xref: /titanic_41/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision d2eb38229d10d0077809edfbdc66da785bc33379)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  */
25 
26 /* Portions Copyright 2010 Robert Milkowski */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/mntent.h>
38 #include <sys/mount.h>
39 #include <sys/cmn_err.h>
40 #include "fs/fs_subr.h"
41 #include <sys/zfs_znode.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zil.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/dmu.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dsl_dataset.h>
48 #include <sys/dsl_deleg.h>
49 #include <sys/spa.h>
50 #include <sys/zap.h>
51 #include <sys/sa.h>
52 #include <sys/sa_impl.h>
53 #include <sys/varargs.h>
54 #include <sys/policy.h>
55 #include <sys/atomic.h>
56 #include <sys/mkdev.h>
57 #include <sys/modctl.h>
58 #include <sys/refstr.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/zfs_ctldir.h>
61 #include <sys/zfs_fuid.h>
62 #include <sys/bootconf.h>
63 #include <sys/sunddi.h>
64 #include <sys/dnlc.h>
65 #include <sys/dmu_objset.h>
66 #include <sys/spa_boot.h>
67 #include <sys/zfs_events.h>
68 #include "zfs_comutil.h"
69 
70 int zfsfstype;
71 vfsops_t *zfs_vfsops = NULL;
72 static major_t zfs_major;
73 static minor_t zfs_minor;
74 static kmutex_t	zfs_dev_mtx;
75 
76 extern int sys_shutdown;
77 
78 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
79 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
80 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
81 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
82 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
83 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
84 static void zfs_freevfs(vfs_t *vfsp);
85 
86 static const fs_operation_def_t zfs_vfsops_template[] = {
87 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
88 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
89 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
90 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
91 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
92 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
93 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
94 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
95 	NULL,			NULL
96 };
97 
98 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
99 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
100 	NULL,			NULL
101 };
102 
103 /*
104  * We need to keep a count of active fs's.
105  * This is necessary to prevent our module
106  * from being unloaded after a umount -f
107  */
108 static uint32_t	zfs_active_fs_count = 0;
109 
110 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
111 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
112 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
113 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
114 
115 /*
116  * MO_DEFAULT is not used since the default value is determined
117  * by the equivalent property.
118  */
119 static mntopt_t mntopts[] = {
120 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
121 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
122 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
123 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
124 };
125 
126 static mntopts_t zfs_mntopts = {
127 	sizeof (mntopts) / sizeof (mntopt_t),
128 	mntopts
129 };
130 
131 /*ARGSUSED*/
132 int
133 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
134 {
135 	/*
136 	 * Data integrity is job one.  We don't want a compromised kernel
137 	 * writing to the storage pool, so we never sync during panic.
138 	 */
139 	if (panicstr)
140 		return (0);
141 
142 	/*
143 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
144 	 * to sync metadata, which they would otherwise cache indefinitely.
145 	 * Semantically, the only requirement is that the sync be initiated.
146 	 * The DMU syncs out txgs frequently, so there's nothing to do.
147 	 */
148 	if (flag & SYNC_ATTR)
149 		return (0);
150 
151 	if (vfsp != NULL) {
152 		/*
153 		 * Sync a specific filesystem.
154 		 */
155 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
156 		dsl_pool_t *dp;
157 
158 		ZFS_ENTER(zfsvfs);
159 		dp = dmu_objset_pool(zfsvfs->z_os);
160 
161 		/*
162 		 * If the system is shutting down, then skip any
163 		 * filesystems which may exist on a suspended pool.
164 		 */
165 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
166 			ZFS_EXIT(zfsvfs);
167 			return (0);
168 		}
169 
170 		if (zfsvfs->z_log != NULL)
171 			zil_commit(zfsvfs->z_log, 0);
172 
173 		ZFS_EXIT(zfsvfs);
174 	} else {
175 		/*
176 		 * Sync all ZFS filesystems.  This is what happens when you
177 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
178 		 * request by waiting for all pools to commit all dirty data.
179 		 */
180 		spa_sync_allpools();
181 	}
182 
183 	return (0);
184 }
185 
186 static int
187 zfs_create_unique_device(dev_t *dev)
188 {
189 	major_t new_major;
190 
191 	do {
192 		ASSERT3U(zfs_minor, <=, MAXMIN32);
193 		minor_t start = zfs_minor;
194 		do {
195 			mutex_enter(&zfs_dev_mtx);
196 			if (zfs_minor >= MAXMIN32) {
197 				/*
198 				 * If we're still using the real major
199 				 * keep out of /dev/zfs and /dev/zvol minor
200 				 * number space.  If we're using a getudev()'ed
201 				 * major number, we can use all of its minors.
202 				 */
203 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
204 					zfs_minor = ZFS_MIN_MINOR;
205 				else
206 					zfs_minor = 0;
207 			} else {
208 				zfs_minor++;
209 			}
210 			*dev = makedevice(zfs_major, zfs_minor);
211 			mutex_exit(&zfs_dev_mtx);
212 		} while (vfs_devismounted(*dev) && zfs_minor != start);
213 		if (zfs_minor == start) {
214 			/*
215 			 * We are using all ~262,000 minor numbers for the
216 			 * current major number.  Create a new major number.
217 			 */
218 			if ((new_major = getudev()) == (major_t)-1) {
219 				cmn_err(CE_WARN,
220 				    "zfs_mount: Can't get unique major "
221 				    "device number.");
222 				return (-1);
223 			}
224 			mutex_enter(&zfs_dev_mtx);
225 			zfs_major = new_major;
226 			zfs_minor = 0;
227 
228 			mutex_exit(&zfs_dev_mtx);
229 		} else {
230 			break;
231 		}
232 		/* CONSTANTCONDITION */
233 	} while (1);
234 
235 	return (0);
236 }
237 
238 static void
239 atime_changed_cb(void *arg, uint64_t newval)
240 {
241 	zfsvfs_t *zfsvfs = arg;
242 
243 	if (newval == TRUE) {
244 		zfsvfs->z_atime = TRUE;
245 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
246 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
247 	} else {
248 		zfsvfs->z_atime = FALSE;
249 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
250 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
251 	}
252 }
253 
254 static void
255 xattr_changed_cb(void *arg, uint64_t newval)
256 {
257 	zfsvfs_t *zfsvfs = arg;
258 
259 	if (newval == TRUE) {
260 		/* XXX locking on vfs_flag? */
261 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
262 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
263 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
264 	} else {
265 		/* XXX locking on vfs_flag? */
266 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
267 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
268 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
269 	}
270 }
271 
272 static void
273 blksz_changed_cb(void *arg, uint64_t newval)
274 {
275 	zfsvfs_t *zfsvfs = arg;
276 
277 	if (newval < SPA_MINBLOCKSIZE ||
278 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
279 		newval = SPA_MAXBLOCKSIZE;
280 
281 	zfsvfs->z_max_blksz = newval;
282 	zfsvfs->z_vfs->vfs_bsize = newval;
283 }
284 
285 static void
286 readonly_changed_cb(void *arg, uint64_t newval)
287 {
288 	zfsvfs_t *zfsvfs = arg;
289 
290 	if (newval) {
291 		/* XXX locking on vfs_flag? */
292 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
293 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
294 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
295 	} else {
296 		/* XXX locking on vfs_flag? */
297 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
298 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
299 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
300 	}
301 }
302 
303 static void
304 devices_changed_cb(void *arg, uint64_t newval)
305 {
306 	zfsvfs_t *zfsvfs = arg;
307 
308 	if (newval == FALSE) {
309 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
310 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
311 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
312 	} else {
313 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
314 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
315 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
316 	}
317 }
318 
319 static void
320 setuid_changed_cb(void *arg, uint64_t newval)
321 {
322 	zfsvfs_t *zfsvfs = arg;
323 
324 	if (newval == FALSE) {
325 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
326 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
327 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
328 	} else {
329 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
330 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
331 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
332 	}
333 }
334 
335 static void
336 exec_changed_cb(void *arg, uint64_t newval)
337 {
338 	zfsvfs_t *zfsvfs = arg;
339 
340 	if (newval == FALSE) {
341 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
342 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
343 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
344 	} else {
345 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
346 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
347 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
348 	}
349 }
350 
351 /*
352  * The nbmand mount option can be changed at mount time.
