1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/pathname.h> 32 #include <sys/vnode.h> 33 #include <sys/vfs.h> 34 #include <sys/vfs_opreg.h> 35 #include <sys/mntent.h> 36 #include <sys/mount.h> 37 #include <sys/cmn_err.h> 38 #include "fs/fs_subr.h" 39 #include <sys/zfs_znode.h> 40 #include <sys/zfs_dir.h> 41 #include <sys/zil.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_deleg.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/sa.h> 50 #include <sys/varargs.h> 51 #include <sys/policy.h> 52 #include <sys/atomic.h> 53 #include <sys/mkdev.h> 54 #include <sys/modctl.h> 55 #include <sys/refstr.h> 56 #include <sys/zfs_ioctl.h> 57 #include <sys/zfs_ctldir.h> 58 #include <sys/zfs_fuid.h> 59 #include <sys/bootconf.h> 60 #include <sys/sunddi.h> 61 #include <sys/dnlc.h> 62 #include <sys/dmu_objset.h> 63 #include <sys/spa_boot.h> 64 #include <sys/sa.h> 65 #include "zfs_comutil.h" 66 67 int zfsfstype; 68 vfsops_t *zfs_vfsops = NULL; 69 static major_t zfs_major; 70 static minor_t zfs_minor; 71 static kmutex_t zfs_dev_mtx; 72 73 extern int sys_shutdown; 74 75 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 76 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 77 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 78 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 79 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 80 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 81 static void zfs_freevfs(vfs_t *vfsp); 82 83 static const fs_operation_def_t zfs_vfsops_template[] = { 84 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 85 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 86 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 87 VFSNAME_ROOT, { .vfs_root = zfs_root }, 88 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 89 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 90 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 91 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 92 NULL, NULL 93 }; 94 95 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 96 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 97 NULL, NULL 98 }; 99 100 /* 101 * We need to keep a count of active fs's. 102 * This is necessary to prevent our module 103 * from being unloaded after a umount -f 104 */ 105 static uint32_t zfs_active_fs_count = 0; 106 107 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 108 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 109 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 110 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 111 112 /* 113 * MO_DEFAULT is not used since the default value is determined 114 * by the equivalent property. 115 */ 116 static mntopt_t mntopts[] = { 117 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 118 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 119 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 120 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 121 }; 122 123 static mntopts_t zfs_mntopts = { 124 sizeof (mntopts) / sizeof (mntopt_t), 125 mntopts 126 }; 127 128 /*ARGSUSED*/ 129 int 130 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 131 { 132 /* 133 * Data integrity is job one. We don't want a compromised kernel 134 * writing to the storage pool, so we never sync during panic. 135 */ 136 if (panicstr) 137 return (0); 138 139 /* 140 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 141 * to sync metadata, which they would otherwise cache indefinitely. 142 * Semantically, the only requirement is that the sync be initiated. 143 * The DMU syncs out txgs frequently, so there's nothing to do. 144 */ 145 if (flag & SYNC_ATTR) 146 return (0); 147 148 if (vfsp != NULL) { 149 /* 150 * Sync a specific filesystem. 151 */ 152 zfsvfs_t *zfsvfs = vfsp->vfs_data; 153 dsl_pool_t *dp; 154 155 ZFS_ENTER(zfsvfs); 156 dp = dmu_objset_pool(zfsvfs->z_os); 157 158 /* 159 * If the system is shutting down, then skip any 160 * filesystems which may exist on a suspended pool. 161 */ 162 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 163 ZFS_EXIT(zfsvfs); 164 return (0); 165 } 166 167 if (zfsvfs->z_log != NULL) 168 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 169 else 170 txg_wait_synced(dp, 0); 171 ZFS_EXIT(zfsvfs); 172 } else { 173 /* 174 * Sync all ZFS filesystems. This is what happens when you 175 * run sync(1M). Unlike other filesystems, ZFS honors the 176 * request by waiting for all pools to commit all dirty data. 177 */ 178 spa_sync_allpools(); 179 } 180 181 return (0); 182 } 183 184 static int 185 zfs_create_unique_device(dev_t *dev) 186 { 187 major_t new_major; 188 189 do { 190 ASSERT3U(zfs_minor, <=, MAXMIN32); 191 minor_t start = zfs_minor; 192 do { 193 mutex_enter(&zfs_dev_mtx); 194 if (zfs_minor >= MAXMIN32) { 195 /* 196 * If we're still using the real major 197 * keep out of /dev/zfs and /dev/zvol minor 198 * number space. If we're using a getudev()'ed 199 * major number, we can use all of its minors. 200 */ 201 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 202 zfs_minor = ZFS_MIN_MINOR; 203 else 204 zfs_minor = 0; 205 } else { 206 zfs_minor++; 207 } 208 *dev = makedevice(zfs_major, zfs_minor); 209 mutex_exit(&zfs_dev_mtx); 210 } while (vfs_devismounted(*dev) && zfs_minor != start); 211 if (zfs_minor == start) { 212 /* 213 * We are using all ~262,000 minor numbers for the 214 * current major number. Create a new major number. 215 */ 216 if ((new_major = getudev()) == (major_t)-1) { 217 cmn_err(CE_WARN, 218 "zfs_mount: Can't get unique major " 219 "device number."); 220 return (-1); 221 } 222 mutex_enter(&zfs_dev_mtx); 223 zfs_major = new_major; 224 zfs_minor = 0; 225 226 mutex_exit(&zfs_dev_mtx); 227 } else { 228 break; 229 } 230 /* CONSTANTCONDITION */ 231 } while (1); 232 233 return (0); 234 } 235 236 static void 237 atime_changed_cb(void *arg, uint64_t newval) 238 { 239 zfsvfs_t *zfsvfs = arg; 240 241 if (newval == TRUE) { 242 zfsvfs->z_atime = TRUE; 243 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 244 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 245 } else { 246 zfsvfs->z_atime = FALSE; 247 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 248 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 249 } 250 } 251 252 static void 253 xattr_changed_cb(void *arg, uint64_t newval) 254 { 255 zfsvfs_t *zfsvfs = arg; 256 257 if (newval == TRUE) { 258 /* XXX locking on vfs_flag? */ 259 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 260 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 261 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 262 } else { 263 /* XXX locking on vfs_flag? */ 264 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 265 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 266 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 267 } 268 } 269 270 static void 271 blksz_changed_cb(void *arg, uint64_t newval) 272 { 273 zfsvfs_t *zfsvfs = arg; 274 275 if (newval < SPA_MINBLOCKSIZE || 276 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 277 newval = SPA_MAXBLOCKSIZE; 278 279 zfsvfs->z_max_blksz = newval; 280 zfsvfs->z_vfs->vfs_bsize = newval; 281 } 282 283 static void 284 readonly_changed_cb(void *arg, uint64_t newval) 285 { 286 zfsvfs_t *zfsvfs = arg; 287 288 if (newval) { 289 /* XXX locking on vfs_flag? */ 290 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 291 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 292 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 293 } else { 294 /* XXX locking on vfs_flag? */ 295 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 296 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 297 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 298 } 299 } 300 301 static void 302 devices_changed_cb(void *arg, uint64_t newval) 303 { 304 zfsvfs_t *zfsvfs = arg; 305 306 if (newval == FALSE) { 307 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 308 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 309 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 310 } else { 311 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 312 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 313 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 314 } 315 } 316 317 static void 318 setuid_changed_cb(void *arg, uint64_t newval) 319 { 320 zfsvfs_t *zfsvfs = arg; 321 322 if (newval == FALSE) { 323 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 324 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 325 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 326 } else { 327 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 328 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 329 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 330 } 331 } 332 333 static void 334 exec_changed_cb(void *arg, uint64_t newval) 335 { 336 zfsvfs_t *zfsvfs = arg; 337 338 if (newval == FALSE) { 339 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 340 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 341 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 342 } else { 343 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 344 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 345 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 346 } 347 } 348 349 /* 350 * The nbmand mount option can be changed at mount time. 351 * We can't allow it to be toggled on live file systems or incorrect 352 * behavior may be seen from cifs clients 353 * 354 * This property isn't registered via dsl_prop_register(), but this callback 355 * will be called when a file system is first mounted 356 */ 357 static void 358 nbmand_changed_cb(void *arg, uint64_t newval) 359 { 360 zfsvfs_t *zfsvfs = arg; 361 if (newval == FALSE) { 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 364 } else { 365 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 366 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 367 } 368 } 369 370 static void 371 snapdir_changed_cb(void *arg, uint64_t newval) 372 { 373 zfsvfs_t *zfsvfs = arg; 374 375 zfsvfs->z_show_ctldir = newval; 376 } 377 378 static void 379 vscan_changed_cb(void *arg, uint64_t newval) 380 { 381 zfsvfs_t *zfsvfs = arg; 382 383 zfsvfs->z_vscan = newval; 384 } 385 386 static void 387 acl_mode_changed_cb(void *arg, uint64_t newval) 388 { 389 zfsvfs_t *zfsvfs = arg; 390 391 zfsvfs->z_acl_mode = newval; 392 } 393 394 static void 395 acl_inherit_changed_cb(void *arg, uint64_t newval) 396 { 397 zfsvfs_t *zfsvfs = arg; 398 399 zfsvfs->z_acl_inherit = newval; 400 } 401 402 static int 403 zfs_register_callbacks(vfs_t *vfsp) 404 { 405 struct dsl_dataset *ds = NULL; 406 objset_t *os = NULL; 407 zfsvfs_t *zfsvfs = NULL; 408 uint64_t nbmand; 409 int readonly, do_readonly = B_FALSE; 410 int setuid, do_setuid = B_FALSE; 411 int exec, do_exec = B_FALSE; 412 int devices, do_devices = B_FALSE; 413 int xattr, do_xattr = B_FALSE; 414 int atime, do_atime = B_FALSE; 415 int error = 0; 416 417 ASSERT(vfsp); 418 zfsvfs = vfsp->vfs_data; 419 ASSERT(zfsvfs); 420 os = zfsvfs->z_os; 421 422 /* 423 * The act of registering our callbacks will destroy any mount 424 * options we may have. In order to enable temporary overrides 425 * of mount options, we stash away the current values and 426 * restore them after we register the callbacks. 427 */ 428 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 429 readonly = B_TRUE; 430 do_readonly = B_TRUE; 431 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 432 readonly = B_FALSE; 433 do_readonly = B_TRUE; 434 } 435 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 436 devices = B_FALSE; 437 setuid = B_FALSE; 438 do_devices = B_TRUE; 439 do_setuid = B_TRUE; 440 } else { 441 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 442 devices = B_FALSE; 443 do_devices = B_TRUE; 444 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 445 devices = B_TRUE; 446 do_devices = B_TRUE; 447 } 448 449 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 450 setuid = B_FALSE; 451 do_setuid = B_TRUE; 452 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 453 setuid = B_TRUE; 454 do_setuid = B_TRUE; 455 } 456 } 457 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 458 exec = B_FALSE; 459 do_exec = B_TRUE; 460 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 461 exec = B_TRUE; 462 do_exec = B_TRUE; 463 } 464 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 465 xattr = B_FALSE; 466 do_xattr = B_TRUE; 467 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 468 xattr = B_TRUE; 469 do_xattr = B_TRUE; 470 } 471 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 472 atime = B_FALSE; 473 do_atime = B_TRUE; 474 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 475 atime = B_TRUE; 476 do_atime = B_TRUE; 477 } 478 479 /* 480 * nbmand is a special property. It can only be changed at 481 * mount time. 482 * 483 * This is weird, but it is documented to only be changeable 484 * at mount time. 485 */ 486 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 487 nbmand = B_FALSE; 488 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 489 nbmand = B_TRUE; 490 } else { 491 char osname[MAXNAMELEN]; 492 493 dmu_objset_name(os, osname); 494 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 495 NULL)) { 496 return (error); 497 } 498 } 499 500 /* 501 * Register property callbacks. 502 * 503 * It would probably be fine to just check for i/o error from 504 * the first prop_register(), but I guess I like to go 505 * overboard... 506 */ 507 ds = dmu_objset_ds(os); 508 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 509 error = error ? error : dsl_prop_register(ds, 510 "xattr", xattr_changed_cb, zfsvfs); 511 error = error ? error : dsl_prop_register(ds, 512 "recordsize", blksz_changed_cb, zfsvfs); 513 error = error ? error : dsl_prop_register(ds, 514 "readonly", readonly_changed_cb, zfsvfs); 515 error = error ? error : dsl_prop_register(ds, 516 "devices", devices_changed_cb, zfsvfs); 517 error = error ? error : dsl_prop_register(ds, 518 "setuid", setuid_changed_cb, zfsvfs); 519 error = error ? error : dsl_prop_register(ds, 520 "exec", exec_changed_cb, zfsvfs); 521 error = error ? error : dsl_prop_register(ds, 522 "snapdir", snapdir_changed_cb, zfsvfs); 523 error = error ? error : dsl_prop_register(ds, 524 "aclmode", acl_mode_changed_cb, zfsvfs); 525 error = error ? error : dsl_prop_register(ds, 526 "aclinherit", acl_inherit_changed_cb, zfsvfs); 527 error = error ? error : dsl_prop_register(ds, 528 "vscan", vscan_changed_cb, zfsvfs); 529 if (error) 530 goto unregister; 531 532 /* 533 * Invoke our callbacks to restore temporary mount options. 534 */ 535 if (do_readonly) 536 readonly_changed_cb(zfsvfs, readonly); 537 if (do_setuid) 538 setuid_changed_cb(zfsvfs, setuid); 539 if (do_exec) 540 exec_changed_cb(zfsvfs, exec); 541 if (do_devices) 542 devices_changed_cb(zfsvfs, devices); 543 if (do_xattr) 544 xattr_changed_cb(zfsvfs, xattr); 545 if (do_atime) 546 atime_changed_cb(zfsvfs, atime); 547 548 nbmand_changed_cb(zfsvfs, nbmand); 549 550 return (0); 551 552 unregister: 553 /* 554 * We may attempt to unregister some callbacks that are not 555 * registered, but this is OK; it will simply return ENOMSG, 556 * which we will ignore. 