1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/pathname.h> 32 #include <sys/vnode.h> 33 #include <sys/vfs.h> 34 #include <sys/vfs_opreg.h> 35 #include <sys/mntent.h> 36 #include <sys/mount.h> 37 #include <sys/cmn_err.h> 38 #include "fs/fs_subr.h" 39 #include <sys/zfs_znode.h> 40 #include <sys/zfs_dir.h> 41 #include <sys/zil.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_deleg.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/refstr.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/zfs_ctldir.h> 57 #include <sys/zfs_fuid.h> 58 #include <sys/bootconf.h> 59 #include <sys/sunddi.h> 60 #include <sys/dnlc.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa_boot.h> 63 64 int zfsfstype; 65 vfsops_t *zfs_vfsops = NULL; 66 static major_t zfs_major; 67 static minor_t zfs_minor; 68 static kmutex_t zfs_dev_mtx; 69 70 extern int sys_shutdown; 71 72 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 73 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 74 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 75 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 76 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 77 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 78 static void zfs_freevfs(vfs_t *vfsp); 79 80 static const fs_operation_def_t zfs_vfsops_template[] = { 81 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 82 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 83 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 84 VFSNAME_ROOT, { .vfs_root = zfs_root }, 85 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 86 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 87 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 88 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 89 NULL, NULL 90 }; 91 92 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 94 NULL, NULL 95 }; 96 97 /* 98 * We need to keep a count of active fs's. 99 * This is necessary to prevent our module 100 * from being unloaded after a umount -f 101 */ 102 static uint32_t zfs_active_fs_count = 0; 103 104 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 105 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 107 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 108 109 /* 110 * MO_DEFAULT is not used since the default value is determined 111 * by the equivalent property. 112 */ 113 static mntopt_t mntopts[] = { 114 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 115 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 116 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 117 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 118 }; 119 120 static mntopts_t zfs_mntopts = { 121 sizeof (mntopts) / sizeof (mntopt_t), 122 mntopts 123 }; 124 125 /*ARGSUSED*/ 126 int 127 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 128 { 129 /* 130 * Data integrity is job one. We don't want a compromised kernel 131 * writing to the storage pool, so we never sync during panic. 132 */ 133 if (panicstr) 134 return (0); 135 136 /* 137 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 138 * to sync metadata, which they would otherwise cache indefinitely. 139 * Semantically, the only requirement is that the sync be initiated. 140 * The DMU syncs out txgs frequently, so there's nothing to do. 141 */ 142 if (flag & SYNC_ATTR) 143 return (0); 144 145 if (vfsp != NULL) { 146 /* 147 * Sync a specific filesystem. 148 */ 149 zfsvfs_t *zfsvfs = vfsp->vfs_data; 150 dsl_pool_t *dp; 151 152 ZFS_ENTER(zfsvfs); 153 dp = dmu_objset_pool(zfsvfs->z_os); 154 155 /* 156 * If the system is shutting down, then skip any 157 * filesystems which may exist on a suspended pool. 158 */ 159 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 160 ZFS_EXIT(zfsvfs); 161 return (0); 162 } 163 164 if (zfsvfs->z_log != NULL) 165 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 166 else 167 txg_wait_synced(dp, 0); 168 ZFS_EXIT(zfsvfs); 169 } else { 170 /* 171 * Sync all ZFS filesystems. This is what happens when you 172 * run sync(1M). Unlike other filesystems, ZFS honors the 173 * request by waiting for all pools to commit all dirty data. 174 */ 175 spa_sync_allpools(); 176 } 177 178 return (0); 179 } 180 181 static int 182 zfs_create_unique_device(dev_t *dev) 183 { 184 major_t new_major; 185 186 do { 187 ASSERT3U(zfs_minor, <=, MAXMIN32); 188 minor_t start = zfs_minor; 189 do { 190 mutex_enter(&zfs_dev_mtx); 191 if (zfs_minor >= MAXMIN32) { 192 /* 193 * If we're still using the real major 194 * keep out of /dev/zfs and /dev/zvol minor 195 * number space. If we're using a getudev()'ed 196 * major number, we can use all of its minors. 