353  * We can't allow it to be toggled on live file systems or incorrect
354  * behavior may be seen from cifs clients
355  *
356  * This property isn't registered via dsl_prop_register(), but this callback
357  * will be called when a file system is first mounted
358  */
359 static void
360 nbmand_changed_cb(void *arg, uint64_t newval)
361 {
362 	zfsvfs_t *zfsvfs = arg;
363 	if (newval == FALSE) {
364 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
365 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
366 	} else {
367 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
368 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
369 	}
370 }
371 
372 static void
373 snapdir_changed_cb(void *arg, uint64_t newval)
374 {
375 	zfsvfs_t *zfsvfs = arg;
376 
377 	zfsvfs->z_show_ctldir = newval;
378 }
379 
380 static void
381 vscan_changed_cb(void *arg, uint64_t newval)
382 {
383 	zfsvfs_t *zfsvfs = arg;
384 
385 	zfsvfs->z_vscan = newval;
386 }
387 
388 static void
389 acl_mode_changed_cb(void *arg, uint64_t newval)
390 {
391 	zfsvfs_t *zfsvfs = arg;
392 
393 	zfsvfs->z_acl_mode = newval;
394 }
395 
396 static void
397 acl_inherit_changed_cb(void *arg, uint64_t newval)
398 {
399 	zfsvfs_t *zfsvfs = arg;
400 
401 	zfsvfs->z_acl_inherit = newval;
402 }
403 
404 static int
405 zfs_register_callbacks(vfs_t *vfsp)
406 {
407 	struct dsl_dataset *ds = NULL;
408 	objset_t *os = NULL;
409 	zfsvfs_t *zfsvfs = NULL;
410 	uint64_t nbmand;
411 	boolean_t readonly = B_FALSE;
412 	boolean_t do_readonly = B_FALSE;
413 	boolean_t setuid = B_FALSE;
414 	boolean_t do_setuid = B_FALSE;
415 	boolean_t exec = B_FALSE;
416 	boolean_t do_exec = B_FALSE;
417 	boolean_t devices = B_FALSE;
418 	boolean_t do_devices = B_FALSE;
419 	boolean_t xattr = B_FALSE;
420 	boolean_t do_xattr = B_FALSE;
421 	boolean_t atime = B_FALSE;
422 	boolean_t do_atime = B_FALSE;
423 	int error = 0;
424 
425 	ASSERT(vfsp);
426 	zfsvfs = vfsp->vfs_data;
427 	ASSERT(zfsvfs);
428 	os = zfsvfs->z_os;
429 
430 	/*
431 	 * The act of registering our callbacks will destroy any mount
432 	 * options we may have.  In order to enable temporary overrides
433 	 * of mount options, we stash away the current values and
434 	 * restore them after we register the callbacks.
435 	 */
436 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
437 	    !spa_writeable(dmu_objset_spa(os))) {
438 		readonly = B_TRUE;
439 		do_readonly = B_TRUE;
440 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
441 		readonly = B_FALSE;
442 		do_readonly = B_TRUE;
443 	}
444 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
445 		devices = B_FALSE;
446 		setuid = B_FALSE;
447 		do_devices = B_TRUE;
448 		do_setuid = B_TRUE;
449 	} else {
450 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
451 			devices = B_FALSE;
452 			do_devices = B_TRUE;
453 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
454 			devices = B_TRUE;
455 			do_devices = B_TRUE;
456 		}
457 
458 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
459 			setuid = B_FALSE;
460 			do_setuid = B_TRUE;
461 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
462 			setuid = B_TRUE;
463 			do_setuid = B_TRUE;
464 		}
465 	}
466 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
467 		exec = B_FALSE;
468 		do_exec = B_TRUE;
469 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
470 		exec = B_TRUE;
471 		do_exec = B_TRUE;
472 	}
473 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
474 		xattr = B_FALSE;
475 		do_xattr = B_TRUE;
476 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
477 		xattr = B_TRUE;
478 		do_xattr = B_TRUE;
479 	}
480 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
481 		atime = B_FALSE;
482 		do_atime = B_TRUE;
483 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
484 		atime = B_TRUE;
485 		do_atime = B_TRUE;
486 	}
487 
488 	/*
489 	 * nbmand is a special property.  It can only be changed at
490 	 * mount time.
491 	 *
492 	 * This is weird, but it is documented to only be changeable
493 	 * at mount time.
494 	 */
495 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
496 		nbmand = B_FALSE;
497 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
498 		nbmand = B_TRUE;
499 	} else {
500 		char osname[MAXNAMELEN];
501 
502 		dmu_objset_name(os, osname);
503 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
504 		    NULL)) {
505 			return (error);
506 		}
507 	}
508 
509 	/*
510 	 * Register property callbacks.
511 	 *
512 	 * It would probably be fine to just check for i/o error from
513 	 * the first prop_register(), but I guess I like to go
514 	 * overboard...
515 	 */
516 	ds = dmu_objset_ds(os);
517 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
518 	error = dsl_prop_register(ds,
519 	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
520 	error = error ? error : dsl_prop_register(ds,
521 	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
522 	error = error ? error : dsl_prop_register(ds,
523 	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
524 	error = error ? error : dsl_prop_register(ds,
525 	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
526 	error = error ? error : dsl_prop_register(ds,
527 	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
528 	error = error ? error : dsl_prop_register(ds,
529 	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
530 	error = error ? error : dsl_prop_register(ds,
531 	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
532 	error = error ? error : dsl_prop_register(ds,
533 	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
534 	error = error ? error : dsl_prop_register(ds,
535 	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
536 	error = error ? error : dsl_prop_register(ds,
537 	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
538 	    zfsvfs);
539 	error = error ? error : dsl_prop_register(ds,
540 	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
541 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
542 	if (error)
543 		goto unregister;
544 
545 	/*
546 	 * Invoke our callbacks to restore temporary mount options.
547 	 */
548 	if (do_readonly)
549 		readonly_changed_cb(zfsvfs, readonly);
550 	if (do_setuid)
551 		setuid_changed_cb(zfsvfs, setuid);
552 	if (do_exec)
553 		exec_changed_cb(zfsvfs, exec);
554 	if (do_devices)
555 		devices_changed_cb(zfsvfs, devices);
556 	if (do_xattr)
557 		xattr_changed_cb(zfsvfs, xattr);
558 	if (do_atime)
559 		atime_changed_cb(zfsvfs, atime);
560 
561 	nbmand_changed_cb(zfsvfs, nbmand);
562 
563 	return (0);
564 
565 unregister:
566 	/*
567 	 * We may attempt to unregister some callbacks that are not
568 	 * registered, but this is OK; it will simply return ENOMSG,
569 	 * which we will ignore.
570 	 */
571 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME),
572 	    atime_changed_cb, zfsvfs);
573 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR),
574 	    xattr_changed_cb, zfsvfs);
575 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
576 	    blksz_changed_cb, zfsvfs);
577 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY),
578 	    readonly_changed_cb, zfsvfs);
579 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES),
580 	    devices_changed_cb, zfsvfs);
581 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID),
582 	    setuid_changed_cb, zfsvfs);
583 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC),
584 	    exec_changed_cb, zfsvfs);
585 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR),
586 	    snapdir_changed_cb, zfsvfs);
587 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE),
588 	    acl_mode_changed_cb, zfsvfs);
589 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT),
590 	    acl_inherit_changed_cb, zfsvfs);
591 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN),
592 	    vscan_changed_cb, zfsvfs);
593 	return (error);
594 }
595 
596 static int
597 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
598     uint64_t *userp, uint64_t *groupp)
599 {
600 	/*
601 	 * Is it a valid type of object to track?
602 	 */
603 	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
604 		return (SET_ERROR(ENOENT));
605 
606 	/*
607 	 * If we have a NULL data pointer
608 	 * then assume the id's aren't changing and
609 	 * return EEXIST to the dmu to let it know to
610 	 * use the same ids
611 	 */
612 	if (data == NULL)
613 		return (SET_ERROR(EEXIST));
614 
615 	if (bonustype == DMU_OT_ZNODE) {
616 		znode_phys_t *znp = data;
617 		*userp = znp->zp_uid;
618 		*groupp = znp->zp_gid;
619 	} else {
620 		int hdrsize;
621 		sa_hdr_phys_t *sap = data;
622 		sa_hdr_phys_t sa = *sap;
623 		boolean_t swap = B_FALSE;
624 
625 		ASSERT(bonustype == DMU_OT_SA);
626 
627 		if (sa.sa_magic == 0) {
628 			/*
629 			 * This should only happen for newly created
630 			 * files that haven't had the znode data filled
631 			 * in yet.
