xref: /titanic_41/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision cde2885fdf538266ee2a3b08dee2d5075ce8fa2b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/sysmacros.h>
30 #include <sys/kmem.h>
31 #include <sys/pathname.h>
32 #include <sys/vnode.h>
33 #include <sys/vfs.h>
34 #include <sys/vfs_opreg.h>
35 #include <sys/mntent.h>
36 #include <sys/mount.h>
37 #include <sys/cmn_err.h>
38 #include "fs/fs_subr.h"
39 #include <sys/zfs_znode.h>
40 #include <sys/zfs_dir.h>
41 #include <sys/zil.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/dmu.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_dataset.h>
46 #include <sys/dsl_deleg.h>
47 #include <sys/spa.h>
48 #include <sys/zap.h>
49 #include <sys/varargs.h>
50 #include <sys/policy.h>
51 #include <sys/atomic.h>
52 #include <sys/mkdev.h>
53 #include <sys/modctl.h>
54 #include <sys/refstr.h>
55 #include <sys/zfs_ioctl.h>
56 #include <sys/zfs_ctldir.h>
57 #include <sys/zfs_fuid.h>
58 #include <sys/bootconf.h>
59 #include <sys/sunddi.h>
60 #include <sys/dnlc.h>
61 #include <sys/dmu_objset.h>
62 #include <sys/spa_boot.h>
63 
64 int zfsfstype;
65 vfsops_t *zfs_vfsops = NULL;
66 static major_t zfs_major;
67 static minor_t zfs_minor;
68 static kmutex_t	zfs_dev_mtx;
69 
70 extern int sys_shutdown;
71 
72 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
73 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
74 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
75 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
76 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
77 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
78 static void zfs_freevfs(vfs_t *vfsp);
79 
80 static const fs_operation_def_t zfs_vfsops_template[] = {
81 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
82 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
83 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
84 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
85 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
86 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
87 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
88 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
89 	NULL,			NULL
90 };
91 
92 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
93 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
94 	NULL,			NULL
95 };
96 
97 /*
98  * We need to keep a count of active fs's.
99  * This is necessary to prevent our module
100  * from being unloaded after a umount -f
101  */
102 static uint32_t	zfs_active_fs_count = 0;
103 
104 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
105 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
107 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
108 
109 /*
110  * MO_DEFAULT is not used since the default value is determined
111  * by the equivalent property.
112  */
113 static mntopt_t mntopts[] = {
114 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
115 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
116 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
117 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
118 };
119 
120 static mntopts_t zfs_mntopts = {
121 	sizeof (mntopts) / sizeof (mntopt_t),
122 	mntopts
123 };
124 
125 /*ARGSUSED*/
126 int
127 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
128 {
129 	/*
130 	 * Data integrity is job one.  We don't want a compromised kernel
131 	 * writing to the storage pool, so we never sync during panic.
132 	 */
133 	if (panicstr)
134 		return (0);
135 
136 	/*
137 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
138 	 * to sync metadata, which they would otherwise cache indefinitely.
139 	 * Semantically, the only requirement is that the sync be initiated.
140 	 * The DMU syncs out txgs frequently, so there's nothing to do.
141 	 */
142 	if (flag & SYNC_ATTR)
143 		return (0);
144 
145 	if (vfsp != NULL) {
146 		/*
147 		 * Sync a specific filesystem.
148 		 */
149 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
150 		dsl_pool_t *dp;
151 
152 		ZFS_ENTER(zfsvfs);
153 		dp = dmu_objset_pool(zfsvfs->z_os);
154 
155 		/*
156 		 * If the system is shutting down, then skip any
157 		 * filesystems which may exist on a suspended pool.
158 		 */
159 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
160 			ZFS_EXIT(zfsvfs);
161 			return (0);
162 		}
163 
164 		if (zfsvfs->z_log != NULL)
165 			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
166 		else
167 			txg_wait_synced(dp, 0);
168 		ZFS_EXIT(zfsvfs);
169 	} else {
170 		/*
171 		 * Sync all ZFS filesystems.  This is what happens when you
172 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
173 		 * request by waiting for all pools to commit all dirty data.
174 		 */
175 		spa_sync_allpools();
176 	}
177 
178 	return (0);
179 }
180 
181 static int
182 zfs_create_unique_device(dev_t *dev)
183 {
184 	major_t new_major;
185 
186 	do {
187 		ASSERT3U(zfs_minor, <=, MAXMIN32);
188 		minor_t start = zfs_minor;
189 		do {
190 			mutex_enter(&zfs_dev_mtx);
191 			if (zfs_minor >= MAXMIN32) {
192 				/*
193 				 * If we're still using the real major
194 				 * keep out of /dev/zfs and /dev/zvol minor
195 				 * number space.  If we're using a getudev()'ed
196 				 * major number, we can use all of its minors.
197 				 */
198 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
199 					zfs_minor = ZFS_MIN_MINOR;
200 				else
201 					zfs_minor = 0;
202 			} else {
203 				zfs_minor++;
204 			}
205 			*dev = makedevice(zfs_major, zfs_minor);
206 			mutex_exit(&zfs_dev_mtx);
207 		} while (vfs_devismounted(*dev) && zfs_minor != start);
208 		if (zfs_minor == start) {
209 			/*
210 			 * We are using all ~262,000 minor numbers for the
211 			 * current major number.  Create a new major number.