197 */ 198 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 199 zfs_minor = ZFS_MIN_MINOR; 200 else 201 zfs_minor = 0; 202 } else { 203 zfs_minor++; 204 } 205 *dev = makedevice(zfs_major, zfs_minor); 206 mutex_exit(&zfs_dev_mtx); 207 } while (vfs_devismounted(*dev) && zfs_minor != start); 208 if (zfs_minor == start) { 209 /* 210 * We are using all ~262,000 minor numbers for the 211 * current major number. Create a new major number. 212 */ 213 if ((new_major = getudev()) == (major_t)-1) { 214 cmn_err(CE_WARN, 215 "zfs_mount: Can't get unique major " 216 "device number."); 217 return (-1); 218 } 219 mutex_enter(&zfs_dev_mtx); 220 zfs_major = new_major; 221 zfs_minor = 0; 222 223 mutex_exit(&zfs_dev_mtx); 224 } else { 225 break; 226 } 227 /* CONSTANTCONDITION */ 228 } while (1); 229 230 return (0); 231 } 232 233 static void 234 atime_changed_cb(void *arg, uint64_t newval) 235 { 236 zfsvfs_t *zfsvfs = arg; 237 238 if (newval == TRUE) { 239 zfsvfs->z_atime = TRUE; 240 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 241 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 242 } else { 243 zfsvfs->z_atime = FALSE; 244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 246 } 247 } 248 249 static void 250 xattr_changed_cb(void *arg, uint64_t newval) 251 { 252 zfsvfs_t *zfsvfs = arg; 253 254 if (newval == TRUE) { 255 /* XXX locking on vfs_flag? */ 256 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 257 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 258 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 259 } else { 260 /* XXX locking on vfs_flag? */ 261 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 262 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 263 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 264 } 265 } 266 267 static void 268 blksz_changed_cb(void *arg, uint64_t newval) 269 { 270 zfsvfs_t *zfsvfs = arg; 271 272 if (newval < SPA_MINBLOCKSIZE || 273 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 274 newval = SPA_MAXBLOCKSIZE; 275 276 zfsvfs->z_max_blksz = newval; 277 zfsvfs->z_vfs->vfs_bsize = newval; 278 } 279 280 static void 281 readonly_changed_cb(void *arg, uint64_t newval) 282 { 283 zfsvfs_t *zfsvfs = arg; 284 285 if (newval) { 286 /* XXX locking on vfs_flag? */ 287 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 288 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 289 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 290 } else { 291 /* XXX locking on vfs_flag? */ 292 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 295 } 296 } 297 298 static void 299 devices_changed_cb(void *arg, uint64_t newval) 300 { 301 zfsvfs_t *zfsvfs = arg; 302 303 if (newval == FALSE) { 304 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 305 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 306 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 307 } else { 308 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 311 } 312 } 313 314 static void 315 setuid_changed_cb(void *arg, uint64_t newval) 316 { 317 zfsvfs_t *zfsvfs = arg; 318 319 if (newval == FALSE) { 320 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 321 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 322 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 323 } else { 324 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 327 } 328 } 329 330 static void 331 exec_changed_cb(void *arg, uint64_t newval) 332 { 333 zfsvfs_t *zfsvfs = arg; 334 335 if (newval == FALSE) { 336 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 337 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 338 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 339 } else { 340 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 343 } 344 } 345 346 /* 347 * The nbmand mount option can be changed at mount time. 348 * We can't allow it to be toggled on live file systems or incorrect 349 * behavior may be seen from cifs clients 350 * 351 * This property isn't registered via dsl_prop_register(), but this callback 352 * will be called when a