557 */ 558 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 559 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 560 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 561 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 562 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 563 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 564 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 565 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 566 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 567 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 568 zfsvfs); 569 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 570 return (error); 571 572 } 573 574 static void 575 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid, 576 int64_t delta, dmu_tx_t *tx) 577 { 578 uint64_t used = 0; 579 char buf[32]; 580 int err; 581 uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 582 583 if (delta == 0) 584 return; 585 586 (void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid); 587 err = zap_lookup(os, obj, buf, 8, 1, &used); 588 589 ASSERT(err == 0 || err == ENOENT); 590 /* no underflow/overflow */ 591 ASSERT(delta > 0 || used >= -delta); 592 ASSERT(delta < 0 || used + delta > used); 593 used += delta; 594 if (used == 0) 595 err = zap_remove(os, obj, buf, tx); 596 else 597 err = zap_update(os, obj, buf, 8, 1, &used, tx); 598 ASSERT(err == 0); 599 600 } 601 602 static int 603 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 604 uint64_t *userp, uint64_t *groupp) 605 { 606 znode_phys_t *znp = data; 607 int error = 0; 608 609 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 610 return (ENOENT); 611 612 if (bonustype == DMU_OT_ZNODE) { 613 *userp = znp->zp_uid; 614 *groupp = znp->zp_gid; 615 } else { 616 int hdrsize; 617 618 ASSERT(bonustype == DMU_OT_SA); 619 hdrsize = sa_hdrsize(data); 620 621 if (hdrsize != 0) { 622 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 623 SA_UID_OFFSET)); 624 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 625 SA_GID_OFFSET)); 626 } else { 627 error = ENOENT; 628 } 629 } 630 return (error); 631 } 632 633 static void 634 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 635 char *domainbuf, int buflen, uid_t *ridp) 636 { 637 uint64_t fuid; 638 const char *domain; 639 640 fuid = strtonum(fuidstr, NULL); 641 642 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 643 if (domain) 644 (void) strlcpy(domainbuf, domain, buflen); 645 else 646 domainbuf[0] = '\0'; 647 *ridp = FUID_RID(fuid); 648 } 649 650 static uint64_t 651 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 652 { 653 switch (type) { 654 case ZFS_PROP_USERUSED: 655 return (DMU_USERUSED_OBJECT); 656 case ZFS_PROP_GROUPUSED: 657 return (DMU_GROUPUSED_OBJECT); 658 case ZFS_PROP_USERQUOTA: 659 return (zfsvfs->z_userquota_obj); 660 case ZFS_PROP_GROUPQUOTA: 661 return (zfsvfs->z_groupquota_obj); 662 } 663 return (0); 664 } 665 666 int 667 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 668 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 669 { 670 int error; 671 zap_cursor_t zc; 672 zap_attribute_t za; 673 zfs_useracct_t *buf = vbuf; 674 uint64_t obj; 675 676 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 677 return (ENOTSUP); 678 679 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 680 if (obj == 0) { 681 *bufsizep = 0; 682 return (0); 683 } 684 685 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 686 (error = zap_cursor_retrieve(&zc, &za)) == 0; 687 zap_cursor_advance(&zc)) { 688 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 689 *bufsizep) 690 break; 691 692 fuidstr_to_sid(zfsvfs, za.za_name, 693 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 694 695 buf->zu_space = za.za_first_integer; 696 buf++; 697 } 698 if (error == ENOENT) 699 error = 0; 700 701 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 702 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 703 *cookiep = zap_cursor_serialize(&zc); 704 zap_cursor_fini(&zc); 705 return (error); 706 } 707 708 /* 709 * buf must be big enough (eg, 32 bytes) 710 */ 711 static int 712 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 713 char *buf, boolean_t addok) 714 { 715 uint64_t fuid; 716 int domainid = 0; 717 718 if (domain && domain[0]) { 719 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 720 if (domainid == -1) 721 return (ENOENT); 722 } 723 fuid = FUID_ENCODE(domainid, rid); 724 (void) sprintf(buf, "%llx", (longlong_t)fuid); 725 return (0); 726 } 727 728 int 729 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 730 const char *domain, uint64_t rid, uint64_t *valp) 731 { 732 char buf[32]; 733 int err; 734 uint64_t obj; 735 736 *valp = 0; 737 738 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 739 return (ENOTSUP); 740 741 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 742 if (obj == 0) 743 return (0); 744 745 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 746 if (err) 747 return (err); 748 749 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 750 if (err == ENOENT) 751 err = 0; 752 return (err); 753 } 754 755 int 756 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 757 const char *domain, uint64_t rid, uint64_t quota) 758 { 759 char buf[32]; 760 int err; 761 dmu_tx_t *tx; 762 uint64_t *objp; 763 boolean_t fuid_dirtied; 764 765 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 766 return (EINVAL); 767 768 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 769 return (ENOTSUP); 770 771 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 772 &zfsvfs->z_groupquota_obj; 773 774 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 775 if (err) 776 return (err); 777 fuid_dirtied = zfsvfs->z_fuid_dirty; 778 779 tx = dmu_tx_create(zfsvfs->z_os); 780 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 781 if (*objp == 0) { 782 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 783 zfs_userquota_prop_prefixes[type]); 784 } 785 if (fuid_dirtied) 786 zfs_fuid_txhold(zfsvfs, tx); 787 err = dmu_tx_assign(tx, TXG_WAIT); 788 if (err) { 789 dmu_tx_abort(tx); 790 return (err); 791 } 792 793 mutex_enter(&zfsvfs->z_lock); 794 if (*objp == 0) { 795 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 796 DMU_OT_NONE, 0, tx); 797 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 798 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 799 } 800 mutex_exit(&zfsvfs->z_lock); 801 802 if (quota == 0) { 803 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 804 if (err == ENOENT) 805 err = 0; 806 } else { 807 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 808 } 809 ASSERT(err == 0); 810 if (fuid_dirtied) 811 zfs_fuid_sync(zfsvfs, tx); 812 dmu_tx_commit(tx); 813 return (err); 814 } 815 816 boolean_t 817 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 818 { 819 char buf[32]; 820 uint64_t used, quota, usedobj, quotaobj; 821 int err; 822 823 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 824 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 825 826 if (quotaobj == 0 || zfsvfs->z_replay) 827 return (B_FALSE); 828 829 (void) sprintf(buf, "%llx", (longlong_t)fuid); 830 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 831 if (err != 0) 832 return (B_FALSE); 833 834 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 835 if (err != 0) 836 return (B_FALSE); 837 return (used >= quota); 838 } 839 840 boolean_t 841 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 842 { 843 uint64_t fuid; 844 uint64_t quotaobj; 845 uid_t id; 846 847 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 848 849 id = isgroup ? zp->z_gid : zp->z_uid; 850 851 if (quotaobj == 0 || zfsvfs->z_replay) 852 return (B_FALSE); 853 854 if (IS_EPHEMERAL(id)) { 855 VERIFY(0 == sa_lookup(zp->z_sa_hdl, 856 isgroup ? SA_ZPL_GID(zfsvfs) : SA_ZPL_UID(zfsvfs), 857 &fuid, sizeof (fuid))); 858 } else { 859 fuid = (uint64_t)id; 860 } 861 862 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 863 } 864 865 866 int 867 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 868 { 869 objset_t *os; 870 zfsvfs_t *zfsvfs; 871 uint64_t zval; 872 int i, error; 873 uint64_t sa_obj; 874 875 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 876 877 /* 878 * We claim to always be readonly so we can open snapshots; 879 * other ZPL code will prevent us from writing to snapshots. 880 */ 881 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 882 if (error) { 883 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 884 return (error); 885 } 886 887 /* 888 * Initialize the zfs-specific filesystem structure. 889 * Should probably make this a kmem cache, shuffle fields, 890 * and just bzero up to z_hold_mtx[]. 