create(os); 1525 1526 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1527 ZFS_SA_BASE_ATTR_SIZE); 1528 1529 fuid_dirtied = zfsvfs->z_fuid_dirty; 1530 if (fuid_dirtied) 1531 zfs_fuid_txhold(zfsvfs, tx); 1532 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1533 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1534 if (!zfsvfs->z_use_sa && 1535 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1536 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1537 0, acl_ids.z_aclp->z_acl_bytes); 1538 } 1539 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1540 if (error) { 1541 zfs_dirent_unlock(dl); 1542 if (error == ERESTART) { 1543 waited = B_TRUE; 1544 dmu_tx_wait(tx); 1545 dmu_tx_abort(tx); 1546 goto top; 1547 } 1548 zfs_acl_ids_free(&acl_ids); 1549 dmu_tx_abort(tx); 1550 ZFS_EXIT(zfsvfs); 1551 return (error); 1552 } 1553 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1554 1555 if (fuid_dirtied) 1556 zfs_fuid_sync(zfsvfs, tx); 1557 1558 (void) zfs_link_create(dl, zp, tx, ZNEW); 1559 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1560 if (flag & FIGNORECASE) 1561 txtype |= TX_CI; 1562 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1563 vsecp, acl_ids.z_fuidp, vap); 1564 zfs_acl_ids_free(&acl_ids); 1565 dmu_tx_commit(tx); 1566 } else { 1567 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1568 1569 if (have_acl) 1570 zfs_acl_ids_free(&acl_ids); 1571 have_acl = B_FALSE; 1572 1573 /* 1574 * A directory entry already exists for this name. 1575 */ 1576 /* 1577 * Can't truncate an existing file if in exclusive mode. 1578 */ 1579 if (excl == EXCL) { 1580 error = SET_ERROR(EEXIST); 1581 goto out; 1582 } 1583 /* 1584 * Can't open a directory for writing. 1585 */ 1586 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1587 error = SET_ERROR(EISDIR); 1588 goto out; 1589 } 1590 /* 1591 * Verify requested access to file. 1592 */ 1593 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1594 goto out; 1595 } 1596 1597 mutex_enter(&dzp->z_lock); 1598 dzp->z_seq++; 1599 mutex_exit(&dzp->z_lock); 1600 1601 /* 1602 * Truncate regular files if requested. 1603 */ 1604 if ((ZTOV(zp)->v_type == VREG) && 1605 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1606 /* we can't hold any locks when calling zfs_freesp() */ 1607 zfs_dirent_unlock(dl); 1608 dl = NULL; 1609 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1610 if (error == 0) { 1611 vnevent_create(ZTOV(zp), ct); 1612 } 1613 } 1614 } 1615 out: 1616 1617 if (dl) 1618 zfs_dirent_unlock(dl); 1619 1620 if (error) { 1621 if (zp) 1622 VN_RELE(ZTOV(zp)); 1623 } else { 1624 *vpp = ZTOV(zp); 1625 error = specvp_check(vpp, cr); 1626 } 1627 1628 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1629 zil_commit(zilog, 0); 1630 1631 ZFS_EXIT(zfsvfs); 1632 return (error); 1633 } 1634 1635 /* 1636 * Remove an entry from a directory. 1637 * 1638 * IN: dvp - vnode of directory to remove entry from. 1639 * name - name of entry to remove. 1640 * cr - credentials of caller. 1641 * ct - caller context 1642 * flags - case flags 1643 * 1644 * RETURN: 0 on success, error code on failure. 1645 * 1646 * Timestamps: 1647 * dvp - ctime|mtime 1648 * vp - ctime (if nlink > 0) 1649 */ 1650 1651 uint64_t null_xattr = 0; 1652 1653 /*ARGSUSED*/ 1654 static int 1655 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1656 int flags) 1657 { 1658 znode_t *zp, *dzp = VTOZ(dvp); 1659 znode_t *xzp; 1660 vnode_t *vp; 1661 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1662 zilog_t *zilog; 1663 uint64_t acl_obj, xattr_obj; 1664 uint64_t xattr_obj_unlinked = 0; 1665 uint64_t obj = 0; 1666 zfs_dirlock_t *dl; 1667 dmu_tx_t *tx; 1668 boolean_t may_delete_now, delete_now = FALSE; 1669 boolean_t unlinked, toobig = FALSE; 1670 uint64_t txtype; 1671 pathname_t *realnmp = NULL; 1672 pathname_t realnm; 1673 int error; 1674 int zflg = ZEXISTS; 1675 boolean_t waited = B_FALSE; 1676 1677 ZFS_ENTER(zfsvfs); 1678 ZFS_VERIFY_ZP(dzp); 1679 zilog = zfsvfs->z_log; 1680 1681 if (flags & FIGNORECASE) { 1682 zflg |= ZCILOOK; 1683 pn_alloc(&realnm); 1684 realnmp = &realnm; 1685 } 1686 1687 top: 1688 xattr_obj = 0; 1689 xzp = NULL; 1690 /* 1691 * Attempt to lock directory; fail if entry doesn't exist. 1692 */ 1693 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1694 NULL, realnmp)) { 1695 if (realnmp) 1696 pn_free(realnmp); 1697 ZFS_EXIT(zfsvfs); 1698 return (error); 1699 } 1700 1701 vp = ZTOV(zp); 1702 1703 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1704 goto out; 1705 } 1706 1707 /* 1708 * Need to use rmdir for removing directories. 1709 */ 1710 if (vp->v_type == VDIR) { 1711 error = SET_ERROR(EPERM); 1712 goto out; 1713 } 1714 1715 vnevent_remove(vp, dvp, name, ct); 1716 1717 if (realnmp) 1718 dnlc_remove(dvp, realnmp->pn_buf); 1719 else 1720 dnlc_remove(dvp, name); 1721 1722 mutex_enter(&vp->v_lock); 1723 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1724 mutex_exit(&vp->v_lock); 1725 1726 /* 1727 * We may delete the znode now, or we may put it in the unlinked set; 1728 * it depends on whether we're the last link, and on whether there are 1729 * other holds on the vnode. So we dmu_tx_hold() the right things to 1730 * allow for either case. 1731 */ 1732 obj = zp->z_id; 1733 tx = dmu_tx_create(zfsvfs->z_os); 1734 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1735 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1736 zfs_sa_upgrade_txholds(tx, zp); 1737 zfs_sa_upgrade_txholds(tx, dzp); 1738 if (may_delete_now) { 1739 toobig = 1740 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1741 /* if the file is too big, only hold_free a token amount */ 1742 dmu_tx_hold_free(tx, zp->z_id, 0, 1743 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1744 } 1745 1746 /* are there any extended attributes? */ 1747 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1748 &xattr_obj, sizeof (xattr_obj)); 1749 if (error == 0 && xattr_obj) { 1750 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1751 ASSERT0(error); 1752 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1753 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1754 } 1755 1756 mutex_enter(&zp->z_lock); 1757 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1758 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1759 mutex_exit(&zp->z_lock); 1760 1761 /* charge as an update -- would be nice not to charge at all */ 1762 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1763 1764 /* 1765 * Mark this transaction as typically resulting in a net free of space 1766 */ 1767 dmu_tx_mark_netfree(tx); 1768 1769 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1770 if (error) { 1771 zfs_dirent_unlock(dl); 1772 VN_RELE(vp); 1773 if (xzp) 1774 VN_RELE(ZTOV(xzp)); 1775 if (error == ERESTART) { 1776 waited = B_TRUE; 1777 dmu_tx_wait(tx); 1778 dmu_tx_abort(tx); 1779 goto top; 1780 } 1781 if (realnmp) 1782 pn_free(realnmp); 1783 dmu_tx_abort(tx); 1784 ZFS_EXIT(zfsvfs); 1785 return (error); 1786 } 1787 1788 /* 1789 * Remove the directory entry. 1790 */ 1791 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1792 1793 if (error) { 1794 dmu_tx_commit(tx); 1795 goto out; 1796 } 1797 1798 if (unlinked) { 1799 /* 1800 * Hold z_lock so that we can make sure that the ACL obj 1801 * hasn't changed. Could have been deleted due to 1802 * zfs_sa_upgrade(). 1803 */ 1804 mutex_enter(&zp->z_lock); 1805 mutex_enter(&vp->v_lock); 1806 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1807 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1808 delete_now = may_delete_now && !toobig && 1809 vp->v_count == 1 && !vn_has_cached_data(vp) && 1810 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1811 acl_obj; 1812 mutex_exit(&vp->v_lock); 1813 } 1814 1815 txtype = TX_REMOVE; 1816 if (flags & FIGNORECASE) 1817 txtype |= TX_CI; 1818 rw_enter(&rz_zev_rwlock, RW_READER); 1819 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_remove) 1820 rz_zev_callbacks->rz_zev_znode_remove(dzp, zp, tx, 1821 name, txtype); 1822 rw_exit(&rz_zev_rwlock); 1823 1824 if (delete_now) { 1825 if (xattr_obj_unlinked) { 1826 ASSERT3U(xzp->z_links, ==, 2); 1827 mutex_enter(&xzp->z_lock); 1828 xzp->z_unlinked = 1; 1829 xzp->z_links = 0; 1830 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1831 &xzp->z_links, sizeof (xzp->z_links), tx); 1832 ASSERT3U(error, ==, 0); 1833 mutex_exit(&xzp->z_lock); 1834 zfs_unlinked_add(xzp, tx); 1835 1836 if (zp->z_is_sa) 1837 error = sa_remove(zp->z_sa_hdl, 1838 SA_ZPL_XATTR(zfsvfs), tx); 1839 else 1840 error = sa_update(zp->z_sa_hdl, 1841 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1842 sizeof (uint64_t), tx); 1843 ASSERT0(error); 1844 } 1845 mutex_enter(&vp->v_lock); 1846 vp->v_count--; 1847 ASSERT0(vp->v_count); 1848 mutex_exit(&vp->v_lock); 1849 mutex_exit(&zp->z_lock); 1850 zfs_znode_delete(zp, tx); 1851 } else if (unlinked) { 1852 mutex_exit(&zp->z_lock); 1853 zfs_unlinked_add(zp, tx); 1854 } 1855 1856 txtype = TX_REMOVE; 1857 if (flags & FIGNORECASE) 1858 txtype |= TX_CI; 1859 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1860 1861 dmu_tx_commit(tx); 1862 out: 1863 if (realnmp) 1864 pn_free(realnmp); 1865 1866 zfs_dirent_unlock(dl); 1867 1868 if (!delete_now) 1869 VN_RELE(vp); 1870 if (xzp) 1871 VN_RELE(ZTOV(xzp)); 1872 1873 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1874 zil_commit(zilog, 0); 1875 1876 ZFS_EXIT(zfsvfs); 1877 return (error); 1878 } 1879 1880 /* 1881 * Create a new directory and insert it into dvp using the name 1882 * provided. Return a pointer to the inserted directory. 1883 * 1884 * IN: dvp - vnode of directory to add subdir to. 1885 * dirname - name of new directory. 1886 * vap - attributes of new directory. 1887 * cr - credentials of caller. 1888 * ct - caller context 1889 * flags - case flags 1890 * vsecp - ACL to be set 1891 * 1892 * OUT: vpp - vnode of created directory. 1893 * 1894 * RETURN: 0 on success, error code on failure. 1895 * 1896 * Timestamps: 1897 * dvp - ctime|mtime updated 1898 * vp - ctime|mtime|atime updated 1899 */ 1900 /*ARGSUSED*/ 1901 static int 1902 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1903 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1904 { 1905 znode_t *zp, *dzp = VTOZ(dvp); 1906 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1907 zilog_t *zilog; 1908 zfs_dirlock_t *dl; 1909 uint64_t txtype; 1910 dmu_tx_t *tx; 1911 int error; 1912 int zf = ZNEW; 1913 ksid_t *ksid; 1914 uid_t uid; 1915 gid_t gid = crgetgid(cr); 1916 zfs_acl_ids_t acl_ids; 1917 boolean_t fuid_dirtied; 1918 boolean_t waited = B_FALSE; 1919 1920 ASSERT(vap->va_type == VDIR); 1921 1922 /* 1923 * If we have an ephemeral id, ACL, or XVATTR then 1924 * make sure file system is at proper version 1925 */ 1926 1927 ksid = crgetsid(cr, KSID_OWNER); 1928 if (ksid) 1929 uid = ksid_getid(ksid); 1930 else 1931 uid = crgetuid(cr); 1932 if (zfsvfs->z_use_fuids == B_FALSE && 1933 (vsecp || (vap->va_mask & AT_XVATTR) || 1934 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1935 return (SET_ERROR(EINVAL)); 1936 1937 ZFS_ENTER(zfsvfs); 1938 ZFS_VERIFY_ZP(dzp); 1939 zilog = zfsvfs->z_log; 1940 1941 if (dzp->z_pflags & ZFS_XATTR) { 1942 ZFS_EXIT(zfsvfs); 1943 return (SET_ERROR(EINVAL)); 1944 } 1945 1946 if (zfsvfs->z_utf8 && u8_validate(dirname, 1947 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1948 ZFS_EXIT(zfsvfs); 1949 return (SET_ERROR(EILSEQ)); 1950 } 1951 if (flags & FIGNORECASE) 1952 zf |= ZCILOOK; 1953 1954 if (vap->va_mask & AT_XVATTR) { 1955 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1956 crgetuid(cr), cr, vap->va_type)) != 0) { 1957 ZFS_EXIT(zfsvfs); 1958 return (error); 1959 } 1960 } 1961 1962 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1963 vsecp, &acl_ids)) != 0) { 1964 ZFS_EXIT(zfsvfs); 1965 return (error); 1966 } 1967 /* 1968 * First make sure the new directory doesn't exist. 1969 * 1970 * Existence is checked first to make sure we don't return 1971 * EACCES instead of EEXIST which can cause some applications 1972 * to fail. 1973 */ 1974 top: 1975 *vpp = NULL; 1976 1977 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1978 NULL, NULL)) { 1979 zfs_acl_ids_free(&acl_ids); 1980 ZFS_EXIT(zfsvfs); 1981 return (error); 1982 } 1983 1984 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1985 zfs_acl_ids_free(&acl_ids); 1986 zfs_dirent_unlock(dl); 1987 ZFS_EXIT(zfsvfs); 1988 return (error); 1989 } 1990 1991 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1992 zfs_acl_ids_free(&acl_ids); 1993 zfs_dirent_unlock(dl); 1994 ZFS_EXIT(zfsvfs); 1995 return (SET_ERROR(EDQUOT)); 1996 } 1997 1998 /* 1999 * Add a new entry to the directory. 2000 */ 2001 tx = dmu_tx_create(zfsvfs->z_os); 2002 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 2003 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2004 fuid_dirtied = zfsvfs->z_fuid_dirty; 2005 if (fuid_dirtied) 2006 zfs_fuid_txhold(zfsvfs, tx); 2007 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2008 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2009 acl_ids.z_aclp->z_acl_bytes); 2010 } 2011 2012 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 2013 ZFS_SA_BASE_ATTR_SIZE); 2014 2015 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 2016 if (error) { 2017 zfs_dirent_unlock(dl); 2018 if (error == ERESTART) { 2019 waited = B_TRUE; 2020 dmu_tx_wait(tx); 2021 dmu_tx_abort(tx); 2022 goto top; 2023 } 2024 zfs_acl_ids_free(&acl_ids); 2025 dmu_tx_abort(tx); 2026 ZFS_EXIT(zfsvfs); 2027 return (error); 2028 } 2029 2030 /* 2031 * Create new node. 2032 */ 2033 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 2034 2035 if (fuid_dirtied) 2036 zfs_fuid_sync(zfsvfs, tx); 2037 2038 /* 2039 * Now put new name in parent dir. 2040 */ 2041 (void) zfs_link_create(dl, zp, tx, ZNEW); 2042 2043 *vpp = ZTOV(zp); 2044 2045 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2046 if (flags & FIGNORECASE) 2047 txtype |= TX_CI; 2048 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2049 acl_ids.z_fuidp, vap); 2050 2051 zfs_acl_ids_free(&acl_ids); 2052 2053 dmu_tx_commit(tx); 2054 2055 zfs_dirent_unlock(dl); 2056 2057 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2058 zil_commit(zilog, 0); 2059 2060 ZFS_EXIT(zfsvfs); 2061 return (0); 2062 } 2063 2064 /* 2065 * Remove a directory subdir entry. If the current working 2066 * directory is the same as the subdir to be removed, the 2067 * remove will fail. 2068 * 2069 * IN: dvp - vnode of directory to remove from. 2070 * name - name of directory to be removed. 