632 			 */
633 			*userp = 0;
634 			*groupp = 0;
635 			return (0);
636 		}
637 		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
638 			sa.sa_magic = SA_MAGIC;
639 			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
640 			swap = B_TRUE;
641 		} else {
642 			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
643 		}
644 
645 		hdrsize = sa_hdrsize(&sa);
646 		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
647 		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
648 		    SA_UID_OFFSET));
649 		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
650 		    SA_GID_OFFSET));
651 		if (swap) {
652 			*userp = BSWAP_64(*userp);
653 			*groupp = BSWAP_64(*groupp);
654 		}
655 	}
656 	return (0);
657 }
658 
659 static void
660 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
661     char *domainbuf, int buflen, uid_t *ridp)
662 {
663 	uint64_t fuid;
664 	const char *domain;
665 
666 	fuid = strtonum(fuidstr, NULL);
667 
668 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
669 	if (domain)
670 		(void) strlcpy(domainbuf, domain, buflen);
671 	else
672 		domainbuf[0] = '\0';
673 	*ridp = FUID_RID(fuid);
674 }
675 
676 static uint64_t
677 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
678 {
679 	switch (type) {
680 	case ZFS_PROP_USERUSED:
681 		return (DMU_USERUSED_OBJECT);
682 	case ZFS_PROP_GROUPUSED:
683 		return (DMU_GROUPUSED_OBJECT);
684 	case ZFS_PROP_USERQUOTA:
685 		return (zfsvfs->z_userquota_obj);
686 	case ZFS_PROP_GROUPQUOTA:
687 		return (zfsvfs->z_groupquota_obj);
688 	}
689 	return (0);
690 }
691 
692 int
693 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
694     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
695 {
696 	int error;
697 	zap_cursor_t zc;
698 	zap_attribute_t za;
699 	zfs_useracct_t *buf = vbuf;
700 	uint64_t obj;
701 
702 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
703 		return (SET_ERROR(ENOTSUP));
704 
705 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
706 	if (obj == 0) {
707 		*bufsizep = 0;
708 		return (0);
709 	}
710 
711 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
712 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
713 	    zap_cursor_advance(&zc)) {
714 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
715 		    *bufsizep)
716 			break;
717 
718 		fuidstr_to_sid(zfsvfs, za.za_name,
719 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
720 
721 		buf->zu_space = za.za_first_integer;
722 		buf++;
723 	}
724 	if (error == ENOENT)
725 		error = 0;
726 
727 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
728 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
729 	*cookiep = zap_cursor_serialize(&zc);
730 	zap_cursor_fini(&zc);
731 	return (error);
732 }
733 
734 /*
735  * buf must be big enough (eg, 32 bytes)
736  */
737 static int
738 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
739     char *buf, boolean_t addok)
740 {
741 	uint64_t fuid;
742 	int domainid = 0;
743 
744 	if (domain && domain[0]) {
745 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
746 		if (domainid == -1)
747 			return (SET_ERROR(ENOENT));
748 	}
749 	fuid = FUID_ENCODE(domainid, rid);
750 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
751 	return (0);
752 }
753 
754 int
755 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
756     const char *domain, uint64_t rid, uint64_t *valp)
757 {
758 	char buf[32];
759 	int err;
760 	uint64_t obj;
761 
762 	*valp = 0;
763 
764 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
765 		return (SET_ERROR(ENOTSUP));
766 
767 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
768 	if (obj == 0)
769 		return (0);
770 
771 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
772 	if (err)
773 		return (err);
774 
775 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
776 	if (err == ENOENT)
777 		err = 0;
778 	return (err);
779 }
780 
781 int
782 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
783     const char *domain, uint64_t rid, uint64_t quota)
784 {
785 	char buf[32];
786 	int err;
787 	dmu_tx_t *tx;
788 	uint64_t *objp;
789 	boolean_t fuid_dirtied;
790 
791 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
792 		return (SET_ERROR(EINVAL));
793 
794 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
795 		return (SET_ERROR(ENOTSUP));
796 
797 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
798 	    &zfsvfs->z_groupquota_obj;
799 
800 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
801 	if (err)
802 		return (err);
803 	fuid_dirtied = zfsvfs->z_fuid_dirty;
804 
805 	tx = dmu_tx_create(zfsvfs->z_os);
806 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
807 	if (*objp == 0) {
808 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
809 		    zfs_userquota_prop_prefixes[type]);
810 	}
811 	if (fuid_dirtied)
812 		zfs_fuid_txhold(zfsvfs, tx);
813 	err = dmu_tx_assign(tx, TXG_WAIT);
814 	if (err) {
815 		dmu_tx_abort(tx);
816 		return (err);
817 	}
818 
819 	mutex_enter(&zfsvfs->z_lock);
820 	if (*objp == 0) {
821 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
822 		    DMU_OT_NONE, 0, tx);
823 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
824 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
825 	}
826 	mutex_exit(&zfsvfs->z_lock);
827 
828 	if (quota == 0) {
829 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
830 		if (err == ENOENT)
831 			err = 0;
832 	} else {
833 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
834 	}
835 	ASSERT(err == 0);
836 	if (fuid_dirtied)
837 		zfs_fuid_sync(zfsvfs, tx);
838 	dmu_tx_commit(tx);
839 	return (err);
840 }
841 
842 boolean_t
843 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
844 {
845 	char buf[32];
846 	uint64_t used, quota, usedobj, quotaobj;
847 	int err;
848 
849 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
850 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
851 
852 	if (quotaobj == 0 || zfsvfs->z_replay)
853 		return (B_FALSE);
854 
855 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
856 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
857 	if (err != 0)
858 		return (B_FALSE);
859 
860 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
861 	if (err != 0)
862 		return (B_FALSE);
863 	return (used >= quota);
864 }
865 
866 boolean_t
867 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
868 {
869 	uint64_t fuid;
870 	uint64_t quotaobj;
871 
872 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
873 
874 	fuid = isgroup ? zp->z_gid : zp->z_uid;
875 
876 	if (quotaobj == 0 || zfsvfs->z_replay)
877 		return (B_FALSE);
878 
879 	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
880 }
881 
882 int
883 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
884 {
885 	objset_t *os;
886 	zfsvfs_t *zfsvfs;
887 	uint64_t zval;
888 	int i, error;
889 	uint64_t sa_obj;
890 
891 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
892 
893 	/*
894 	 * We claim to always be readonly so we can open snapshots;
895 	 * other ZPL code will prevent us from writing to snapshots.
896 	 */
897 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
898 	if (error) {
899 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
900 		return (error);
901 	}
902 
903 	/*
904 	 * Initialize the zfs-specific filesystem structure.
905 	 * Should probably make this a kmem cache, shuffle fields,
906 	 * and just bzero up to z_hold_mtx[].
907 	 */
908 	zfsvfs->z_vfs = NULL;
909 	zfsvfs->z_parent = zfsvfs;
910 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
911 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
912 	zfsvfs->z_os = os;
913 
914 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
915 	if (error) {
916 		goto out;
917 	} else if (zfsvfs->z_version >
918 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
919 		(void) printf("Can't mount a version %lld file system "
920 		    "on a version %lld pool\n. Pool must be upgraded to mount "
921 		    "this file system.", (u_longlong_t)zfsvfs->z_version,
922 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
923 		error = SET_ERROR(ENOTSUP);
924 		goto out;
925 	}
926 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
927 		goto out;
928 	zfsvfs->z_norm = (int)zval;
929 
930 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
931 		goto out;
932 	zfsvfs->z_utf8 = (zval != 0);
933 
934 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
935 		goto out;
936 	zfsvfs->z_case = (uint_t)zval;
937 
938 	/*
939 	 * Fold case on file systems that are always or sometimes case
940 	 * insensitive.