212 			 */
213 			if ((new_major = getudev()) == (major_t)-1) {
214 				cmn_err(CE_WARN,
215 				    "zfs_mount: Can't get unique major "
216 				    "device number.");
217 				return (-1);
218 			}
219 			mutex_enter(&zfs_dev_mtx);
220 			zfs_major = new_major;
221 			zfs_minor = 0;
222 
223 			mutex_exit(&zfs_dev_mtx);
224 		} else {
225 			break;
226 		}
227 		/* CONSTANTCONDITION */
228 	} while (1);
229 
230 	return (0);
231 }
232 
233 static void
234 atime_changed_cb(void *arg, uint64_t newval)
235 {
236 	zfsvfs_t *zfsvfs = arg;
237 
238 	if (newval == TRUE) {
239 		zfsvfs->z_atime = TRUE;
240 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
241 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
242 	} else {
243 		zfsvfs->z_atime = FALSE;
244 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
245 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
246 	}
247 }
248 
249 static void
250 xattr_changed_cb(void *arg, uint64_t newval)
251 {
252 	zfsvfs_t *zfsvfs = arg;
253 
254 	if (newval == TRUE) {
255 		/* XXX locking on vfs_flag? */
256 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
257 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
258 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
259 	} else {
260 		/* XXX locking on vfs_flag? */
261 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
262 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
263 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
264 	}
265 }
266 
267 static void
268 blksz_changed_cb(void *arg, uint64_t newval)
269 {
270 	zfsvfs_t *zfsvfs = arg;
271 
272 	if (newval < SPA_MINBLOCKSIZE ||
273 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
274 		newval = SPA_MAXBLOCKSIZE;
275 
276 	zfsvfs->z_max_blksz = newval;
277 	zfsvfs->z_vfs->vfs_bsize = newval;
278 }
279 
280 static void
281 readonly_changed_cb(void *arg, uint64_t newval)
282 {
283 	zfsvfs_t *zfsvfs = arg;
284 
285 	if (newval) {
286 		/* XXX locking on vfs_flag? */
287 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
288 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
289 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
290 	} else {
291 		/* XXX locking on vfs_flag? */
292 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
293 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
294 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
295 	}
296 }
297 
298 static void
299 devices_changed_cb(void *arg, uint64_t newval)
300 {
301 	zfsvfs_t *zfsvfs = arg;
302 
303 	if (newval == FALSE) {
304 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
305 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
306 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
307 	} else {
308 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
309 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
310 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
311 	}
312 }
313 
314 static void
315 setuid_changed_cb(void *arg, uint64_t newval)
316 {
317 	zfsvfs_t *zfsvfs = arg;
318 
319 	if (newval == FALSE) {
320 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
321 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
322 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
323 	} else {
324 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
325 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
326 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
327 	}
328 }
329 
330 static void
331 exec_changed_cb(void *arg, uint64_t newval)
332 {
333 	zfsvfs_t *zfsvfs = arg;
334 
335 	if (newval == FALSE) {
336 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
337 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
338 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
339 	} else {
340 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
341 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
342 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
343 	}
344 }
345 
346 /*
347  * The nbmand mount option can be changed at mount time.
348  * We can't allow it to be toggled on live file systems or incorrect
349  * behavior may be seen from cifs clients
350  *
351  * This property isn't registered via dsl_prop_register(), but this callback
352  * will be called when a file system is first mounted
353  */
354 static void
355 nbmand_changed_cb(void *arg, uint64_t newval)
356 {
357 	zfsvfs_t *zfsvfs = arg;
358 	if (newval == FALSE) {
359 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
360 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
361 	} else {
362 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
363 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
364 	}
365 }
366 
367 static void
368 snapdir_changed_cb(void *arg, uint64_t newval)
369 {
370 	zfsvfs_t *zfsvfs = arg;
371 
372 	zfsvfs->z_show_ctldir = newval;
373 }
374 
375 static void
376 vscan_changed_cb(void *arg, uint64_t newval)
377 {
378 	zfsvfs_t *zfsvfs = arg;
379 
380 	zfsvfs->z_vscan = newval;
381 }
382 
383 static void
384 acl_mode_changed_cb(void *arg, uint64_t newval)
385 {
386 	zfsvfs_t *zfsvfs = arg;
387 
388 	zfsvfs->z_acl_mode = newval;
389 }
390 
391 static void
392 acl_inherit_changed_cb(void *arg, uint64_t newval)
393 {
394 	zfsvfs_t *zfsvfs = arg;
395 
396 	zfsvfs->z_acl_inherit = newval;
397 }
398 
399 static int
400 zfs_register_callbacks(vfs_t *vfsp)
401 {
402 	struct dsl_dataset *ds = NULL;
403 	objset_t *os = NULL;
404 	zfsvfs_t *zfsvfs = NULL;
405 	uint64_t nbmand;
406 	int readonly, do_readonly = B_FALSE;
407 	int setuid, do_setuid = B_FALSE;
408 	int exec, do_exec = B_FALSE;
409 	int devices, do_devices = B_FALSE;
410 	int xattr, do_xattr = B_FALSE;
411 	int atime, do_atime = B_FALSE;
412 	int error = 0;
413 
414 	ASSERT(vfsp);
415 	zfsvfs = vfsp->vfs_data;
416 	ASSERT(zfsvfs);
417 	os = zfsvfs->z_os;
418 
419 	/*
420 	 * The act of registering our callbacks will destroy any mount
421 	 * options we may have.  In order to enable temporary overrides
422 	 * of mount options, we stash away the current values and
423 	 * restore them after we register the callbacks.
424 	 */
425 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
426 		readonly = B_TRUE;
427 		do_readonly = B_TRUE;
428 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
429 		readonly = B_FALSE;
430 		do_readonly = B_TRUE;
431 	}
432 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
433 		devices = B_FALSE;
434 		setuid = B_FALSE;
435 		do_devices = B_TRUE;
436 		do_setuid = B_TRUE;
437 	} else {
438 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
439 			devices = B_FALSE;
440 			do_devices = B_TRUE;
441 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
442 			devices = B_TRUE;
443 			do_devices = B_TRUE;
444 		}
445 
446 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
447 			setuid = B_FALSE;
448 			do_setuid = B_TRUE;
449 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
450 			setuid = B_TRUE;
451 			do_setuid = B_TRUE;
452 		}
453 	}
454 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
455 		exec = B_FALSE;
456 		do_exec = B_TRUE;
457 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
458 		exec = B_TRUE;
459 		do_exec = B_TRUE;
460 	}
461 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
462 		xattr = B_FALSE;
463 		do_xattr = B_TRUE;
464 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
465 		xattr = B_TRUE;
466 		do_xattr = B_TRUE;
467 	}
468 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
469 		atime = B_FALSE;
470 		do_atime = B_TRUE;
471 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
472 		atime = B_TRUE;
473 		do_atime = B_TRUE;
474 	}
475 
476 	/*
477 	 * nbmand is a special property.  It can only be changed at
478 	 * mount time.
