1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2010 Robert Milkowski */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/systm.h> 30 #include <sys/sysmacros.h> 31 #include <sys/kmem.h> 32 #include <sys/pathname.h> 33 #include <sys/vnode.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/mntent.h> 37 #include <sys/mount.h> 38 #include <sys/cmn_err.h> 39 #include "fs/fs_subr.h" 40 #include <sys/zfs_znode.h> 41 #include <sys/zfs_dir.h> 42 #include <sys/zil.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/dmu.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dsl_dataset.h> 47 #include <sys/dsl_deleg.h> 48 #include <sys/spa.h> 49 #include <sys/zap.h> 50 #include <sys/sa.h> 51 #include <sys/varargs.h> 52 #include <sys/policy.h> 53 #include <sys/atomic.h> 54 #include <sys/mkdev.h> 55 #include <sys/modctl.h> 56 #include <sys/refstr.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/zfs_ctldir.h> 59 #include <sys/zfs_fuid.h> 60 #include <sys/bootconf.h> 61 #include <sys/sunddi.h> 62 #include <sys/dnlc.h> 63 #include <sys/dmu_objset.h> 64 #include <sys/spa_boot.h> 65 #include <sys/sa.h> 66 #include "zfs_comutil.h" 67 68 int zfsfstype; 69 vfsops_t *zfs_vfsops = NULL; 70 static major_t zfs_major; 71 static minor_t zfs_minor; 72 static kmutex_t zfs_dev_mtx; 73 74 extern int sys_shutdown; 75 76 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 77 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 78 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 79 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 80 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 81 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 82 static void zfs_freevfs(vfs_t *vfsp); 83 84 static const fs_operation_def_t zfs_vfsops_template[] = { 85 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 86 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 87 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 88 VFSNAME_ROOT, { .vfs_root = zfs_root }, 89 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 90 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 91 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 92 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 93 NULL, NULL 94 }; 95 96 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 97 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 98 NULL, NULL 99 }; 100 101 /* 102 * We need to keep a count of active fs's. 103 * This is necessary to prevent our module 104 * from being unloaded after a umount -f 105 */ 106 static uint32_t zfs_active_fs_count = 0; 107 108 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 109 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 110 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 111 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 112 113 /* 114 * MO_DEFAULT is not used since the default value is determined 115 * by the equivalent property. 116 */ 117 static mntopt_t mntopts[] = { 118 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 119 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 120 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 121 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 122 }; 123 124 static mntopts_t zfs_mntopts = { 125 sizeof (mntopts) / sizeof (mntopt_t), 126 mntopts 127 }; 128 129 /*ARGSUSED*/ 130 int 131 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 132 { 133 /* 134 * Data integrity is job one. We don't want a compromised kernel 135 * writing to the storage pool, so we never sync during panic. 136 */ 137 if (panicstr) 138 return (0); 139 140 /* 141 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 142 * to sync metadata, which they would otherwise cache indefinitely. 143 * Semantically, the only requirement is that the sync be initiated. 144 * The DMU syncs out txgs frequently, so there's nothing to do. 145 */ 146 if (flag & SYNC_ATTR) 147 return (0); 148 149 if (vfsp != NULL) { 150 /* 151 * Sync a specific filesystem. 152 */ 153 zfsvfs_t *zfsvfs = vfsp->vfs_data; 154 dsl_pool_t *dp; 155 156 ZFS_ENTER(zfsvfs); 157 dp = dmu_objset_pool(zfsvfs->z_os); 158 159 /* 160 * If the system is shutting down, then skip any 161 * filesystems which may exist on a suspended pool. 162 */ 163 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 164 ZFS_EXIT(zfsvfs); 165 return (0); 166 } 167 168 if (zfsvfs->z_log != NULL) 169 zil_commit(zfsvfs->z_log, 0); 170 171 ZFS_EXIT(zfsvfs); 172 } else { 173 /* 174 * Sync all ZFS filesystems. This is what happens when you 175 * run sync(1M). Unlike other filesystems, ZFS honors the 176 * request by waiting for all pools to commit all dirty data. 177 */ 178 spa_sync_allpools(); 179 } 180 181 return (0); 182 } 183 184 static int 185 zfs_create_unique_device(dev_t *dev) 186 { 187 major_t new_major; 188 189 do { 190 ASSERT3U(zfs_minor, <=, MAXMIN32); 191 minor_t start = zfs_minor; 192 do { 193 mutex_enter(&zfs_dev_mtx); 194 if (zfs_minor >= MAXMIN32) { 195 /* 196 * If we're still using the real major 197 * keep out of /dev/zfs and /dev/zvol minor 198 * number space. If we're using a getudev()'ed 199 * major number, we can use all of its minors. 200 */ 201 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 202 zfs_minor = ZFS_MIN_MINOR; 203 else 204 zfs_minor = 0; 205 } else { 206 zfs_minor++; 207 } 208 *dev = makedevice(zfs_major, zfs_minor); 209 mutex_exit(&zfs_dev_mtx); 210 } while (vfs_devismounted(*dev) && zfs_minor != start); 211 if (zfs_minor == start) { 212 /* 213 * We are using all ~262,000 minor numbers for the 214 * current major number. Create a new major number. 215 */ 216 if ((new_major = getudev()) == (major_t)-1) { 217 cmn_err(CE_WARN, 218 "zfs_mount: Can't get unique major " 219 "device number."); 220 return (-1); 221 } 222 mutex_enter(&zfs_dev_mtx); 223 zfs_major = new_major; 224 zfs_minor = 0; 225 226 mutex_exit(&zfs_dev_mtx); 227 } else { 228 break; 229 } 230 /* CONSTANTCONDITION */ 231 } while (1); 232 233 return (0); 234 } 235 236 static void 237 atime_changed_cb(void *arg, uint64_t newval) 238 { 239 zfsvfs_t *zfsvfs = arg; 240 241 if (newval == TRUE) { 242 zfsvfs->z_atime = TRUE; 243 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 244 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 245 } else { 246 zfsvfs->z_atime = FALSE; 247 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 248 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 249 } 250 } 251 252 static void 253 xattr_changed_cb(void *arg, uint64_t newval) 254 { 255 zfsvfs_t *zfsvfs = arg; 256 257 if (newval == TRUE) { 258 /* XXX locking on vfs_flag? */ 259 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 260 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 261 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 262 } else { 263 /* XXX locking on vfs_flag? */ 264 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 265 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 266 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 267 } 268 } 269 270 static void 271 blksz_changed_cb(void *arg, uint64_t newval) 272 { 273 zfsvfs_t *zfsvfs = arg; 274 275 if (newval < SPA_MINBLOCKSIZE || 276 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 277 newval = SPA_MAXBLOCKSIZE; 278 279 zfsvfs->z_max_blksz = newval; 280 zfsvfs->z_vfs->vfs_bsize = newval; 281 } 282 283 static void 284 readonly_changed_cb(void *arg, uint64_t newval) 285 { 286 zfsvfs_t *zfsvfs = arg; 287 288 if (newval) { 289 /* XXX locking on vfs_flag? */ 290 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 291 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 292 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 293 } else { 294 /* XXX locking on vfs_flag? */ 295 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 296 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 297 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 298 } 299 } 300 301 static void 302 devices_changed_cb(void *arg, uint64_t newval) 303 { 304 zfsvfs_t *zfsvfs = arg; 305 306 if (newval == FALSE) { 307 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 308 