2071 * cwd - vnode of current working directory. 2072 * cr - credentials of caller. 2073 * ct - caller context 2074 * flags - case flags 2075 * 2076 * RETURN: 0 on success, error code on failure. 2077 * 2078 * Timestamps: 2079 * dvp - ctime|mtime updated 2080 */ 2081 /*ARGSUSED*/ 2082 static int 2083 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2084 caller_context_t *ct, int flags) 2085 { 2086 znode_t *dzp = VTOZ(dvp); 2087 znode_t *zp; 2088 vnode_t *vp; 2089 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2090 zilog_t *zilog; 2091 zfs_dirlock_t *dl; 2092 dmu_tx_t *tx; 2093 int error; 2094 int zflg = ZEXISTS; 2095 boolean_t waited = B_FALSE; 2096 2097 ZFS_ENTER(zfsvfs); 2098 ZFS_VERIFY_ZP(dzp); 2099 zilog = zfsvfs->z_log; 2100 2101 if (flags & FIGNORECASE) 2102 zflg |= ZCILOOK; 2103 top: 2104 zp = NULL; 2105 2106 /* 2107 * Attempt to lock directory; fail if entry doesn't exist. 2108 */ 2109 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2110 NULL, NULL)) { 2111 ZFS_EXIT(zfsvfs); 2112 return (error); 2113 } 2114 2115 vp = ZTOV(zp); 2116 2117 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2118 goto out; 2119 } 2120 2121 if (vp->v_type != VDIR) { 2122 error = SET_ERROR(ENOTDIR); 2123 goto out; 2124 } 2125 2126 if (vp == cwd) { 2127 error = SET_ERROR(EINVAL); 2128 goto out; 2129 } 2130 2131 vnevent_rmdir(vp, dvp, name, ct); 2132 2133 /* 2134 * Grab a lock on the directory to make sure that noone is 2135 * trying to add (or lookup) entries while we are removing it. 2136 */ 2137 rw_enter(&zp->z_name_lock, RW_WRITER); 2138 2139 /* 2140 * Grab a lock on the parent pointer to make sure we play well 2141 * with the treewalk and directory rename code. 2142 */ 2143 rw_enter(&zp->z_parent_lock, RW_WRITER); 2144 2145 tx = dmu_tx_create(zfsvfs->z_os); 2146 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2147 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2148 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2149 zfs_sa_upgrade_txholds(tx, zp); 2150 zfs_sa_upgrade_txholds(tx, dzp); 2151 dmu_tx_mark_netfree(tx); 2152 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 2153 if (error) { 2154 rw_exit(&zp->z_parent_lock); 2155 rw_exit(&zp->z_name_lock); 2156 zfs_dirent_unlock(dl); 2157 VN_RELE(vp); 2158 if (error == ERESTART) { 2159 waited = B_TRUE; 2160 dmu_tx_wait(tx); 2161 dmu_tx_abort(tx); 2162 goto top; 2163 } 2164 dmu_tx_abort(tx); 2165 ZFS_EXIT(zfsvfs); 2166 return (error); 2167 } 2168 2169 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2170 2171 if (error == 0) { 2172 uint64_t txtype = TX_RMDIR; 2173 if (flags & FIGNORECASE) 2174 txtype |= TX_CI; 2175 2176 rw_enter(&rz_zev_rwlock, RW_READER); 2177 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_remove) 2178 rz_zev_callbacks->rz_zev_znode_remove(dzp, zp, tx, 2179 name, txtype); 2180 rw_exit(&rz_zev_rwlock); 2181 2182 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2183 } 2184 2185 dmu_tx_commit(tx); 2186 2187 rw_exit(&zp->z_parent_lock); 2188 rw_exit(&zp->z_name_lock); 2189 out: 2190 zfs_dirent_unlock(dl); 2191 2192 VN_RELE(vp); 2193 2194 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2195 zil_commit(zilog, 0); 2196 2197 ZFS_EXIT(zfsvfs); 2198 return (error); 2199 } 2200 2201 /* 2202 * Read as many directory entries as will fit into the provided 2203 * buffer from the given directory cursor position (specified in 2204 * the uio structure). 2205 * 2206 * IN: vp - vnode of directory to read. 2207 * uio - structure supplying read location, range info, 2208 * and return buffer. 2209 * cr - credentials of caller. 2210 * ct - caller context 2211 * flags - case flags 2212 * 2213 * OUT: uio - updated offset and range, buffer filled. 2214 * eofp - set to true if end-of-file detected. 2215 * 2216 * RETURN: 0 on success, error code on failure. 2217 * 2218 * Timestamps: 2219 * vp - atime updated 2220 * 2221 * Note that the low 4 bits of the cookie returned by zap is always zero. 2222 * This allows us to use the low range for "special" directory entries: 2223 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2224 * we use the offset 2 for the '.zfs' directory. 2225 */ 2226 /* ARGSUSED */ 2227 static int 2228 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2229 caller_context_t *ct, int flags) 2230 { 2231 znode_t *zp = VTOZ(vp); 2232 iovec_t *iovp; 2233 edirent_t *eodp; 2234 dirent64_t *odp; 2235 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2236 objset_t *os; 2237 caddr_t outbuf; 2238 size_t bufsize; 2239 zap_cursor_t zc; 2240 zap_attribute_t zap; 2241 uint_t bytes_wanted; 2242 uint64_t offset; /* must be unsigned; checks for < 1 */ 2243 uint64_t parent; 2244 int local_eof; 2245 int outcount; 2246 int error; 2247 uint8_t prefetch; 2248 boolean_t check_sysattrs; 2249 2250 ZFS_ENTER(zfsvfs); 2251 ZFS_VERIFY_ZP(zp); 2252 2253 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2254 &parent, sizeof (parent))) != 0) { 2255 ZFS_EXIT(zfsvfs); 2256 return (error); 2257 } 2258 2259 /* 2260 * If we are not given an eof variable, 2261 * use a local one. 2262 */ 2263 if (eofp == NULL) 2264 eofp = &local_eof; 2265 2266 /* 2267 * Check for valid iov_len. 2268 */ 2269 if (uio->uio_iov->iov_len <= 0) { 2270 ZFS_EXIT(zfsvfs); 2271 return (SET_ERROR(EINVAL)); 2272 } 2273 2274 /* 2275 * Quit if directory has been removed (posix) 2276 */ 2277 if ((*eofp = zp->z_unlinked) != 0) { 2278 ZFS_EXIT(zfsvfs); 2279 return (0); 2280 } 2281 2282 error = 0; 2283 os = zfsvfs->z_os; 2284 offset = uio->uio_loffset; 2285 prefetch = zp->z_zn_prefetch; 2286 2287 /* 2288 * Initialize the iterator cursor. 2289 */ 2290 if (offset <= 3) { 2291 /* 2292 * Start iteration from the beginning of the directory. 2293 */ 2294 zap_cursor_init(&zc, os, zp->z_id); 2295 } else { 2296 /* 2297 * The offset is a serialized cursor. 2298 */ 2299 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2300 } 2301 2302 /* 2303 * Get space to change directory entries into fs independent format. 2304 */ 2305 iovp = uio->uio_iov; 2306 bytes_wanted = iovp->iov_len; 2307 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2308 bufsize = bytes_wanted; 2309 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2310 odp = (struct dirent64 *)outbuf; 2311 } else { 2312 bufsize = bytes_wanted; 2313 outbuf = NULL; 2314 odp = (struct dirent64 *)iovp->iov_base; 2315 } 2316 eodp = (struct edirent *)odp; 2317 2318 /* 2319 * If this VFS supports the system attribute view interface; and 2320 * we're looking at an extended attribute directory; and we care 2321 * about normalization conflicts on this vfs; then we must check 2322 * for normalization conflicts with the sysattr name space. 2323 */ 2324 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2325 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2326 (flags & V_RDDIR_ENTFLAGS); 2327 2328 /* 2329 * Transform to file-system independent format 2330 */ 2331 outcount = 0; 2332 while (outcount < bytes_wanted) { 2333 ino64_t objnum; 2334 ushort_t reclen; 2335 off64_t *next = NULL; 2336 2337 /* 2338 * Special case `.', `..', and `.zfs'. 2339 */ 2340 if (offset == 0) { 2341 (void) strcpy(zap.za_name, "."); 2342 zap.za_normalization_conflict = 0; 2343 objnum = zp->z_id; 2344 } else if (offset == 1) { 2345 (void) strcpy(zap.za_name, ".."); 2346 zap.za_normalization_conflict = 0; 2347 objnum = parent; 2348 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2349 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2350 zap.za_normalization_conflict = 0; 2351 objnum = ZFSCTL_INO_ROOT; 2352 } else { 2353 /* 2354 * Grab next entry. 2355 */ 2356 if (error = zap_cursor_retrieve(&zc, &zap)) { 2357 if ((*eofp = (error == ENOENT)) != 0) 2358 break; 2359 else 2360 goto update; 2361 } 2362 2363 if (zap.za_integer_length != 8 || 2364 zap.za_num_integers != 1) { 2365 cmn_err(CE_WARN, "zap_readdir: bad directory " 2366 "entry, obj = %lld, offset = %lld\n", 2367 (u_longlong_t)zp->z_id, 2368 (u_longlong_t)offset); 2369 error = SET_ERROR(ENXIO); 2370 goto update; 2371 } 2372 2373 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2374 /* 2375 * MacOS X can extract the object type here such as: 2376 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2377 */ 2378 2379 if (check_sysattrs && !zap.za_normalization_conflict) { 2380 zap.za_normalization_conflict = 2381 xattr_sysattr_casechk(zap.za_name); 2382 } 2383 } 2384 2385 if (flags & V_RDDIR_ACCFILTER) { 2386 /* 2387 * If we have no access at all, don't include 2388 * this entry in the returned information 2389 */ 2390 znode_t *ezp; 2391 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2392 goto skip_entry; 2393 if (!zfs_has_access(ezp, cr)) { 2394 VN_RELE(ZTOV(ezp)); 2395 goto skip_entry; 2396 } 2397 VN_RELE(ZTOV(ezp)); 2398 } 2399 2400 if (flags & V_RDDIR_ENTFLAGS) 2401 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2402 else 2403 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2404 2405 /* 2406 * Will this entry fit in the buffer? 2407 */ 2408 if (outcount + reclen > bufsize) { 2409 /* 2410 * Did we manage to fit anything in the buffer? 2411 */ 2412 if (!outcount) { 2413 error = SET_ERROR(EINVAL); 2414 goto update; 2415 } 2416 break; 2417 } 2418 if (flags & V_RDDIR_ENTFLAGS) { 2419 /* 2420 * Add extended flag entry: 2421 */ 2422 eodp->ed_ino = objnum; 2423 eodp->ed_reclen = reclen; 2424 /* NOTE: ed_off is the offset for the *next* entry */ 2425 next = &(eodp->ed_off); 2426 eodp->ed_eflags = zap.za_normalization_conflict ? 2427 ED_CASE_CONFLICT : 0; 2428 (void) strncpy(eodp->ed_name, zap.za_name, 2429 EDIRENT_NAMELEN(reclen)); 2430 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2431 } else { 2432 /* 2433 * Add normal entry: 2434 */ 2435 odp->d_ino = objnum; 2436 odp->d_reclen = reclen; 2437 /* NOTE: d_off is the offset for the *next* entry */ 2438 next = &(odp->d_off); 2439 (void) strncpy(odp->d_name, zap.za_name, 2440 DIRENT64_NAMELEN(reclen)); 2441 odp = (dirent64_t *)((intptr_t)odp + reclen); 2442 } 2443 outcount += reclen; 2444 2445 ASSERT(outcount <= bufsize); 2446 2447 /* Prefetch znode */ 2448 if (prefetch) 2449 dmu_prefetch(os, objnum, 0, 0, 0, 2450 ZIO_PRIORITY_SYNC_READ); 2451 2452 skip_entry: 2453 /* 2454 * Move to the next entry, fill in the previous offset. 2455 */ 2456 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2457 zap_cursor_advance(&zc); 2458 offset = zap_cursor_serialize(&zc); 2459 } else { 2460 offset += 1; 2461 } 2462 if (next) 2463 *next = offset; 2464 } 2465 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2466 2467 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2468 iovp->iov_base += outcount; 2469 iovp->iov_len -= outcount; 2470 uio->uio_resid -= outcount; 2471 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2472 /* 2473 * Reset the pointer. 2474 */ 2475 offset = uio->uio_loffset; 2476 } 2477 2478 update: 2479 zap_cursor_fini(&zc); 2480 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2481 kmem_free(outbuf, bufsize); 2482 2483 if (error == ENOENT) 2484 error = 0; 2485 2486 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2487 2488 uio->uio_loffset = offset; 2489 ZFS_EXIT(zfsvfs); 2490 return (error); 2491 } 2492 2493 ulong_t zfs_fsync_sync_cnt = 4; 2494 2495 static int 2496 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2497 { 2498 znode_t *zp = VTOZ(vp); 2499 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2500 2501 /* 2502 * Regardless of whether this is required for standards conformance, 2503 * this is the logical behavior when fsync() is called on a file with 2504 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2505 * going to be pushed out as part of the zil_commit(). 2506 */ 2507 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2508 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2509 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2510 2511 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2512 2513 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2514 ZFS_ENTER(zfsvfs); 2515 ZFS_VERIFY_ZP(zp); 2516 zil_commit(zfsvfs->z_log, zp->z_id); 2517 ZFS_EXIT(zfsvfs); 2518 } 2519 return (0); 2520 } 2521 2522 2523 /* 2524 * Get the requested file attributes and place them in the provided 2525 * vattr structure. 2526 * 2527 * IN: vp - vnode of file. 2528 * vap - va_mask identifies requested attributes. 2529 * If AT_XVATTR set, then optional attrs are requested 2530 * flags - ATTR_NOACLCHECK (CIFS server context) 2531 * cr - credentials of caller. 2532 * ct - caller context 2533 * 2534 * OUT: vap - attribute values. 2535 * 2536 * RETURN: 0 (always succeeds). 