891 */ 892 zfsvfs->z_vfs = NULL; 893 zfsvfs->z_parent = zfsvfs; 894 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 895 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 896 zfsvfs->z_os = os; 897 898 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 899 if (error) { 900 goto out; 901 } else if (zfsvfs->z_version > ZPL_VERSION) { 902 (void) printf("Mismatched versions: File system " 903 "is version %llu on-disk format, which is " 904 "incompatible with this software version %lld!", 905 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION); 906 error = ENOTSUP; 907 goto out; 908 } 909 910 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 911 goto out; 912 zfsvfs->z_norm = (int)zval; 913 914 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 915 goto out; 916 zfsvfs->z_utf8 = (zval != 0); 917 918 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 919 goto out; 920 zfsvfs->z_case = (uint_t)zval; 921 922 /* 923 * Fold case on file systems that are always or sometimes case 924 * insensitive. 925 */ 926 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 927 zfsvfs->z_case == ZFS_CASE_MIXED) 928 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 929 930 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 931 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 932 933 if (zfsvfs->z_use_sa) { 934 /* should either have both of these objects or none */ 935 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 936 &sa_obj); 937 if (error) 938 return (error); 939 } else { 940 /* 941 * Pre SA versions file systems should never touch 942 * either the attribute registration or layout objects. 943 */ 944 sa_obj = 0; 945 } 946 947 zfsvfs->z_attr_table = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END); 948 949 if (zfsvfs->z_version >= ZPL_VERSION_SA) 950 sa_register_update_callback(os, zfs_sa_upgrade); 951 952 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 953 &zfsvfs->z_root); 954 if (error) 955 goto out; 956 ASSERT(zfsvfs->z_root != 0); 957 958 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 959 &zfsvfs->z_unlinkedobj); 960 if (error) 961 goto out; 962 963 error = zap_lookup(os, MASTER_NODE_OBJ, 964 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 965 8, 1, &zfsvfs->z_userquota_obj); 966 if (error && error != ENOENT) 967 goto out; 968 969 error = zap_lookup(os, MASTER_NODE_OBJ, 970 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 971 8, 1, &zfsvfs->z_groupquota_obj); 972 if (error && error != ENOENT) 973 goto out; 974 975 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 976 &zfsvfs->z_fuid_obj); 977 if (error && error != ENOENT) 978 goto out; 979 980 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 981 &zfsvfs->z_shares_dir); 982 if (error && error != ENOENT) 983 goto out; 984 985 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 986 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 987 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 988 offsetof(znode_t, z_link_node)); 989 rrw_init(&zfsvfs->z_teardown_lock); 990 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 991 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 992 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 993 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 994 995 *zfvp = zfsvfs; 996 return (0); 997 998 out: 999 dmu_objset_disown(os, zfsvfs); 1000 *zfvp = NULL; 1001 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1002 return (error); 1003 } 1004 1005 static int 1006 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 1007 { 1008 int error; 1009 1010 error = zfs_register_callbacks(zfsvfs->z_vfs); 1011 if (error) 1012 return (error); 1013 1014 /* 1015 * Set the objset user_ptr to track its zfsvfs. 1016 */ 1017 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1018 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1019 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1020 1021 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1022 if (zil_disable) { 1023 zil_destroy(zfsvfs->z_log, B_FALSE); 1024 zfsvfs->z_log = NULL; 1025 } 1026 1027 /* 1028 * If we are not mounting (ie: online recv), then we don't 1029 * have to worry about replaying the log as we blocked all 1030 * operations out since we closed the ZIL. 1031 */ 1032 if (mounting) { 1033 boolean_t readonly; 1034 1035 /* 1036 * During replay we remove the read only flag to 1037 * allow replays to succeed. 1038 */ 1039 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1040 if (readonly != 0) 1041 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1042 else 1043 zfs_unlinked_drain(zfsvfs); 1044 1045 if (zfsvfs->z_log) { 1046 /* 1047 * Parse and replay the intent log. 1048 * 1049 * Because of ziltest, this must be done after 1050 * zfs_unlinked_drain(). (Further note: ziltest 1051 * doesn't use readonly mounts, where 1052 * zfs_unlinked_drain() isn't called.) This is because 1053 * ziltest causes spa_sync() to think it's committed, 1054 * but actually it is not, so the intent log contains 1055 * many txg's worth of changes. 1056 * 1057 * In particular, if object N is in the unlinked set in 1058 * the last txg to actually sync, then it could be 1059 * actually freed in a later txg and then reallocated 1060 * in a yet later txg. This would write a "create 1061 * object N" record to the intent log. Normally, this 1062 * would be fine because the spa_sync() would have 1063 * written out the fact that object N is free, before 1064 * we could write the "create object N" intent log 1065 * record. 1066 * 1067 * But when we are in ziltest mode, we advance the "open 1068 * txg" without actually spa_sync()-ing the changes to 1069 * disk. So we would see that object N is still 1070 * allocated and in the unlinked set, and there is an 1071 * intent log record saying to allocate it. 1072 */ 1073 zfsvfs->z_replay = B_TRUE; 1074 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); 1075 zfsvfs->z_replay = B_FALSE; 1076 } 1077 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1078 } 1079 1080 return (0); 1081 } 1082 1083 void 1084 zfsvfs_free(zfsvfs_t *zfsvfs) 1085 { 1086 int i; 1087 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1088 1089 /* 1090 * This is a barrier to prevent the filesystem from going away in 1091 * zfs_znode_move() until we can safely ensure that the filesystem is 1092 * not unmounted. We consider the filesystem valid before the barrier 1093 * and invalid after the barrier. 1094 */ 1095 rw_enter(&zfsvfs_lock, RW_READER); 1096 rw_exit(&zfsvfs_lock); 1097 1098 zfs_fuid_destroy(zfsvfs); 1099 1100 mutex_destroy(&zfsvfs->z_znodes_lock); 1101 mutex_destroy(&zfsvfs->z_lock); 1102 list_destroy(&zfsvfs->z_all_znodes); 1103 rrw_destroy(&zfsvfs->z_teardown_lock); 1104 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1105 rw_destroy(&zfsvfs->z_fuid_lock); 1106 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1107 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1108 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1109 } 1110 1111 static void 1112 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1113 { 1114 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1115 if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) { 1116 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1117 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1118 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1119 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1120 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1121 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1122 } 1123 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1124 } 1125 1126 static int 1127 zfs_domount(vfs_t *vfsp, char *osname) 1128 { 1129 dev_t mount_dev; 1130 uint64_t recordsize, fsid_guid; 1131 int error = 0; 1132 zfsvfs_t *zfsvfs; 1133 1134 ASSERT(vfsp); 1135 ASSERT(osname); 1136 1137 error = zfsvfs_create(osname, &zfsvfs); 1138 if (error) 1139 return (error); 1140 zfsvfs->z_vfs = vfsp; 1141 1142 /* Initialize the generic filesystem structure. */ 1143 vfsp->vfs_bcount = 0; 1144 vfsp->vfs_data = NULL; 1145 1146 if (zfs_create_unique_device(&mount_dev) == -1) { 1147 error = ENODEV; 1148 goto out; 1149 } 1150 ASSERT(vfs_devismounted(mount_dev) == 0); 1151 1152 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1153 NULL)) 1154 goto out; 1155 1156 vfsp->vfs_dev = mount_dev; 1157 vfsp->vfs_fstype = zfsfstype; 1158 vfsp->vfs_bsize = recordsize; 1159 vfsp->vfs_flag |= VFS_NOTRUNC; 1160 vfsp->vfs_data = zfsvfs; 1161 1162 /* 1163 * The fsid is 64 bits, composed of an 8-bit fs type, which 1164 * separates our fsid from any other filesystem types, and a 1165 * 56-bit objset unique ID. The objset unique ID is unique to 1166 * all objsets open on this system, provided by unique_create(). 