file system is first mounted 353 */ 354 static void 355 nbmand_changed_cb(void *arg, uint64_t newval) 356 { 357 zfsvfs_t *zfsvfs = arg; 358 if (newval == FALSE) { 359 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 360 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 361 } else { 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 364 } 365 } 366 367 static void 368 snapdir_changed_cb(void *arg, uint64_t newval) 369 { 370 zfsvfs_t *zfsvfs = arg; 371 372 zfsvfs->z_show_ctldir = newval; 373 } 374 375 static void 376 vscan_changed_cb(void *arg, uint64_t newval) 377 { 378 zfsvfs_t *zfsvfs = arg; 379 380 zfsvfs->z_vscan = newval; 381 } 382 383 static void 384 acl_mode_changed_cb(void *arg, uint64_t newval) 385 { 386 zfsvfs_t *zfsvfs = arg; 387 388 zfsvfs->z_acl_mode = newval; 389 } 390 391 static void 392 acl_inherit_changed_cb(void *arg, uint64_t newval) 393 { 394 zfsvfs_t *zfsvfs = arg; 395 396 zfsvfs->z_acl_inherit = newval; 397 } 398 399 static int 400 zfs_register_callbacks(vfs_t *vfsp) 401 { 402 struct dsl_dataset *ds = NULL; 403 objset_t *os = NULL; 404 zfsvfs_t *zfsvfs = NULL; 405 uint64_t nbmand; 406 int readonly, do_readonly = B_FALSE; 407 int setuid, do_setuid = B_FALSE; 408 int exec, do_exec = B_FALSE; 409 int devices, do_devices = B_FALSE; 410 int xattr, do_xattr = B_FALSE; 411 int atime, do_atime = B_FALSE; 412 int error = 0; 413 414 ASSERT(vfsp); 415 zfsvfs = vfsp->vfs_data; 416 ASSERT(zfsvfs); 417 os = zfsvfs->z_os; 418 419 /* 420 * The act of registering our callbacks will destroy any mount 421 * options we may have. In order to enable temporary overrides 422 * of mount options, we stash away the current values and 423 * restore them after we register the callbacks. 424 */ 425 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 426 readonly = B_TRUE; 427 do_readonly = B_TRUE; 428 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 429 readonly = B_FALSE; 430 do_readonly = B_TRUE; 431 } 432 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 433 devices = B_FALSE; 434 setuid = B_FALSE; 435 do_devices = B_TRUE; 436 do_setuid = B_TRUE; 437 } else { 438 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 439 devices = B_FALSE; 440 do_devices = B_TRUE; 441 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 442 devices = B_TRUE; 443 do_devices = B_TRUE; 444 } 445 446 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 447 setuid = B_FALSE; 448 do_setuid = B_TRUE; 449 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 450 setuid = B_TRUE; 451 do_setuid = B_TRUE; 452 } 453 } 454 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 455 exec = B_FALSE; 456 do_exec = B_TRUE; 457 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 458 exec = B_TRUE; 459 do_exec = B_TRUE; 460 } 461 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 462 xattr = B_FALSE; 463 do_xattr = B_TRUE; 464 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 465 xattr = B_TRUE; 466 do_xattr = B_TRUE; 467 } 468 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 469 atime = B_FALSE; 470 do_atime = B_TRUE; 471 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 472 atime = B_TRUE; 473 do_atime = B_TRUE; 474 } 475 476 /* 477 * nbmand is a special property. It can only be changed at 478 * mount time. 479 * 480 * This is weird, but it is documented to only be changeable 481 * at mount time. 482 */ 483 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 484 nbmand = B_FALSE; 485 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 486 nbmand = B_TRUE; 487 } else { 488 char osname[MAXNAMELEN]; 489 490 dmu_objset_name(os, osname); 491 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 492 NULL)) { 493 return (error); 494 } 495 } 496 497 /* 498 * Register property callbacks. 499 * 500 * It would probably be fine to just check for i/o error from 501 * the first prop_register(), but I guess I like to go 502 * overboard... 