479 	 *
480 	 * This is weird, but it is documented to only be changeable
481 	 * at mount time.
482 	 */
483 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
484 		nbmand = B_FALSE;
485 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
486 		nbmand = B_TRUE;
487 	} else {
488 		char osname[MAXNAMELEN];
489 
490 		dmu_objset_name(os, osname);
491 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
492 		    NULL)) {
493 			return (error);
494 		}
495 	}
496 
497 	/*
498 	 * Register property callbacks.
499 	 *
500 	 * It would probably be fine to just check for i/o error from
501 	 * the first prop_register(), but I guess I like to go
502 	 * overboard...
503 	 */
504 	ds = dmu_objset_ds(os);
505 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
506 	error = error ? error : dsl_prop_register(ds,
507 	    "xattr", xattr_changed_cb, zfsvfs);
508 	error = error ? error : dsl_prop_register(ds,
509 	    "recordsize", blksz_changed_cb, zfsvfs);
510 	error = error ? error : dsl_prop_register(ds,
511 	    "readonly", readonly_changed_cb, zfsvfs);
512 	error = error ? error : dsl_prop_register(ds,
513 	    "devices", devices_changed_cb, zfsvfs);
514 	error = error ? error : dsl_prop_register(ds,
515 	    "setuid", setuid_changed_cb, zfsvfs);
516 	error = error ? error : dsl_prop_register(ds,
517 	    "exec", exec_changed_cb, zfsvfs);
518 	error = error ? error : dsl_prop_register(ds,
519 	    "snapdir", snapdir_changed_cb, zfsvfs);
520 	error = error ? error : dsl_prop_register(ds,
521 	    "aclmode", acl_mode_changed_cb, zfsvfs);
522 	error = error ? error : dsl_prop_register(ds,
523 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
524 	error = error ? error : dsl_prop_register(ds,
525 	    "vscan", vscan_changed_cb, zfsvfs);
526 	if (error)
527 		goto unregister;
528 
529 	/*
530 	 * Invoke our callbacks to restore temporary mount options.
531 	 */
532 	if (do_readonly)
533 		readonly_changed_cb(zfsvfs, readonly);
534 	if (do_setuid)
535 		setuid_changed_cb(zfsvfs, setuid);
536 	if (do_exec)
537 		exec_changed_cb(zfsvfs, exec);
538 	if (do_devices)
539 		devices_changed_cb(zfsvfs, devices);
540 	if (do_xattr)
541 		xattr_changed_cb(zfsvfs, xattr);
542 	if (do_atime)
543 		atime_changed_cb(zfsvfs, atime);
544 
545 	nbmand_changed_cb(zfsvfs, nbmand);
546 
547 	return (0);
548 
549 unregister:
550 	/*
551 	 * We may attempt to unregister some callbacks that are not
552 	 * registered, but this is OK; it will simply return ENOMSG,
553 	 * which we will ignore.
554 	 */
555 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
556 	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
557 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
558 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
559 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
560 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
561 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
562 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
563 	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
564 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
565 	    zfsvfs);
566 	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
567 	return (error);
568 
569 }
570 
571 static int
572 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
573 {
574 	int error;
575 
576 	error = zfs_register_callbacks(zfsvfs->z_vfs);
577 	if (error)
578 		return (error);
579 
580 	/*
581 	 * Set the objset user_ptr to track its zfsvfs.
582 	 */
583 	mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock);
584 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
585 	mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock);
586 
587 	/*
588 	 * If we are not mounting (ie: online recv), then we don't
589 	 * have to worry about replaying the log as we blocked all
590 	 * operations out since we closed the ZIL.
591 	 */
592 	if (mounting) {
593 		boolean_t readonly;
594 
595 		/*
596 		 * During replay we remove the read only flag to
597 		 * allow replays to succeed.
598 		 */
599 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
600 		if (readonly != 0)
601 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
602 		else
603 			zfs_unlinked_drain(zfsvfs);
604 
605 		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
606 		if (zil_disable) {
607 			zil_destroy(zfsvfs->z_log, 0);
608 			zfsvfs->z_log = NULL;
609 		} else {
610 			/*
611 			 * Parse and replay the intent log.
612 			 *
613 			 * Because of ziltest, this must be done after
614 			 * zfs_unlinked_drain().  (Further note: ziltest
615 			 * doesn't use readonly mounts, where
616 			 * zfs_unlinked_drain() isn't called.)  This is because
617 			 * ziltest causes spa_sync() to think it's committed,
618 			 * but actually it is not, so the intent log contains
619 			 * many txg's worth of changes.
620 			 *
621 			 * In particular, if object N is in the unlinked set in
622 			 * the last txg to actually sync, then it could be
623 			 * actually freed in a later txg and then reallocated
624 			 * in a yet later txg.  This would write a "create
625 			 * object N" record to the intent log.  Normally, this
626 			 * would be fine because the spa_sync() would have
627 			 * written out the fact that object N is free, before
628 			 * we could write the "create object N" intent log
629 			 * record.
630 			 *
631 			 * But when we are in ziltest mode, we advance the "open
632 			 * txg" without actually spa_sync()-ing the changes to
633 			 * disk.  So we would see that object N is still
634 			 * allocated and in the unlinked set, and there is an
635 			 * intent log record saying to allocate it.