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 309 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 310 } else { 311 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 312 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 313 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 314 } 315 } 316 317 static void 318 setuid_changed_cb(void *arg, uint64_t newval) 319 { 320 zfsvfs_t *zfsvfs = arg; 321 322 if (newval == FALSE) { 323 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 324 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 325 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 326 } else { 327 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 328 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 329 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 330 } 331 } 332 333 static void 334 exec_changed_cb(void *arg, uint64_t newval) 335 { 336 zfsvfs_t *zfsvfs = arg; 337 338 if (newval == FALSE) { 339 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 340 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 341 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 342 } else { 343 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 344 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 345 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 346 } 347 } 348 349 /* 350 * The nbmand mount option can be changed at mount time. 351 * We can't allow it to be toggled on live file systems or incorrect 352 * behavior may be seen from cifs clients 353 * 354 * This property isn't registered via dsl_prop_register(), but this callback 355 * will be called when a file system is first mounted 356 */ 357 static void 358 nbmand_changed_cb(void *arg, uint64_t newval) 359 { 360 zfsvfs_t *zfsvfs = arg; 361 if (newval == FALSE) { 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 364 } else { 365 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 366 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 367 } 368 } 369 370 static void 371 snapdir_changed_cb(void *arg, uint64_t newval) 372 { 373 zfsvfs_t *zfsvfs = arg; 374 375 zfsvfs->z_show_ctldir = newval; 376 } 377 378 static void 379 vscan_changed_cb(void *arg, uint64_t newval) 380 { 381 zfsvfs_t *zfsvfs = arg; 382 383 zfsvfs->z_vscan = newval; 384 } 385 386 static void 387 acl_mode_changed_cb(void *arg, uint64_t newval) 388 { 389 zfsvfs_t *zfsvfs = arg; 390 391 zfsvfs->z_acl_mode = newval; 392 } 393 394 static void 395 acl_inherit_changed_cb(void *arg, uint64_t newval) 396 { 397 zfsvfs_t *zfsvfs = arg; 398 399 zfsvfs->z_acl_inherit = newval; 400 } 401 402 static int 403 zfs_register_callbacks(vfs_t *vfsp) 404 { 405 struct dsl_dataset *ds = NULL; 406 objset_t *os = NULL; 407 zfsvfs_t *zfsvfs = NULL; 408 uint64_t nbmand; 409 int readonly, do_readonly = B_FALSE; 410 int setuid, do_setuid = B_FALSE; 411 int exec, do_exec = B_FALSE; 412 int devices, do_devices = B_FALSE; 413 int xattr, do_xattr = B_FALSE; 414 int atime, do_atime = B_FALSE; 415 int error = 0; 416 417 ASSERT(vfsp); 418 zfsvfs = vfsp->vfs_data; 419 ASSERT(zfsvfs); 420 os = zfsvfs->z_os; 421 422 /* 423 * The act of registering our callbacks will destroy any mount 424 * options we may have. In order to enable temporary overrides 425 * of mount options, we stash away the current values and 426 * restore them after we register the callbacks. 427 */ 428 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || 429 !spa_writeable(dmu_objset_spa(os))) { 430 readonly = B_TRUE; 431 do_readonly = B_TRUE; 432 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 433 readonly = B_FALSE; 434 do_readonly = B_TRUE; 435 } 436 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 437 devices = B_FALSE; 438 setuid = B_FALSE; 439 do_devices = B_TRUE; 440 do_setuid = B_TRUE; 441 } else { 442 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 443 devices = B_FALSE; 444 do_devices = B_TRUE; 445 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 446 devices = B_TRUE; 447 do_devices = B_TRUE; 448 } 449 450 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 451 setuid = B_FALSE; 452 do_setuid = B_TRUE; 453 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 454 setuid = B_TRUE; 455 do_setuid = B_TRUE; 456 } 457 } 458 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 459 exec = B_FALSE; 460 do_exec = B_TRUE; 461 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 462 exec = B_TRUE; 463 do_exec = B_TRUE; 464 } 465 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 466 xattr = B_FALSE; 467 do_xattr = B_TRUE; 468 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 469 xattr = B_TRUE; 470 do_xattr = B_TRUE; 471 } 472 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 473 atime = B_FALSE; 474 do_atime = B_TRUE; 475 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 476 atime = B_TRUE; 477 do_atime = B_TRUE; 478 } 479 480 /* 481 * nbmand is a special property. It can only be changed at 482 * mount time. 483 * 484 * This is weird, but it is documented to only be changeable 485 * at mount time. 486 */ 487 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 488 nbmand = B_FALSE; 489 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 490 nbmand = B_TRUE; 491 } else { 492 char osname[MAXNAMELEN]; 493 494 dmu_objset_name(os, osname); 495 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 496 NULL)) { 497 return (error); 498 } 499 } 500 501 /* 502 * Register property callbacks. 503 * 504 * It would probably be fine to just check for i/o error from 505 * the first prop_register(), but I guess I like to go 506 * overboard... 507 */ 508 ds = dmu_objset_ds(os); 509 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "xattr", xattr_changed_cb, zfsvfs); 512 error = error ? error : dsl_prop_register(ds, 513 "recordsize", blksz_changed_cb, zfsvfs); 514 error = error ? error : dsl_prop_register(ds, 515 "readonly", readonly_changed_cb, zfsvfs); 516 error = error ? error : dsl_prop_register(ds, 517 "devices", devices_changed_cb, zfsvfs); 518 error = error ? error : dsl_prop_register(ds, 519 "setuid", setuid_changed_cb, zfsvfs); 520 error = error ? error : dsl_prop_register(ds, 521 "exec", exec_changed_cb, zfsvfs); 522 error = error ? error : dsl_prop_register(ds, 523 "snapdir", snapdir_changed_cb, zfsvfs); 524 error = error ? error : dsl_prop_register(ds, 525 "aclmode", acl_mode_changed_cb, zfsvfs); 526 error = error ? error : dsl_prop_register(ds, 527 "aclinherit", acl_inherit_changed_cb, zfsvfs); 528 error = error ? error : dsl_prop_register(ds, 529 "vscan", vscan_changed_cb, zfsvfs); 530 if (error) 531 goto unregister; 532 533 /* 534 * Invoke our callbacks to restore temporary mount options. 535 */ 536 if (do_readonly) 537 readonly_changed_cb(zfsvfs, readonly); 538 if (do_setuid) 539 setuid_changed_cb(zfsvfs, setuid); 540 if (do_exec) 541 exec_changed_cb(zfsvfs, exec); 542 if (do_devices) 543 devices_changed_cb(zfsvfs, devices); 544 if (do_xattr) 545 xattr_changed_cb(zfsvfs, xattr); 546 if (do_atime) 547 atime_changed_cb(zfsvfs, atime); 548 549 nbmand_changed_cb(zfsvfs, nbmand); 550 551 return (0); 552 553 unregister: 554 /* 555 * We may attempt to unregister some callbacks that are not 556 * registered, but this is OK; it will simply return ENOMSG, 557 * which we will ignore. 558 */ 559 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 560 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 561 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 562 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 563 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 564 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 565 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 566 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 567 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 568 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 569 zfsvfs); 570 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 571 return (error); 572 573 } 574 575 static int 576 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 577 uint64_t *userp, uint64_t *groupp) 578 { 579 znode_phys_t *znp = data; 580 int error = 0; 581 582 /* 583 * Is it a valid type of object to track? 