2537 */ 2538 /* ARGSUSED */ 2539 static int 2540 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2541 caller_context_t *ct) 2542 { 2543 znode_t *zp = VTOZ(vp); 2544 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2545 int error = 0; 2546 uint64_t links; 2547 uint64_t mtime[2], ctime[2]; 2548 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2549 xoptattr_t *xoap = NULL; 2550 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2551 sa_bulk_attr_t bulk[2]; 2552 int count = 0; 2553 2554 ZFS_ENTER(zfsvfs); 2555 ZFS_VERIFY_ZP(zp); 2556 2557 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2558 2559 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2560 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2561 2562 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2563 ZFS_EXIT(zfsvfs); 2564 return (error); 2565 } 2566 2567 /* 2568 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2569 * Also, if we are the owner don't bother, since owner should 2570 * always be allowed to read basic attributes of file. 2571 */ 2572 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2573 (vap->va_uid != crgetuid(cr))) { 2574 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2575 skipaclchk, cr)) { 2576 ZFS_EXIT(zfsvfs); 2577 return (error); 2578 } 2579 } 2580 2581 /* 2582 * Return all attributes. It's cheaper to provide the answer 2583 * than to determine whether we were asked the question. 2584 */ 2585 2586 mutex_enter(&zp->z_lock); 2587 vap->va_type = vp->v_type; 2588 vap->va_mode = zp->z_mode & MODEMASK; 2589 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2590 vap->va_nodeid = zp->z_id; 2591 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2592 links = zp->z_links + 1; 2593 else 2594 links = zp->z_links; 2595 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2596 vap->va_size = zp->z_size; 2597 vap->va_rdev = vp->v_rdev; 2598 vap->va_seq = zp->z_seq; 2599 2600 /* 2601 * Add in any requested optional attributes and the create time. 2602 * Also set the corresponding bits in the returned attribute bitmap. 2603 */ 2604 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2605 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2606 xoap->xoa_archive = 2607 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2608 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2609 } 2610 2611 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2612 xoap->xoa_readonly = 2613 ((zp->z_pflags & ZFS_READONLY) != 0); 2614 XVA_SET_RTN(xvap, XAT_READONLY); 2615 } 2616 2617 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2618 xoap->xoa_system = 2619 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2620 XVA_SET_RTN(xvap, XAT_SYSTEM); 2621 } 2622 2623 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2624 xoap->xoa_hidden = 2625 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2626 XVA_SET_RTN(xvap, XAT_HIDDEN); 2627 } 2628 2629 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2630 xoap->xoa_nounlink = 2631 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2632 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2633 } 2634 2635 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2636 xoap->xoa_immutable = 2637 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2638 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2639 } 2640 2641 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2642 xoap->xoa_appendonly = 2643 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2644 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2645 } 2646 2647 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2648 xoap->xoa_nodump = 2649 ((zp->z_pflags & ZFS_NODUMP) != 0); 2650 XVA_SET_RTN(xvap, XAT_NODUMP); 2651 } 2652 2653 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2654 xoap->xoa_opaque = 2655 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2656 XVA_SET_RTN(xvap, XAT_OPAQUE); 2657 } 2658 2659 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2660 xoap->xoa_av_quarantined = 2661 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2662 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2663 } 2664 2665 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2666 xoap->xoa_av_modified = 2667 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2668 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2669 } 2670 2671 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2672 vp->v_type == VREG) { 2673 zfs_sa_get_scanstamp(zp, xvap); 2674 } 2675 2676 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2677 uint64_t times[2]; 2678 2679 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2680 times, sizeof (times)); 2681 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2682 XVA_SET_RTN(xvap, XAT_CREATETIME); 2683 } 2684 2685 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2686 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2687 XVA_SET_RTN(xvap, XAT_REPARSE); 2688 } 2689 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2690 xoap->xoa_generation = zp->z_gen; 2691 XVA_SET_RTN(xvap, XAT_GEN); 2692 } 2693 2694 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2695 xoap->xoa_offline = 2696 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2697 XVA_SET_RTN(xvap, XAT_OFFLINE); 2698 } 2699 2700 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2701 xoap->xoa_sparse = 2702 ((zp->z_pflags & ZFS_SPARSE) != 0); 2703 XVA_SET_RTN(xvap, XAT_SPARSE); 2704 } 2705 } 2706 2707 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2708 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2709 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2710 2711 mutex_exit(&zp->z_lock); 2712 2713 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2714 2715 if (zp->z_blksz == 0) { 2716 /* 2717 * Block size hasn't been set; suggest maximal I/O transfers. 2718 */ 2719 vap->va_blksize = zfsvfs->z_max_blksz; 2720 } 2721 2722 ZFS_EXIT(zfsvfs); 2723 return (0); 2724 } 2725 2726 /* 2727 * Set the file attributes to the values contained in the 2728 * vattr structure. 2729 * 2730 * IN: vp - vnode of file to be modified. 2731 * vap - new attribute values. 2732 * If AT_XVATTR set, then optional attrs are being set 2733 * flags - ATTR_UTIME set if non-default time values provided. 2734 * - ATTR_NOACLCHECK (CIFS context only). 2735 * cr - credentials of caller. 2736 * ct - caller context 2737 * 2738 * RETURN: 0 on success, error code on failure. 2739 * 2740 * Timestamps: 2741 * vp - ctime updated, mtime updated if size changed. 2742 */ 2743 /* ARGSUSED */ 2744 static int 2745 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2746 caller_context_t *ct) 2747 { 2748 znode_t *zp = VTOZ(vp); 2749 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2750 zilog_t *zilog; 2751 dmu_tx_t *tx; 2752 vattr_t oldva; 2753 xvattr_t tmpxvattr; 2754 uint_t mask = vap->va_mask; 2755 uint_t saved_mask = 0; 2756 int trim_mask = 0; 2757 uint64_t new_mode; 2758 uint64_t new_uid, new_gid; 2759 uint64_t xattr_obj; 2760 uint64_t mtime[2], ctime[2]; 2761 znode_t *attrzp; 2762 int need_policy = FALSE; 2763 int err, err2; 2764 zfs_fuid_info_t *fuidp = NULL; 2765 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2766 xoptattr_t *xoap; 2767 zfs_acl_t *aclp; 2768 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2769 boolean_t fuid_dirtied = B_FALSE; 2770 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2771 int count = 0, xattr_count = 0; 2772 2773 if (mask == 0) 2774 return (0); 2775 2776 if (mask & AT_NOSET) 2777 return (SET_ERROR(EINVAL)); 2778 2779 ZFS_ENTER(zfsvfs); 2780 ZFS_VERIFY_ZP(zp); 2781 2782 zilog = zfsvfs->z_log; 2783 2784 /* 2785 * Make sure that if we have ephemeral uid/gid or xvattr specified 2786 * that file system is at proper version level 2787 */ 2788 2789 if (zfsvfs->z_use_fuids == B_FALSE && 2790 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2791 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2792 (mask & AT_XVATTR))) { 2793 ZFS_EXIT(zfsvfs); 2794 return (SET_ERROR(EINVAL)); 2795 } 2796 2797 if (mask & AT_SIZE && vp->v_type == VDIR) { 2798 ZFS_EXIT(zfsvfs); 2799 return (SET_ERROR(EISDIR)); 2800 } 2801 2802 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2803 ZFS_EXIT(zfsvfs); 2804 return (SET_ERROR(EINVAL)); 2805 } 2806 2807 /* 2808 * If this is an xvattr_t, then get a pointer to the structure of 2809 * optional attributes. If this is NULL, then we have a vattr_t. 2810 */ 2811 xoap = xva_getxoptattr(xvap); 2812 2813 xva_init(&tmpxvattr); 2814 2815 /* 2816 * Immutable files can only alter immutable bit and atime 2817 */ 2818 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2819 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2820 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2821 ZFS_EXIT(zfsvfs); 2822 return (SET_ERROR(EPERM)); 2823 } 2824 2825 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2826 ZFS_EXIT(zfsvfs); 2827 return (SET_ERROR(EPERM)); 2828 } 2829 2830 /* 2831 * Verify timestamps doesn't overflow 32 bits. 2832 * ZFS can handle large timestamps, but 32bit syscalls can't 2833 * handle times greater than 2039. This check should be removed 2834 * once large timestamps are fully supported. 2835 */ 2836 if (mask & (AT_ATIME | AT_MTIME)) { 2837 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2838 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2839 ZFS_EXIT(zfsvfs); 2840 return (SET_ERROR(EOVERFLOW)); 2841 } 2842 } 2843 2844 top: 2845 attrzp = NULL; 2846 aclp = NULL; 2847 2848 /* Can this be moved to before the top label? */ 2849 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2850 ZFS_EXIT(zfsvfs); 2851 return (SET_ERROR(EROFS)); 2852 } 2853 2854 /* 2855 * First validate permissions 2856 */ 2857 2858 if (mask & AT_SIZE) { 2859 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2860 if (err) { 2861 ZFS_EXIT(zfsvfs); 2862 return (err); 2863 } 2864 /* 2865 * XXX - Note, we are not providing any open 2866 * mode flags here (like FNDELAY), so we may 2867 * block if there are locks present... this 2868 * should be addressed in openat(). 2869 */ 2870 /* XXX - would it be OK to generate a log record here? */ 2871 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2872 if (err) { 2873 ZFS_EXIT(zfsvfs); 2874 return (err); 2875 } 2876 2877 if (vap->va_size == 0) 2878 vnevent_truncate(ZTOV(zp), ct); 2879 } 2880 2881 if (mask & (AT_ATIME|AT_MTIME) || 2882 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2883 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2884 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2885 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2886 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2887 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2888 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2889 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2890 skipaclchk, cr); 2891 } 2892 2893 if (mask & (AT_UID|AT_GID)) { 2894 int idmask = (mask & (AT_UID|AT_GID)); 2895 int take_owner; 2896 int take_group; 2897 2898 /* 2899 * NOTE: even if a new mode is being set, 2900 * we may clear S_ISUID/S_ISGID bits. 2901 */ 2902 2903 if (!(mask & AT_MODE)) 2904 vap->va_mode = zp->z_mode; 2905 2906 /* 2907 * Take ownership or chgrp to group we are a member of 2908 */ 2909 2910 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2911 take_group = (mask & AT_GID) && 2912 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2913 2914 /* 2915 * If both AT_UID and AT_GID are set then take_owner and 2916 * take_group must both be set in order to allow taking 2917 * ownership. 2918 * 2919 * Otherwise, send the check through secpolicy_vnode_setattr() 2920 * 2921 */ 2922 2923 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2924 ((idmask == AT_UID) && take_owner) || 2925 ((idmask == AT_GID) && take_group)) { 2926 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2927 skipaclchk, cr) == 0) { 2928 /* 2929 * Remove setuid/setgid for non-privileged users 2930 */ 2931 secpolicy_setid_clear(vap, cr); 2932 trim_mask = (mask & (AT_UID|AT_GID)); 2933 } else { 2934 need_policy = TRUE; 2935 } 2936 } else { 2937 need_policy = TRUE; 2938 } 2939 } 2940 2941 mutex_enter(&zp->z_lock); 2942 oldva.va_mode = zp->z_mode; 2943 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2944 if (mask & AT_XVATTR) { 2945 /* 2946 * Update xvattr mask to include only those attributes 2947 * that are actually changing. 