636 			 */
637 			zfsvfs->z_replay = B_TRUE;
638 			zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector);
639 			zfsvfs->z_replay = B_FALSE;
640 		}
641 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
642 	}
643 
644 	return (0);
645 }
646 
647 static void
648 zfs_freezfsvfs(zfsvfs_t *zfsvfs)
649 {
650 	mutex_destroy(&zfsvfs->z_znodes_lock);
651 	mutex_destroy(&zfsvfs->z_online_recv_lock);
652 	mutex_destroy(&zfsvfs->z_lock);
653 	list_destroy(&zfsvfs->z_all_znodes);
654 	rrw_destroy(&zfsvfs->z_teardown_lock);
655 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
656 	rw_destroy(&zfsvfs->z_fuid_lock);
657 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
658 }
659 
660 static int
661 zfs_domount(vfs_t *vfsp, char *osname)
662 {
663 	dev_t mount_dev;
664 	uint64_t recordsize, readonly;
665 	int error = 0;
666 	int mode;
667 	zfsvfs_t *zfsvfs;
668 	znode_t *zp = NULL;
669 
670 	ASSERT(vfsp);
671 	ASSERT(osname);
672 
673 	/*
674 	 * Initialize the zfs-specific filesystem structure.
675 	 * Should probably make this a kmem cache, shuffle fields,
676 	 * and just bzero up to z_hold_mtx[].
677 	 */
678 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
679 	zfsvfs->z_vfs = vfsp;
680 	zfsvfs->z_parent = zfsvfs;
681 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
682 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
683 	zfsvfs->z_fuid_dirty = B_FALSE;
684 
685 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
686 	mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL);
687 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
688 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
689 	    offsetof(znode_t, z_link_node));
690 	rrw_init(&zfsvfs->z_teardown_lock);
691 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
692 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
693 
694 	/* Initialize the generic filesystem structure. */
695 	vfsp->vfs_bcount = 0;
696 	vfsp->vfs_data = NULL;
697 
698 	if (zfs_create_unique_device(&mount_dev) == -1) {
699 		error = ENODEV;
700 		goto out;
701 	}
702 	ASSERT(vfs_devismounted(mount_dev) == 0);
703 
704 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
705 	    NULL))
706 		goto out;
707 
708 	vfsp->vfs_dev = mount_dev;
709 	vfsp->vfs_fstype = zfsfstype;
710 	vfsp->vfs_bsize = recordsize;
711 	vfsp->vfs_flag |= VFS_NOTRUNC;
712 	vfsp->vfs_data = zfsvfs;
713 
714 	if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL))
715 		goto out;
716 
717 	mode = DS_MODE_OWNER;
718 	if (readonly)
719 		mode |= DS_MODE_READONLY;
720 
721 	error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os);
722 	if (error == EROFS) {
723 		mode = DS_MODE_OWNER | DS_MODE_READONLY;
724 		error = dmu_objset_open(osname, DMU_OST_ZFS, mode,
725 		    &zfsvfs->z_os);
726 	}
727 
728 	if (error)
729 		goto out;
730 
731 	if (error = zfs_init_fs(zfsvfs, &zp))
732 		goto out;
733 
734 	/* The call to zfs_init_fs leaves the vnode held, release it here. */
735 	VN_RELE(ZTOV(zp));
736 
737 	/*
738 	 * Set features for file system.
739 	 */
740 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
741 	if (zfsvfs->z_use_fuids) {
742 		vfs_set_feature(vfsp, VFSFT_XVATTR);
743 		vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS);
744 		vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS);
745 		vfs_set_feature(vfsp, VFSFT_ACLONCREATE);
746 	}
747 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
748 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
749 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
750 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
751 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
752 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
753 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
754 	}
755 
756 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
757 		uint64_t pval;
758 
759 		ASSERT(mode & DS_MODE_READONLY);
760 		atime_changed_cb(zfsvfs, B_FALSE);
761 		readonly_changed_cb(zfsvfs, B_TRUE);
762 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
763 			goto out;
764 		xattr_changed_cb(zfsvfs, pval);
765 		zfsvfs->z_issnap = B_TRUE;
766 	} else {
767 		error = zfsvfs_setup(zfsvfs, B_TRUE);
768 	}
769 
770 	if (!zfsvfs->z_issnap)
771 		zfsctl_create(zfsvfs);
772 out:
773 	if (error) {
774 		if (zfsvfs->z_os)
775 			dmu_objset_close(zfsvfs->z_os);
776 		zfs_freezfsvfs(zfsvfs);
777 	} else {
778 		atomic_add_32(&zfs_active_fs_count, 1);
779 	}
780 
781 	return (error);
782 }
783 
784 void
785 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
786 {
787 	objset_t *os = zfsvfs->z_os;
788 	struct dsl_dataset *ds;
789 
790 	/*
791 	 * Unregister properties.
792 	 */
793 	if (!dmu_objset_is_snapshot(os)) {
794 		ds = dmu_objset_ds(os);
795 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
796 		    zfsvfs) == 0);
797 
798 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
799 		    zfsvfs) == 0);
800 
801 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
802 		    zfsvfs) == 0);
803 
804 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
805 		    zfsvfs) == 0);
806 
807 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
808 		    zfsvfs) == 0);
809 
810 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
811 		    zfsvfs) == 0);
812 
813 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
814 		    zfsvfs) == 0);
815 
816 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
817 		    zfsvfs) == 0);
818 
819 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
820 		    zfsvfs) == 0);
821 
822 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
823 		    acl_inherit_changed_cb, zfsvfs) == 0);
824 
825 		VERIFY(dsl_prop_unregister(ds, "vscan",
826 		    vscan_changed_cb, zfsvfs) == 0);
827 	}
828 }
829 
830 /*
831  * Convert a decimal digit string to a uint64_t integer.
832  */
833 static int
834 str_to_uint64(char *str, uint64_t *objnum)
835 {
836 	uint64_t num = 0;
837 
838 	while (*str) {
839 		if (*str < '0' || *str > '9')
840 			return (EINVAL);
841 
842 		num = num*10 + *str++ - '0';
843 	}
844 
845 	*objnum = num;
846 	return (0);
847 }
848 
849 /*
850  * The boot path passed from the boot loader is in the form of
851  * "rootpool-name/root-filesystem-object-number'. Convert this
852  * string to a dataset name: "rootpool-name/root-filesystem-name".