1167 * The 8-bit fs type must be put in the low bits of fsid[1] 1168 * because that's where other Solaris filesystems put it. 1169 */ 1170 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1171 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1172 vfsp->vfs_fsid.val[0] = fsid_guid; 1173 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1174 zfsfstype & 0xFF; 1175 1176 /* 1177 * Set features for file system. 1178 */ 1179 zfs_set_fuid_feature(zfsvfs); 1180 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1181 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1182 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1183 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1184 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1185 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1186 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1187 } 1188 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1189 1190 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1191 uint64_t pval; 1192 1193 atime_changed_cb(zfsvfs, B_FALSE); 1194 readonly_changed_cb(zfsvfs, B_TRUE); 1195 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1196 goto out; 1197 xattr_changed_cb(zfsvfs, pval); 1198 zfsvfs->z_issnap = B_TRUE; 1199 1200 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1201 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1202 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1203 } else { 1204 error = zfsvfs_setup(zfsvfs, B_TRUE); 1205 } 1206 1207 if (!zfsvfs->z_issnap) 1208 zfsctl_create(zfsvfs); 1209 out: 1210 if (error) { 1211 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1212 zfsvfs_free(zfsvfs); 1213 } else { 1214 atomic_add_32(&zfs_active_fs_count, 1); 1215 } 1216 1217 return (error); 1218 } 1219 1220 void 1221 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1222 { 1223 objset_t *os = zfsvfs->z_os; 1224 struct dsl_dataset *ds; 1225 1226 /* 1227 * Unregister properties. 1228 */ 1229 if (!dmu_objset_is_snapshot(os)) { 1230 ds = dmu_objset_ds(os); 1231 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1232 zfsvfs) == 0); 1233 1234 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1235 zfsvfs) == 0); 1236 1237 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1238 zfsvfs) == 0); 1239 1240 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1241 zfsvfs) == 0); 1242 1243 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1244 zfsvfs) == 0); 1245 1246 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1247 zfsvfs) == 0); 1248 1249 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1250 zfsvfs) == 0); 1251 1252 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1253 zfsvfs) == 0); 1254 1255 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 1256 zfsvfs) == 0); 1257 1258 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1259 acl_inherit_changed_cb, zfsvfs) == 0); 1260 1261 VERIFY(dsl_prop_unregister(ds, "vscan", 1262 vscan_changed_cb, zfsvfs) == 0); 1263 } 1264 } 1265 1266 /* 1267 * Convert a decimal digit string to a uint64_t integer. 1268 */ 1269 static int 1270 str_to_uint64(char *str, uint64_t *objnum) 1271 { 1272 uint64_t num = 0; 1273 1274 while (*str) { 1275 if (*str < '0' || *str > '9') 1276 return (EINVAL); 1277 1278 num = num*10 + *str++ - '0'; 1279 } 1280 1281 *objnum = num; 1282 return (0); 1283 } 1284 1285 /* 1286 * The boot path passed from the boot loader is in the form of 1287 * "rootpool-name/root-filesystem-object-number'. Convert this 1288 * string to a dataset name: "rootpool-name/root-filesystem-name". 1289 */ 1290 static int 1291 zfs_parse_bootfs(char *bpath, char *outpath) 1292 { 1293 char *slashp; 1294 uint64_t objnum; 1295 int error; 1296 1297 if (*bpath == 0 || *bpath == '/') 1298 return (EINVAL); 1299 1300 (void) strcpy(outpath, bpath); 1301 1302 slashp = strchr(bpath, '/'); 1303 1304 /* if no '/', just return the pool name */ 1305 if (slashp == NULL) { 1306 return (0); 1307 } 1308 1309 /* if not a number, just return the root dataset name */ 1310 if (str_to_uint64(slashp+1, &objnum)) { 1311 return (0); 1312 } 1313 1314 *slashp = '\0'; 1315 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1316 *slashp = '/'; 1317 1318 return (error); 1319 } 1320 1321 /* 1322 * zfs_check_global_label: 1323 * Check that the hex label string is appropriate for the dataset 1324 * being mounted into the global_zone proper. 1325 * 1326 * Return an error if the hex label string is not default or 1327 * admin_low/admin_high. For admin_low labels, the corresponding 1328 * dataset must be readonly. 1329 */ 1330 int 1331 zfs_check_global_label(const char *dsname, const char *hexsl) 1332 { 1333 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1334 return (0); 1335 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1336 return (0); 1337 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1338 /* must be readonly */ 1339 uint64_t rdonly; 1340 1341 if (dsl_prop_get_integer(dsname, 1342 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1343 return (EACCES); 1344 return (rdonly ? 0 : EACCES); 1345 } 1346 return (EACCES); 1347 } 1348 1349 /* 1350 * zfs_mount_label_policy: 1351 * Determine whether the mount is allowed according to MAC check. 1352 * by comparing (where appropriate) label of the dataset against 1353 * the label of the zone being mounted into. If the dataset has 1354 * no label, create one. 1355 * 1356 * Returns: 1357 * 0 : access allowed 1358 * >0 : error code, such as EACCES 1359 */ 1360 static int 1361 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1362 { 1363 int error, retv; 1364 zone_t *mntzone = NULL; 1365 ts_label_t *mnt_tsl; 1366 bslabel_t *mnt_sl; 1367 bslabel_t ds_sl; 1368 char ds_hexsl[MAXNAMELEN]; 1369 1370 retv = EACCES; /* assume the worst */ 1371 1372 /* 1373 * Start by getting the dataset label if it exists. 1374 */ 1375 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1376 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1377 if (error) 1378 return (EACCES); 1379 1380 /* 1381 * If labeling is NOT enabled, then disallow the mount of datasets 1382 * which have a non-default label already. No other label checks 1383 * are needed. 1384 */ 1385 if (!is_system_labeled()) { 1386 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1387 return (0); 1388 return (EACCES); 1389 } 1390 1391 /* 1392 * Get the label of the mountpoint. If mounting into the global 1393 * zone (i.e. mountpoint is not within an active zone and the 1394 * zoned property is off), the label must be default or 1395 * admin_low/admin_high only; no other checks are needed. 1396 */ 1397 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1398 if (mntzone->zone_id == GLOBAL_ZONEID) { 1399 uint64_t zoned; 1400 1401 zone_rele(mntzone); 1402 1403 if (dsl_prop_get_integer(osname, 1404 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1405 return (EACCES); 1406 if (!zoned) 1407 return (zfs_check_global_label(osname, ds_hexsl)); 1408 else 1409 /* 1410 * This is the case of a zone dataset being mounted 1411 * initially, before the zone has been fully created; 1412 * allow this mount into global zone. 1413 */ 1414 return (0); 1415 } 1416 1417 mnt_tsl = mntzone->zone_slabel; 1418 ASSERT(mnt_tsl != NULL); 1419 label_hold(mnt_tsl); 1420 mnt_sl = label2bslabel(mnt_tsl); 1421 1422 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1423 /* 1424 * The dataset doesn't have a real label, so fabricate one. 1425 */ 1426 char *str = NULL; 1427 1428 if (l_to_str_internal(mnt_sl, &str) == 0 && 1429 dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1430 ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0) 1431 retv = 0; 1432 if (str != NULL) 1433 kmem_free(str, strlen(str) + 1); 1434 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1435 /* 1436 * Now compare labels to complete the MAC check. If the 1437 * labels are equal then allow access. If the mountpoint 1438 * label dominates the dataset label, allow readonly access. 