2948 * 2949 * the bits will be restored prior to actually setting 2950 * the attributes so the caller thinks they were set. 2951 */ 2952 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2953 if (xoap->xoa_appendonly != 2954 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2955 need_policy = TRUE; 2956 } else { 2957 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2958 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2959 } 2960 } 2961 2962 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2963 if (xoap->xoa_nounlink != 2964 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2965 need_policy = TRUE; 2966 } else { 2967 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2968 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2969 } 2970 } 2971 2972 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2973 if (xoap->xoa_immutable != 2974 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2975 need_policy = TRUE; 2976 } else { 2977 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2978 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2979 } 2980 } 2981 2982 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2983 if (xoap->xoa_nodump != 2984 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2985 need_policy = TRUE; 2986 } else { 2987 XVA_CLR_REQ(xvap, XAT_NODUMP); 2988 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2989 } 2990 } 2991 2992 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2993 if (xoap->xoa_av_modified != 2994 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2995 need_policy = TRUE; 2996 } else { 2997 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2998 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2999 } 3000 } 3001 3002 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 3003 if ((vp->v_type != VREG && 3004 xoap->xoa_av_quarantined) || 3005 xoap->xoa_av_quarantined != 3006 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 3007 need_policy = TRUE; 3008 } else { 3009 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 3010 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 3011 } 3012 } 3013 3014 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 3015 mutex_exit(&zp->z_lock); 3016 ZFS_EXIT(zfsvfs); 3017 return (SET_ERROR(EPERM)); 3018 } 3019 3020 if (need_policy == FALSE && 3021 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 3022 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 3023 need_policy = TRUE; 3024 } 3025 } 3026 3027 mutex_exit(&zp->z_lock); 3028 3029 if (mask & AT_MODE) { 3030 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 3031 err = secpolicy_setid_setsticky_clear(vp, vap, 3032 &oldva, cr); 3033 if (err) { 3034 ZFS_EXIT(zfsvfs); 3035 return (err); 3036 } 3037 trim_mask |= AT_MODE; 3038 } else { 3039 need_policy = TRUE; 3040 } 3041 } 3042 3043 if (need_policy) { 3044 /* 3045 * If trim_mask is set then take ownership 3046 * has been granted or write_acl is present and user 3047 * has the ability to modify mode. In that case remove 3048 * UID|GID and or MODE from mask so that 3049 * secpolicy_vnode_setattr() doesn't revoke it. 3050 */ 3051 3052 if (trim_mask) { 3053 saved_mask = vap->va_mask; 3054 vap->va_mask &= ~trim_mask; 3055 } 3056 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3057 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3058 if (err) { 3059 ZFS_EXIT(zfsvfs); 3060 return (err); 3061 } 3062 3063 if (trim_mask) 3064 vap->va_mask |= saved_mask; 3065 } 3066 3067 /* 3068 * secpolicy_vnode_setattr, or take ownership may have 3069 * changed va_mask 3070 */ 3071 mask = vap->va_mask; 3072 3073 if ((mask & (AT_UID | AT_GID))) { 3074 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3075 &xattr_obj, sizeof (xattr_obj)); 3076 3077 if (err == 0 && xattr_obj) { 3078 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3079 if (err) 3080 goto out2; 3081 } 3082 if (mask & AT_UID) { 3083 new_uid = zfs_fuid_create(zfsvfs, 3084 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3085 if (new_uid != zp->z_uid && 3086 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 3087 if (attrzp) 3088 VN_RELE(ZTOV(attrzp)); 3089 err = SET_ERROR(EDQUOT); 3090 goto out2; 3091 } 3092 } 3093 3094 if (mask & AT_GID) { 3095 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3096 cr, ZFS_GROUP, &fuidp); 3097 if (new_gid != zp->z_gid && 3098 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 3099 if (attrzp) 3100 VN_RELE(ZTOV(attrzp)); 3101 err = SET_ERROR(EDQUOT); 3102 goto out2; 3103 } 3104 } 3105 } 3106 tx = dmu_tx_create(zfsvfs->z_os); 3107 3108 if (mask & AT_MODE) { 3109 uint64_t pmode = zp->z_mode; 3110 uint64_t acl_obj; 3111 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3112 3113 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3114 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3115 err = SET_ERROR(EPERM); 3116 goto out; 3117 } 3118 3119 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3120 goto out; 3121 3122 mutex_enter(&zp->z_lock); 3123 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3124 /* 3125 * Are we upgrading ACL from old V0 format 3126 * to V1 format? 3127 */ 3128 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3129 zfs_znode_acl_version(zp) == 3130 ZFS_ACL_VERSION_INITIAL) { 3131 dmu_tx_hold_free(tx, acl_obj, 0, 3132 DMU_OBJECT_END); 3133 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3134 0, aclp->z_acl_bytes); 3135 } else { 3136 dmu_tx_hold_write(tx, acl_obj, 0, 3137 aclp->z_acl_bytes); 3138 } 3139 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3140 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3141 0, aclp->z_acl_bytes); 3142 } 3143 mutex_exit(&zp->z_lock); 3144 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3145 } else { 3146 if ((mask & AT_XVATTR) && 3147 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3148 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3149 else 3150 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3151 } 3152 3153 if (attrzp) { 3154 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3155 } 3156 3157 fuid_dirtied = zfsvfs->z_fuid_dirty; 3158 if (fuid_dirtied) 3159 zfs_fuid_txhold(zfsvfs, tx); 3160 3161 zfs_sa_upgrade_txholds(tx, zp); 3162 3163 err = dmu_tx_assign(tx, TXG_WAIT); 3164 if (err) 3165 goto out; 3166 3167 count = 0; 3168 /* 3169 * Set each attribute requested. 3170 * We group settings according to the locks they need to acquire. 3171 * 3172 * Note: you cannot set ctime directly, although it will be 3173 * updated as a side-effect of calling this function. 3174 */ 3175 3176 3177 if (mask & (AT_UID|AT_GID|AT_MODE)) 3178 mutex_enter(&zp->z_acl_lock); 3179 mutex_enter(&zp->z_lock); 3180 3181 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3182 &zp->z_pflags, sizeof (zp->z_pflags)); 3183 3184 if (attrzp) { 3185 if (mask & (AT_UID|AT_GID|AT_MODE)) 3186 mutex_enter(&attrzp->z_acl_lock); 3187 mutex_enter(&attrzp->z_lock); 3188 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3189 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3190 sizeof (attrzp->z_pflags)); 3191 } 3192 3193 if (mask & (AT_UID|AT_GID)) { 3194 3195 if (mask & AT_UID) { 3196 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3197 &new_uid, sizeof (new_uid)); 3198 zp->z_uid = new_uid; 3199 if (attrzp) { 3200 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3201 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3202 sizeof (new_uid)); 3203 attrzp->z_uid = new_uid; 3204 } 3205 } 3206 3207 if (mask & AT_GID) { 3208 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3209 NULL, &new_gid, sizeof (new_gid)); 3210 zp->z_gid = new_gid; 3211 if (attrzp) { 3212 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3213 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3214 sizeof (new_gid)); 3215 attrzp->z_gid = new_gid; 3216 } 3217 } 3218 if (!(mask & AT_MODE)) { 3219 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3220 NULL, &new_mode, sizeof (new_mode)); 3221 new_mode = zp->z_mode; 3222 } 3223 err = zfs_acl_chown_setattr(zp); 3224 ASSERT(err == 0); 3225 if (attrzp) { 3226 err = zfs_acl_chown_setattr(attrzp); 3227 ASSERT(err == 0); 3228 } 3229 } 3230 3231 if (mask & AT_MODE) { 3232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3233 &new_mode, sizeof (new_mode)); 3234 zp->z_mode = new_mode; 3235 ASSERT3U((uintptr_t)aclp, !=, NULL); 3236 err = zfs_aclset_common(zp, aclp, cr, tx); 3237 ASSERT0(err); 3238 if (zp->z_acl_cached) 3239 zfs_acl_free(zp->z_acl_cached); 3240 zp->z_acl_cached = aclp; 3241 aclp = NULL; 3242 } 3243 3244 3245 if (mask & AT_ATIME) { 3246 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3247 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3248 &zp->z_atime, sizeof (zp->z_atime)); 3249 } 3250 3251 if (mask & AT_MTIME) { 3252 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3253 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3254 mtime, sizeof (mtime)); 3255 } 3256 3257 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3258 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3259 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3260 NULL, mtime, sizeof (mtime)); 3261 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3262 &ctime, sizeof (ctime)); 3263 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3264 B_TRUE); 3265 } else if (mask != 0) { 3266 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3267 &ctime, sizeof (ctime)); 3268 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3269 B_TRUE); 3270 if (attrzp) { 3271 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3272 SA_ZPL_CTIME(zfsvfs), NULL, 3273 &ctime, sizeof (ctime)); 3274 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3275 mtime, ctime, B_TRUE); 3276 } 3277 } 3278 /* 3279 * Do this after setting timestamps to prevent timestamp 3280 * update from toggling bit 3281 */ 3282 3283 if (xoap && (mask & AT_XVATTR)) { 3284 3285 /* 3286 * restore trimmed off masks 3287 * so that return masks can be set for caller. 3288 */ 3289 3290 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3291 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3292 } 3293 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3294 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3295 } 3296 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3297 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3298 } 3299 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3300 XVA_SET_REQ(xvap, XAT_NODUMP); 3301 } 3302 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3303 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3304 } 3305 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3306 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3307 } 3308 3309 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3310 ASSERT(vp->v_type == VREG); 3311 3312 zfs_xvattr_set(zp, xvap, tx); 3313 } 3314 3315 if (fuid_dirtied) 3316 zfs_fuid_sync(zfsvfs, tx); 3317 3318 if (mask != 0) 3319 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3320 3321 mutex_exit(&zp->z_lock); 3322 if (mask & (AT_UID|AT_GID|AT_MODE)) 3323 mutex_exit(&zp->z_acl_lock); 3324 3325 if (attrzp) { 3326 if (mask & (AT_UID|AT_GID|AT_MODE)) 3327 mutex_exit(&attrzp->z_acl_lock); 3328 mutex_exit(&attrzp->z_lock); 3329 } 3330 out: 3331 if (err == 0 && attrzp) { 3332 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3333 xattr_count, tx); 3334 ASSERT(err2 == 0); 3335 } 3336 3337 if (attrzp) 3338 VN_RELE(ZTOV(attrzp)); 3339 3340 if (aclp) 3341 zfs_acl_free(aclp); 3342 3343 if (fuidp) { 3344 zfs_fuid_info_free(fuidp); 3345 fuidp = NULL; 3346 } 3347 3348 if (err) { 3349 dmu_tx_abort(tx); 3350 if (err == ERESTART) 3351 goto top; 3352 } else { 3353 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3354 rw_enter(&rz_zev_rwlock, RW_READER); 3355 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_setattr) 3356 rz_zev_callbacks->rz_zev_znode_setattr(zp, tx); 3357 rw_exit(&rz_zev_rwlock); 3358 dmu_tx_commit(tx); 3359 } 3360 3361 out2: 3362 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3363 zil_commit(zilog, 0); 3364 3365 ZFS_EXIT(zfsvfs); 3366 return (err); 3367 } 3368 3369 typedef struct zfs_zlock { 3370 krwlock_t *zl_rwlock; /* lock we acquired */ 3371 znode_t *zl_znode; /* znode we held */ 3372 struct zfs_zlock *zl_next; /* next in list */ 3373 } zfs_zlock_t; 3374 3375 /* 3376 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3377 */ 3378 static void 3379 zfs_rename_unlock(zfs_zlock_t **zlpp) 3380 { 3381 zfs_zlock_t *zl; 3382 3383 while ((zl = *zlpp) != NULL) { 3384 if (zl->zl_znode != NULL) 3385 VN_RELE(ZTOV(zl->zl_znode)); 3386 rw_exit(zl->zl_rwlock); 3387 *zlpp = zl->zl_next; 3388 kmem_free(zl, sizeof (*zl)); 3389 } 3390 } 3391 3392 /* 3393 * Search back through the directory tree, using the ".." entries. 3394 * Lock each directory in the chain to prevent concurrent renames. 3395 * Fail any attempt to move a directory into one of its own descendants. 3396 * XXX - z_parent_lock can overlap with map or grow locks 3397 */ 3398 static int 3399 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3400 { 3401 zfs_zlock_t *zl; 3402 znode_t *zp = tdzp; 3403 uint64_t rootid = zp->z_zfsvfs->z_root; 3404 uint64_t oidp = zp->z_id; 3405 krwlock_t *rwlp = &szp->z_parent_lock; 3406 krw_t rw = RW_WRITER; 3407 3408 /* 3409 * First pass write-locks szp and compares to zp->z_id. 3410 * Later passes read-lock zp and compare to zp->z_parent. 3411 */ 3412 do { 3413 if (!rw_tryenter(rwlp, rw)) { 3414 /* 3415 * Another thread is renaming in this path. 3416 * Note that if we are a WRITER, we don't have any 3417 * parent_locks held yet. 3418 */ 3419 if (rw == RW_READER && zp->z_id > szp->z_id) { 3420 /* 3421 * Drop our locks and restart 3422 */ 3423 zfs_rename_unlock(&zl); 3424 *zlpp = NULL; 3425 zp = tdzp; 3426 oidp = zp->z_id; 3427 rwlp = &szp->z_parent_lock; 3428 rw = RW_WRITER; 3429 continue; 3430 } else { 3431 /* 3432 * Wait for other thread to drop its locks 3433 */ 3434 rw_enter(rwlp, rw); 3435 } 3436 } 3437 3438 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3439 zl->zl_rwlock = rwlp; 3440 zl->zl_znode = NULL; 3441 zl->zl_next = *zlpp; 3442 *zlpp = zl; 3443 3444 if (oidp == szp->z_id) /* We're a descendant of szp */ 3445 return (SET_ERROR(EINVAL)); 3446 3447 if (oidp == rootid) /* We've hit the top */ 3448 return (0); 3449 3450 if (rw == RW_READER) { /* i.e. not the first pass */ 3451 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3452 if (error) 3453 return (error); 3454 zl->zl_znode = zp; 3455 } 3456 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3457 &oidp, sizeof (oidp)); 3458 rwlp = &zp->z_parent_lock; 3459 rw = RW_READER; 3460 3461 } while (zp->z_id != sdzp->z_id); 3462 3463 return (0); 3464 } 3465 3466 /* 3467 * Move an entry from the provided source directory to the target 3468 * directory. Change the entry name as indicated. 3469 * 3470 * IN: sdvp - Source directory containing the "old entry". 3471 * snm - Old entry name. 3472 * tdvp - Target directory to contain the "new entry". 3473 * tnm - New entry name. 3474 * cr - credentials of caller. 3475 * ct - caller context 3476 * flags - case flags 3477 * 3478 * RETURN: 0 on success, error code on failure. 3479 * 3480 * Timestamps: 3481 * sdvp,tdvp - ctime|mtime updated 3482 */ 3483 /*ARGSUSED*/ 3484 static int 3485 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3486 caller_context_t *ct, int flags) 3487 { 3488 znode_t *tdzp, *szp, *tzp; 3489 znode_t *sdzp = VTOZ(sdvp); 3490 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3491 zilog_t *zilog; 3492 vnode_t *realvp; 3493 zfs_dirlock_t *sdl, *tdl; 3494 dmu_tx_t *tx; 3495 zfs_zlock_t *zl; 3496 int cmp, serr, terr; 3497 int error = 0; 3498 int zflg = 0; 3499 boolean_t waited = B_FALSE; 3500 3501 ZFS_ENTER(zfsvfs); 3502 ZFS_VERIFY_ZP(sdzp); 3503 zilog = zfsvfs->z_log; 3504 3505 /* 3506 * Make sure we have the real vp for the target directory. 