853  */
854 static int
855 zfs_parse_bootfs(char *bpath, char *outpath)
856 {
857 	char *slashp;
858 	uint64_t objnum;
859 	int error;
860 
861 	if (*bpath == 0 || *bpath == '/')
862 		return (EINVAL);
863 
864 	(void) strcpy(outpath, bpath);
865 
866 	slashp = strchr(bpath, '/');
867 
868 	/* if no '/', just return the pool name */
869 	if (slashp == NULL) {
870 		return (0);
871 	}
872 
873 	/* if not a number, just return the root dataset name */
874 	if (str_to_uint64(slashp+1, &objnum)) {
875 		return (0);
876 	}
877 
878 	*slashp = '\0';
879 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
880 	*slashp = '/';
881 
882 	return (error);
883 }
884 
885 static int
886 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
887 {
888 	int error = 0;
889 	static int zfsrootdone = 0;
890 	zfsvfs_t *zfsvfs = NULL;
891 	znode_t *zp = NULL;
892 	vnode_t *vp = NULL;
893 	char *zfs_bootfs;
894 	char *zfs_devid;
895 
896 	ASSERT(vfsp);
897 
898 	/*
899 	 * The filesystem that we mount as root is defined in the
900 	 * boot property "zfs-bootfs" with a format of
901 	 * "poolname/root-dataset-objnum".
902 	 */
903 	if (why == ROOT_INIT) {
904 		if (zfsrootdone++)
905 			return (EBUSY);
906 		/*
907 		 * the process of doing a spa_load will require the
908 		 * clock to be set before we could (for example) do
909 		 * something better by looking at the timestamp on
910 		 * an uberblock, so just set it to -1.
911 		 */
912 		clkset(-1);
913 
914 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
915 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
916 			    "bootfs name");
917 			return (EINVAL);
918 		}
919 		zfs_devid = spa_get_bootprop("diskdevid");
920 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
921 		if (zfs_devid)
922 			spa_free_bootprop(zfs_devid);
923 		if (error) {
924 			spa_free_bootprop(zfs_bootfs);
925 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
926 			    error);
927 			return (error);
928 		}
929 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
930 			spa_free_bootprop(zfs_bootfs);
931 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
932 			    error);
933 			return (error);
934 		}
935 
936 		spa_free_bootprop(zfs_bootfs);
937 
938 		if (error = vfs_lock(vfsp))
939 			return (error);
940 
941 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
942 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
943 			goto out;
944 		}
945 
946 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
947 		ASSERT(zfsvfs);
948 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
949 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
950 			goto out;
951 		}
952 
953 		vp = ZTOV(zp);
954 		mutex_enter(&vp->v_lock);
955 		vp->v_flag |= VROOT;
956 		mutex_exit(&vp->v_lock);
957 		rootvp = vp;
958 
959 		/*
960 		 * Leave rootvp held.  The root file system is never unmounted.
961 		 */
962 
963 		vfs_add((struct vnode *)0, vfsp,
964 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
965 out:
966 		vfs_unlock(vfsp);
967 		return (error);
968 	} else if (why == ROOT_REMOUNT) {
969 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
970 		vfsp->vfs_flag |= VFS_REMOUNT;
971 
972 		/* refresh mount options */
973 		zfs_unregister_callbacks(vfsp->vfs_data);
974 		return (zfs_register_callbacks(vfsp));
975 
976 	} else if (why == ROOT_UNMOUNT) {
977 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
978 		(void) zfs_sync(vfsp, 0, 0);
979 		return (0);
980 	}
981 
982 	/*
983 	 * if "why" is equal to anything else other than ROOT_INIT,
984 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
985 	 */
986 	return (ENOTSUP);
987 }
988 
989 /*ARGSUSED*/
990 static int
991 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
992 {
993 	char		*osname;
994 	pathname_t	spn;
995 	int		error = 0;
996 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
997 	    UIO_SYSSPACE : UIO_USERSPACE;
998 	int		canwrite;
999 
1000 	if (mvp->v_type != VDIR)
1001 		return (ENOTDIR);
1002 
1003 	mutex_enter(&mvp->v_lock);
1004 	if ((uap->flags & MS_REMOUNT) == 0 &&
1005 	    (uap->flags & MS_OVERLAY) == 0 &&
1006 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1007 		mutex_exit(&mvp->v_lock);
1008 		return (EBUSY);
1009 	}
1010 	mutex_exit(&mvp->v_lock);
1011 
1012 	/*
1013 	 * ZFS does not support passing unparsed data in via MS_DATA.
1014 	 * Users should use the MS_OPTIONSTR interface; this means
1015 	 * that all option parsing is already done and the options struct
1016 	 * can be interrogated.
1017 	 */
1018 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1019 		return (EINVAL);
1020 
1021 	/*
1022 	 * Get the objset name (the "special" mount argument).
1023 	 */
1024 	if (error = pn_get(uap->spec, fromspace, &spn))
1025 		return (error);
1026 
1027 	osname = spn.pn_path;
1028 
1029 	/*
1030 	 * Check for mount privilege?
1031 	 *
1032 	 * If we don't have privilege then see if
1033 	 * we have local permission to allow it
1034 	 */
1035 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1036 	if (error) {
1037 		error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr);
1038 		if (error == 0) {
1039 			vattr_t		vattr;
1040 
1041 			/*
1042 			 * Make sure user is the owner of the mount point
1043 			 * or has sufficient privileges.
1044 			 */
1045 
1046 			vattr.va_mask = AT_UID;
1047 
1048 			if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1049 				goto out;
1050 			}
1051 
1052 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1053 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1054 				error = EPERM;
1055 				goto out;
1056 			}
1057 
1058 			secpolicy_fs_mount_clearopts(cr, vfsp);
1059 		} else {
1060 			goto out;
1061 		}
1062 	}
1063 
1064 	/*
1065 	 * Refuse to mount a filesystem if we are in a local zone and the
1066 	 * dataset is not visible.
1067 	 */
1068 	if (!INGLOBALZONE(curproc) &&
1069 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1070 		error = EPERM;
1071 		goto out;
1072 	}
1073 
1074 	/*
1075 	 * When doing a remount, we simply refresh our temporary properties
1076 	 * according to those options set in the current VFS options.