941 	 */
942 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
943 	    zfsvfs->z_case == ZFS_CASE_MIXED)
944 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
945 
946 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
947 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
948 
949 	if (zfsvfs->z_use_sa) {
950 		/* should either have both of these objects or none */
951 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
952 		    &sa_obj);
953 		if (error)
954 			return (error);
955 	} else {
956 		/*
957 		 * Pre SA versions file systems should never touch
958 		 * either the attribute registration or layout objects.
959 		 */
960 		sa_obj = 0;
961 	}
962 
963 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
964 	    &zfsvfs->z_attr_table);
965 	if (error)
966 		goto out;
967 
968 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
969 		sa_register_update_callback(os, zfs_sa_upgrade);
970 
971 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
972 	    &zfsvfs->z_root);
973 	if (error)
974 		goto out;
975 	ASSERT(zfsvfs->z_root != 0);
976 
977 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
978 	    &zfsvfs->z_unlinkedobj);
979 	if (error)
980 		goto out;
981 
982 	error = zap_lookup(os, MASTER_NODE_OBJ,
983 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
984 	    8, 1, &zfsvfs->z_userquota_obj);
985 	if (error && error != ENOENT)
986 		goto out;
987 
988 	error = zap_lookup(os, MASTER_NODE_OBJ,
989 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
990 	    8, 1, &zfsvfs->z_groupquota_obj);
991 	if (error && error != ENOENT)
992 		goto out;
993 
994 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
995 	    &zfsvfs->z_fuid_obj);
996 	if (error && error != ENOENT)
997 		goto out;
998 
999 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
1000 	    &zfsvfs->z_shares_dir);
1001 	if (error && error != ENOENT)
1002 		goto out;
1003 
1004 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1005 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
1006 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1007 	    offsetof(znode_t, z_link_node));
1008 	rrw_init(&zfsvfs->z_teardown_lock, B_FALSE);
1009 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
1010 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1011 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1012 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1013 
1014 	*zfvp = zfsvfs;
1015 	return (0);
1016 
1017 out:
1018 	dmu_objset_disown(os, zfsvfs);
1019 	*zfvp = NULL;
1020 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1021 	return (error);
1022 }
1023 
1024 static int
1025 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1026 {
1027 	int error;
1028 
1029 	error = zfs_register_callbacks(zfsvfs->z_vfs);
1030 	if (error)
1031 		return (error);
1032 
1033 	/*
1034 	 * Set the objset user_ptr to track its zfsvfs.
1035 	 */
1036 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1037 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1038 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1039 
1040 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1041 
1042 	/*
1043 	 * If we are not mounting (ie: online recv), then we don't
1044 	 * have to worry about replaying the log as we blocked all
1045 	 * operations out since we closed the ZIL.
1046 	 */
1047 	if (mounting) {
1048 		boolean_t readonly;
1049 
1050 		/*
1051 		 * During replay we remove the read only flag to
1052 		 * allow replays to succeed.
1053 		 */
1054 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1055 		if (readonly != 0)
1056 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1057 		else
1058 			zfs_unlinked_drain(zfsvfs);
1059 
1060 		/*
1061 		 * Parse and replay the intent log.
1062 		 *
1063 		 * Because of ziltest, this must be done after
1064 		 * zfs_unlinked_drain().  (Further note: ziltest
1065 		 * doesn't use readonly mounts, where
1066 		 * zfs_unlinked_drain() isn't called.)  This is because
1067 		 * ziltest causes spa_sync() to think it's committed,
1068 		 * but actually it is not, so the intent log contains
1069 		 * many txg's worth of changes.
1070 		 *
1071 		 * In particular, if object N is in the unlinked set in
1072 		 * the last txg to actually sync, then it could be
1073 		 * actually freed in a later txg and then reallocated
1074 		 * in a yet later txg.  This would write a "create
1075 		 * object N" record to the intent log.  Normally, this
1076 		 * would be fine because the spa_sync() would have
1077 		 * written out the fact that object N is free, before
1078 		 * we could write the "create object N" intent log
1079 		 * record.
1080 		 *
1081 		 * But when we are in ziltest mode, we advance the "open
1082 		 * txg" without actually spa_sync()-ing the changes to
1083 		 * disk.  So we would see that object N is still
1084 		 * allocated and in the unlinked set, and there is an
1085 		 * intent log record saying to allocate it.
1086 		 */
1087 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1088 			if (zil_replay_disable) {
1089 				zil_destroy(zfsvfs->z_log, B_FALSE);
1090 			} else {
1091 				zfsvfs->z_replay = B_TRUE;
1092 				zil_replay(zfsvfs->z_os, zfsvfs,
1093 				    zfs_replay_vector);
1094 				zfsvfs->z_replay = B_FALSE;
1095 			}
1096 		}
1097 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1098 	}
1099 
1100 	return (0);
1101 }
1102 
1103 void
1104 zfsvfs_free(zfsvfs_t *zfsvfs)
1105 {
1106 	int i;
1107 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1108 
1109 	/*
1110 	 * This is a barrier to prevent the filesystem from going away in
1111 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1112 	 * not unmounted. We consider the filesystem valid before the barrier
1113 	 * and invalid after the barrier.
1114 	 */
1115 	rw_enter(&zfsvfs_lock, RW_READER);
1116 	rw_exit(&zfsvfs_lock);
1117 
1118 	zfs_fuid_destroy(zfsvfs);
1119 
1120 	mutex_destroy(&zfsvfs->z_znodes_lock);
1121 	mutex_destroy(&zfsvfs->z_lock);
1122 	list_destroy(&zfsvfs->z_all_znodes);
1123 	rrw_destroy(&zfsvfs->z_teardown_lock);
1124 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1125 	rw_destroy(&zfsvfs->z_fuid_lock);
1126 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1127 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1128 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1129 }
1130 
1131 static void
1132 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1133 {
1134 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1135 	if (zfsvfs->z_vfs) {
1136 		if (zfsvfs->z_use_fuids) {
1137 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1138 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1139 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1140 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1141 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1142 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1143 		} else {
1144 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1145 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1146 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1147 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1148 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1149 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1150 		}
1151 	}
1152 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1153 }
1154 
1155 static int
1156 zfs_domount(vfs_t *vfsp, char *osname)
1157 {
1158 	dev_t mount_dev;
1159 	uint64_t recordsize, fsid_guid;
1160 	int error = 0;
1161 	zfsvfs_t *zfsvfs;
1162 
1163 	ASSERT(vfsp);
1164 	ASSERT(osname);
1165 
1166 	error = zfsvfs_create(osname, &zfsvfs);
1167 	if (error)
1168 		return (error);
1169 	zfsvfs->z_vfs = vfsp;
1170 
1171 	/* Initialize the generic filesystem structure. */
1172 	vfsp->vfs_bcount = 0;
1173 	vfsp->vfs_data = NULL;
1174 
1175 	if (zfs_create_unique_device(&mount_dev) == -1) {
1176 		error = SET_ERROR(ENODEV);
1177 		goto out;
1178 	}
1179 	ASSERT(vfs_devismounted(mount_dev) == 0);
1180 
1181 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1182 	    NULL))
1183 		goto out;
1184 
1185 	vfsp->vfs_dev = mount_dev;
1186 	vfsp->vfs_fstype = zfsfstype;
1187 	vfsp->vfs_bsize = recordsize;
1188 	vfsp->vfs_flag |= VFS_NOTRUNC;
1189 	vfsp->vfs_data = zfsvfs;
1190 
1191 	/*
1192 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1193 	 * separates our fsid from any other filesystem types, and a
1194 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1195 	 * all objsets open on this system, provided by unique_create().
1196 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1197 	 * because that's where other Solaris filesystems put it.
1198 	 */
1199 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1200 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1201 	vfsp->vfs_fsid.val[0] = fsid_guid;
1202 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1203 	    zfsfstype & 0xFF;
1204 
1205 	/*
1206 	 * Set features for file system.