584 */ 585 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 586 return (ENOENT); 587 588 /* 589 * If we have a NULL data pointer 590 * then assume the id's aren't changing and 591 * return EEXIST to the dmu to let it know to 592 * use the same ids 593 */ 594 if (data == NULL) 595 return (EEXIST); 596 597 if (bonustype == DMU_OT_ZNODE) { 598 *userp = znp->zp_uid; 599 *groupp = znp->zp_gid; 600 } else { 601 int hdrsize; 602 603 ASSERT(bonustype == DMU_OT_SA); 604 hdrsize = sa_hdrsize(data); 605 606 if (hdrsize != 0) { 607 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 608 SA_UID_OFFSET)); 609 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 610 SA_GID_OFFSET)); 611 } else { 612 /* 613 * This should only happen for newly created 614 * files that haven't had the znode data filled 615 * in yet. 616 */ 617 *userp = 0; 618 *groupp = 0; 619 } 620 } 621 return (error); 622 } 623 624 static void 625 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 626 char *domainbuf, int buflen, uid_t *ridp) 627 { 628 uint64_t fuid; 629 const char *domain; 630 631 fuid = strtonum(fuidstr, NULL); 632 633 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 634 if (domain) 635 (void) strlcpy(domainbuf, domain, buflen); 636 else 637 domainbuf[0] = '\0'; 638 *ridp = FUID_RID(fuid); 639 } 640 641 static uint64_t 642 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 643 { 644 switch (type) { 645 case ZFS_PROP_USERUSED: 646 return (DMU_USERUSED_OBJECT); 647 case ZFS_PROP_GROUPUSED: 648 return (DMU_GROUPUSED_OBJECT); 649 case ZFS_PROP_USERQUOTA: 650 return (zfsvfs->z_userquota_obj); 651 case ZFS_PROP_GROUPQUOTA: 652 return (zfsvfs->z_groupquota_obj); 653 } 654 return (0); 655 } 656 657 int 658 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 659 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 660 { 661 int error; 662 zap_cursor_t zc; 663 zap_attribute_t za; 664 zfs_useracct_t *buf = vbuf; 665 uint64_t obj; 666 667 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 668 return (ENOTSUP); 669 670 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 671 if (obj == 0) { 672 *bufsizep = 0; 673 return (0); 674 } 675 676 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 677 (error = zap_cursor_retrieve(&zc, &za)) == 0; 678 zap_cursor_advance(&zc)) { 679 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 680 *bufsizep) 681 break; 682 683 fuidstr_to_sid(zfsvfs, za.za_name, 684 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 685 686 buf->zu_space = za.za_first_integer; 687 buf++; 688 } 689 if (error == ENOENT) 690 error = 0; 691 692 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 693 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 694 *cookiep = zap_cursor_serialize(&zc); 695 zap_cursor_fini(&zc); 696 return (error); 697 } 698 699 /* 700 * buf must be big enough (eg, 32 bytes) 701 */ 702 static int 703 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 704 char *buf, boolean_t addok) 705 { 706 uint64_t fuid; 707 int domainid = 0; 708 709 if (domain && domain[0]) { 710 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 711 if (domainid == -1) 712 return (ENOENT); 713 } 714 fuid = FUID_ENCODE(domainid, rid); 715 (void) sprintf(buf, "%llx", (longlong_t)fuid); 716 return (0); 717 } 718 719 int 720 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 721 const char *domain, uint64_t rid, uint64_t *valp) 722 { 723 char buf[32]; 724 int err; 725 uint64_t obj; 726 727 *valp = 0; 728 729 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 730 return (ENOTSUP); 731 732 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 733 if (obj == 0) 734 return (0); 735 736 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 737 if (err) 738 return (err); 739 740 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 741 if (err == ENOENT) 742 err = 0; 743 return (err); 744 } 745 746 int 747 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 748 const char *domain, uint64_t rid, uint64_t quota) 749 { 750 char buf[32]; 751 int err; 752 dmu_tx_t *tx; 753 uint64_t *objp; 754 boolean_t fuid_dirtied; 755 756 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 757 return (EINVAL); 758 759 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 760 return (ENOTSUP); 761 762 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 763 &zfsvfs->z_groupquota_obj; 764 765 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 766 if (err) 767 return (err); 768 fuid_dirtied = zfsvfs->z_fuid_dirty; 769 770 tx = dmu_tx_create(zfsvfs->z_os); 771 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 772 if (*objp == 0) { 773 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 774 zfs_userquota_prop_prefixes[type]); 775 } 776 if (fuid_dirtied) 777 zfs_fuid_txhold(zfsvfs, tx); 778 err = dmu_tx_assign(tx, TXG_WAIT); 779 if (err) { 780 dmu_tx_abort(tx); 781 return (err); 782 } 783 784 mutex_enter(&zfsvfs->z_lock); 785 if (*objp == 0) { 786 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 787 DMU_OT_NONE, 0, tx); 788 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 789 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 790 } 791 mutex_exit(&zfsvfs->z_lock); 792 793 if (quota == 0) { 794 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 795 if (err == ENOENT) 796 err = 0; 797 } else { 798 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 799 } 800 ASSERT(err == 0); 801 if (fuid_dirtied) 802 zfs_fuid_sync(zfsvfs, tx); 803 dmu_tx_commit(tx); 804 return (err); 805 } 806 807 boolean_t 808 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 809 { 810 char buf[32]; 811 uint64_t used, quota, usedobj, quotaobj; 812 int err; 813 814 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 815 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 816 817 if (quotaobj == 0 || zfsvfs->z_replay) 818 return (B_FALSE); 819 820 (void) sprintf(buf, "%llx", (longlong_t)fuid); 821 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 822 if (err != 0) 823 return (B_FALSE); 824 825 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 826 if (err != 0) 827 return (B_FALSE); 828 return (used >= quota); 829 } 830 831 boolean_t 832 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 833 { 834 uint64_t fuid; 835 uint64_t quotaobj; 836 837 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 838 839 fuid = isgroup ? zp->z_gid : zp->z_uid; 840 841 if (quotaobj == 0 || zfsvfs->z_replay) 842 return (B_FALSE); 843 844 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 845 } 846 847 int 848 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 849 { 850 objset_t *os; 851 zfsvfs_t *zfsvfs; 852 uint64_t zval; 853 int i, error; 854 uint64_t sa_obj; 855 856 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 857 858 /* 859 * We claim to always be readonly so we can open snapshots; 860 * other ZPL code will prevent us from writing to snapshots. 861 */ 862 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 863 if (error) { 864 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 865 return (error); 866 } 867 868 /* 869 * Initialize the zfs-specific filesystem structure. 870 * Should probably make this a kmem cache, shuffle fields, 871 * and just bzero up to z_hold_mtx[]. 872 */ 873 zfsvfs->z_vfs = NULL; 874 zfsvfs->z_parent = zfsvfs; 875 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 876 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 877 zfsvfs->z_os = os; 878 879 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 880 if (error) { 881 goto out; 882 } else if (zfsvfs->z_version > 883 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 884 (void) printf("Can't mount a version %lld file system " 885 "on a version %lld pool\n. Pool must be upgraded to mount " 886 "this file system.", (u_longlong_t)zfsvfs->z_version, 887 (u_longlong_t)spa_version(dmu_objset_spa(os))); 888 error = ENOTSUP; 889 goto out; 890 } 891 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 892 goto out; 893 zfsvfs->z_norm = (int)zval; 894 895 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 896 goto out; 897 zfsvfs->z_utf8 = (zval != 0); 898 899 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 900 goto out; 901 zfsvfs->z_case = (uint_t)zval; 902 903 /* 904 * Fold case on file systems that are always or sometimes case 905 * insensitive. 