3507 */ 3508 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3509 tdvp = realvp; 3510 3511 tdzp = VTOZ(tdvp); 3512 ZFS_VERIFY_ZP(tdzp); 3513 3514 /* 3515 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3516 * ctldir appear to have the same v_vfsp. 3517 */ 3518 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3519 ZFS_EXIT(zfsvfs); 3520 return (SET_ERROR(EXDEV)); 3521 } 3522 3523 if (zfsvfs->z_utf8 && u8_validate(tnm, 3524 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3525 ZFS_EXIT(zfsvfs); 3526 return (SET_ERROR(EILSEQ)); 3527 } 3528 3529 if (flags & FIGNORECASE) 3530 zflg |= ZCILOOK; 3531 3532 top: 3533 szp = NULL; 3534 tzp = NULL; 3535 zl = NULL; 3536 3537 /* 3538 * This is to prevent the creation of links into attribute space 3539 * by renaming a linked file into/outof an attribute directory. 3540 * See the comment in zfs_link() for why this is considered bad. 3541 */ 3542 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3543 ZFS_EXIT(zfsvfs); 3544 return (SET_ERROR(EINVAL)); 3545 } 3546 3547 /* 3548 * Lock source and target directory entries. To prevent deadlock, 3549 * a lock ordering must be defined. We lock the directory with 3550 * the smallest object id first, or if it's a tie, the one with 3551 * the lexically first name. 3552 */ 3553 if (sdzp->z_id < tdzp->z_id) { 3554 cmp = -1; 3555 } else if (sdzp->z_id > tdzp->z_id) { 3556 cmp = 1; 3557 } else { 3558 /* 3559 * First compare the two name arguments without 3560 * considering any case folding. 3561 */ 3562 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3563 3564 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3565 ASSERT(error == 0 || !zfsvfs->z_utf8); 3566 if (cmp == 0) { 3567 /* 3568 * POSIX: "If the old argument and the new argument 3569 * both refer to links to the same existing file, 3570 * the rename() function shall return successfully 3571 * and perform no other action." 3572 */ 3573 ZFS_EXIT(zfsvfs); 3574 return (0); 3575 } 3576 /* 3577 * If the file system is case-folding, then we may 3578 * have some more checking to do. A case-folding file 3579 * system is either supporting mixed case sensitivity 3580 * access or is completely case-insensitive. Note 3581 * that the file system is always case preserving. 3582 * 3583 * In mixed sensitivity mode case sensitive behavior 3584 * is the default. FIGNORECASE must be used to 3585 * explicitly request case insensitive behavior. 3586 * 3587 * If the source and target names provided differ only 3588 * by case (e.g., a request to rename 'tim' to 'Tim'), 3589 * we will treat this as a special case in the 3590 * case-insensitive mode: as long as the source name 3591 * is an exact match, we will allow this to proceed as 3592 * a name-change request. 3593 */ 3594 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3595 (zfsvfs->z_case == ZFS_CASE_MIXED && 3596 flags & FIGNORECASE)) && 3597 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3598 &error) == 0) { 3599 /* 3600 * case preserving rename request, require exact 3601 * name matches 3602 */ 3603 zflg |= ZCIEXACT; 3604 zflg &= ~ZCILOOK; 3605 } 3606 } 3607 3608 /* 3609 * If the source and destination directories are the same, we should 3610 * grab the z_name_lock of that directory only once. 3611 */ 3612 if (sdzp == tdzp) { 3613 zflg |= ZHAVELOCK; 3614 rw_enter(&sdzp->z_name_lock, RW_READER); 3615 } 3616 3617 if (cmp < 0) { 3618 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3619 ZEXISTS | zflg, NULL, NULL); 3620 terr = zfs_dirent_lock(&tdl, 3621 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3622 } else { 3623 terr = zfs_dirent_lock(&tdl, 3624 tdzp, tnm, &tzp, zflg, NULL, NULL); 3625 serr = zfs_dirent_lock(&sdl, 3626 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3627 NULL, NULL); 3628 } 3629 3630 if (serr) { 3631 /* 3632 * Source entry invalid or not there. 3633 */ 3634 if (!terr) { 3635 zfs_dirent_unlock(tdl); 3636 if (tzp) 3637 VN_RELE(ZTOV(tzp)); 3638 } 3639 3640 if (sdzp == tdzp) 3641 rw_exit(&sdzp->z_name_lock); 3642 3643 if (strcmp(snm, "..") == 0) 3644 serr = SET_ERROR(EINVAL); 3645 ZFS_EXIT(zfsvfs); 3646 return (serr); 3647 } 3648 if (terr) { 3649 zfs_dirent_unlock(sdl); 3650 VN_RELE(ZTOV(szp)); 3651 3652 if (sdzp == tdzp) 3653 rw_exit(&sdzp->z_name_lock); 3654 3655 if (strcmp(tnm, "..") == 0) 3656 terr = SET_ERROR(EINVAL); 3657 ZFS_EXIT(zfsvfs); 3658 return (terr); 3659 } 3660 3661 /* 3662 * Must have write access at the source to remove the old entry 3663 * and write access at the target to create the new entry. 3664 * Note that if target and source are the same, this can be 3665 * done in a single check. 3666 */ 3667 3668 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3669 goto out; 3670 3671 if (ZTOV(szp)->v_type == VDIR) { 3672 /* 3673 * Check to make sure rename is valid. 3674 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3675 */ 3676 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3677 goto out; 3678 } 3679 3680 /* 3681 * Does target exist? 3682 */ 3683 if (tzp) { 3684 /* 3685 * Source and target must be the same type. 3686 */ 3687 if (ZTOV(szp)->v_type == VDIR) { 3688 if (ZTOV(tzp)->v_type != VDIR) { 3689 error = SET_ERROR(ENOTDIR); 3690 goto out; 3691 } 3692 } else { 3693 if (ZTOV(tzp)->v_type == VDIR) { 3694 error = SET_ERROR(EISDIR); 3695 goto out; 3696 } 3697 } 3698 /* 3699 * POSIX dictates that when the source and target 3700 * entries refer to the same file object, rename 3701 * must do nothing and exit without error. 3702 */ 3703 if (szp->z_id == tzp->z_id) { 3704 error = 0; 3705 goto out; 3706 } 3707 } 3708 3709 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3710 if (tzp) 3711 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3712 3713 /* 3714 * notify the target directory if it is not the same 3715 * as source directory. 3716 */ 3717 if (tdvp != sdvp) { 3718 vnevent_rename_dest_dir(tdvp, ct); 3719 } 3720 3721 tx = dmu_tx_create(zfsvfs->z_os); 3722 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3723 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3724 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3725 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3726 if (sdzp != tdzp) { 3727 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3728 zfs_sa_upgrade_txholds(tx, tdzp); 3729 } 3730 if (tzp) { 3731 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3732 zfs_sa_upgrade_txholds(tx, tzp); 3733 } 3734 3735 zfs_sa_upgrade_txholds(tx, szp); 3736 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3737 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3738 if (error) { 3739 if (zl != NULL) 3740 zfs_rename_unlock(&zl); 3741 zfs_dirent_unlock(sdl); 3742 zfs_dirent_unlock(tdl); 3743 3744 if (sdzp == tdzp) 3745 rw_exit(&sdzp->z_name_lock); 3746 3747 VN_RELE(ZTOV(szp)); 3748 if (tzp) 3749 VN_RELE(ZTOV(tzp)); 3750 if (error == ERESTART) { 3751 waited = B_TRUE; 3752 dmu_tx_wait(tx); 3753 dmu_tx_abort(tx); 3754 goto top; 3755 } 3756 dmu_tx_abort(tx); 3757 ZFS_EXIT(zfsvfs); 3758 return (error); 3759 } 3760 3761 if (tzp) /* Attempt to remove the existing target */ 3762 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3763 3764 if (error == 0) { 3765 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3766 if (error == 0) { 3767 szp->z_pflags |= ZFS_AV_MODIFIED; 3768 3769 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3770 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3771 ASSERT0(error); 3772 3773 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3774 if (error == 0) { 3775 zfs_log_rename(zilog, tx, TX_RENAME | 3776 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3777 sdl->dl_name, tdzp, tdl->dl_name, szp, tzp); 3778 3779 /* 3780 * Update path information for the target vnode 3781 */ 3782 vn_renamepath(tdvp, ZTOV(szp), tnm, 3783 strlen(tnm)); 3784 } else { 3785 /* 3786 * At this point, we have successfully created 3787 * the target name, but have failed to remove 3788 * the source name. Since the create was done 3789 * with the ZRENAMING flag, there are 3790 * complications; for one, the link count is 3791 * wrong. The easiest way to deal with this 3792 * is to remove the newly created target, and 3793 * return the original error. This must 3794 * succeed; fortunately, it is very unlikely to 3795 * fail, since we just created it. 3796 */ 3797 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3798 ZRENAMING, NULL), ==, 0); 3799 } 3800 } 3801 } 3802 3803 dmu_tx_commit(tx); 3804 out: 3805 if (zl != NULL) 3806 zfs_rename_unlock(&zl); 3807 3808 zfs_dirent_unlock(sdl); 3809 zfs_dirent_unlock(tdl); 3810 3811 if (sdzp == tdzp) 3812 rw_exit(&sdzp->z_name_lock); 3813 3814 3815 VN_RELE(ZTOV(szp)); 3816 if (tzp) 3817 VN_RELE(ZTOV(tzp)); 3818 3819 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3820 zil_commit(zilog, 0); 3821 3822 ZFS_EXIT(zfsvfs); 3823 return (error); 3824 } 3825 3826 /* 3827 * Insert the indicated symbolic reference entry into the directory. 3828 * 3829 * IN: dvp - Directory to contain new symbolic link. 3830 * link - Name for new symlink entry. 3831 * vap - Attributes of new entry. 3832 * cr - credentials of caller. 3833 * ct - caller context 3834 * flags - case flags 3835 * 3836 * RETURN: 0 on success, error code on failure. 3837 * 3838 * Timestamps: 3839 * dvp - ctime|mtime updated 3840 */ 3841 /*ARGSUSED*/ 3842 static int 3843 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3844 caller_context_t *ct, int flags) 3845 { 3846 znode_t *zp, *dzp = VTOZ(dvp); 3847 zfs_dirlock_t *dl; 3848 dmu_tx_t *tx; 3849 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3850 zilog_t *zilog; 3851 uint64_t len = strlen(link); 3852 int error; 3853 int zflg = ZNEW; 3854 zfs_acl_ids_t acl_ids; 3855 boolean_t fuid_dirtied; 3856 uint64_t txtype = TX_SYMLINK; 3857 boolean_t waited = B_FALSE; 3858 3859 ASSERT(vap->va_type == VLNK); 3860 3861 ZFS_ENTER(zfsvfs); 3862 ZFS_VERIFY_ZP(dzp); 3863 zilog = zfsvfs->z_log; 3864 3865 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3866 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3867 ZFS_EXIT(zfsvfs); 3868 return (SET_ERROR(EILSEQ)); 3869 } 3870 if (flags & FIGNORECASE) 3871 zflg |= ZCILOOK; 3872 3873 if (len > MAXPATHLEN) { 3874 ZFS_EXIT(zfsvfs); 3875 return (SET_ERROR(ENAMETOOLONG)); 3876 } 3877 3878 if ((error = zfs_acl_ids_create(dzp, 0, 3879 vap, cr, NULL, &acl_ids)) != 0) { 3880 ZFS_EXIT(zfsvfs); 3881 return (error); 3882 } 3883 top: 3884 /* 3885 * Attempt to lock directory; fail if entry already exists. 3886 */ 3887 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3888 if (error) { 3889 zfs_acl_ids_free(&acl_ids); 3890 ZFS_EXIT(zfsvfs); 3891 return (error); 3892 } 3893 3894 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3895 zfs_acl_ids_free(&acl_ids); 3896 zfs_dirent_unlock(dl); 3897 ZFS_EXIT(zfsvfs); 3898 return (error); 3899 } 3900 3901 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3902 zfs_acl_ids_free(&acl_ids); 3903 zfs_dirent_unlock(dl); 3904 ZFS_EXIT(zfsvfs); 3905 return (SET_ERROR(EDQUOT)); 3906 } 3907 tx = dmu_tx_create(zfsvfs->z_os); 3908 fuid_dirtied = zfsvfs->z_fuid_dirty; 3909 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3910 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3911 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3912 ZFS_SA_BASE_ATTR_SIZE + len); 3913 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3914 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3915 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3916 acl_ids.z_aclp->z_acl_bytes); 3917 } 3918 if (fuid_dirtied) 3919 zfs_fuid_txhold(zfsvfs, tx); 3920 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3921 if (error) { 3922 zfs_dirent_unlock(dl); 3923 if (error == ERESTART) { 3924 waited = B_TRUE; 3925 dmu_tx_wait(tx); 3926 dmu_tx_abort(tx); 3927 goto top; 3928 } 3929 zfs_acl_ids_free(&acl_ids); 3930 dmu_tx_abort(tx); 3931 ZFS_EXIT(zfsvfs); 3932 return (error); 3933 } 3934 3935 /* 3936 * Create a new object for the symlink. 3937 * for version 4 ZPL datsets the symlink will be an SA attribute 3938 */ 3939 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3940 3941 if (fuid_dirtied) 3942 zfs_fuid_sync(zfsvfs, tx); 3943 3944 mutex_enter(&zp->z_lock); 3945 if (zp->z_is_sa) 3946 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3947 link, len, tx); 3948 else 3949 zfs_sa_symlink(zp, link, len, tx); 3950 mutex_exit(&zp->z_lock); 3951 3952 zp->z_size = len; 3953 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3954 &zp->z_size, sizeof (zp->z_size), tx); 3955 /* 3956 * Insert the new object into the directory. 3957 */ 3958 (void) zfs_link_create(dl, zp, tx, ZNEW); 3959 3960 if (flags & FIGNORECASE) 3961 txtype |= TX_CI; 3962 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3963 3964 zfs_acl_ids_free(&acl_ids); 3965 3966 dmu_tx_commit(tx); 3967 3968 zfs_dirent_unlock(dl); 3969 3970 VN_RELE(ZTOV(zp)); 3971 3972 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3973 zil_commit(zilog, 0); 3974 3975 ZFS_EXIT(zfsvfs); 3976 return (error); 3977 } 3978 3979 /* 3980 * Return, in the buffer contained in the provided uio structure, 3981 * the symbolic path referred to by vp. 3982 * 3983 * IN: vp - vnode of symbolic link. 3984 * uio - structure to contain the link path. 3985 * cr - credentials of caller. 3986 * ct - caller context 3987 * 3988 * OUT: uio - structure containing the link path. 3989 * 3990 * RETURN: 0 on success, error code on failure. 