1207 	 */
1208 	zfs_set_fuid_feature(zfsvfs);
1209 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1210 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1211 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1212 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1213 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1214 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1215 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1216 	}
1217 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1218 
1219 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1220 		uint64_t pval;
1221 
1222 		atime_changed_cb(zfsvfs, B_FALSE);
1223 		readonly_changed_cb(zfsvfs, B_TRUE);
1224 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1225 			goto out;
1226 		xattr_changed_cb(zfsvfs, pval);
1227 		zfsvfs->z_issnap = B_TRUE;
1228 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1229 
1230 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1231 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1232 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1233 	} else {
1234 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1235 	}
1236 
1237 	if (!zfsvfs->z_issnap)
1238 		zfsctl_create(zfsvfs);
1239 out:
1240 	if (error) {
1241 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1242 		zfsvfs_free(zfsvfs);
1243 	} else {
1244 		atomic_add_32(&zfs_active_fs_count, 1);
1245 	}
1246 
1247 	return (error);
1248 }
1249 
1250 void
1251 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1252 {
1253 	objset_t *os = zfsvfs->z_os;
1254 	struct dsl_dataset *ds;
1255 
1256 	/*
1257 	 * Unregister properties.
1258 	 */
1259 	if (!dmu_objset_is_snapshot(os)) {
1260 		ds = dmu_objset_ds(os);
1261 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1262 		    zfsvfs) == 0);
1263 
1264 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1265 		    zfsvfs) == 0);
1266 
1267 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1268 		    zfsvfs) == 0);
1269 
1270 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1271 		    zfsvfs) == 0);
1272 
1273 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1274 		    zfsvfs) == 0);
1275 
1276 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1277 		    zfsvfs) == 0);
1278 
1279 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1280 		    zfsvfs) == 0);
1281 
1282 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1283 		    zfsvfs) == 0);
1284 
1285 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1286 		    zfsvfs) == 0);
1287 
1288 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1289 		    acl_inherit_changed_cb, zfsvfs) == 0);
1290 
1291 		VERIFY(dsl_prop_unregister(ds, "vscan",
1292 		    vscan_changed_cb, zfsvfs) == 0);
1293 	}
1294 }
1295 
1296 /*
1297  * Convert a decimal digit string to a uint64_t integer.
1298  */
1299 static int
1300 str_to_uint64(char *str, uint64_t *objnum)
1301 {
1302 	uint64_t num = 0;
1303 
1304 	while (*str) {
1305 		if (*str < '0' || *str > '9')
1306 			return (SET_ERROR(EINVAL));
1307 
1308 		num = num*10 + *str++ - '0';
1309 	}
1310 
1311 	*objnum = num;
1312 	return (0);
1313 }
1314 
1315 /*
1316  * The boot path passed from the boot loader is in the form of
1317  * "rootpool-name/root-filesystem-object-number'. Convert this
1318  * string to a dataset name: "rootpool-name/root-filesystem-name".
1319  */
1320 static int
1321 zfs_parse_bootfs(char *bpath, char *outpath)
1322 {
1323 	char *slashp;
1324 	uint64_t objnum;
1325 	int error;
1326 
1327 	if (*bpath == 0 || *bpath == '/')
1328 		return (SET_ERROR(EINVAL));
1329 
1330 	(void) strcpy(outpath, bpath);
1331 
1332 	slashp = strchr(bpath, '/');
1333 
1334 	/* if no '/', just return the pool name */
1335 	if (slashp == NULL) {
1336 		return (0);
1337 	}
1338 
1339 	/* if not a number, just return the root dataset name */
1340 	if (str_to_uint64(slashp+1, &objnum)) {
1341 		return (0);
1342 	}
1343 
1344 	*slashp = '\0';
1345 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1346 	*slashp = '/';
1347 
1348 	return (error);
1349 }
1350 
1351 /*
1352  * Check that the hex label string is appropriate for the dataset being
1353  * mounted into the global_zone proper.
1354  *
1355  * Return an error if the hex label string is not default or
1356  * admin_low/admin_high.  For admin_low labels, the corresponding
1357  * dataset must be readonly.
1358  */
1359 int
1360 zfs_check_global_label(const char *dsname, const char *hexsl)
1361 {
1362 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1363 		return (0);
1364 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1365 		return (0);
1366 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1367 		/* must be readonly */
1368 		uint64_t rdonly;
1369 
1370 		if (dsl_prop_get_integer(dsname,
1371 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1372 			return (SET_ERROR(EACCES));
1373 		return (rdonly ? 0 : EACCES);
1374 	}
1375 	return (SET_ERROR(EACCES));
1376 }
1377 
1378 /*
1379  * Determine whether the mount is allowed according to MAC check.
1380  * by comparing (where appropriate) label of the dataset against
1381  * the label of the zone being mounted into.  If the dataset has
1382  * no label, create one.
1383  *
1384  * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1385  */
1386 static int
1387 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1388 {
1389 	int		error, retv;
1390 	zone_t		*mntzone = NULL;
1391 	ts_label_t	*mnt_tsl;
1392 	bslabel_t	*mnt_sl;
1393 	bslabel_t	ds_sl;
1394 	char		ds_hexsl[MAXNAMELEN];
1395 
1396 	retv = EACCES;				/* assume the worst */
1397 
1398 	/*
1399 	 * Start by getting the dataset label if it exists.
1400 	 */
1401 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1402 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1403 	if (error)
1404 		return (SET_ERROR(EACCES));
1405 
1406 	/*
1407 	 * If labeling is NOT enabled, then disallow the mount of datasets
1408 	 * which have a non-default label already.  No other label checks
1409 	 * are needed.
1410 	 */
1411 	if (!is_system_labeled()) {
1412 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1413 			return (0);
1414 		return (SET_ERROR(EACCES));
1415 	}
1416 
1417 	/*
1418 	 * Get the label of the mountpoint.  If mounting into the global
1419 	 * zone (i.e. mountpoint is not within an active zone and the
1420 	 * zoned property is off), the label must be default or
1421 	 * admin_low/admin_high only; no other checks are needed.
1422 	 */
1423 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1424 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1425 		uint64_t zoned;
1426 
1427 		zone_rele(mntzone);
1428 
1429 		if (dsl_prop_get_integer(osname,
1430 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1431 			return (SET_ERROR(EACCES));
1432 		if (!zoned)
1433 			return (zfs_check_global_label(osname, ds_hexsl));
1434 		else
1435 			/*
1436 			 * This is the case of a zone dataset being mounted
1437 			 * initially, before the zone has been fully created;
1438 			 * allow this mount into global zone.
1439 			 */
1440 			return (0);
1441 	}
1442 
1443 	mnt_tsl = mntzone->zone_slabel;
1444 	ASSERT(mnt_tsl != NULL);
1445 	label_hold(mnt_tsl);
1446 	mnt_sl = label2bslabel(mnt_tsl);
1447 
1448 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1449 		/*
1450 		 * The dataset doesn't have a real label, so fabricate one.
1451 		 */
1452 		char *str = NULL;
1453 
1454 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1455 		    dsl_prop_set_string(osname,
1456 		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1457 		    ZPROP_SRC_LOCAL, str) == 0)
1458 			retv = 0;
1459 		if (str != NULL)
1460 			kmem_free(str, strlen(str) + 1);
1461 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1462 		/*
1463 		 * Now compare labels to complete the MAC check.  If the
1464 		 * labels are equal then allow access.  If the mountpoint
1465 		 * label dominates the dataset label, allow readonly access.
1466 		 * Otherwise, access is denied.
1467 		 */
1468 		if (blequal(mnt_sl, &ds_sl))
1469 			retv = 0;
1470 		else if (bldominates(mnt_sl, &ds_sl)) {
1471 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1472 			retv = 0;
1473 		}
1474 	}
1475 
1476 	label_rele(mnt_tsl);
1477 	zone_rele(mntzone);
1478 	return (retv);
1479 }
1480 
1481 static int
1482 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1483 {
1484 	int error = 0;
1485 	static int zfsrootdone = 0;
1486 	zfsvfs_t *zfsvfs = NULL;
1487 	znode_t *zp = NULL;
1488 	vnode_t *vp = NULL;
1489 	char *zfs_bootfs;
1490 	char *zfs_devid;
1491 
1492 	ASSERT(vfsp);
1493 
1494 	/*
1495 	 * The filesystem that we mount as root is defined in the
1496 	 * boot property "zfs-bootfs" with a format of
1497 	 * "poolname/root-dataset-objnum".
1498 	 */
1499 	if (why == ROOT_INIT) {
1500 		if (zfsrootdone++)
1501 			return (SET_ERROR(EBUSY));
1502 		/*
1503 		 * the process of doing a spa_load will require the
1504 		 * clock to be set before we could (for example) do
1505 		 * something better by looking at the timestamp on
1506 		 * an uberblock, so just set it to -1.