906 */ 907 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 908 zfsvfs->z_case == ZFS_CASE_MIXED) 909 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 910 911 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 912 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 913 914 if (zfsvfs->z_use_sa) { 915 /* should either have both of these objects or none */ 916 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 917 &sa_obj); 918 if (error) 919 return (error); 920 } else { 921 /* 922 * Pre SA versions file systems should never touch 923 * either the attribute registration or layout objects. 924 */ 925 sa_obj = 0; 926 } 927 928 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 929 &zfsvfs->z_attr_table); 930 if (error) 931 goto out; 932 933 if (zfsvfs->z_version >= ZPL_VERSION_SA) 934 sa_register_update_callback(os, zfs_sa_upgrade); 935 936 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 937 &zfsvfs->z_root); 938 if (error) 939 goto out; 940 ASSERT(zfsvfs->z_root != 0); 941 942 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 943 &zfsvfs->z_unlinkedobj); 944 if (error) 945 goto out; 946 947 error = zap_lookup(os, MASTER_NODE_OBJ, 948 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 949 8, 1, &zfsvfs->z_userquota_obj); 950 if (error && error != ENOENT) 951 goto out; 952 953 error = zap_lookup(os, MASTER_NODE_OBJ, 954 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 955 8, 1, &zfsvfs->z_groupquota_obj); 956 if (error && error != ENOENT) 957 goto out; 958 959 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 960 &zfsvfs->z_fuid_obj); 961 if (error && error != ENOENT) 962 goto out; 963 964 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 965 &zfsvfs->z_shares_dir); 966 if (error && error != ENOENT) 967 goto out; 968 969 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 970 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 971 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 972 offsetof(znode_t, z_link_node)); 973 rrw_init(&zfsvfs->z_teardown_lock); 974 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 975 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 976 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 977 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 978 979 *zfvp = zfsvfs; 980 return (0); 981 982 out: 983 dmu_objset_disown(os, zfsvfs); 984 *zfvp = NULL; 985 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 986 return (error); 987 } 988 989 static int 990 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 991 { 992 int error; 993 994 error = zfs_register_callbacks(zfsvfs->z_vfs); 995 if (error) 996 return (error); 997 998 /* 999 * Set the objset user_ptr to track its zfsvfs. 1000 */ 1001 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1002 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1003 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1004 1005 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1006 1007 /* 1008 * If we are not mounting (ie: online recv), then we don't 1009 * have to worry about replaying the log as we blocked all 1010 * operations out since we closed the ZIL. 1011 */ 1012 if (mounting) { 1013 boolean_t readonly; 1014 1015 /* 1016 * During replay we remove the read only flag to 1017 * allow replays to succeed. 1018 */ 1019 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1020 if (readonly != 0) 1021 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1022 else 1023 zfs_unlinked_drain(zfsvfs); 1024 1025 /* 1026 * Parse and replay the intent log. 1027 * 1028 * Because of ziltest, this must be done after 1029 * zfs_unlinked_drain(). (Further note: ziltest 1030 * doesn't use readonly mounts, where 1031 * zfs_unlinked_drain() isn't called.) This is because 1032 * ziltest causes spa_sync() to think it's committed, 1033 * but actually it is not, so the intent log contains 1034 * many txg's worth of changes. 1035 * 1036 * In particular, if object N is in the unlinked set in 1037 * the last txg to actually sync, then it could be 1038 * actually freed in a later txg and then reallocated 1039 * in a yet later txg. This would write a "create 1040 * object N" record to the intent log. Normally, this 1041 * would be fine because the spa_sync() would have 1042 * written out the fact that object N is free, before 1043 * we could write the "create object N" intent log 1044 * record. 1045 * 1046 * But when we are in ziltest mode, we advance the "open 1047 * txg" without actually spa_sync()-ing the changes to 1048 * disk. So we would see that object N is still 1049 * allocated and in the unlinked set, and there is an 1050 * intent log record saying to allocate it. 1051 */ 1052 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 1053 if (zil_replay_disable) { 1054 zil_destroy(zfsvfs->z_log, B_FALSE); 1055 } else { 1056 zfsvfs->z_replay = B_TRUE; 1057 zil_replay(zfsvfs->z_os, zfsvfs, 1058 zfs_replay_vector); 1059 zfsvfs->z_replay = B_FALSE; 1060 } 1061 } 1062 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1063 } 1064 1065 return (0); 1066 } 1067 1068 void 1069 zfsvfs_free(zfsvfs_t *zfsvfs) 1070 { 1071 int i; 1072 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1073 1074 /* 1075 * This is a barrier to prevent the filesystem from going away in 1076 * zfs_znode_move() until we can safely ensure that the filesystem is 1077 * not unmounted. We consider the filesystem valid before the barrier 1078 * and invalid after the barrier. 1079 */ 1080 rw_enter(&zfsvfs_lock, RW_READER); 1081 rw_exit(&zfsvfs_lock); 1082 1083 zfs_fuid_destroy(zfsvfs); 1084 1085 mutex_destroy(&zfsvfs->z_znodes_lock); 1086 mutex_destroy(&zfsvfs->z_lock); 1087 list_destroy(&zfsvfs->z_all_znodes); 1088 rrw_destroy(&zfsvfs->z_teardown_lock); 1089 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1090 rw_destroy(&zfsvfs->z_fuid_lock); 1091 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1092 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1093 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1094 } 1095 1096 static void 1097 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1098 { 1099 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1100 if (zfsvfs->z_vfs) { 1101 if (zfsvfs->z_use_fuids) { 1102 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1103 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1104 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1105 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1106 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1107 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1108 } else { 1109 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1110 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1111 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1112 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1113 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1114 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1115 } 1116 } 1117 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1118 } 1119 1120 static int 1121 zfs_domount(vfs_t *vfsp, char *osname) 1122 { 1123 dev_t mount_dev; 1124 uint64_t recordsize, fsid_guid; 1125 int error = 0; 1126 zfsvfs_t *zfsvfs; 1127 1128 ASSERT(vfsp); 1129 ASSERT(osname); 1130 1131 error = zfsvfs_create(osname, &zfsvfs); 1132 if (error) 1133 return (error); 1134 zfsvfs->z_vfs = vfsp; 1135 1136 /* Initialize the generic filesystem structure. */ 1137 vfsp->vfs_bcount = 0; 1138 vfsp->vfs_data = NULL; 1139 1140 if (zfs_create_unique_device(&mount_dev) == -1) { 1141 error = ENODEV; 1142 goto out; 1143 } 1144 ASSERT(vfs_devismounted(mount_dev) == 0); 1145 1146 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1147 NULL)) 1148 goto out; 1149 1150 vfsp->vfs_dev = mount_dev; 1151 vfsp->vfs_fstype = zfsfstype; 1152 vfsp->vfs_bsize = recordsize; 1153 vfsp->vfs_flag |= VFS_NOTRUNC; 1154 vfsp->vfs_data = zfsvfs; 1155 1156 /* 1157 * The fsid is 64 bits, composed of an 8-bit fs type, which 1158 * separates our fsid from any other filesystem types, and a 1159 * 56-bit objset unique ID. The objset unique ID is unique to 1160 * all objsets open on this system, provided by unique_create(). 