3991 * 3992 * Timestamps: 3993 * vp - atime updated 3994 */ 3995 /* ARGSUSED */ 3996 static int 3997 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3998 { 3999 znode_t *zp = VTOZ(vp); 4000 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4001 int error; 4002 4003 ZFS_ENTER(zfsvfs); 4004 ZFS_VERIFY_ZP(zp); 4005 4006 mutex_enter(&zp->z_lock); 4007 if (zp->z_is_sa) 4008 error = sa_lookup_uio(zp->z_sa_hdl, 4009 SA_ZPL_SYMLINK(zfsvfs), uio); 4010 else 4011 error = zfs_sa_readlink(zp, uio); 4012 mutex_exit(&zp->z_lock); 4013 4014 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4015 4016 ZFS_EXIT(zfsvfs); 4017 return (error); 4018 } 4019 4020 /* 4021 * Insert a new entry into directory tdvp referencing svp. 4022 * 4023 * IN: tdvp - Directory to contain new entry. 4024 * svp - vnode of new entry. 4025 * name - name of new entry. 4026 * cr - credentials of caller. 4027 * ct - caller context 4028 * 4029 * RETURN: 0 on success, error code on failure. 4030 * 4031 * Timestamps: 4032 * tdvp - ctime|mtime updated 4033 * svp - ctime updated 4034 */ 4035 /* ARGSUSED */ 4036 static int 4037 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 4038 caller_context_t *ct, int flags) 4039 { 4040 znode_t *dzp = VTOZ(tdvp); 4041 znode_t *tzp, *szp; 4042 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4043 zilog_t *zilog; 4044 zfs_dirlock_t *dl; 4045 dmu_tx_t *tx; 4046 vnode_t *realvp; 4047 int error; 4048 int zf = ZNEW; 4049 uint64_t parent; 4050 uid_t owner; 4051 boolean_t waited = B_FALSE; 4052 4053 ASSERT(tdvp->v_type == VDIR); 4054 4055 ZFS_ENTER(zfsvfs); 4056 ZFS_VERIFY_ZP(dzp); 4057 zilog = zfsvfs->z_log; 4058 4059 if (VOP_REALVP(svp, &realvp, ct) == 0) 4060 svp = realvp; 4061 4062 /* 4063 * POSIX dictates that we return EPERM here. 4064 * Better choices include ENOTSUP or EISDIR. 4065 */ 4066 if (svp->v_type == VDIR) { 4067 ZFS_EXIT(zfsvfs); 4068 return (SET_ERROR(EPERM)); 4069 } 4070 4071 szp = VTOZ(svp); 4072 ZFS_VERIFY_ZP(szp); 4073 4074 /* 4075 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4076 * ctldir appear to have the same v_vfsp. 4077 */ 4078 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4079 ZFS_EXIT(zfsvfs); 4080 return (SET_ERROR(EXDEV)); 4081 } 4082 4083 /* Prevent links to .zfs/shares files */ 4084 4085 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4086 &parent, sizeof (uint64_t))) != 0) { 4087 ZFS_EXIT(zfsvfs); 4088 return (error); 4089 } 4090 if (parent == zfsvfs->z_shares_dir) { 4091 ZFS_EXIT(zfsvfs); 4092 return (SET_ERROR(EPERM)); 4093 } 4094 4095 if (zfsvfs->z_utf8 && u8_validate(name, 4096 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4097 ZFS_EXIT(zfsvfs); 4098 return (SET_ERROR(EILSEQ)); 4099 } 4100 if (flags & FIGNORECASE) 4101 zf |= ZCILOOK; 4102 4103 /* 4104 * We do not support links between attributes and non-attributes 4105 * because of the potential security risk of creating links 4106 * into "normal" file space in order to circumvent restrictions 4107 * imposed in attribute space. 4108 */ 4109 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4110 ZFS_EXIT(zfsvfs); 4111 return (SET_ERROR(EINVAL)); 4112 } 4113 4114 4115 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4116 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4117 ZFS_EXIT(zfsvfs); 4118 return (SET_ERROR(EPERM)); 4119 } 4120 4121 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4122 ZFS_EXIT(zfsvfs); 4123 return (error); 4124 } 4125 4126 top: 4127 /* 4128 * Attempt to lock directory; fail if entry already exists. 4129 */ 4130 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4131 if (error) { 4132 ZFS_EXIT(zfsvfs); 4133 return (error); 4134 } 4135 4136 tx = dmu_tx_create(zfsvfs->z_os); 4137 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4138 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4139 zfs_sa_upgrade_txholds(tx, szp); 4140 zfs_sa_upgrade_txholds(tx, dzp); 4141 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 4142 if (error) { 4143 zfs_dirent_unlock(dl); 4144 if (error == ERESTART) { 4145 waited = B_TRUE; 4146 dmu_tx_wait(tx); 4147 dmu_tx_abort(tx); 4148 goto top; 4149 } 4150 dmu_tx_abort(tx); 4151 ZFS_EXIT(zfsvfs); 4152 return (error); 4153 } 4154 4155 error = zfs_link_create(dl, szp, tx, 0); 4156 4157 if (error == 0) { 4158 uint64_t txtype = TX_LINK; 4159 if (flags & FIGNORECASE) 4160 txtype |= TX_CI; 4161 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4162 } 4163 4164 dmu_tx_commit(tx); 4165 4166 zfs_dirent_unlock(dl); 4167 4168 if (error == 0) { 4169 vnevent_link(svp, ct); 4170 } 4171 4172 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4173 zil_commit(zilog, 0); 4174 4175 ZFS_EXIT(zfsvfs); 4176 return (error); 4177 } 4178 4179 /* 4180 * zfs_null_putapage() is used when the file system has been force 4181 * unmounted. It just drops the pages. 4182 */ 4183 /* ARGSUSED */ 4184 static int 4185 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4186 size_t *lenp, int flags, cred_t *cr) 4187 { 4188 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4189 return (0); 4190 } 4191 4192 /* 4193 * Push a page out to disk, klustering if possible. 4194 * 4195 * IN: vp - file to push page to. 4196 * pp - page to push. 4197 * flags - additional flags. 4198 * cr - credentials of caller. 4199 * 4200 * OUT: offp - start of range pushed. 4201 * lenp - len of range pushed. 4202 * 4203 * RETURN: 0 on success, error code on failure. 4204 * 4205 * NOTE: callers must have locked the page to be pushed. On 4206 * exit, the page (and all other pages in the kluster) must be 4207 * unlocked. 4208 */ 4209 /* ARGSUSED */ 4210 static int 4211 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4212 size_t *lenp, int flags, cred_t *cr) 4213 { 4214 znode_t *zp = VTOZ(vp); 4215 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4216 dmu_tx_t *tx; 4217 u_offset_t off, koff; 4218 size_t len, klen; 4219 int err; 4220 4221 off = pp->p_offset; 4222 len = PAGESIZE; 4223 /* 4224 * If our blocksize is bigger than the page size, try to kluster 4225 * multiple pages so that we write a full block (thus avoiding 4226 * a read-modify-write). 4227 */ 4228 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4229 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4230 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4231 ASSERT(koff <= zp->z_size); 4232 if (koff + klen > zp->z_size) 4233 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4234 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4235 } 4236 ASSERT3U(btop(len), ==, btopr(len)); 4237 4238 /* 4239 * Can't push pages past end-of-file. 4240 */ 4241 if (off >= zp->z_size) { 4242 /* ignore all pages */ 4243 err = 0; 4244 goto out; 4245 } else if (off + len > zp->z_size) { 4246 int npages = btopr(zp->z_size - off); 4247 page_t *trunc; 4248 4249 page_list_break(&pp, &trunc, npages); 4250 /* ignore pages past end of file */ 4251 if (trunc) 4252 pvn_write_done(trunc, flags); 4253 len = zp->z_size - off; 4254 } 4255 4256 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4257 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4258 err = SET_ERROR(EDQUOT); 4259 goto out; 4260 } 4261 tx = dmu_tx_create(zfsvfs->z_os); 4262 dmu_tx_hold_write(tx, zp->z_id, off, len); 4263 4264 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4265 zfs_sa_upgrade_txholds(tx, zp); 4266 err = dmu_tx_assign(tx, TXG_WAIT); 4267 if (err != 0) { 4268 dmu_tx_abort(tx); 4269 goto out; 4270 } 4271 4272 if (zp->z_blksz <= PAGESIZE) { 4273 caddr_t va = zfs_map_page(pp, S_READ); 4274 ASSERT3U(len, <=, PAGESIZE); 4275 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4276 zfs_unmap_page(pp, va); 4277 } else { 4278 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4279 } 4280 4281 if (err == 0) { 4282 uint64_t mtime[2], ctime[2]; 4283 sa_bulk_attr_t bulk[3]; 4284 int count = 0; 4285 4286 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4287 &mtime, 16); 4288 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4289 &ctime, 16); 4290 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4291 &zp->z_pflags, 8); 4292 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4293 B_TRUE); 4294 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4295 } 4296 dmu_tx_commit(tx); 4297 4298 out: 4299 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4300 if (offp) 4301 *offp = off; 4302 if (lenp) 4303 *lenp = len; 4304 4305 return (err); 4306 } 4307 4308 /* 4309 * Copy the portion of the file indicated from pages into the file. 4310 * The pages are stored in a page list attached to the files vnode. 4311 * 4312 * IN: vp - vnode of file to push page data to. 4313 * off - position in file to put data. 4314 * len - amount of data to write. 4315 * flags - flags to control the operation. 4316 * cr - credentials of caller. 4317 * ct - caller context. 4318 * 4319 * RETURN: 0 on success, error code on failure. 4320 * 4321 * Timestamps: 4322 * vp - ctime|mtime updated 4323 */ 4324 /*ARGSUSED*/ 4325 static int 4326 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4327 caller_context_t *ct) 4328 { 4329 znode_t *zp = VTOZ(vp); 4330 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4331 page_t *pp; 4332 size_t io_len; 4333 u_offset_t io_off; 4334 uint_t blksz; 4335 rl_t *rl; 4336 int error = 0; 4337 4338 ZFS_ENTER(zfsvfs); 4339 ZFS_VERIFY_ZP(zp); 4340 4341 /* 4342 * There's nothing to do if no data is cached. 4343 */ 4344 if (!vn_has_cached_data(vp)) { 4345 ZFS_EXIT(zfsvfs); 4346 return (0); 4347 } 4348 4349 /* 4350 * Align this request to the file block size in case we kluster. 4351 * XXX - this can result in pretty aggresive locking, which can 4352 * impact simultanious read/write access. One option might be 4353 * to break up long requests (len == 0) into block-by-block 4354 * operations to get narrower locking. 4355 */ 4356 blksz = zp->z_blksz; 4357 if (ISP2(blksz)) 4358 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4359 else 4360 io_off = 0; 4361 if (len > 0 && ISP2(blksz)) 4362 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4363 else 4364 io_len = 0; 4365 4366 if (io_len == 0) { 4367 /* 4368 * Search the entire vp list for pages >= io_off. 4369 */ 4370 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4371 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4372 goto out; 4373 } 4374 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4375 4376 if (off > zp->z_size) { 4377 /* past end of file */ 4378 zfs_range_unlock(rl); 4379 ZFS_EXIT(zfsvfs); 4380 return (0); 4381 } 4382 4383 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4384 4385 for (off = io_off; io_off < off + len; io_off += io_len) { 4386 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4387 pp = page_lookup(vp, io_off, 4388 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4389 } else { 4390 pp = page_lookup_nowait(vp, io_off, 4391 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4392 } 4393 4394 if (pp != NULL && pvn_getdirty(pp, flags)) { 4395 int err; 4396 4397 /* 4398 * Found a dirty page to push 4399 */ 4400 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4401 if (err) 4402 error = err; 4403 } else { 4404 io_len = PAGESIZE; 4405 } 4406 } 4407 out: 4408 zfs_range_unlock(rl); 4409 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4410 zil_commit(zfsvfs->z_log, zp->z_id); 4411 ZFS_EXIT(zfsvfs); 4412 return (error); 4413 } 4414 4415 /*ARGSUSED*/ 4416 void 4417 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4418 { 4419 znode_t *zp = VTOZ(vp); 4420 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4421 int error; 4422 4423 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4424 if (zp->z_sa_hdl == NULL) { 4425 /* 4426 * The fs has been unmounted, or we did a 4427 * suspend/resume and this file no longer exists. 4428 */ 4429 if (vn_has_cached_data(vp)) { 4430 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4431 B_INVAL, cr); 4432 } 4433 4434 mutex_enter(&zp->z_lock); 4435 mutex_enter(&vp->v_lock); 4436 ASSERT(vp->v_count == 1); 4437 vp->v_count = 0; 4438 mutex_exit(&vp->v_lock); 4439 mutex_exit(&zp->z_lock); 4440 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4441 zfs_znode_free(zp); 4442 return; 4443 } 4444 4445 /* 4446 * Attempt to push any data in the page cache. If this fails 4447 * we will get kicked out later in zfs_zinactive(). 4448 */ 4449 if (vn_has_cached_data(vp)) { 4450 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4451 cr); 4452 } 4453 4454 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4455 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4456 4457 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4458 zfs_sa_upgrade_txholds(tx, zp); 4459 error = dmu_tx_assign(tx, TXG_WAIT); 4460 if (error) { 4461 dmu_tx_abort(tx); 4462 } else { 4463 mutex_enter(&zp->z_lock); 4464 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4465 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4466 zp->z_atime_dirty = 0; 4467 mutex_exit(&zp->z_lock); 4468 dmu_tx_commit(tx); 4469 } 4470 } 4471 4472 zfs_zinactive(zp); 4473 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4474 } 4475 4476 /* 4477 * Bounds-check the seek operation. 4478 * 4479 * IN: vp - vnode seeking within 4480 * ooff - old file offset 4481 * noffp - pointer to new file offset 4482 * ct - caller context 4483 * 4484 * RETURN: 0 on success, EINVAL if new offset invalid. 