1507 		 */
1508 		clkset(-1);
1509 
1510 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1511 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1512 			    "bootfs name");
1513 			return (SET_ERROR(EINVAL));
1514 		}
1515 		zfs_devid = spa_get_bootprop("diskdevid");
1516 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1517 		if (zfs_devid)
1518 			spa_free_bootprop(zfs_devid);
1519 		if (error) {
1520 			spa_free_bootprop(zfs_bootfs);
1521 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1522 			    error);
1523 			return (error);
1524 		}
1525 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1526 			spa_free_bootprop(zfs_bootfs);
1527 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1528 			    error);
1529 			return (error);
1530 		}
1531 
1532 		spa_free_bootprop(zfs_bootfs);
1533 
1534 		if (error = vfs_lock(vfsp))
1535 			return (error);
1536 
1537 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1538 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1539 			goto out;
1540 		}
1541 
1542 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1543 		ASSERT(zfsvfs);
1544 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1545 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1546 			goto out;
1547 		}
1548 
1549 		vp = ZTOV(zp);
1550 		mutex_enter(&vp->v_lock);
1551 		vp->v_flag |= VROOT;
1552 		mutex_exit(&vp->v_lock);
1553 		rootvp = vp;
1554 
1555 		/*
1556 		 * Leave rootvp held.  The root file system is never unmounted.
1557 		 */
1558 
1559 		vfs_add((struct vnode *)0, vfsp,
1560 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1561 out:
1562 		vfs_unlock(vfsp);
1563 		return (error);
1564 	} else if (why == ROOT_REMOUNT) {
1565 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1566 		vfsp->vfs_flag |= VFS_REMOUNT;
1567 
1568 		/* refresh mount options */
1569 		zfs_unregister_callbacks(vfsp->vfs_data);
1570 		return (zfs_register_callbacks(vfsp));
1571 
1572 	} else if (why == ROOT_UNMOUNT) {
1573 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1574 		(void) zfs_sync(vfsp, 0, 0);
1575 		return (0);
1576 	}
1577 
1578 	/*
1579 	 * if "why" is equal to anything else other than ROOT_INIT,
1580 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1581 	 */
1582 	return (SET_ERROR(ENOTSUP));
1583 }
1584 
1585 /*ARGSUSED*/
1586 static int
1587 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1588 {
1589 	char		*osname;
1590 	pathname_t	spn;
1591 	int		error = 0;
1592 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1593 	    UIO_SYSSPACE : UIO_USERSPACE;
1594 	int		canwrite;
1595 
1596 	if (mvp->v_type != VDIR)
1597 		return (SET_ERROR(ENOTDIR));
1598 
1599 	mutex_enter(&mvp->v_lock);
1600 	if ((uap->flags & MS_REMOUNT) == 0 &&
1601 	    (uap->flags & MS_OVERLAY) == 0 &&
1602 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1603 		mutex_exit(&mvp->v_lock);
1604 		return (SET_ERROR(EBUSY));
1605 	}
1606 	mutex_exit(&mvp->v_lock);
1607 
1608 	/*
1609 	 * ZFS does not support passing unparsed data in via MS_DATA.
1610 	 * Users should use the MS_OPTIONSTR interface; this means
1611 	 * that all option parsing is already done and the options struct
1612 	 * can be interrogated.
1613 	 */
1614 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1615 		return (SET_ERROR(EINVAL));
1616 
1617 	/*
1618 	 * Get the objset name (the "special" mount argument).
1619 	 */
1620 	if (error = pn_get(uap->spec, fromspace, &spn))
1621 		return (error);
1622 
1623 	osname = spn.pn_path;
1624 
1625 	/*
1626 	 * Check for mount privilege?
1627 	 *
1628 	 * If we don't have privilege then see if
1629 	 * we have local permission to allow it
1630 	 */
1631 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1632 	if (error) {
1633 		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1634 			vattr_t		vattr;
1635 
1636 			/*
1637 			 * Make sure user is the owner of the mount point
1638 			 * or has sufficient privileges.
1639 			 */
1640 
1641 			vattr.va_mask = AT_UID;
1642 
1643 			if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1644 				goto out;
1645 			}
1646 
1647 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1648 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1649 				goto out;
1650 			}
1651 			secpolicy_fs_mount_clearopts(cr, vfsp);
1652 		} else {
1653 			goto out;
1654 		}
1655 	}
1656 
1657 	/*
1658 	 * Refuse to mount a filesystem if we are in a local zone and the
1659 	 * dataset is not visible.
1660 	 */
1661 	if (!INGLOBALZONE(curproc) &&
1662 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1663 		error = SET_ERROR(EPERM);
1664 		goto out;
1665 	}
1666 
1667 	error = zfs_mount_label_policy(vfsp, osname);
1668 	if (error)
1669 		goto out;
1670 
1671 	/*
1672 	 * When doing a remount, we simply refresh our temporary properties
1673 	 * according to those options set in the current VFS options.
1674 	 */
1675 	if (uap->flags & MS_REMOUNT) {
1676 		/* refresh mount options */
1677 		zfs_unregister_callbacks(vfsp->vfs_data);
1678 		error = zfs_register_callbacks(vfsp);
1679 		goto out;
1680 	}
1681 
1682 	error = zfs_domount(vfsp, osname);
1683 
1684 	/*
1685 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1686 	 * disappear due to a forced unmount.
1687 	 */
1688 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1689 		VFS_HOLD(mvp->v_vfsp);
1690 
1691 out:
1692 	rw_enter(&rz_zev_rwlock, RW_READER);
1693 	if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_zfs_mount)
1694 		rz_zev_callbacks->rz_zev_zfs_mount(vfsp, mvp, osname,
1695 			uap->flags & MS_REMOUNT ?  B_TRUE : B_FALSE);
1696 	rw_exit(&rz_zev_rwlock);
1697 	pn_free(&spn);
1698 	return (error);
1699 }
1700 
1701 static int
1702 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1703 {
1704 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1705 	dev32_t d32;
1706 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1707 
1708 	ZFS_ENTER(zfsvfs);
1709 
1710 	dmu_objset_space(zfsvfs->z_os,
1711 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1712 
1713 	/*
1714 	 * The underlying storage pool actually uses multiple block sizes.
1715 	 * We report the fragsize as the smallest block size we support,
1716 	 * and we report our blocksize as the filesystem's maximum blocksize.
1717 	 */
1718 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1719 	statp->f_bsize = zfsvfs->z_max_blksz;
1720 
1721 	/*
1722 	 * The following report "total" blocks of various kinds in the
1723 	 * file system, but reported in terms of f_frsize - the
1724 	 * "fragment" size.
1725 	 */
1726 
1727 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1728 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1729 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1730 
1731 	/*
1732 	 * statvfs() should really be called statufs(), because it assumes
1733 	 * static metadata.  ZFS doesn't preallocate files, so the best
1734 	 * we can do is report the max that could possibly fit in f_files,
1735 	 * and that minus the number actually used in f_ffree.
1736 	 * For f_ffree, report the smaller of the number of object available
1737 	 * and the number of blocks (each object will take at least a block).
1738 	 */
1739 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1740 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1741 	statp->f_files = statp->f_ffree + usedobjs;
1742 
1743 	(void) cmpldev(&d32, vfsp->vfs_dev);
1744 	statp->f_fsid = d32;
1745 
1746 	/*
1747 	 * We're a zfs filesystem.
1748 	 */
1749 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1750 
1751 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1752 
1753 	statp->f_namemax = ZFS_MAXNAMELEN;
1754 
1755 	/*
1756 	 * We have all of 32 characters to stuff a string here.
1757 	 * Is there anything useful we could/should provide?
1758 	 */
1759 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1760 
1761 	ZFS_EXIT(zfsvfs);
1762 	return (0);
1763 }
1764 
1765 static int
1766 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1767 {
1768 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1769 	znode_t *rootzp;
1770 	int error;
1771 
1772 	ZFS_ENTER(zfsvfs);
1773 
1774 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1775 	if (error == 0)
1776 		*vpp = ZTOV(rootzp);
1777 
1778 	ZFS_EXIT(zfsvfs);
1779 	return (error);
1780 }
1781 
1782 /*
1783  * Teardown the zfsvfs::z_os.