1161 * The 8-bit fs type must be put in the low bits of fsid[1] 1162 * because that's where other Solaris filesystems put it. 1163 */ 1164 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1165 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1166 vfsp->vfs_fsid.val[0] = fsid_guid; 1167 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1168 zfsfstype & 0xFF; 1169 1170 /* 1171 * Set features for file system. 1172 */ 1173 zfs_set_fuid_feature(zfsvfs); 1174 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1175 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1176 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1177 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1178 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1179 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1180 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1181 } 1182 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1183 1184 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1185 uint64_t pval; 1186 1187 atime_changed_cb(zfsvfs, B_FALSE); 1188 readonly_changed_cb(zfsvfs, B_TRUE); 1189 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1190 goto out; 1191 xattr_changed_cb(zfsvfs, pval); 1192 zfsvfs->z_issnap = B_TRUE; 1193 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1194 1195 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1196 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1197 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1198 } else { 1199 error = zfsvfs_setup(zfsvfs, B_TRUE); 1200 } 1201 1202 if (!zfsvfs->z_issnap) 1203 zfsctl_create(zfsvfs); 1204 out: 1205 if (error) { 1206 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1207 zfsvfs_free(zfsvfs); 1208 } else { 1209 atomic_add_32(&zfs_active_fs_count, 1); 1210 } 1211 1212 return (error); 1213 } 1214 1215 void 1216 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1217 { 1218 objset_t *os = zfsvfs->z_os; 1219 struct dsl_dataset *ds; 1220 1221 /* 1222 * Unregister properties. 1223 */ 1224 if (!dmu_objset_is_snapshot(os)) { 1225 ds = dmu_objset_ds(os); 1226 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1227 zfsvfs) == 0); 1228 1229 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1230 zfsvfs) == 0); 1231 1232 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1233 zfsvfs) == 0); 1234 1235 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1236 zfsvfs) == 0); 1237 1238 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1239 zfsvfs) == 0); 1240 1241 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1242 zfsvfs) == 0); 1243 1244 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1245 zfsvfs) == 0); 1246 1247 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1248 zfsvfs) == 0); 1249 1250 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 1251 zfsvfs) == 0); 1252 1253 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1254 acl_inherit_changed_cb, zfsvfs) == 0); 1255 1256 VERIFY(dsl_prop_unregister(ds, "vscan", 1257 vscan_changed_cb, zfsvfs) == 0); 1258 } 1259 } 1260 1261 /* 1262 * Convert a decimal digit string to a uint64_t integer. 1263 */ 1264 static int 1265 str_to_uint64(char *str, uint64_t *objnum) 1266 { 1267 uint64_t num = 0; 1268 1269 while (*str) { 1270 if (*str < '0' || *str > '9') 1271 return (EINVAL); 1272 1273 num = num*10 + *str++ - '0'; 1274 } 1275 1276 *objnum = num; 1277 return (0); 1278 } 1279 1280 /* 1281 * The boot path passed from the boot loader is in the form of 1282 * "rootpool-name/root-filesystem-object-number'. Convert this 1283 * string to a dataset name: "rootpool-name/root-filesystem-name". 1284 */ 1285 static int 1286 zfs_parse_bootfs(char *bpath, char *outpath) 1287 { 1288 char *slashp; 1289 uint64_t objnum; 1290 int error; 1291 1292 if (*bpath == 0 || *bpath == '/') 1293 return (EINVAL); 1294 1295 (void) strcpy(outpath, bpath); 1296 1297 slashp = strchr(bpath, '/'); 1298 1299 /* if no '/', just return the pool name */ 1300 if (slashp == NULL) { 1301 return (0); 1302 } 1303 1304 /* if not a number, just return the root dataset name */ 1305 if (str_to_uint64(slashp+1, &objnum)) { 1306 return (0); 1307 } 1308 1309 *slashp = '\0'; 1310 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1311 *slashp = '/'; 1312 1313 return (error); 1314 } 1315 1316 /* 1317 * zfs_check_global_label: 1318 * Check that the hex label string is appropriate for the dataset 1319 * being mounted into the global_zone proper. 1320 * 1321 * Return an error if the hex label string is not default or 1322 * admin_low/admin_high. For admin_low labels, the corresponding 1323 * dataset must be readonly. 1324 */ 1325 int 1326 zfs_check_global_label(const char *dsname, const char *hexsl) 1327 { 1328 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1329 return (0); 1330 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1331 return (0); 1332 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1333 /* must be readonly */ 1334 uint64_t rdonly; 1335 1336 if (dsl_prop_get_integer(dsname, 1337 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1338 return (EACCES); 1339 return (rdonly ? 0 : EACCES); 1340 } 1341 return (EACCES); 1342 } 1343 1344 /* 1345 * zfs_mount_label_policy: 1346 * Determine whether the mount is allowed according to MAC check. 1347 * by comparing (where appropriate) label of the dataset against 1348 * the label of the zone being mounted into. If the dataset has 1349 * no label, create one. 1350 * 1351 * Returns: 1352 * 0 : access allowed 1353 * >0 : error code, such as EACCES 1354 */ 1355 static int 1356 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1357 { 1358 int error, retv; 1359 zone_t *mntzone = NULL; 1360 ts_label_t *mnt_tsl; 1361 bslabel_t *mnt_sl; 1362 bslabel_t ds_sl; 1363 char ds_hexsl[MAXNAMELEN]; 1364 1365 retv = EACCES; /* assume the worst */ 1366 1367 /* 1368 * Start by getting the dataset label if it exists. 1369 */ 1370 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1371 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1372 if (error) 1373 return (EACCES); 1374 1375 /* 1376 * If labeling is NOT enabled, then disallow the mount of datasets 1377 * which have a non-default label already. No other label checks 1378 * are needed. 1379 */ 1380 if (!is_system_labeled()) { 1381 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1382 return (0); 1383 return (EACCES); 1384 } 1385 1386 /* 1387 * Get the label of the mountpoint. If mounting into the global 1388 * zone (i.e. mountpoint is not within an active zone and the 1389 * zoned property is off), the label must be default or 1390 * admin_low/admin_high only; no other checks are needed. 1391 */ 1392 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1393 if (mntzone->zone_id == GLOBAL_ZONEID) { 1394 uint64_t zoned; 1395 1396 zone_rele(mntzone); 1397 1398 if (dsl_prop_get_integer(osname, 1399 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1400 return (EACCES); 1401 if (!zoned) 1402 return (zfs_check_global_label(osname, ds_hexsl)); 1403 else 1404 /* 1405 * This is the case of a zone dataset being mounted 1406 * initially, before the zone has been fully created; 1407 * allow this mount into global zone. 1408 */ 1409 return (0); 1410 } 1411 1412 mnt_tsl = mntzone->zone_slabel; 1413 ASSERT(mnt_tsl != NULL); 1414 label_hold(mnt_tsl); 1415 mnt_sl = label2bslabel(mnt_tsl); 1416 1417 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1418 /* 1419 * The dataset doesn't have a real label, so fabricate one. 1420 */ 1421 char *str = NULL; 1422 1423 if (l_to_str_internal(mnt_sl, &str) == 0 && 1424 dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1425 ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0) 1426 retv = 0; 1427 if (str != NULL) 1428 kmem_free(str, strlen(str) + 1); 1429 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1430 /* 1431 * Now compare labels to complete the MAC check. If the 1432 * labels are equal then allow access. If the mountpoint 1433 * label dominates the dataset label, allow readonly access. 