1077 	 */
1078 	if (uap->flags & MS_REMOUNT) {
1079 		/* refresh mount options */
1080 		zfs_unregister_callbacks(vfsp->vfs_data);
1081 		error = zfs_register_callbacks(vfsp);
1082 		goto out;
1083 	}
1084 
1085 	error = zfs_domount(vfsp, osname);
1086 
1087 	/*
1088 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1089 	 * disappear due to a forced unmount.
1090 	 */
1091 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1092 		VFS_HOLD(mvp->v_vfsp);
1093 
1094 out:
1095 	pn_free(&spn);
1096 	return (error);
1097 }
1098 
1099 static int
1100 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1101 {
1102 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1103 	dev32_t d32;
1104 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1105 
1106 	ZFS_ENTER(zfsvfs);
1107 
1108 	dmu_objset_space(zfsvfs->z_os,
1109 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1110 
1111 	/*
1112 	 * The underlying storage pool actually uses multiple block sizes.
1113 	 * We report the fragsize as the smallest block size we support,
1114 	 * and we report our blocksize as the filesystem's maximum blocksize.
1115 	 */
1116 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1117 	statp->f_bsize = zfsvfs->z_max_blksz;
1118 
1119 	/*
1120 	 * The following report "total" blocks of various kinds in the
1121 	 * file system, but reported in terms of f_frsize - the
1122 	 * "fragment" size.
1123 	 */
1124 
1125 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1126 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1127 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1128 
1129 	/*
1130 	 * statvfs() should really be called statufs(), because it assumes
1131 	 * static metadata.  ZFS doesn't preallocate files, so the best
1132 	 * we can do is report the max that could possibly fit in f_files,
1133 	 * and that minus the number actually used in f_ffree.
1134 	 * For f_ffree, report the smaller of the number of object available
1135 	 * and the number of blocks (each object will take at least a block).
1136 	 */
1137 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1138 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1139 	statp->f_files = statp->f_ffree + usedobjs;
1140 
1141 	(void) cmpldev(&d32, vfsp->vfs_dev);
1142 	statp->f_fsid = d32;
1143 
1144 	/*
1145 	 * We're a zfs filesystem.
1146 	 */
1147 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1148 
1149 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1150 
1151 	statp->f_namemax = ZFS_MAXNAMELEN;
1152 
1153 	/*
1154 	 * We have all of 32 characters to stuff a string here.
1155 	 * Is there anything useful we could/should provide?
1156 	 */
1157 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1158 
1159 	ZFS_EXIT(zfsvfs);
1160 	return (0);
1161 }
1162 
1163 static int
1164 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1165 {
1166 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1167 	znode_t *rootzp;
1168 	int error;
1169 
1170 	ZFS_ENTER(zfsvfs);
1171 
1172 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1173 	if (error == 0)
1174 		*vpp = ZTOV(rootzp);
1175 
1176 	ZFS_EXIT(zfsvfs);
1177 	return (error);
1178 }
1179 
1180 /*
1181  * Teardown the zfsvfs::z_os.
1182  *
1183  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1184  * and 'z_teardown_inactive_lock' held.
1185  */
1186 static int
1187 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1188 {
1189 	znode_t	*zp;
1190 
1191 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1192 
1193 	if (!unmounting) {
1194 		/*
1195 		 * We purge the parent filesystem's vfsp as the parent
1196 		 * filesystem and all of its snapshots have their vnode's
1197 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1198 		 * 'z_parent' is self referential for non-snapshots.
1199 		 */
1200 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1201 	}
1202 
1203 	/*
1204 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1205 	 * threads are blocked as zil_close can call zfs_inactive.
1206 	 */
1207 	if (zfsvfs->z_log) {
1208 		zil_close(zfsvfs->z_log);
1209 		zfsvfs->z_log = NULL;
1210 	}
1211 
1212 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1213 
1214 	/*
1215 	 * If we are not unmounting (ie: online recv) and someone already
1216 	 * unmounted this file system while we were doing the switcheroo,
1217 	 * or a reopen of z_os failed then just bail out now.
1218 	 */
1219 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1220 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1221 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1222 		return (EIO);
1223 	}
1224 
1225 	/*
1226 	 * At this point there are no vops active, and any new vops will
1227 	 * fail with EIO since we have z_teardown_lock for writer (only
1228 	 * relavent for forced unmount).
1229 	 *
1230 	 * Release all holds on dbufs.
1231 	 */
1232 	mutex_enter(&zfsvfs->z_znodes_lock);
1233 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1234 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1235 		if (zp->z_dbuf) {
1236 			ASSERT(ZTOV(zp)->v_count > 0);
1237 			zfs_znode_dmu_fini(zp);
1238 		}
1239 	mutex_exit(&zfsvfs->z_znodes_lock);
1240 
1241 	/*
1242 	 * If we are unmounting, set the unmounted flag and let new vops
1243 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1244 	 * other vops will fail with EIO.
1245 	 */
1246 	if (unmounting) {
1247 		zfsvfs->z_unmounted = B_TRUE;
1248 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1249 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1250 	}
1251 
1252 	/*
1253 	 * z_os will be NULL if there was an error in attempting to reopen
1254 	 * zfsvfs, so just return as the properties had already been
1255 	 * unregistered and cached data had been evicted before.
1256 	 */
1257 	if (zfsvfs->z_os == NULL)
1258 		return (0);
1259 
1260 	/*
1261 	 * Unregister properties.
1262 	 */
1263 	zfs_unregister_callbacks(zfsvfs);
1264 
1265 	/*
1266 	 * Evict cached data
1267 	 */
1268 	if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
1269 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1270 		(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1271 	}
1272 
1273 	return (0);
1274 }
1275 
1276 /*ARGSUSED*/
1277 static int
1278 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1279 {
1280 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1281 	objset_t *os;
1282 	int ret;
1283 
1284 	ret = secpolicy_fs_unmount(cr, vfsp);
1285 	if (ret) {
1286 		ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1287 		    ZFS_DELEG_PERM_MOUNT, cr);
1288 		if (ret)
1289 			return (ret);
1290 	}
1291 
1292 	/*
1293 	 * We purge the parent filesystem's vfsp as the parent filesystem
1294 	 * and all of its snapshots have their vnode's v_vfsp set to the
1295 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1296 	 * referential for non-snapshots.