1784  *
1785  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1786  * and 'z_teardown_inactive_lock' held.
1787  */
1788 static int
1789 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1790 {
1791 	znode_t	*zp;
1792 
1793 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1794 
1795 	if (!unmounting) {
1796 		/*
1797 		 * We purge the parent filesystem's vfsp as the parent
1798 		 * filesystem and all of its snapshots have their vnode's
1799 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1800 		 * 'z_parent' is self referential for non-snapshots.
1801 		 */
1802 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1803 	}
1804 
1805 	/*
1806 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1807 	 * threads are blocked as zil_close can call zfs_inactive.
1808 	 */
1809 	if (zfsvfs->z_log) {
1810 		zil_close(zfsvfs->z_log);
1811 		zfsvfs->z_log = NULL;
1812 	}
1813 
1814 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1815 
1816 	/*
1817 	 * If we are not unmounting (ie: online recv) and someone already
1818 	 * unmounted this file system while we were doing the switcheroo,
1819 	 * or a reopen of z_os failed then just bail out now.
1820 	 */
1821 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1822 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1823 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1824 		return (SET_ERROR(EIO));
1825 	}
1826 
1827 	/*
1828 	 * At this point there are no vops active, and any new vops will
1829 	 * fail with EIO since we have z_teardown_lock for writer (only
1830 	 * relavent for forced unmount).
1831 	 *
1832 	 * Release all holds on dbufs.
1833 	 */
1834 	mutex_enter(&zfsvfs->z_znodes_lock);
1835 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1836 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1837 		if (zp->z_sa_hdl) {
1838 			ASSERT(ZTOV(zp)->v_count > 0);
1839 			zfs_znode_dmu_fini(zp);
1840 		}
1841 	mutex_exit(&zfsvfs->z_znodes_lock);
1842 
1843 	/*
1844 	 * If we are unmounting, set the unmounted flag and let new vops
1845 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1846 	 * other vops will fail with EIO.
1847 	 */
1848 	if (unmounting) {
1849 		zfsvfs->z_unmounted = B_TRUE;
1850 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1851 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1852 	}
1853 
1854 	/*
1855 	 * z_os will be NULL if there was an error in attempting to reopen
1856 	 * zfsvfs, so just return as the properties had already been
1857 	 * unregistered and cached data had been evicted before.
1858 	 */
1859 	if (zfsvfs->z_os == NULL)
1860 		return (0);
1861 
1862 	/*
1863 	 * Unregister properties.
1864 	 */
1865 	zfs_unregister_callbacks(zfsvfs);
1866 
1867 	/*
1868 	 * Evict cached data
1869 	 */
1870 	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1871 	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1872 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1873 	dmu_objset_evict_dbufs(zfsvfs->z_os);
1874 
1875 	return (0);
1876 }
1877 
1878 /*ARGSUSED*/
1879 static int
1880 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1881 {
1882 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1883 	objset_t *os;
1884 	int ret;
1885 
1886 	ret = secpolicy_fs_unmount(cr, vfsp);
1887 	if (ret) {
1888 		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1889 		    ZFS_DELEG_PERM_MOUNT, cr))
1890 			return (ret);
1891 	}
1892 
1893 	/*
1894 	 * We purge the parent filesystem's vfsp as the parent filesystem
1895 	 * and all of its snapshots have their vnode's v_vfsp set to the
1896 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1897 	 * referential for non-snapshots.
1898 	 */
1899 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1900 
1901 	/*
1902 	 * Unmount any snapshots mounted under .zfs before unmounting the
1903 	 * dataset itself.
1904 	 */
1905 	if (zfsvfs->z_ctldir != NULL &&
1906 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1907 		return (ret);
1908 	}
1909 
1910 	if (!(fflag & MS_FORCE)) {
1911 		/*
1912 		 * Check the number of active vnodes in the file system.
1913 		 * Our count is maintained in the vfs structure, but the
1914 		 * number is off by 1 to indicate a hold on the vfs
1915 		 * structure itself.
1916 		 *
1917 		 * The '.zfs' directory maintains a reference of its
1918 		 * own, and any active references underneath are
1919 		 * reflected in the vnode count.
1920 		 */
1921 		if (zfsvfs->z_ctldir == NULL) {
1922 			if (vfsp->vfs_count > 1)
1923 				return (SET_ERROR(EBUSY));
1924 		} else {
1925 			if (vfsp->vfs_count > 2 ||
1926 			    zfsvfs->z_ctldir->v_count > 1)
1927 				return (SET_ERROR(EBUSY));
1928 		}
1929 	}
1930 
1931 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1932 
1933 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1934 	os = zfsvfs->z_os;
1935 
1936 	/*
1937 	 * z_os will be NULL if there was an error in
1938 	 * attempting to reopen zfsvfs.
1939 	 */
1940 	if (os != NULL) {
1941 		/*
1942 		 * Unset the objset user_ptr.
1943 		 */
1944 		mutex_enter(&os->os_user_ptr_lock);
1945 		dmu_objset_set_user(os, NULL);
1946 		mutex_exit(&os->os_user_ptr_lock);
1947 
1948 		/*
1949 		 * Finally release the objset
1950 		 */
1951 		dmu_objset_disown(os, zfsvfs);
1952 	}
1953 
1954 	/*
1955 	 * We can now safely destroy the '.zfs' directory node.
1956 	 */
1957 	if (zfsvfs->z_ctldir != NULL)
1958 		zfsctl_destroy(zfsvfs);
1959 
1960 	rw_enter(&rz_zev_rwlock, RW_READER);
1961 	if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_zfs_umount)
1962 		rz_zev_callbacks->rz_zev_zfs_umount(vfsp);
1963 	rw_exit(&rz_zev_rwlock);
1964 
1965 	return (0);
1966 }
1967 
1968 static int
1969 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1970 {
1971 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1972 	znode_t		*zp;
1973 	uint64_t	object = 0;
1974 	uint64_t	fid_gen = 0;
1975 	uint64_t	gen_mask;
1976 	uint64_t	zp_gen;
1977 	int 		i, err;
1978 
1979 	*vpp = NULL;
1980 
1981 	ZFS_ENTER(zfsvfs);
1982 
1983 	if (fidp->fid_len == LONG_FID_LEN) {
1984 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1985 		uint64_t	objsetid = 0;
1986 		uint64_t	setgen = 0;
1987 
1988 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1989 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1990 
1991 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1992 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1993 
1994 		ZFS_EXIT(zfsvfs);
1995 
1996 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1997 		if (err)
1998 			return (SET_ERROR(EINVAL));
1999 		ZFS_ENTER(zfsvfs);
2000 	}
2001 
2002 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2003 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2004 
2005 		for (i = 0; i < sizeof (zfid->zf_object); i++)
2006 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2007 
2008 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2009 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2010 	} else {
2011 		ZFS_EXIT(zfsvfs);
2012 		return (SET_ERROR(EINVAL));
2013 	}
2014 
2015 	/* A zero fid_gen means we are in the .zfs control directories */
2016 	if (fid_gen == 0 &&
2017 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
2018 		*vpp = zfsvfs->z_ctldir;
2019 		ASSERT(*vpp != NULL);
2020 		if (object == ZFSCTL_INO_SNAPDIR) {
2021 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2022 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2023 		} else {
2024 			VN_HOLD(*vpp);
2025 		}
2026 		ZFS_EXIT(zfsvfs);
2027 		return (0);
2028 	}
2029 
2030 	gen_mask = -1ULL >> (64 - 8 * i);
2031 
2032 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2033 	if (err = zfs_zget(zfsvfs, object, &zp)) {
2034 		ZFS_EXIT(zfsvfs);
2035 		return (err);
2036 	}
2037 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2038 	    sizeof (uint64_t));
2039 	zp_gen = zp_gen & gen_mask;
2040 	if (zp_gen == 0)
2041 		zp_gen = 1;
2042 	if (zp->z_unlinked || zp_gen != fid_gen) {
2043 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2044 		VN_RELE(ZTOV(zp));
2045 		ZFS_EXIT(zfsvfs);
2046 		return (SET_ERROR(EINVAL));
2047 	}
2048 
2049 	*vpp = ZTOV(zp);
2050 	ZFS_EXIT(zfsvfs);
2051 	return (0);
2052 }
2053 
2054 /*
2055  * Block out VOPs and close zfsvfs_t::z_os
2056  *
2057  * Note, if successful, then we return with the 'z_teardown_lock' and
2058  * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
2059  * dataset and objset intact so that they can be atomically handed off during
2060  * a subsequent rollback or recv operation and the resume thereafter.