1434 * Otherwise, access is denied. 1435 */ 1436 if (blequal(mnt_sl, &ds_sl)) 1437 retv = 0; 1438 else if (bldominates(mnt_sl, &ds_sl)) { 1439 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1440 retv = 0; 1441 } 1442 } 1443 1444 label_rele(mnt_tsl); 1445 zone_rele(mntzone); 1446 return (retv); 1447 } 1448 1449 static int 1450 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1451 { 1452 int error = 0; 1453 static int zfsrootdone = 0; 1454 zfsvfs_t *zfsvfs = NULL; 1455 znode_t *zp = NULL; 1456 vnode_t *vp = NULL; 1457 char *zfs_bootfs; 1458 char *zfs_devid; 1459 1460 ASSERT(vfsp); 1461 1462 /* 1463 * The filesystem that we mount as root is defined in the 1464 * boot property "zfs-bootfs" with a format of 1465 * "poolname/root-dataset-objnum". 1466 */ 1467 if (why == ROOT_INIT) { 1468 if (zfsrootdone++) 1469 return (EBUSY); 1470 /* 1471 * the process of doing a spa_load will require the 1472 * clock to be set before we could (for example) do 1473 * something better by looking at the timestamp on 1474 * an uberblock, so just set it to -1. 1475 */ 1476 clkset(-1); 1477 1478 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1479 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1480 "bootfs name"); 1481 return (EINVAL); 1482 } 1483 zfs_devid = spa_get_bootprop("diskdevid"); 1484 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1485 if (zfs_devid) 1486 spa_free_bootprop(zfs_devid); 1487 if (error) { 1488 spa_free_bootprop(zfs_bootfs); 1489 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1490 error); 1491 return (error); 1492 } 1493 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1494 spa_free_bootprop(zfs_bootfs); 1495 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1496 error); 1497 return (error); 1498 } 1499 1500 spa_free_bootprop(zfs_bootfs); 1501 1502 if (error = vfs_lock(vfsp)) 1503 return (error); 1504 1505 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1506 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1507 goto out; 1508 } 1509 1510 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1511 ASSERT(zfsvfs); 1512 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1513 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1514 goto out; 1515 } 1516 1517 vp = ZTOV(zp); 1518 mutex_enter(&vp->v_lock); 1519 vp->v_flag |= VROOT; 1520 mutex_exit(&vp->v_lock); 1521 rootvp = vp; 1522 1523 /* 1524 * Leave rootvp held. The root file system is never unmounted. 1525 */ 1526 1527 vfs_add((struct vnode *)0, vfsp, 1528 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1529 out: 1530 vfs_unlock(vfsp); 1531 return (error); 1532 } else if (why == ROOT_REMOUNT) { 1533 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1534 vfsp->vfs_flag |= VFS_REMOUNT; 1535 1536 /* refresh mount options */ 1537 zfs_unregister_callbacks(vfsp->vfs_data); 1538 return (zfs_register_callbacks(vfsp)); 1539 1540 } else if (why == ROOT_UNMOUNT) { 1541 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1542 (void) zfs_sync(vfsp, 0, 0); 1543 return (0); 1544 } 1545 1546 /* 1547 * if "why" is equal to anything else other than ROOT_INIT, 1548 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1549 */ 1550 return (ENOTSUP); 1551 } 1552 1553 /*ARGSUSED*/ 1554 static int 1555 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1556 { 1557 char *osname; 1558 pathname_t spn; 1559 int error = 0; 1560 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1561 UIO_SYSSPACE : UIO_USERSPACE; 1562 int canwrite; 1563 1564 if (mvp->v_type != VDIR) 1565 return (ENOTDIR); 1566 1567 mutex_enter(&mvp->v_lock); 1568 if ((uap->flags & MS_REMOUNT) == 0 && 1569 (uap->flags & MS_OVERLAY) == 0 && 1570 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1571 mutex_exit(&mvp->v_lock); 1572 return (EBUSY); 1573 } 1574 mutex_exit(&mvp->v_lock); 1575 1576 /* 1577 * ZFS does not support passing unparsed data in via MS_DATA. 1578 * Users should use the MS_OPTIONSTR interface; this means 1579 * that all option parsing is already done and the options struct 1580 * can be interrogated. 1581 */ 1582 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1583 return (EINVAL); 1584 1585 /* 1586 * Get the objset name (the "special" mount argument). 1587 */ 1588 if (error = pn_get(uap->spec, fromspace, &spn)) 1589 return (error); 1590 1591 osname = spn.pn_path; 1592 1593 /* 1594 * Check for mount privilege? 1595 * 1596 * If we don't have privilege then see if 1597 * we have local permission to allow it 1598 */ 1599 error = secpolicy_fs_mount(cr, mvp, vfsp); 1600 if (error) { 1601 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1602 vattr_t vattr; 1603 1604 /* 1605 * Make sure user is the owner of the mount point 1606 * or has sufficient privileges. 1607 */ 1608 1609 vattr.va_mask = AT_UID; 1610 1611 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1612 goto out; 1613 } 1614 1615 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1616 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1617 goto out; 1618 } 1619 secpolicy_fs_mount_clearopts(cr, vfsp); 1620 } else { 1621 goto out; 1622 } 1623 } 1624 1625 /* 1626 * Refuse to mount a filesystem if we are in a local zone and the 1627 * dataset is not visible. 1628 */ 1629 if (!INGLOBALZONE(curproc) && 1630 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1631 error = EPERM; 1632 goto out; 1633 } 1634 1635 error = zfs_mount_label_policy(vfsp, osname); 1636 if (error) 1637 goto out; 1638 1639 /* 1640 * When doing a remount, we simply refresh our temporary properties 1641 * according to those options set in the current VFS options. 1642 */ 1643 if (uap->flags & MS_REMOUNT) { 1644 /* refresh mount options */ 1645 zfs_unregister_callbacks(vfsp->vfs_data); 1646 error = zfs_register_callbacks(vfsp); 1647 goto out; 1648 } 1649 1650 error = zfs_domount(vfsp, osname); 1651 1652 /* 1653 * Add an extra VFS_HOLD on our parent vfs so that it can't 1654 * disappear due to a forced unmount. 1655 */ 1656 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1657 VFS_HOLD(mvp->v_vfsp); 1658 1659 out: 1660 pn_free(&spn); 1661 return (error); 1662 } 1663 1664 static int 1665 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1666 { 1667 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1668 dev32_t d32; 1669 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1670 1671 ZFS_ENTER(zfsvfs); 1672 1673 dmu_objset_space(zfsvfs->z_os, 1674 &refdbytes, &availbytes, &usedobjs, &availobjs); 1675 1676 /* 1677 * The underlying storage pool actually uses multiple block sizes. 1678 * We report the fragsize as the smallest block size we support, 1679 * and we report our blocksize as the filesystem's maximum blocksize. 1680 */ 1681 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1682 statp->f_bsize = zfsvfs->z_max_blksz; 1683 1684 /* 1685 * The following report "total" blocks of various kinds in the 1686 * file system, but reported in terms of f_frsize - the 1687 * "fragment" size. 1688 */ 1689 1690 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1691 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1692 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1693 1694 /* 1695 * statvfs() should really be called statufs(), because it assumes 1696 * static metadata. ZFS doesn't preallocate files, so the best 1697 * we can do is report the max that could possibly fit in f_files, 1698 * and that minus the number actually used in f_ffree. 1699 * For f_ffree, report the smaller of the number of object available 1700 * and the number of blocks (each object will take at least a block). 1701 */ 1702 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1703 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1704 statp->f_files = statp->f_ffree + usedobjs; 1705 1706 (void) cmpldev(&d32, vfsp->vfs_dev); 1707 statp->f_fsid = d32; 1708 1709 /* 1710 * We're a zfs filesystem. 