1439 * Otherwise, access is denied. 1440 */ 1441 if (blequal(mnt_sl, &ds_sl)) 1442 retv = 0; 1443 else if (bldominates(mnt_sl, &ds_sl)) { 1444 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1445 retv = 0; 1446 } 1447 } 1448 1449 label_rele(mnt_tsl); 1450 zone_rele(mntzone); 1451 return (retv); 1452 } 1453 1454 static int 1455 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1456 { 1457 int error = 0; 1458 static int zfsrootdone = 0; 1459 zfsvfs_t *zfsvfs = NULL; 1460 znode_t *zp = NULL; 1461 vnode_t *vp = NULL; 1462 char *zfs_bootfs; 1463 char *zfs_devid; 1464 1465 ASSERT(vfsp); 1466 1467 /* 1468 * The filesystem that we mount as root is defined in the 1469 * boot property "zfs-bootfs" with a format of 1470 * "poolname/root-dataset-objnum". 1471 */ 1472 if (why == ROOT_INIT) { 1473 if (zfsrootdone++) 1474 return (EBUSY); 1475 /* 1476 * the process of doing a spa_load will require the 1477 * clock to be set before we could (for example) do 1478 * something better by looking at the timestamp on 1479 * an uberblock, so just set it to -1. 1480 */ 1481 clkset(-1); 1482 1483 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1484 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1485 "bootfs name"); 1486 return (EINVAL); 1487 } 1488 zfs_devid = spa_get_bootprop("diskdevid"); 1489 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1490 if (zfs_devid) 1491 spa_free_bootprop(zfs_devid); 1492 if (error) { 1493 spa_free_bootprop(zfs_bootfs); 1494 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1495 error); 1496 return (error); 1497 } 1498 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1499 spa_free_bootprop(zfs_bootfs); 1500 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1501 error); 1502 return (error); 1503 } 1504 1505 spa_free_bootprop(zfs_bootfs); 1506 1507 if (error = vfs_lock(vfsp)) 1508 return (error); 1509 1510 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1511 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1512 goto out; 1513 } 1514 1515 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1516 ASSERT(zfsvfs); 1517 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1518 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1519 goto out; 1520 } 1521 1522 vp = ZTOV(zp); 1523 mutex_enter(&vp->v_lock); 1524 vp->v_flag |= VROOT; 1525 mutex_exit(&vp->v_lock); 1526 rootvp = vp; 1527 1528 /* 1529 * Leave rootvp held. The root file system is never unmounted. 1530 */ 1531 1532 vfs_add((struct vnode *)0, vfsp, 1533 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1534 out: 1535 vfs_unlock(vfsp); 1536 return (error); 1537 } else if (why == ROOT_REMOUNT) { 1538 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1539 vfsp->vfs_flag |= VFS_REMOUNT; 1540 1541 /* refresh mount options */ 1542 zfs_unregister_callbacks(vfsp->vfs_data); 1543 return (zfs_register_callbacks(vfsp)); 1544 1545 } else if (why == ROOT_UNMOUNT) { 1546 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1547 (void) zfs_sync(vfsp, 0, 0); 1548 return (0); 1549 } 1550 1551 /* 1552 * if "why" is equal to anything else other than ROOT_INIT, 1553 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1554 */ 1555 return (ENOTSUP); 1556 } 1557 1558 /*ARGSUSED*/ 1559 static int 1560 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1561 { 1562 char *osname; 1563 pathname_t spn; 1564 int error = 0; 1565 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1566 UIO_SYSSPACE : UIO_USERSPACE; 1567 int canwrite; 1568 1569 if (mvp->v_type != VDIR) 1570 return (ENOTDIR); 1571 1572 mutex_enter(&mvp->v_lock); 1573 if ((uap->flags & MS_REMOUNT) == 0 && 1574 (uap->flags & MS_OVERLAY) == 0 && 1575 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1576 mutex_exit(&mvp->v_lock); 1577 return (EBUSY); 1578 } 1579 mutex_exit(&mvp->v_lock); 1580 1581 /* 1582 * ZFS does not support passing unparsed data in via MS_DATA. 1583 * Users should use the MS_OPTIONSTR interface; this means 1584 * that all option parsing is already done and the options struct 1585 * can be interrogated. 1586 */ 1587 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1588 return (EINVAL); 1589 1590 /* 1591 * Get the objset name (the "special" mount argument). 1592 */ 1593 if (error = pn_get(uap->spec, fromspace, &spn)) 1594 return (error); 1595 1596 osname = spn.pn_path; 1597 1598 /* 1599 * Check for mount privilege? 1600 * 1601 * If we don't have privilege then see if 1602 * we have local permission to allow it 1603 */ 1604 error = secpolicy_fs_mount(cr, mvp, vfsp); 1605 if (error) { 1606 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1607 vattr_t vattr; 1608 1609 /* 1610 * Make sure user is the owner of the mount point 1611 * or has sufficient privileges. 1612 */ 1613 1614 vattr.va_mask = AT_UID; 1615 1616 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1617 goto out; 1618 } 1619 1620 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1621 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1622 goto out; 1623 } 1624 secpolicy_fs_mount_clearopts(cr, vfsp); 1625 } else { 1626 goto out; 1627 } 1628 } 1629 1630 /* 1631 * Refuse to mount a filesystem if we are in a local zone and the 1632 * dataset is not visible. 1633 */ 1634 if (!INGLOBALZONE(curproc) && 1635 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1636 error = EPERM; 1637 goto out; 1638 } 1639 1640 error = zfs_mount_label_policy(vfsp, osname); 1641 if (error) 1642 goto out; 1643 1644 /* 1645 * When doing a remount, we simply refresh our temporary properties 1646 * according to those options set in the current VFS options. 1647 */ 1648 if (uap->flags & MS_REMOUNT) { 1649 /* refresh mount options */ 1650 zfs_unregister_callbacks(vfsp->vfs_data); 1651 error = zfs_register_callbacks(vfsp); 1652 goto out; 1653 } 1654 1655 error = zfs_domount(vfsp, osname); 1656 1657 /* 1658 * Add an extra VFS_HOLD on our parent vfs so that it can't 1659 * disappear due to a forced unmount. 1660 */ 1661 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1662 VFS_HOLD(mvp->v_vfsp); 1663 1664 out: 1665 pn_free(&spn); 1666 return (error); 1667 } 1668 1669 static int 1670 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1671 { 1672 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1673 dev32_t d32; 1674 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1675 1676 ZFS_ENTER(zfsvfs); 1677 1678 dmu_objset_space(zfsvfs->z_os, 1679 &refdbytes, &availbytes, &usedobjs, &availobjs); 1680 1681 /* 1682 * The underlying storage pool actually uses multiple block sizes. 1683 * We report the fragsize as the smallest block size we support, 1684 * and we report our blocksize as the filesystem's maximum blocksize. 1685 */ 1686 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1687 statp->f_bsize = zfsvfs->z_max_blksz; 1688 1689 /* 1690 * The following report "total" blocks of various kinds in the 1691 * file system, but reported in terms of f_frsize - the 1692 * "fragment" size. 1693 */ 1694 1695 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1696 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1697 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1698 1699 /* 1700 * statvfs() should really be called statufs(), because it assumes 1701 * static metadata. ZFS doesn't preallocate files, so the best 1702 * we can do is report the max that could possibly fit in f_files, 1703 * and that minus the number actually used in f_ffree. 1704 * For f_ffree, report the smaller of the number of object available 1705 * and the number of blocks (each object will take at least a block). 