503 */ 504 ds = dmu_objset_ds(os); 505 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "xattr", xattr_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "recordsize", blksz_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "readonly", readonly_changed_cb, zfsvfs); 512 error = error ? error : dsl_prop_register(ds, 513 "devices", devices_changed_cb, zfsvfs); 514 error = error ? error : dsl_prop_register(ds, 515 "setuid", setuid_changed_cb, zfsvfs); 516 error = error ? error : dsl_prop_register(ds, 517 "exec", exec_changed_cb, zfsvfs); 518 error = error ? error : dsl_prop_register(ds, 519 "snapdir", snapdir_changed_cb, zfsvfs); 520 error = error ? error : dsl_prop_register(ds, 521 "aclmode", acl_mode_changed_cb, zfsvfs); 522 error = error ? error : dsl_prop_register(ds, 523 "aclinherit", acl_inherit_changed_cb, zfsvfs); 524 error = error ? error : dsl_prop_register(ds, 525 "vscan", vscan_changed_cb, zfsvfs); 526 if (error) 527 goto unregister; 528 529 /* 530 * Invoke our callbacks to restore temporary mount options. 531 */ 532 if (do_readonly) 533 readonly_changed_cb(zfsvfs, readonly); 534 if (do_setuid) 535 setuid_changed_cb(zfsvfs, setuid); 536 if (do_exec) 537 exec_changed_cb(zfsvfs, exec); 538 if (do_devices) 539 devices_changed_cb(zfsvfs, devices); 540 if (do_xattr) 541 xattr_changed_cb(zfsvfs, xattr); 542 if (do_atime) 543 atime_changed_cb(zfsvfs, atime); 544 545 nbmand_changed_cb(zfsvfs, nbmand); 546 547 return (0); 548 549 unregister: 550 /* 551 * We may attempt to unregister some callbacks that are not 552 * registered, but this is OK; it will simply return ENOMSG, 553 * which we will ignore. 554 */ 555 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 556 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 557 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 558 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 559 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 560 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 561 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 562 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 563 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 564 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 565 zfsvfs); 566 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 567 return (error); 568 569 } 570 571 static int 572 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 573 { 574 int error; 575 576 error = zfs_register_callbacks(zfsvfs->z_vfs); 577 if (error) 578 return (error); 579 580 /* 581 * Set the objset user_ptr to track its zfsvfs. 582 */ 583 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 584 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 585 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 586 587 /* 588 * If we are not mounting (ie: online recv), then we don't 589 * have to worry about replaying the log as we blocked all 590 * operations out since we closed the ZIL. 591 */ 592 if (mounting) { 593 boolean_t readonly; 594 595 /* 596 * During replay we remove the read only flag to 597 * allow replays to succeed. 598 */ 599 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 600 if (readonly != 0) 601 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 602 else 603 zfs_unlinked_drain(zfsvfs); 604 605 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 606 if (zil_disable) { 607 zil_destroy(zfsvfs->z_log, 0); 608 zfsvfs->z_log = NULL; 609 } else { 610 /* 611 * Parse and replay the intent log. 612 * 613 * Because of ziltest, this must be done after 614 * zfs_unlinked_drain(). (Further note: ziltest 615 * doesn't use readonly mounts, where 616 * zfs_unlinked_drain() isn't called.) This is because 617 * ziltest causes spa_sync() to think it's committed, 618 * but actually it is not, so the intent log contains 619 * many txg's worth of changes. 620 * 621 * In particular, if object N is in the unlinked set in 622 * the last txg to actually sync, then it could be 623 * actually freed in a later txg and then reallocated 624 * in a yet later txg. This would write a "create 625 * object N" record to the intent log. Normally, this 626 * would be fine because the spa_sync() would have 627 * written out the fact that object N is free, before 628 * we could write the "create object N" intent log 629 * record. 