1711 */ 1712 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1713 1714 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1715 1716 statp->f_namemax = ZFS_MAXNAMELEN; 1717 1718 /* 1719 * We have all of 32 characters to stuff a string here. 1720 * Is there anything useful we could/should provide? 1721 */ 1722 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1723 1724 ZFS_EXIT(zfsvfs); 1725 return (0); 1726 } 1727 1728 static int 1729 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1730 { 1731 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1732 znode_t *rootzp; 1733 int error; 1734 1735 ZFS_ENTER(zfsvfs); 1736 1737 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1738 if (error == 0) 1739 *vpp = ZTOV(rootzp); 1740 1741 ZFS_EXIT(zfsvfs); 1742 return (error); 1743 } 1744 1745 /* 1746 * Teardown the zfsvfs::z_os. 1747 * 1748 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1749 * and 'z_teardown_inactive_lock' held. 1750 */ 1751 static int 1752 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1753 { 1754 znode_t *zp; 1755 1756 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1757 1758 if (!unmounting) { 1759 /* 1760 * We purge the parent filesystem's vfsp as the parent 1761 * filesystem and all of its snapshots have their vnode's 1762 * v_vfsp set to the parent's filesystem's vfsp. Note, 1763 * 'z_parent' is self referential for non-snapshots. 1764 */ 1765 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1766 } 1767 1768 /* 1769 * Close the zil. NB: Can't close the zil while zfs_inactive 1770 * threads are blocked as zil_close can call zfs_inactive. 1771 */ 1772 if (zfsvfs->z_log) { 1773 zil_close(zfsvfs->z_log); 1774 zfsvfs->z_log = NULL; 1775 } 1776 1777 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1778 1779 /* 1780 * If we are not unmounting (ie: online recv) and someone already 1781 * unmounted this file system while we were doing the switcheroo, 1782 * or a reopen of z_os failed then just bail out now. 1783 */ 1784 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1785 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1786 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1787 return (EIO); 1788 } 1789 1790 /* 1791 * At this point there are no vops active, and any new vops will 1792 * fail with EIO since we have z_teardown_lock for writer (only 1793 * relavent for forced unmount). 1794 * 1795 * Release all holds on dbufs. 1796 */ 1797 mutex_enter(&zfsvfs->z_znodes_lock); 1798 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1799 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1800 if (zp->z_sa_hdl) { 1801 ASSERT(ZTOV(zp)->v_count > 0); 1802 zfs_znode_dmu_fini(zp); 1803 } 1804 mutex_exit(&zfsvfs->z_znodes_lock); 1805 1806 /* 1807 * If we are unmounting, set the unmounted flag and let new vops 1808 * unblock. zfs_inactive will have the unmounted behavior, and all 1809 * other vops will fail with EIO. 1810 */ 1811 if (unmounting) { 1812 zfsvfs->z_unmounted = B_TRUE; 1813 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1814 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1815 } 1816 1817 /* 1818 * z_os will be NULL if there was an error in attempting to reopen 1819 * zfsvfs, so just return as the properties had already been 1820 * unregistered and cached data had been evicted before. 1821 */ 1822 if (zfsvfs->z_os == NULL) 1823 return (0); 1824 1825 /* 1826 * Unregister properties. 1827 */ 1828 zfs_unregister_callbacks(zfsvfs); 1829 1830 /* 1831 * Evict cached data 1832 */ 1833 if (dmu_objset_is_dirty_anywhere(zfsvfs->z_os)) 1834 if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) 1835 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1836 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1837 1838 return (0); 1839 } 1840 1841 /*ARGSUSED*/ 1842 static int 1843 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1844 { 1845 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1846 objset_t *os; 1847 int ret; 1848 1849 ret = secpolicy_fs_unmount(cr, vfsp); 1850 if (ret) { 1851 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1852 ZFS_DELEG_PERM_MOUNT, cr)) 1853 return (ret); 1854 } 1855 1856 /* 1857 * We purge the parent filesystem's vfsp as the parent filesystem 1858 * and all of its snapshots have their vnode's v_vfsp set to the 1859 * parent's filesystem's vfsp. Note, 'z_parent' is self 1860 * referential for non-snapshots. 1861 */ 1862 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1863 1864 /* 1865 * Unmount any snapshots mounted under .zfs before unmounting the 1866 * dataset itself. 1867 */ 1868 if (zfsvfs->z_ctldir != NULL && 1869 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1870 return (ret); 1871 } 1872 1873 if (!(fflag & MS_FORCE)) { 1874 /* 1875 * Check the number of active vnodes in the file system. 1876 * Our count is maintained in the vfs structure, but the 1877 * number is off by 1 to indicate a hold on the vfs 1878 * structure itself. 1879 * 1880 * The '.zfs' directory maintains a reference of its 1881 * own, and any active references underneath are 1882 * reflected in the vnode count. 1883 */ 1884 if (zfsvfs->z_ctldir == NULL) { 1885 if (vfsp->vfs_count > 1) 1886 return (EBUSY); 1887 } else { 1888 if (vfsp->vfs_count > 2 || 1889 zfsvfs->z_ctldir->v_count > 1) 1890 return (EBUSY); 1891 } 1892 } 1893 1894 vfsp->vfs_flag |= VFS_UNMOUNTED; 1895 1896 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1897 os = zfsvfs->z_os; 1898 1899 /* 1900 * z_os will be NULL if there was an error in 1901 * attempting to reopen zfsvfs. 1902 */ 1903 if (os != NULL) { 1904 /* 1905 * Unset the objset user_ptr. 1906 */ 1907 mutex_enter(&os->os_user_ptr_lock); 1908 dmu_objset_set_user(os, NULL); 1909 mutex_exit(&os->os_user_ptr_lock); 1910 1911 /* 1912 * Finally release the objset 1913 */ 1914 dmu_objset_disown(os, zfsvfs); 1915 } 1916 1917 /* 1918 * We can now safely destroy the '.zfs' directory node. 1919 */ 1920 if (zfsvfs->z_ctldir != NULL) 1921 zfsctl_destroy(zfsvfs); 1922 1923 return (0); 1924 } 1925 1926 static int 1927 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1928 { 1929 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1930 znode_t *zp; 1931 uint64_t object = 0; 1932 uint64_t fid_gen = 0; 1933 uint64_t gen_mask; 1934 uint64_t zp_gen; 1935 int i, err; 1936 1937 *vpp = NULL; 1938 1939 ZFS_ENTER(zfsvfs); 1940 1941 if (fidp->fid_len == LONG_FID_LEN) { 1942 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1943 uint64_t objsetid = 0; 1944 uint64_t setgen = 0; 1945 1946 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1947 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1948 1949 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1950 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1951 1952 ZFS_EXIT(zfsvfs); 1953 1954 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1955 if (err) 1956 return (EINVAL); 1957 ZFS_ENTER(zfsvfs); 1958 } 1959 1960 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1961 zfid_short_t *zfid = (zfid_short_t *)fidp; 1962 1963 for (i = 0; i < sizeof (zfid->zf_object); i++) 1964 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1965 1966 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1967 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1968 } else { 1969 ZFS_EXIT(zfsvfs); 1970 return (EINVAL); 1971 } 1972 1973 /* A zero fid_gen means we are in the .zfs control directories */ 1974 if (fid_gen == 0 && 1975 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1976 *vpp = zfsvfs->z_ctldir; 1977 ASSERT(*vpp != NULL); 1978 if (object == ZFSCTL_INO_SNAPDIR) { 1979 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1980 0, NULL, NULL, NULL, NULL, NULL) == 0); 1981 } else { 1982 VN_HOLD(*vpp); 1983 } 1984 ZFS_EXIT(zfsvfs); 1985 return (0); 1986 } 1987 1988 gen_mask = -1ULL >> (64 - 8 * i); 1989 1990 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1991 if (err = zfs_zget(zfsvfs, object, &zp)) { 1992 ZFS_EXIT(zfsvfs); 1993 return (err); 1994 } 1995 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1996 sizeof (uint64_t)); 1997 zp_gen = zp_gen & gen_mask; 1998 if (zp_gen == 