4485 */ 4486 /* ARGSUSED */ 4487 static int 4488 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4489 caller_context_t *ct) 4490 { 4491 if (vp->v_type == VDIR) 4492 return (0); 4493 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4494 } 4495 4496 /* 4497 * Pre-filter the generic locking function to trap attempts to place 4498 * a mandatory lock on a memory mapped file. 4499 */ 4500 static int 4501 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4502 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4503 { 4504 znode_t *zp = VTOZ(vp); 4505 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4506 4507 ZFS_ENTER(zfsvfs); 4508 ZFS_VERIFY_ZP(zp); 4509 4510 /* 4511 * We are following the UFS semantics with respect to mapcnt 4512 * here: If we see that the file is mapped already, then we will 4513 * return an error, but we don't worry about races between this 4514 * function and zfs_map(). 4515 */ 4516 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4517 ZFS_EXIT(zfsvfs); 4518 return (SET_ERROR(EAGAIN)); 4519 } 4520 ZFS_EXIT(zfsvfs); 4521 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4522 } 4523 4524 /* 4525 * If we can't find a page in the cache, we will create a new page 4526 * and fill it with file data. For efficiency, we may try to fill 4527 * multiple pages at once (klustering) to fill up the supplied page 4528 * list. Note that the pages to be filled are held with an exclusive 4529 * lock to prevent access by other threads while they are being filled. 4530 */ 4531 static int 4532 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4533 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4534 { 4535 znode_t *zp = VTOZ(vp); 4536 page_t *pp, *cur_pp; 4537 objset_t *os = zp->z_zfsvfs->z_os; 4538 u_offset_t io_off, total; 4539 size_t io_len; 4540 int err; 4541 4542 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4543 /* 4544 * We only have a single page, don't bother klustering 4545 */ 4546 io_off = off; 4547 io_len = PAGESIZE; 4548 pp = page_create_va(vp, io_off, io_len, 4549 PG_EXCL | PG_WAIT, seg, addr); 4550 } else { 4551 /* 4552 * Try to find enough pages to fill the page list 4553 */ 4554 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4555 &io_len, off, plsz, 0); 4556 } 4557 if (pp == NULL) { 4558 /* 4559 * The page already exists, nothing to do here. 4560 */ 4561 *pl = NULL; 4562 return (0); 4563 } 4564 4565 /* 4566 * Fill the pages in the kluster. 4567 */ 4568 cur_pp = pp; 4569 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4570 caddr_t va; 4571 4572 ASSERT3U(io_off, ==, cur_pp->p_offset); 4573 va = zfs_map_page(cur_pp, S_WRITE); 4574 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4575 DMU_READ_PREFETCH); 4576 zfs_unmap_page(cur_pp, va); 4577 if (err) { 4578 /* On error, toss the entire kluster */ 4579 pvn_read_done(pp, B_ERROR); 4580 /* convert checksum errors into IO errors */ 4581 if (err == ECKSUM) 4582 err = SET_ERROR(EIO); 4583 return (err); 4584 } 4585 cur_pp = cur_pp->p_next; 4586 } 4587 4588 /* 4589 * Fill in the page list array from the kluster starting 4590 * from the desired offset `off'. 4591 * NOTE: the page list will always be null terminated. 4592 */ 4593 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4594 ASSERT(pl == NULL || (*pl)->p_offset == off); 4595 4596 return (0); 4597 } 4598 4599 /* 4600 * Return pointers to the pages for the file region [off, off + len] 4601 * in the pl array. If plsz is greater than len, this function may 4602 * also return page pointers from after the specified region 4603 * (i.e. the region [off, off + plsz]). These additional pages are 4604 * only returned if they are already in the cache, or were created as 4605 * part of a klustered read. 4606 * 4607 * IN: vp - vnode of file to get data from. 4608 * off - position in file to get data from. 4609 * len - amount of data to retrieve. 4610 * plsz - length of provided page list. 4611 * seg - segment to obtain pages for. 4612 * addr - virtual address of fault. 4613 * rw - mode of created pages. 4614 * cr - credentials of caller. 4615 * ct - caller context. 4616 * 4617 * OUT: protp - protection mode of created pages. 4618 * pl - list of pages created. 4619 * 4620 * RETURN: 0 on success, error code on failure. 4621 * 4622 * Timestamps: 4623 * vp - atime updated 4624 */ 4625 /* ARGSUSED */ 4626 static int 4627 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4628 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4629 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4630 { 4631 znode_t *zp = VTOZ(vp); 4632 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4633 page_t **pl0 = pl; 4634 int err = 0; 4635 4636 /* we do our own caching, faultahead is unnecessary */ 4637 if (pl == NULL) 4638 return (0); 4639 else if (len > plsz) 4640 len = plsz; 4641 else 4642 len = P2ROUNDUP(len, PAGESIZE); 4643 ASSERT(plsz >= len); 4644 4645 ZFS_ENTER(zfsvfs); 4646 ZFS_VERIFY_ZP(zp); 4647 4648 if (protp) 4649 *protp = PROT_ALL; 4650 4651 /* 4652 * Loop through the requested range [off, off + len) looking 4653 * for pages. If we don't find a page, we will need to create 4654 * a new page and fill it with data from the file. 4655 */ 4656 while (len > 0) { 4657 if (*pl = page_lookup(vp, off, SE_SHARED)) 4658 *(pl+1) = NULL; 4659 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4660 goto out; 4661 while (*pl) { 4662 ASSERT3U((*pl)->p_offset, ==, off); 4663 off += PAGESIZE; 4664 addr += PAGESIZE; 4665 if (len > 0) { 4666 ASSERT3U(len, >=, PAGESIZE); 4667 len -= PAGESIZE; 4668 } 4669 ASSERT3U(plsz, >=, PAGESIZE); 4670 plsz -= PAGESIZE; 4671 pl++; 4672 } 4673 } 4674 4675 /* 4676 * Fill out the page array with any pages already in the cache. 4677 */ 4678 while (plsz > 0 && 4679 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4680 off += PAGESIZE; 4681 plsz -= PAGESIZE; 4682 } 4683 out: 4684 if (err) { 4685 /* 4686 * Release any pages we have previously locked. 4687 */ 4688 while (pl > pl0) 4689 page_unlock(*--pl); 4690 } else { 4691 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4692 } 4693 4694 *pl = NULL; 4695 4696 ZFS_EXIT(zfsvfs); 4697 return (err); 4698 } 4699 4700 /* 4701 * Request a memory map for a section of a file. This code interacts 4702 * with common code and the VM system as follows: 4703 * 4704 * - common code calls mmap(), which ends up in smmap_common() 4705 * - this calls VOP_MAP(), which takes you into (say) zfs 4706 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4707 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4708 * - zfs_addmap() updates z_mapcnt 4709 */ 4710 /*ARGSUSED*/ 4711 static int 4712 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4713 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4714 caller_context_t *ct) 4715 { 4716 znode_t *zp = VTOZ(vp); 4717 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4718 segvn_crargs_t vn_a; 4719 int error; 4720 4721 ZFS_ENTER(zfsvfs); 4722 ZFS_VERIFY_ZP(zp); 4723 4724 if ((prot & PROT_WRITE) && (zp->z_pflags & 4725 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4726 ZFS_EXIT(zfsvfs); 4727 return (SET_ERROR(EPERM)); 4728 } 4729 4730 if ((prot & (PROT_READ | PROT_EXEC)) && 4731 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4732 ZFS_EXIT(zfsvfs); 4733 return (SET_ERROR(EACCES)); 4734 } 4735 4736 if (vp->v_flag & VNOMAP) { 4737 ZFS_EXIT(zfsvfs); 4738 return (SET_ERROR(ENOSYS)); 4739 } 4740 4741 if (off < 0 || len > MAXOFFSET_T - off) { 4742 ZFS_EXIT(zfsvfs); 4743 return (SET_ERROR(ENXIO)); 4744 } 4745 4746 if (vp->v_type != VREG) { 4747 ZFS_EXIT(zfsvfs); 4748 return (SET_ERROR(ENODEV)); 4749 } 4750 4751 /* 4752 * If file is locked, disallow mapping. 4753 */ 4754 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4755 ZFS_EXIT(zfsvfs); 4756 return (SET_ERROR(EAGAIN)); 4757 } 4758 4759 as_rangelock(as); 4760 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4761 if (error != 0) { 4762 as_rangeunlock(as); 4763 ZFS_EXIT(zfsvfs); 4764 return (error); 4765 } 4766 4767 vn_a.vp = vp; 4768 vn_a.offset = (u_offset_t)off; 4769 vn_a.type = flags & MAP_TYPE; 4770 vn_a.prot = prot; 4771 vn_a.maxprot = maxprot; 4772 vn_a.cred = cr; 4773 vn_a.amp = NULL; 4774 vn_a.flags = flags & ~MAP_TYPE; 4775 vn_a.szc = 0; 4776 vn_a.lgrp_mem_policy_flags = 0; 4777 4778 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4779 4780 as_rangeunlock(as); 4781 ZFS_EXIT(zfsvfs); 4782 return (error); 4783 } 4784 4785 /* ARGSUSED */ 4786 static int 4787 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4788 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4789 caller_context_t *ct) 4790 { 4791 uint64_t pages = btopr(len); 4792 4793 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4794 return (0); 4795 } 4796 4797 /* 4798 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4799 * more accurate mtime for the associated file. Since we don't have a way of 4800 * detecting when the data was actually modified, we have to resort to 4801 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4802 * last page is pushed. The problem occurs when the msync() call is omitted, 4803 * which by far the most common case: 4804 * 4805 * open() 4806 * mmap() 4807 * <modify memory> 4808 * munmap() 4809 * close() 4810 * <time lapse> 4811 * putpage() via fsflush 4812 * 4813 * If we wait until fsflush to come along, we can have a modification time that 4814 * is some arbitrary point in the future. In order to prevent this in the 4815 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4816 * torn down. 4817 */ 4818 /* ARGSUSED */ 4819 static int 4820 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4821 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4822 caller_context_t *ct) 4823 { 4824 uint64_t pages = btopr(len); 4825 4826 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4827 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4828 4829 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4830 vn_has_cached_data(vp)) 4831 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4832 4833 return (0); 4834 } 4835 4836 /* 4837 * Free or allocate space in a file. Currently, this function only 4838 * supports the `F_FREESP' command. However, this command is somewhat 4839 * misnamed, as its functionality includes the ability to allocate as 4840 * well as free space. 4841 * 4842 * IN: vp - vnode of file to free data in. 4843 * cmd - action to take (only F_FREESP supported). 4844 * bfp - section of file to free/alloc. 4845 * flag - current file open mode flags. 4846 * offset - current file offset. 4847 * cr - credentials of caller [UNUSED]. 4848 * ct - caller context. 4849 * 4850 * RETURN: 0 on success, error code on failure. 4851 * 4852 * Timestamps: 4853 * vp - ctime|mtime updated 4854 */ 4855 /* ARGSUSED */ 4856 static int 4857 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4858 offset_t offset, cred_t *cr, caller_context_t *ct) 4859 { 4860 znode_t *zp = VTOZ(vp); 4861 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4862 uint64_t off, len; 4863 int error; 4864 4865 ZFS_ENTER(zfsvfs); 4866 ZFS_VERIFY_ZP(zp); 4867 4868 if (cmd != F_FREESP) { 4869 ZFS_EXIT(zfsvfs); 4870 return (SET_ERROR(EINVAL)); 4871 } 4872 4873 /* 4874 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 4875 * callers might not be able to detect properly that we are read-only, 4876 * so check it explicitly here. 4877 */ 4878 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 4879 ZFS_EXIT(zfsvfs); 4880 return (SET_ERROR(EROFS)); 4881 } 4882 4883 if (error = convoff(vp, bfp, 0, offset)) { 4884 ZFS_EXIT(zfsvfs); 4885 return (error); 4886 } 4887 4888 if (bfp->l_len < 0) { 4889 ZFS_EXIT(zfsvfs); 4890 return (SET_ERROR(EINVAL)); 4891 } 4892 4893 off = bfp->l_start; 4894 len = bfp->l_len; /* 0 means from off to end of file */ 4895 4896 error = zfs_freesp(zp, off, len, flag, TRUE); 4897 4898 if (error == 0 && off == 0 && len == 0) 4899 vnevent_truncate(ZTOV(zp), ct); 4900 4901 ZFS_EXIT(zfsvfs); 4902 return (error); 4903 } 4904 4905 /*ARGSUSED*/ 4906 static int 4907 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4908 { 4909 znode_t *zp = VTOZ(vp); 4910 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4911 uint32_t gen; 4912 uint64_t gen64; 4913 uint64_t object = zp->z_id; 4914 zfid_short_t *zfid; 4915 int size, i, error; 4916 4917 ZFS_ENTER(zfsvfs); 4918 ZFS_VERIFY_ZP(zp); 4919 4920 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4921 &gen64, sizeof (uint64_t))) != 0) { 4922 ZFS_EXIT(zfsvfs); 4923 return (error); 4924 } 4925 4926 gen = (uint32_t)gen64; 4927 4928 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4929 if (fidp->fid_len < size) { 4930 fidp->fid_len = size; 4931 ZFS_EXIT(zfsvfs); 4932 return (SET_ERROR(ENOSPC)); 4933 } 4934 4935 zfid = (zfid_short_t *)fidp; 4936 4937 zfid->zf_len = size; 4938 4939 for (i = 0; i < sizeof (zfid->zf_object); i++) 4940 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4941 4942 /* Must have a non-zero generation number to distinguish from .zfs */ 4943 if (gen == 0) 4944 gen = 1; 4945 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4946 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4947 4948 if (size == LONG_FID_LEN) { 4949 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4950 zfid_long_t *zlfid; 4951 4952 zlfid = (zfid_long_t *)fidp; 4953 4954 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4955 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4956 4957 /* XXX - this should be the generation number for the objset */ 4958 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4959 zlfid->zf_setgen[i] = 0; 4960 } 4961 4962 ZFS_EXIT(zfsvfs); 4963 return (0); 4964 } 4965 4966 static int 4967 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4968 caller_context_t *ct) 4969 { 4970 znode_t *zp, *xzp; 4971 zfsvfs_t *zfsvfs; 4972 zfs_dirlock_t *dl; 4973 int error; 4974 4975 switch (cmd) { 4976 case _PC_LINK_MAX: 4977 *valp = ULONG_MAX; 4978 return (0); 4979 4980 case _PC_FILESIZEBITS: 4981 *valp = 64; 4982 return (0); 4983 4984 case _PC_XATTR_EXISTS: 4985 zp = VTOZ(vp); 4986 zfsvfs = zp->z_zfsvfs; 4987 ZFS_ENTER(zfsvfs); 4988 ZFS_VERIFY_ZP(zp); 