630 * 631 * But when we are in ziltest mode, we advance the "open 632 * txg" without actually spa_sync()-ing the changes to 633 * disk. So we would see that object N is still 634 * allocated and in the unlinked set, and there is an 635 * intent log record saying to allocate it. 636 */ 637 zfsvfs->z_replay = B_TRUE; 638 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); 639 zfsvfs->z_replay = B_FALSE; 640 } 641 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 642 } 643 644 return (0); 645 } 646 647 static void 648 zfs_freezfsvfs(zfsvfs_t *zfsvfs) 649 { 650 mutex_destroy(&zfsvfs->z_znodes_lock); 651 mutex_destroy(&zfsvfs->z_online_recv_lock); 652 mutex_destroy(&zfsvfs->z_lock); 653 list_destroy(&zfsvfs->z_all_znodes); 654 rrw_destroy(&zfsvfs->z_teardown_lock); 655 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 656 rw_destroy(&zfsvfs->z_fuid_lock); 657 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 658 } 659 660 static int 661 zfs_domount(vfs_t *vfsp, char *osname) 662 { 663 dev_t mount_dev; 664 uint64_t recordsize, readonly; 665 int error = 0; 666 int mode; 667 zfsvfs_t *zfsvfs; 668 znode_t *zp = NULL; 669 670 ASSERT(vfsp); 671 ASSERT(osname); 672 673 /* 674 * Initialize the zfs-specific filesystem structure. 675 * Should probably make this a kmem cache, shuffle fields, 676 * and just bzero up to z_hold_mtx[]. 677 */ 678 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 679 zfsvfs->z_vfs = vfsp; 680 zfsvfs->z_parent = zfsvfs; 681 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 682 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 683 zfsvfs->z_fuid_dirty = B_FALSE; 684 685 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 686 mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL); 687 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 688 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 689 offsetof(znode_t, z_link_node)); 690 rrw_init(&zfsvfs->z_teardown_lock); 691 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 692 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 693 694 /* Initialize the generic filesystem structure. */ 695 vfsp->vfs_bcount = 0; 696 vfsp->vfs_data = NULL; 697 698 if (zfs_create_unique_device(&mount_dev) == -1) { 699 error = ENODEV; 700 goto out; 701 } 702 ASSERT(vfs_devismounted(mount_dev) == 0); 703 704 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 705 NULL)) 706 goto out; 707 708 vfsp->vfs_dev = mount_dev; 709 vfsp->vfs_fstype = zfsfstype; 710 vfsp->vfs_bsize = recordsize; 711 vfsp->vfs_flag |= VFS_NOTRUNC; 712 vfsp->vfs_data = zfsvfs; 713 714 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 715 goto out; 716 717 mode = DS_MODE_OWNER; 718 if (readonly) 719 mode |= DS_MODE_READONLY; 720 721 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 722 if (error == EROFS) { 723 mode = DS_MODE_OWNER | DS_MODE_READONLY; 724 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 725 &zfsvfs->z_os); 726 } 727 728 if (error) 729 goto out; 730 731 if (error = zfs_init_fs(zfsvfs, &zp)) 732 goto out; 733 734 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 735 VN_RELE(ZTOV(zp)); 736 737 /* 738 * Set features for file system. 739 */ 740 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 741 if (zfsvfs->z_use_fuids) { 742 vfs_set_feature(vfsp, VFSFT_XVATTR); 743 vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS); 744 vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS); 745 vfs_set_feature(vfsp, VFSFT_ACLONCREATE); 746 } 747 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 748 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 749 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 750 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 751 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 752 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 753 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 754 } 755 756 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 757 uint64_t pval; 758 759 ASSERT(mode & DS_MODE_READONLY); 760 atime_changed_cb(zfsvfs, B_FALSE); 761 readonly_changed_cb(zfsvfs, B_TRUE); 762 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 763 goto out; 764 xattr_changed_cb(zfsvfs, pval); 765 zfsvfs->z_issnap = B_TRUE; 766 } else { 767 error = zfsvfs_setup(zfsvfs, B_TRUE); 768 } 769 770 if (!zfsvfs->z_issnap) 771 zfsctl_create(zfsvfs); 772 out: 773 if (error) { 774 if (zfsvfs->z_os) 775 dmu_objset_close(zfsvfs->z_os); 776 zfs_freezfsvfs(zfsvfs); 777 } else { 778 atomic_add_32(&zfs_active_fs_count, 1); 779 } 780 781 return (error); 782 } 783 784 void 785 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 786 { 787 objset_t *os = zfsvfs->z_os; 788 struct dsl_dataset *ds; 789 790 /* 791 * Unregister properties. 