2061  */
2062 int
2063 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2064 {
2065 	int error;
2066 
2067 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2068 		return (error);
2069 
2070 	return (0);
2071 }
2072 
2073 /*
2074  * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
2075  * is an invariant across any of the operations that can be performed while the
2076  * filesystem was suspended.  Whether it succeeded or failed, the preconditions
2077  * are the same: the relevant objset and associated dataset are owned by
2078  * zfsvfs, held, and long held on entry.
2079  */
2080 int
2081 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2082 {
2083 	int err;
2084 	znode_t *zp;
2085 	uint64_t sa_obj = 0;
2086 
2087 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2088 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2089 
2090 	/*
2091 	 * We already own this, so just hold and rele it to update the
2092 	 * objset_t, as the one we had before may have been evicted.
2093 	 */
2094 	VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os));
2095 	VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs);
2096 	VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset));
2097 	dmu_objset_rele(zfsvfs->z_os, zfsvfs);
2098 
2099 	/*
2100 	 * Make sure version hasn't changed
2101 	 */
2102 
2103 	err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2104 	    &zfsvfs->z_version);
2105 
2106 	if (err)
2107 		goto bail;
2108 
2109 	err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2110 	    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2111 
2112 	if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2113 		goto bail;
2114 
2115 	if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2116 	    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2117 		goto bail;
2118 
2119 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
2120 		sa_register_update_callback(zfsvfs->z_os,
2121 		    zfs_sa_upgrade);
2122 
2123 	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2124 
2125 	zfs_set_fuid_feature(zfsvfs);
2126 
2127 	/*
2128 	 * Attempt to re-establish all the active znodes with
2129 	 * their dbufs.  If a zfs_rezget() fails, then we'll let
2130 	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2131 	 * when they try to use their znode.
2132 	 */
2133 	mutex_enter(&zfsvfs->z_znodes_lock);
2134 	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2135 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2136 		(void) zfs_rezget(zp);
2137 	}
2138 	mutex_exit(&zfsvfs->z_znodes_lock);
2139 
2140 bail:
2141 	/* release the VOPs */
2142 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2143 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2144 
2145 	if (err) {
2146 		/*
2147 		 * Since we couldn't setup the sa framework, try to force
2148 		 * unmount this file system.
2149 		 */
2150 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2151 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2152 	}
2153 	return (err);
2154 }
2155 
2156 static void
2157 zfs_freevfs(vfs_t *vfsp)
2158 {
2159 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2160 
2161 	/*
2162 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2163 	 * from zfs_mount().  Release it here.  If we came through
2164 	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2165 	 * skip the VFS_RELE for rootvfs.
2166 	 */
2167 	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2168 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2169 
2170 	zfsvfs_free(zfsvfs);
2171 
2172 	atomic_add_32(&zfs_active_fs_count, -1);
2173 }
2174 
2175 /*
2176  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2177  * so we can't safely do any non-idempotent initialization here.
2178  * Leave that to zfs_init() and zfs_fini(), which are called
2179  * from the module's _init() and _fini() entry points.
2180  */
2181 /*ARGSUSED*/
2182 static int
2183 zfs_vfsinit(int fstype, char *name)
2184 {
2185 	int error;
2186 
2187 	zfsfstype = fstype;
2188 
2189 	/*
2190 	 * Setup vfsops and vnodeops tables.
2191 	 */
2192 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2193 	if (error != 0) {
2194 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
2195 	}
2196 
2197 	error = zfs_create_op_tables();
2198 	if (error) {
2199 		zfs_remove_op_tables();
2200 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2201 		(void) vfs_freevfsops_by_type(zfsfstype);
2202 		return (error);
2203 	}
2204 
2205 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2206 
2207 	/*
2208 	 * Unique major number for all zfs mounts.
2209 	 * If we run out of 32-bit minors, we'll getudev() another major.
2210 	 */
2211 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2212 	zfs_minor = ZFS_MIN_MINOR;
2213 
2214 	return (0);
2215 }
2216 
2217 void
2218 zfs_init(void)
2219 {
2220 	/*
2221 	 * Initialize .zfs directory structures
2222 	 */
2223 	zfsctl_init();
2224 
2225 	/*
2226 	 * Initialize znode cache, vnode ops, etc...
2227 	 */
2228 	zfs_znode_init();
2229 
2230 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2231 }
2232 
2233 void
2234 zfs_fini(void)
2235 {
2236 	zfsctl_fini();
2237 	zfs_znode_fini();
2238 }
2239 
2240 int
2241 zfs_busy(void)
2242 {
2243 	return (zfs_active_fs_count != 0);
2244 }
2245 
2246 int
2247 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2248 {
2249 	int error;
2250 	objset_t *os = zfsvfs->z_os;
2251 	dmu_tx_t *tx;
2252 
2253 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2254 		return (SET_ERROR(EINVAL));
2255 
2256 	if (newvers < zfsvfs->z_version)
2257 		return (SET_ERROR(EINVAL));
2258 
2259 	if (zfs_spa_version_map(newvers) >
2260 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2261 		return (SET_ERROR(ENOTSUP));
2262 
2263 	tx = dmu_tx_create(os);
2264 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2265 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2266 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2267 		    ZFS_SA_ATTRS);
2268 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2269 	}
2270 	error = dmu_tx_assign(tx, TXG_WAIT);
2271 	if (error) {
2272 		dmu_tx_abort(tx);
2273 		return (error);
2274 	}
2275 
2276 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2277 	    8, 1, &newvers, tx);
2278 
2279 	if (error) {
2280 		dmu_tx_commit(tx);
2281 		return (error);
2282 	}
2283 
2284 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2285 		uint64_t sa_obj;
2286 
2287 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2288 		    SPA_VERSION_SA);
2289 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2290 		    DMU_OT_NONE, 0, tx);
2291 
2292 		error = zap_add(os, MASTER_NODE_OBJ,
2293 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2294 		ASSERT0(error);
2295 
2296 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2297 		sa_register_update_callback(os, zfs_sa_upgrade);
2298 	}
2299 
2300 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2301 	    "from %llu to %llu", zfsvfs->z_version, newvers);
2302 
2303 	dmu_tx_commit(tx);
2304 
2305 	zfsvfs->z_version = newvers;
2306 
2307 	zfs_set_fuid_feature(zfsvfs);
2308 
2309 	return (0);
2310 }
2311 
2312 /*
2313  * Read a property stored within the master node.
2314  */
2315 int
2316 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2317 {
2318 	const char *pname;
2319 	int error = ENOENT;
2320 
2321 	/*
2322 	 * Look up the file system's value for the property.  For the
2323 	 * version property, we look up a slightly different string.
2324 	 */
2325 	if (prop == ZFS_PROP_VERSION)
2326 		pname = ZPL_VERSION_STR;
2327 	else
2328 		pname = zfs_prop_to_name(prop);
2329 
2330 	if (os != NULL)
2331 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2332 
2333 	if (error == ENOENT) {
2334 		/* No value set, use the default value */
2335 		switch (prop) {
2336 		case ZFS_PROP_VERSION:
2337 			*value = ZPL_VERSION;
2338 			break;
2339 		case ZFS_PROP_NORMALIZE:
2340 		case ZFS_PROP_UTF8ONLY:
2341 			*value = 0;
2342 			break;
2343 		case ZFS_PROP_CASE:
2344 			*value = ZFS_CASE_SENSITIVE;
2345 			break;
2346 		default:
2347 			return (error);
2348 		}
2349 		error = 0;
2350 	}
2351 	return (error);
2352 }
2353 
2354 static vfsdef_t vfw = {
2355 	VFSDEF_VERSION,
2356 	MNTTYPE_ZFS,
2357 	zfs_vfsinit,
2358 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2359 	    VSW_XID|VSW_ZMOUNT,
2360 	&zfs_mntopts
2361 };
2362 
2363 struct modlfs zfs_modlfs = {
2364 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2365 };
2366