1297 	 */
1298 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1299 
1300 	/*
1301 	 * Unmount any snapshots mounted under .zfs before unmounting the
1302 	 * dataset itself.
1303 	 */
1304 	if (zfsvfs->z_ctldir != NULL &&
1305 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1306 		return (ret);
1307 	}
1308 
1309 	if (!(fflag & MS_FORCE)) {
1310 		/*
1311 		 * Check the number of active vnodes in the file system.
1312 		 * Our count is maintained in the vfs structure, but the
1313 		 * number is off by 1 to indicate a hold on the vfs
1314 		 * structure itself.
1315 		 *
1316 		 * The '.zfs' directory maintains a reference of its
1317 		 * own, and any active references underneath are
1318 		 * reflected in the vnode count.
1319 		 */
1320 		if (zfsvfs->z_ctldir == NULL) {
1321 			if (vfsp->vfs_count > 1)
1322 				return (EBUSY);
1323 		} else {
1324 			if (vfsp->vfs_count > 2 ||
1325 			    zfsvfs->z_ctldir->v_count > 1)
1326 				return (EBUSY);
1327 		}
1328 	}
1329 
1330 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1331 
1332 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1333 	os = zfsvfs->z_os;
1334 
1335 	/*
1336 	 * z_os will be NULL if there was an error in
1337 	 * attempting to reopen zfsvfs.
1338 	 */
1339 	if (os != NULL) {
1340 		/*
1341 		 * Unset the objset user_ptr.
1342 		 */
1343 		mutex_enter(&os->os->os_user_ptr_lock);
1344 		dmu_objset_set_user(os, NULL);
1345 		mutex_exit(&os->os->os_user_ptr_lock);
1346 
1347 		/*
1348 		 * Finally release the objset
1349 		 */
1350 		dmu_objset_close(os);
1351 	}
1352 
1353 	/*
1354 	 * We can now safely destroy the '.zfs' directory node.
1355 	 */
1356 	if (zfsvfs->z_ctldir != NULL)
1357 		zfsctl_destroy(zfsvfs);
1358 
1359 	return (0);
1360 }
1361 
1362 static int
1363 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1364 {
1365 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1366 	znode_t		*zp;
1367 	uint64_t	object = 0;
1368 	uint64_t	fid_gen = 0;
1369 	uint64_t	gen_mask;
1370 	uint64_t	zp_gen;
1371 	int 		i, err;
1372 
1373 	*vpp = NULL;
1374 
1375 	ZFS_ENTER(zfsvfs);
1376 
1377 	if (fidp->fid_len == LONG_FID_LEN) {
1378 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1379 		uint64_t	objsetid = 0;
1380 		uint64_t	setgen = 0;
1381 
1382 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1383 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1384 
1385 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1386 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1387 
1388 		ZFS_EXIT(zfsvfs);
1389 
1390 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1391 		if (err)
1392 			return (EINVAL);
1393 		ZFS_ENTER(zfsvfs);
1394 	}
1395 
1396 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1397 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1398 
1399 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1400 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1401 
1402 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1403 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1404 	} else {
1405 		ZFS_EXIT(zfsvfs);
1406 		return (EINVAL);
1407 	}
1408 
1409 	/* A zero fid_gen means we are in the .zfs control directories */
1410 	if (fid_gen == 0 &&
1411 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1412 		*vpp = zfsvfs->z_ctldir;
1413 		ASSERT(*vpp != NULL);
1414 		if (object == ZFSCTL_INO_SNAPDIR) {
1415 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1416 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1417 		} else {
1418 			VN_HOLD(*vpp);
1419 		}
1420 		ZFS_EXIT(zfsvfs);
1421 		return (0);
1422 	}
1423 
1424 	gen_mask = -1ULL >> (64 - 8 * i);
1425 
1426 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1427 	if (err = zfs_zget(zfsvfs, object, &zp)) {
1428 		ZFS_EXIT(zfsvfs);
1429 		return (err);
1430 	}
1431 	zp_gen = zp->z_phys->zp_gen & gen_mask;
1432 	if (zp_gen == 0)
1433 		zp_gen = 1;
1434 	if (zp->z_unlinked || zp_gen != fid_gen) {
1435 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1436 		VN_RELE(ZTOV(zp));
1437 		ZFS_EXIT(zfsvfs);
1438 		return (EINVAL);
1439 	}
1440 
1441 	*vpp = ZTOV(zp);
1442 	ZFS_EXIT(zfsvfs);
1443 	return (0);
1444 }
1445 
1446 /*
1447  * Block out VOPs and close zfsvfs_t::z_os
1448  *
1449  * Note, if successful, then we return with the 'z_teardown_lock' and
1450  * 'z_teardown_inactive_lock' write held.
1451  */
1452 int
1453 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode)
1454 {
1455 	int error;
1456 
1457 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1458 		return (error);
1459 
1460 	*mode = zfsvfs->z_os->os_mode;
1461 	dmu_objset_name(zfsvfs->z_os, name);
1462 	dmu_objset_close(zfsvfs->z_os);
1463 
1464 	return (0);
1465 }
1466 
1467 /*
1468  * Reopen zfsvfs_t::z_os and release VOPs.
1469  */
1470 int
1471 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode)
1472 {
1473 	int err;
1474 
1475 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
1476 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1477 
1478 	err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os);
1479 	if (err) {
1480 		zfsvfs->z_os = NULL;
1481 	} else {
1482 		znode_t *zp;
1483 
1484 		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1485 
1486 		/*
1487 		 * Attempt to re-establish all the active znodes with
1488 		 * their dbufs.  If a zfs_rezget() fails, then we'll let
1489 		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
1490 		 * when they try to use their znode.