1706 */ 1707 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1708 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1709 statp->f_files = statp->f_ffree + usedobjs; 1710 1711 (void) cmpldev(&d32, vfsp->vfs_dev); 1712 statp->f_fsid = d32; 1713 1714 /* 1715 * We're a zfs filesystem. 1716 */ 1717 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1718 1719 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1720 1721 statp->f_namemax = ZFS_MAXNAMELEN; 1722 1723 /* 1724 * We have all of 32 characters to stuff a string here. 1725 * Is there anything useful we could/should provide? 1726 */ 1727 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1728 1729 ZFS_EXIT(zfsvfs); 1730 return (0); 1731 } 1732 1733 static int 1734 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1735 { 1736 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1737 znode_t *rootzp; 1738 int error; 1739 1740 ZFS_ENTER(zfsvfs); 1741 1742 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1743 if (error == 0) 1744 *vpp = ZTOV(rootzp); 1745 1746 ZFS_EXIT(zfsvfs); 1747 return (error); 1748 } 1749 1750 /* 1751 * Teardown the zfsvfs::z_os. 1752 * 1753 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1754 * and 'z_teardown_inactive_lock' held. 1755 */ 1756 static int 1757 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1758 { 1759 znode_t *zp; 1760 1761 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1762 1763 if (!unmounting) { 1764 /* 1765 * We purge the parent filesystem's vfsp as the parent 1766 * filesystem and all of its snapshots have their vnode's 1767 * v_vfsp set to the parent's filesystem's vfsp. Note, 1768 * 'z_parent' is self referential for non-snapshots. 1769 */ 1770 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1771 } 1772 1773 /* 1774 * Close the zil. NB: Can't close the zil while zfs_inactive 1775 * threads are blocked as zil_close can call zfs_inactive. 1776 */ 1777 if (zfsvfs->z_log) { 1778 zil_close(zfsvfs->z_log); 1779 zfsvfs->z_log = NULL; 1780 } 1781 1782 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1783 1784 /* 1785 * If we are not unmounting (ie: online recv) and someone already 1786 * unmounted this file system while we were doing the switcheroo, 1787 * or a reopen of z_os failed then just bail out now. 1788 */ 1789 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1790 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1791 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1792 return (EIO); 1793 } 1794 1795 /* 1796 * At this point there are no vops active, and any new vops will 1797 * fail with EIO since we have z_teardown_lock for writer (only 1798 * relavent for forced unmount). 1799 * 1800 * Release all holds on dbufs. 1801 */ 1802 mutex_enter(&zfsvfs->z_znodes_lock); 1803 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1804 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1805 if (zp->z_sa_hdl) { 1806 ASSERT(ZTOV(zp)->v_count > 0); 1807 zfs_znode_dmu_fini(zp); 1808 } 1809 mutex_exit(&zfsvfs->z_znodes_lock); 1810 1811 /* 1812 * If we are unmounting, set the unmounted flag and let new vops 1813 * unblock. zfs_inactive will have the unmounted behavior, and all 1814 * other vops will fail with EIO. 1815 */ 1816 if (unmounting) { 1817 zfsvfs->z_unmounted = B_TRUE; 1818 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1819 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1820 } 1821 1822 /* 1823 * z_os will be NULL if there was an error in attempting to reopen 1824 * zfsvfs, so just return as the properties had already been 1825 * unregistered and cached data had been evicted before. 1826 */ 1827 if (zfsvfs->z_os == NULL) 1828 return (0); 1829 1830 /* 1831 * Unregister properties. 1832 */ 1833 zfs_unregister_callbacks(zfsvfs); 1834 1835 /* 1836 * Evict cached data 1837 */ 1838 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1839 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1840 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1841 } 1842 1843 return (0); 1844 } 1845 1846 /*ARGSUSED*/ 1847 static int 1848 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1849 { 1850 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1851 objset_t *os; 1852 int ret; 1853 1854 ret = secpolicy_fs_unmount(cr, vfsp); 1855 if (ret) { 1856 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1857 ZFS_DELEG_PERM_MOUNT, cr)) 1858 return (ret); 1859 } 1860 1861 /* 1862 * We purge the parent filesystem's vfsp as the parent filesystem 1863 * and all of its snapshots have their vnode's v_vfsp set to the 1864 * parent's filesystem's vfsp. Note, 'z_parent' is self 1865 * referential for non-snapshots. 1866 */ 1867 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1868 1869 /* 1870 * Unmount any snapshots mounted under .zfs before unmounting the 1871 * dataset itself. 1872 */ 1873 if (zfsvfs->z_ctldir != NULL && 1874 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1875 return (ret); 1876 } 1877 1878 if (!(fflag & MS_FORCE)) { 1879 /* 1880 * Check the number of active vnodes in the file system. 1881 * Our count is maintained in the vfs structure, but the 1882 * number is off by 1 to indicate a hold on the vfs 1883 * structure itself. 1884 * 1885 * The '.zfs' directory maintains a reference of its 1886 * own, and any active references underneath are 1887 * reflected in the vnode count. 1888 */ 1889 if (zfsvfs->z_ctldir == NULL) { 1890 if (vfsp->vfs_count > 1) 1891 return (EBUSY); 1892 } else { 1893 if (vfsp->vfs_count > 2 || 1894 zfsvfs->z_ctldir->v_count > 1) 1895 return (EBUSY); 1896 } 1897 } 1898 1899 vfsp->vfs_flag |= VFS_UNMOUNTED; 1900 1901 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1902 os = zfsvfs->z_os; 1903 1904 /* 1905 * z_os will be NULL if there was an error in 1906 * attempting to reopen zfsvfs. 1907 */ 1908 if (os != NULL) { 1909 /* 1910 * Unset the objset user_ptr. 1911 */ 1912 mutex_enter(&os->os_user_ptr_lock); 1913 dmu_objset_set_user(os, NULL); 1914 mutex_exit(&os->os_user_ptr_lock); 1915 1916 /* 1917 * Finally release the objset 1918 */ 1919 dmu_objset_disown(os, zfsvfs); 1920 } 1921 1922 /* 1923 * We can now safely destroy the '.zfs' directory node. 1924 */ 1925 if (zfsvfs->z_ctldir != NULL) 1926 zfsctl_destroy(zfsvfs); 1927 1928 return (0); 1929 } 1930 1931 static int 1932 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1933 { 1934 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1935 znode_t *zp; 1936 uint64_t object = 0; 1937 uint64_t fid_gen = 0; 1938 uint64_t gen_mask; 1939 uint64_t zp_gen; 1940 int i, err; 1941 1942 *vpp = NULL; 1943 1944 ZFS_ENTER(zfsvfs); 1945 1946 if (fidp->fid_len == LONG_FID_LEN) { 1947 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1948 uint64_t objsetid = 0; 1949 uint64_t setgen = 0; 1950 1951 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1952 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1953 1954 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1955 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1956 1957 ZFS_EXIT(zfsvfs); 1958 1959 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1960 if (err) 1961 return (EINVAL); 1962 ZFS_ENTER(zfsvfs); 1963 } 1964 1965 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1966 zfid_short_t *zfid = (zfid_short_t *)fidp; 1967 1968 for (i = 0; i < sizeof (zfid->zf_object); i++) 1969 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1970 1971 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1972 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1973 } else { 1974 ZFS_EXIT(zfsvfs); 1975 return (EINVAL); 1976 } 1977 1978 /* A zero fid_gen means we are in the .zfs control directories */ 1979 if (fid_gen == 0 && 1980 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1981 *vpp = zfsvfs->z_ctldir; 1982 ASSERT(*vpp != NULL); 1983 if (object == ZFSCTL_INO_SNAPDIR) { 1984 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1985 0, NULL, NULL, NULL, NULL, NULL) == 0); 1986 } else { 1987 VN_HOLD(*vpp); 1988 } 1989 ZFS_EXIT(zfsvfs); 1990 return (0); 1991 } 1992 1993 gen_mask = -1ULL >> (64 - 8 * i); 1994 1995 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1996 if (err = zfs_zget(zfsvfs, object, &zp)) { 1997 ZFS_EXIT(zfsvfs); 1998 return (err); 1999 } 2000 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 2001 sizeof (uint64_t)); 2002 zp_gen = zp_gen & gen_mask; 2003 if (zp_gen == 0) 2004 zp_gen = 1; 2005 if (zp->z_unlinked || zp_gen != fid_gen) { 2006 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 2007 VN_RELE(ZTOV(zp)); 2008 ZFS_EXIT(zfsvfs); 2009 return (EINVAL); 2010 } 2011 2012 *vpp = ZTOV(zp); 2013 ZFS_EXIT(zfsvfs); 2014 return (0); 2015 } 2016 2017 /* 2018 * Block out VOPs and close zfsvfs_t::z_os 2019 * 2020 * Note, if successful, then we return with the 'z_teardown_lock' and 2021 * 'z_teardown_inactive_lock' write held. 2022 */ 2023 int 2024 zfs_suspend_fs(zfsvfs_t *zfsvfs) 2025 { 2026 int error; 2027 2028 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2029 return (error); 2030 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 2031 2032 return (0); 2033 } 2034 2035 /* 2036 * Reopen zfsvfs_t::z_os and release VOPs. 2037 */ 2038 int 2039 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 2040 { 2041 int err, err2; 2042 2043 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2044 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2045 2046 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs, 2047 &zfsvfs->z_os); 2048 if (err) { 2049 zfsvfs->z_os = NULL; 2050 } else { 2051 znode_t *zp; 2052 uint64_t sa_obj = 0; 2053 2054 err2 = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 2055 ZFS_SA_ATTRS, 8, 1, &sa_obj); 2056 2057 if ((err || err2) && zfsvfs->z_version >= ZPL_VERSION_SA) 2058 goto bail; 2059 2060 2061 zfsvfs->z_attr_table = sa_setup(zfsvfs->z_os, sa_obj, 2062 zfs_attr_table, ZPL_END); 2063 2064 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2065 2066 /* 2067 * Attempt to re-establish all the active znodes with 2068 * their dbufs. If a zfs_rezget() fails, then we'll let 2069 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2070 * when they try to use their znode. 2071 */ 2072 mutex_enter(&zfsvfs->z_znodes_lock); 2073 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2074 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2075 (void) zfs_rezget(zp); 2076 } 2077 mutex_exit(&zfsvfs->z_znodes_lock); 2078 2079 } 2080 2081 bail: 2082 /* release the VOPs */ 2083 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2084 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 2085 2086 if (err) { 2087 /* 2088 * Since we couldn't reopen zfsvfs::z_os, force 2089 * unmount this file system. 2090 */ 2091 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2092 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2093 } 2094 return (err); 2095 } 2096 2097 static void 2098 zfs_freevfs(vfs_t *vfsp) 2099 { 2100 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2101 2102 /* 2103 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2104 * from zfs_mount(). Release it here. 2105 */ 2106 if (zfsvfs->z_issnap) 2107 VFS_RELE(zfsvfs->z_parent->z_vfs); 2108 2109 zfsvfs_free(zfsvfs); 2110 2111 atomic_add_32(&zfs_active_fs_count, -1); 2112 } 2113 2114 /* 2115 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2116 * so we can't safely do any non-idempotent initialization here. 2117 * Leave that to zfs_init() and zfs_fini(), which are called 2118 * from the module's _init() and _fini() entry points. 2119 */ 2120 /*ARGSUSED*/ 2121 static int 2122 zfs_vfsinit(int fstype, char *name) 2123 { 2124 int error; 2125 2126 zfsfstype = fstype; 2127 2128 /* 2129 * Setup vfsops and vnodeops tables. 2130 */ 2131 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2132 if (error != 0) { 2133 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2134 } 2135 2136 error = zfs_create_op_tables(); 2137 if (error) { 2138 zfs_remove_op_tables(); 2139 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2140 (void) vfs_freevfsops_by_type(zfsfstype); 2141 return (error); 2142 } 2143 2144 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2145 2146 /* 2147 * Unique major number for all zfs mounts. 2148 * If we run out of 32-bit minors, we'll getudev() another major. 2149 */ 2150 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2151 zfs_minor = ZFS_MIN_MINOR; 2152 2153 return (0); 2154 } 2155 2156 void 2157 zfs_init(void) 2158 { 2159 /* 2160 * Initialize .zfs directory structures 2161 */ 2162 zfsctl_init(); 2163 2164 /* 2165 * Initialize znode cache, vnode ops, etc... 2166 */ 2167 zfs_znode_init(); 2168 2169 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2170 } 2171 2172 void 2173 zfs_fini(void) 2174 { 2175 zfsctl_fini(); 2176 zfs_znode_fini(); 2177 } 2178 2179 int 2180 zfs_busy(void) 2181 { 2182 return (zfs_active_fs_count != 0); 2183 } 2184 2185 int 2186 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2187 { 2188 int error; 2189 objset_t *os = zfsvfs->z_os; 2190 dmu_tx_t *tx; 2191 2192 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2193 return (EINVAL); 2194 2195 if (newvers < zfsvfs->z_version) 2196 return (EINVAL); 2197 2198 if (zfs_spa_version_map(newvers) > 2199 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2200 return (ENOTSUP); 2201 2202 tx = dmu_tx_create(os); 2203 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2204 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2205 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2206 ZFS_SA_ATTRS); 2207 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2208 } 2209 error = dmu_tx_assign(tx, TXG_WAIT); 2210 if (error) { 2211 dmu_tx_abort(tx); 2212 return (error); 2213 } 2214 2215 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2216 8, 1, &newvers, tx); 2217 2218 if (error) { 2219 dmu_tx_commit(tx); 2220 return (error); 2221 } 2222 2223 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2224 uint64_t sa_obj; 2225 2226 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2227 SPA_VERSION_SA); 2228 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2229 DMU_OT_NONE, 0, tx); 2230 2231 error = zap_add(os, MASTER_NODE_OBJ, 2232 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2233 ASSERT3U(error, ==, 0); 2234 2235 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2236 sa_register_update_callback(os, zfs_sa_upgrade); 2237 } 2238 2239 spa_history_internal_log(LOG_DS_UPGRADE, 2240 dmu_objset_spa(os), tx, CRED(), 2241 "oldver=%llu newver=%llu dataset = %llu", 2242 zfsvfs->z_version, newvers, dmu_objset_id(os)); 2243 2244 dmu_tx_commit(tx); 2245 2246 zfsvfs->z_version = newvers; 2247 2248 if (zfsvfs->z_version >= ZPL_VERSION_FUID) 2249 zfs_set_fuid_feature(zfsvfs); 2250 2251 return (0); 2252 } 2253 2254 /* 2255 * Read a property stored within the master node. 2256 */ 2257 int 2258 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2259 { 2260 const char *pname; 2261 int error = ENOENT; 2262 2263 /* 2264 * Look up the file system's value for the property. For the 2265 * version property, we look up a slightly different string. 2266 */ 2267 if (prop == ZFS_PROP_VERSION) 2268 pname = ZPL_VERSION_STR; 2269 else 2270 pname = zfs_prop_to_name(prop); 2271 2272 if (os != NULL) 2273 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2274 2275 if (error == ENOENT) { 2276 /* No value set, use the default value */ 2277 switch (prop) { 2278 case ZFS_PROP_VERSION: 2279 *value = ZPL_VERSION; 2280 break; 2281 case ZFS_PROP_NORMALIZE: 2282 case ZFS_PROP_UTF8ONLY: 2283 *value = 0; 2284 break; 2285 case ZFS_PROP_CASE: 2286 *value = ZFS_CASE_SENSITIVE; 2287 break; 2288 default: 2289 return (error); 2290 } 2291 error = 0; 2292 } 2293 return (error); 2294 } 2295 2296 static vfsdef_t vfw = { 2297 VFSDEF_VERSION, 2298 MNTTYPE_ZFS, 2299 zfs_vfsinit, 2300 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2301 VSW_XID, 2302 &zfs_mntopts 2303 }; 2304 2305 struct modlfs zfs_modlfs = { 2306 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2307 }; 2308