0) 1999 zp_gen = 1; 2000 if (zp->z_unlinked || zp_gen != fid_gen) { 2001 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 2002 VN_RELE(ZTOV(zp)); 2003 ZFS_EXIT(zfsvfs); 2004 return (EINVAL); 2005 } 2006 2007 *vpp = ZTOV(zp); 2008 ZFS_EXIT(zfsvfs); 2009 return (0); 2010 } 2011 2012 /* 2013 * Block out VOPs and close zfsvfs_t::z_os 2014 * 2015 * Note, if successful, then we return with the 'z_teardown_lock' and 2016 * 'z_teardown_inactive_lock' write held. 2017 */ 2018 int 2019 zfs_suspend_fs(zfsvfs_t *zfsvfs) 2020 { 2021 int error; 2022 2023 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2024 return (error); 2025 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 2026 2027 return (0); 2028 } 2029 2030 /* 2031 * Reopen zfsvfs_t::z_os and release VOPs. 2032 */ 2033 int 2034 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 2035 { 2036 int err; 2037 2038 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2039 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2040 2041 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs, 2042 &zfsvfs->z_os); 2043 if (err) { 2044 zfsvfs->z_os = NULL; 2045 } else { 2046 znode_t *zp; 2047 uint64_t sa_obj = 0; 2048 2049 /* 2050 * Make sure version hasn't changed 2051 */ 2052 2053 err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION, 2054 &zfsvfs->z_version); 2055 2056 if (err) 2057 goto bail; 2058 2059 err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 2060 ZFS_SA_ATTRS, 8, 1, &sa_obj); 2061 2062 if (err && zfsvfs->z_version >= ZPL_VERSION_SA) 2063 goto bail; 2064 2065 if ((err = sa_setup(zfsvfs->z_os, sa_obj, 2066 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0) 2067 goto bail; 2068 2069 if (zfsvfs->z_version >= ZPL_VERSION_SA) 2070 sa_register_update_callback(zfsvfs->z_os, 2071 zfs_sa_upgrade); 2072 2073 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2074 2075 zfs_set_fuid_feature(zfsvfs); 2076 2077 /* 2078 * Attempt to re-establish all the active znodes with 2079 * their dbufs. If a zfs_rezget() fails, then we'll let 2080 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2081 * when they try to use their znode. 2082 */ 2083 mutex_enter(&zfsvfs->z_znodes_lock); 2084 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2085 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2086 (void) zfs_rezget(zp); 2087 } 2088 mutex_exit(&zfsvfs->z_znodes_lock); 2089 } 2090 2091 bail: 2092 /* release the VOPs */ 2093 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2094 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 2095 2096 if (err) { 2097 /* 2098 * Since we couldn't reopen zfsvfs::z_os, or 2099 * setup the sa framework force unmount this file system. 2100 */ 2101 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2102 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2103 } 2104 return (err); 2105 } 2106 2107 static void 2108 zfs_freevfs(vfs_t *vfsp) 2109 { 2110 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2111 2112 /* 2113 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2114 * from zfs_mount(). Release it here. If we came through 2115 * zfs_mountroot() instead, we didn't grab an extra hold, so 2116 * skip the VFS_RELE for rootvfs. 2117 */ 2118 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2119 VFS_RELE(zfsvfs->z_parent->z_vfs); 2120 2121 zfsvfs_free(zfsvfs); 2122 2123 atomic_add_32(&zfs_active_fs_count, -1); 2124 } 2125 2126 /* 2127 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2128 * so we can't safely do any non-idempotent initialization here. 2129 * Leave that to zfs_init() and zfs_fini(), which are called 2130 * from the module's _init() and _fini() entry points. 2131 */ 2132 /*ARGSUSED*/ 2133 static int 2134 zfs_vfsinit(int fstype, char *name) 2135 { 2136 int error; 2137 2138 zfsfstype = fstype; 2139 2140 /* 2141 * Setup vfsops and vnodeops tables. 2142 */ 2143 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2144 if (error != 0) { 2145 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2146 } 2147 2148 error = zfs_create_op_tables(); 2149 if (error) { 2150 zfs_remove_op_tables(); 2151 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2152 (void) vfs_freevfsops_by_type(zfsfstype); 2153 return (error); 2154 } 2155 2156 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2157 2158 /* 2159 * Unique major number for all zfs mounts. 2160 * If we run out of 32-bit minors, we'll getudev() another major. 2161 */ 2162 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2163 zfs_minor = ZFS_MIN_MINOR; 2164 2165 return (0); 2166 } 2167 2168 void 2169 zfs_init(void) 2170 { 2171 /* 2172 * Initialize .zfs directory structures 2173 */ 2174 zfsctl_init(); 2175 2176 /* 2177 * Initialize znode cache, vnode ops, etc... 2178 */ 2179 zfs_znode_init(); 2180 2181 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2182 } 2183 2184 void 2185 zfs_fini(void) 2186 { 2187 zfsctl_fini(); 2188 zfs_znode_fini(); 2189 } 2190 2191 int 2192 zfs_busy(void) 2193 { 2194 return (zfs_active_fs_count != 0); 2195 } 2196 2197 int 2198 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2199 { 2200 int error; 2201 objset_t *os = zfsvfs->z_os; 2202 dmu_tx_t *tx; 2203 2204 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2205 return (EINVAL); 2206 2207 if (newvers < zfsvfs->z_version) 2208 return (EINVAL); 2209 2210 if (zfs_spa_version_map(newvers) > 2211 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2212 return (ENOTSUP); 2213 2214 tx = dmu_tx_create(os); 2215 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2216 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2217 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2218 ZFS_SA_ATTRS); 2219 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2220 } 2221 error = dmu_tx_assign(tx, TXG_WAIT); 2222 if (error) { 2223 dmu_tx_abort(tx); 2224 return (error); 2225 } 2226 2227 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2228 8, 1, &newvers, tx); 2229 2230 if (error) { 2231 dmu_tx_commit(tx); 2232 return (error); 2233 } 2234 2235 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2236 uint64_t sa_obj; 2237 2238 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2239 SPA_VERSION_SA); 2240 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2241 DMU_OT_NONE, 0, tx); 2242 2243 error = zap_add(os, MASTER_NODE_OBJ, 2244 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2245 ASSERT3U(error, ==, 0); 2246 2247 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2248 sa_register_update_callback(os, zfs_sa_upgrade); 2249 } 2250 2251 spa_history_log_internal(LOG_DS_UPGRADE, 2252 dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu", 2253 zfsvfs->z_version, newvers, dmu_objset_id(os)); 2254 2255 dmu_tx_commit(tx); 2256 2257 zfsvfs->z_version = newvers; 2258 2259 zfs_set_fuid_feature(zfsvfs); 2260 2261 return (0); 2262 } 2263 2264 /* 2265 * Read a property stored within the master node. 2266 */ 2267 int 2268 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2269 { 2270 const char *pname; 2271 int error = ENOENT; 2272 2273 /* 2274 * Look up the file system's value for the property. For the 2275 * version property, we look up a slightly different string. 2276 */ 2277 if (prop == ZFS_PROP_VERSION) 2278 pname = ZPL_VERSION_STR; 2279 else 2280 pname = zfs_prop_to_name(prop); 2281 2282 if (os != NULL) 2283 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2284 2285 if (error == ENOENT) { 2286 /* No value set, use the default value */ 2287 switch (prop) { 2288 case ZFS_PROP_VERSION: 2289 *value = ZPL_VERSION; 2290 break; 2291 case ZFS_PROP_NORMALIZE: 2292 case ZFS_PROP_UTF8ONLY: 2293 *value = 0; 2294 break; 2295 case ZFS_PROP_CASE: 2296 *value = ZFS_CASE_SENSITIVE; 2297 break; 2298 default: 2299 return (error); 2300 } 2301 error = 0; 2302 } 2303 return (error); 2304 } 2305 2306 static vfsdef_t vfw = { 2307 VFSDEF_VERSION, 2308 MNTTYPE_ZFS, 2309 zfs_vfsinit, 2310 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2311 VSW_XID|VSW_ZMOUNT, 2312 &zfs_mntopts 2313 }; 2314 2315 struct modlfs zfs_modlfs = { 2316 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2317 }; 2318