1491 		 */
1492 		mutex_enter(&zfsvfs->z_znodes_lock);
1493 		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1494 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1495 			(void) zfs_rezget(zp);
1496 		}
1497 		mutex_exit(&zfsvfs->z_znodes_lock);
1498 
1499 	}
1500 
1501 	/* release the VOPs */
1502 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1503 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1504 
1505 	if (err) {
1506 		/*
1507 		 * Since we couldn't reopen zfsvfs::z_os, force
1508 		 * unmount this file system.
1509 		 */
1510 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
1511 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
1512 	}
1513 	return (err);
1514 }
1515 
1516 static void
1517 zfs_freevfs(vfs_t *vfsp)
1518 {
1519 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1520 	int i;
1521 
1522 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1523 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1524 
1525 	zfs_fuid_destroy(zfsvfs);
1526 
1527 	/*
1528 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
1529 	 * from zfs_mount().  Release it here.
1530 	 */
1531 	if (zfsvfs->z_issnap)
1532 		VFS_RELE(zfsvfs->z_parent->z_vfs);
1533 
1534 	zfs_freezfsvfs(zfsvfs);
1535 
1536 	atomic_add_32(&zfs_active_fs_count, -1);
1537 }
1538 
1539 /*
1540  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
1541  * so we can't safely do any non-idempotent initialization here.
1542  * Leave that to zfs_init() and zfs_fini(), which are called
1543  * from the module's _init() and _fini() entry points.
1544  */
1545 /*ARGSUSED*/
1546 static int
1547 zfs_vfsinit(int fstype, char *name)
1548 {
1549 	int error;
1550 
1551 	zfsfstype = fstype;
1552 
1553 	/*
1554 	 * Setup vfsops and vnodeops tables.
1555 	 */
1556 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
1557 	if (error != 0) {
1558 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
1559 	}
1560 
1561 	error = zfs_create_op_tables();
1562 	if (error) {
1563 		zfs_remove_op_tables();
1564 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
1565 		(void) vfs_freevfsops_by_type(zfsfstype);
1566 		return (error);
1567 	}
1568 
1569 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
1570 
1571 	/*
1572 	 * Unique major number for all zfs mounts.
1573 	 * If we run out of 32-bit minors, we'll getudev() another major.
1574 	 */
1575 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
1576 	zfs_minor = ZFS_MIN_MINOR;
1577 
1578 	return (0);
1579 }
1580 
1581 void
1582 zfs_init(void)
1583 {
1584 	/*
1585 	 * Initialize .zfs directory structures
1586 	 */
1587 	zfsctl_init();
1588 
1589 	/*
1590 	 * Initialize znode cache, vnode ops, etc...
1591 	 */
1592 	zfs_znode_init();
1593 }
1594 
1595 void
1596 zfs_fini(void)
1597 {
1598 	zfsctl_fini();
1599 	zfs_znode_fini();
1600 }
1601 
1602 int
1603 zfs_busy(void)
1604 {
1605 	return (zfs_active_fs_count != 0);
1606 }
1607 
1608 int
1609 zfs_set_version(const char *name, uint64_t newvers)
1610 {
1611 	int error;
1612 	objset_t *os;
1613 	dmu_tx_t *tx;
1614 	uint64_t curvers;
1615 
1616 	/*
1617 	 * XXX for now, require that the filesystem be unmounted.  Would
1618 	 * be nice to find the zfsvfs_t and just update that if
1619 	 * possible.
1620 	 */
1621 
1622 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1623 		return (EINVAL);
1624 
1625 	error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_OWNER, &os);
1626 	if (error)
1627 		return (error);
1628 
1629 	error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1630 	    8, 1, &curvers);
1631 	if (error)
1632 		goto out;
1633 	if (newvers < curvers) {
1634 		error = EINVAL;
1635 		goto out;
1636 	}
1637 
1638 	tx = dmu_tx_create(os);
1639 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR);
1640 	error = dmu_tx_assign(tx, TXG_WAIT);
1641 	if (error) {
1642 		dmu_tx_abort(tx);
1643 		goto out;
1644 	}
1645 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1,
1646 	    &newvers, tx);
1647 
1648 	spa_history_internal_log(LOG_DS_UPGRADE,
1649 	    dmu_objset_spa(os), tx, CRED(),
1650 	    "oldver=%llu newver=%llu dataset = %llu", curvers, newvers,
1651 	    dmu_objset_id(os));
1652 	dmu_tx_commit(tx);
1653 
1654 out:
1655 	dmu_objset_close(os);
1656 	return (error);
1657 }
1658 
1659 /*
1660  * Read a property stored within the master node.
1661  */
1662 int
1663 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
1664 {
1665 	const char *pname;
1666 	int error = ENOENT;
1667 
1668 	/*
1669 	 * Look up the file system's value for the property.  For the
1670 	 * version property, we look up a slightly different string.
1671 	 */
1672 	if (prop == ZFS_PROP_VERSION)
1673 		pname = ZPL_VERSION_STR;
1674 	else
1675 		pname = zfs_prop_to_name(prop);
1676 
1677 	if (os != NULL)
1678 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
1679 
1680 	if (error == ENOENT) {
1681 		/* No value set, use the default value */
1682 		switch (prop) {
1683 		case ZFS_PROP_VERSION:
1684 			*value = ZPL_VERSION;
1685 			break;
1686 		case ZFS_PROP_NORMALIZE:
1687 		case ZFS_PROP_UTF8ONLY:
1688 			*value = 0;
1689 			break;
1690 		case ZFS_PROP_CASE:
1691 			*value = ZFS_CASE_SENSITIVE;
1692 			break;
1693 		default:
1694 			return (error);
1695 		}
1696 		error = 0;
1697 	}
1698 	return (error);
1699 }
1700 
1701 static vfsdef_t vfw = {
1702 	VFSDEF_VERSION,
1703 	MNTTYPE_ZFS,
1704 	zfs_vfsinit,
1705 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
1706 	    VSW_XID,
1707 	&zfs_mntopts
1708 };
1709 
1710 struct modlfs zfs_modlfs = {
1711 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
1712 };
1713