4989 *valp = 0; 4990 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4991 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4992 if (error == 0) { 4993 zfs_dirent_unlock(dl); 4994 if (!zfs_dirempty(xzp)) 4995 *valp = 1; 4996 VN_RELE(ZTOV(xzp)); 4997 } else if (error == ENOENT) { 4998 /* 4999 * If there aren't extended attributes, it's the 5000 * same as having zero of them. 5001 */ 5002 error = 0; 5003 } 5004 ZFS_EXIT(zfsvfs); 5005 return (error); 5006 5007 case _PC_SATTR_ENABLED: 5008 case _PC_SATTR_EXISTS: 5009 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 5010 (vp->v_type == VREG || vp->v_type == VDIR); 5011 return (0); 5012 5013 case _PC_ACCESS_FILTERING: 5014 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 5015 vp->v_type == VDIR; 5016 return (0); 5017 5018 case _PC_ACL_ENABLED: 5019 *valp = _ACL_ACE_ENABLED; 5020 return (0); 5021 5022 case _PC_MIN_HOLE_SIZE: 5023 *valp = (ulong_t)SPA_MINBLOCKSIZE; 5024 return (0); 5025 5026 case _PC_TIMESTAMP_RESOLUTION: 5027 /* nanosecond timestamp resolution */ 5028 *valp = 1L; 5029 return (0); 5030 5031 default: 5032 return (fs_pathconf(vp, cmd, valp, cr, ct)); 5033 } 5034 } 5035 5036 /*ARGSUSED*/ 5037 static int 5038 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5039 caller_context_t *ct) 5040 { 5041 znode_t *zp = VTOZ(vp); 5042 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5043 int error; 5044 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5045 5046 ZFS_ENTER(zfsvfs); 5047 ZFS_VERIFY_ZP(zp); 5048 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5049 ZFS_EXIT(zfsvfs); 5050 5051 return (error); 5052 } 5053 5054 /*ARGSUSED*/ 5055 static int 5056 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5057 caller_context_t *ct) 5058 { 5059 znode_t *zp = VTOZ(vp); 5060 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5061 int error; 5062 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5063 zilog_t *zilog = zfsvfs->z_log; 5064 5065 ZFS_ENTER(zfsvfs); 5066 ZFS_VERIFY_ZP(zp); 5067 5068 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5069 5070 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5071 zil_commit(zilog, 0); 5072 5073 ZFS_EXIT(zfsvfs); 5074 return (error); 5075 } 5076 5077 /* 5078 * The smallest read we may consider to loan out an arcbuf. 5079 * This must be a power of 2. 5080 */ 5081 int zcr_blksz_min = (1 << 10); /* 1K */ 5082 /* 5083 * If set to less than the file block size, allow loaning out of an 5084 * arcbuf for a partial block read. This must be a power of 2. 5085 */ 5086 int zcr_blksz_max = (1 << 17); /* 128K */ 5087 5088 /*ARGSUSED*/ 5089 static int 5090 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5091 caller_context_t *ct) 5092 { 5093 znode_t *zp = VTOZ(vp); 5094 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5095 int max_blksz = zfsvfs->z_max_blksz; 5096 uio_t *uio = &xuio->xu_uio; 5097 ssize_t size = uio->uio_resid; 5098 offset_t offset = uio->uio_loffset; 5099 int blksz; 5100 int fullblk, i; 5101 arc_buf_t *abuf; 5102 ssize_t maxsize; 5103 int preamble, postamble; 5104 5105 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5106 return (SET_ERROR(EINVAL)); 5107 5108 ZFS_ENTER(zfsvfs); 5109 ZFS_VERIFY_ZP(zp); 5110 switch (ioflag) { 5111 case UIO_WRITE: 5112 /* 5113 * Loan out an arc_buf for write if write size is bigger than 5114 * max_blksz, and the file's block size is also max_blksz. 5115 */ 5116 blksz = max_blksz; 5117 if (size < blksz || zp->z_blksz != blksz) { 5118 ZFS_EXIT(zfsvfs); 5119 return (SET_ERROR(EINVAL)); 5120 } 5121 /* 5122 * Caller requests buffers for write before knowing where the 5123 * write offset might be (e.g. NFS TCP write). 5124 */ 5125 if (offset == -1) { 5126 preamble = 0; 5127 } else { 5128 preamble = P2PHASE(offset, blksz); 5129 if (preamble) { 5130 preamble = blksz - preamble; 5131 size -= preamble; 5132 } 5133 } 5134 5135 postamble = P2PHASE(size, blksz); 5136 size -= postamble; 5137 5138 fullblk = size / blksz; 5139 (void) dmu_xuio_init(xuio, 5140 (preamble != 0) + fullblk + (postamble != 0)); 5141 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5142 int, postamble, int, 5143 (preamble != 0) + fullblk + (postamble != 0)); 5144 5145 /* 5146 * Have to fix iov base/len for partial buffers. They 5147 * currently represent full arc_buf's. 5148 */ 5149 if (preamble) { 5150 /* data begins in the middle of the arc_buf */ 5151 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5152 blksz); 5153 ASSERT(abuf); 5154 (void) dmu_xuio_add(xuio, abuf, 5155 blksz - preamble, preamble); 5156 } 5157 5158 for (i = 0; i < fullblk; i++) { 5159 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5160 blksz); 5161 ASSERT(abuf); 5162 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5163 } 5164 5165 if (postamble) { 5166 /* data ends in the middle of the arc_buf */ 5167 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5168 blksz); 5169 ASSERT(abuf); 5170 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5171 } 5172 break; 5173 case UIO_READ: 5174 /* 5175 * Loan out an arc_buf for read if the read size is larger than 5176 * the current file block size. Block alignment is not 5177 * considered. Partial arc_buf will be loaned out for read. 5178 */ 5179 blksz = zp->z_blksz; 5180 if (blksz < zcr_blksz_min) 5181 blksz = zcr_blksz_min; 5182 if (blksz > zcr_blksz_max) 5183 blksz = zcr_blksz_max; 5184 /* avoid potential complexity of dealing with it */ 5185 if (blksz > max_blksz) { 5186 ZFS_EXIT(zfsvfs); 5187 return (SET_ERROR(EINVAL)); 5188 } 5189 5190 maxsize = zp->z_size - uio->uio_loffset; 5191 if (size > maxsize) 5192 size = maxsize; 5193 5194 if (size < blksz || vn_has_cached_data(vp)) { 5195 ZFS_EXIT(zfsvfs); 5196 return (SET_ERROR(EINVAL)); 5197 } 5198 break; 5199 default: 5200 ZFS_EXIT(zfsvfs); 5201 return (SET_ERROR(EINVAL)); 5202 } 5203 5204 uio->uio_extflg = UIO_XUIO; 5205 XUIO_XUZC_RW(xuio) = ioflag; 5206 ZFS_EXIT(zfsvfs); 5207 return (0); 5208 } 5209 5210 /*ARGSUSED*/ 5211 static int 5212 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5213 { 5214 int i; 5215 arc_buf_t *abuf; 5216 int ioflag = XUIO_XUZC_RW(xuio); 5217 5218 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5219 5220 i = dmu_xuio_cnt(xuio); 5221 while (i-- > 0) { 5222 abuf = dmu_xuio_arcbuf(xuio, i); 5223 /* 5224 * if abuf == NULL, it must be a write buffer 5225 * that has been returned in zfs_write(). 5226 */ 5227 if (abuf) 5228 dmu_return_arcbuf(abuf); 5229 ASSERT(abuf || ioflag == UIO_WRITE); 5230 } 5231 5232 dmu_xuio_fini(xuio); 5233 return (0); 5234 } 5235 5236 /* 5237 * Predeclare these here so that the compiler assumes that 5238 * this is an "old style" function declaration that does 5239 * not include arguments => we won't get type mismatch errors 5240 * in the initializations that follow. 5241 */ 5242 static int zfs_inval(); 5243 static int zfs_isdir(); 5244 5245 static int 5246 zfs_inval() 5247 { 5248 return (SET_ERROR(EINVAL)); 5249 } 5250 5251 static int 5252 zfs_isdir() 5253 { 5254 return (SET_ERROR(EISDIR)); 5255 } 5256 /* 5257 * Directory vnode operations template 5258 */ 5259 vnodeops_t *zfs_dvnodeops; 5260 const fs_operation_def_t zfs_dvnodeops_template[] = { 5261 VOPNAME_OPEN, { .vop_open = zfs_open }, 5262 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5263 VOPNAME_READ, { .error = zfs_isdir }, 5264 VOPNAME_WRITE, { .error = zfs_isdir }, 5265 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5266 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5267 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5268 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5269 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5270 VOPNAME_CREATE, { .vop_create = zfs_create }, 5271 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5272 VOPNAME_LINK, { .vop_link = zfs_link }, 5273 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5274 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5275 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5276 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5277 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5278 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5279 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5280 VOPNAME_FID, { .vop_fid = zfs_fid }, 5281 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5282 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5283 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5284 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5285 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5286 NULL, NULL 5287 }; 5288 5289 /* 5290 * Regular file vnode operations template 5291 */ 5292 vnodeops_t *zfs_fvnodeops; 5293 const fs_operation_def_t zfs_fvnodeops_template[] = { 5294 VOPNAME_OPEN, { .vop_open = zfs_open }, 5295 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5296 VOPNAME_READ, { .vop_read = zfs_read }, 5297 VOPNAME_WRITE, { .vop_write = zfs_write }, 5298 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5299 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5300 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5301 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5302 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5303 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5304 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5305 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5306 VOPNAME_FID, { .vop_fid = zfs_fid }, 5307 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5308 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5309 VOPNAME_SPACE, { .vop_space = zfs_space }, 5310 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5311 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5312 VOPNAME_MAP, { .vop_map = zfs_map }, 5313 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5314 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5315 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5316 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5317 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5318 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5319 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5320 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5321 NULL, NULL 5322 }; 5323 5324 /* 5325 * Symbolic link vnode operations template 5326 */ 5327 vnodeops_t *zfs_symvnodeops; 5328 const fs_operation_def_t zfs_symvnodeops_template[] = { 5329 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5330 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5331 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5332 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5333 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5334 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5335 VOPNAME_FID, { .vop_fid = zfs_fid }, 5336 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5337 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5338 NULL, NULL 5339 }; 5340 5341 /* 5342 * special share hidden files vnode operations template 5343 */ 5344 vnodeops_t *zfs_sharevnodeops; 5345 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5346 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5347 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5348 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5349 VOPNAME_FID, { .vop_fid = zfs_fid }, 5350 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5351 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5352 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5353 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5354 NULL, NULL 5355 }; 5356 5357 /* 5358 * Extended attribute directory vnode operations template 5359 * 5360 * This template is identical to the directory vnodes 5361 * operation template except for restricted operations: 5362 * VOP_MKDIR() 5363 * VOP_SYMLINK() 5364 * 5365 * Note that there are other restrictions embedded in: 5366 * zfs_create() - restrict type to VREG 5367 * zfs_link() - no links into/out of attribute space 5368 * zfs_rename() - no moves into/out of attribute space 5369 */ 5370 vnodeops_t *zfs_xdvnodeops; 5371 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5372 VOPNAME_OPEN, { .vop_open = zfs_open }, 5373 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5374 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5375 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5376 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5377 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5378 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5379 VOPNAME_CREATE, { .vop_create = zfs_create }, 5380 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5381 VOPNAME_LINK, { .vop_link = zfs_link }, 5382 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5383 VOPNAME_MKDIR, { .error = zfs_inval }, 5384 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5385 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5386 VOPNAME_SYMLINK, { .error = zfs_inval }, 5387 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5388 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5389 VOPNAME_FID, { .vop_fid = zfs_fid }, 5390 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5391 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5392 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5393 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5394 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5395 NULL, NULL 5396 }; 5397 5398 /* 5399 * Error vnode operations template 5400 */ 5401 vnodeops_t *zfs_evnodeops; 5402 const fs_operation_def_t zfs_evnodeops_template[] = { 5403 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5404 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5405 NULL, NULL 5406 }; 5407