792 */ 793 if (!dmu_objset_is_snapshot(os)) { 794 ds = dmu_objset_ds(os); 795 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 796 zfsvfs) == 0); 797 798 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 799 zfsvfs) == 0); 800 801 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 802 zfsvfs) == 0); 803 804 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 805 zfsvfs) == 0); 806 807 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 808 zfsvfs) == 0); 809 810 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 811 zfsvfs) == 0); 812 813 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 814 zfsvfs) == 0); 815 816 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 817 zfsvfs) == 0); 818 819 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 820 zfsvfs) == 0); 821 822 VERIFY(dsl_prop_unregister(ds, "aclinherit", 823 acl_inherit_changed_cb, zfsvfs) == 0); 824 825 VERIFY(dsl_prop_unregister(ds, "vscan", 826 vscan_changed_cb, zfsvfs) == 0); 827 } 828 } 829 830 /* 831 * Convert a decimal digit string to a uint64_t integer. 832 */ 833 static int 834 str_to_uint64(char *str, uint64_t *objnum) 835 { 836 uint64_t num = 0; 837 838 while (*str) { 839 if (*str < '0' || *str > '9') 840 return (EINVAL); 841 842 num = num*10 + *str++ - '0'; 843 } 844 845 *objnum = num; 846 return (0); 847 } 848 849 /* 850 * The boot path passed from the boot loader is in the form of 851 * "rootpool-name/root-filesystem-object-number'. Convert this 852 * string to a dataset name: "rootpool-name/root-filesystem-name". 853 */ 854 static int 855 zfs_parse_bootfs(char *bpath, char *outpath) 856 { 857 char *slashp; 858 uint64_t objnum; 859 int error; 860 861 if (*bpath == 0 || *bpath == '/') 862 return (EINVAL); 863 864 (void) strcpy(outpath, bpath); 865 866 slashp = strchr(bpath, '/'); 867 868 /* if no '/', just return the pool name */ 869 if (slashp == NULL) { 870 return (0); 871 } 872 873 /* if not a number, just return the root dataset name */ 874 if (str_to_uint64(slashp+1, &objnum)) { 875 return (0); 876 } 877 878 *slashp = '\0'; 879 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 880 *slashp = '/'; 881 882 return (error); 883 } 884 885 static int 886 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 887 { 888 int error = 0; 889 static int zfsrootdone = 0; 890 zfsvfs_t *zfsvfs = NULL; 891 znode_t *zp = NULL; 892 vnode_t *vp = NULL; 893 char *zfs_bootfs; 894 char *zfs_devid; 895 896 ASSERT(vfsp); 897 898 /* 899 * The filesystem that we mount as root is defined in the 900 * boot property "zfs-bootfs" with a format of 901 * "poolname/root-dataset-objnum". 902 */ 903 if (why == ROOT_INIT) { 904 if (zfsrootdone++) 905 return (EBUSY); 906 /* 907 * the process of doing a spa_load will require the 908 * clock to be set before we could (for example) do 909 * something better by looking at the timestamp on 910 * an uberblock, so just set it to -1. 911 */ 912 clkset(-1); 913 914 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 915 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 916 "bootfs name"); 917 return (EINVAL); 918 } 919 zfs_devid = spa_get_bootprop("diskdevid"); 920 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 921 if (zfs_devid) 922 spa_free_bootprop(zfs_devid); 923 if (error) { 924 spa_free_bootprop(zfs_bootfs); 925 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 926 error); 927 return (error); 928 } 929 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 930 spa_free_bootprop(zfs_bootfs); 931 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 932 error); 933 return (error); 934 } 935 936 spa_free_bootprop(zfs_bootfs); 937 938 if (error = vfs_lock(vfsp)) 939 return (error); 940 941 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 942 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 943 goto out; 944 } 945 946 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 947 ASSERT(zfsvfs); 948 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 949 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 950 goto out; 951 } 952 953 vp = ZTOV(zp); 954 mutex_enter(&vp->v_lock); 955 vp->v_flag |= VROOT; 956 mutex_exit(&vp->v_lock); 957 rootvp = vp; 958 959 /* 960 * Leave rootvp held. The root file system is never unmounted. 961 */ 962 963 vfs_add((struct vnode *)0, vfsp, 964 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 965 out: 966 vfs_unlock(vfsp); 967 return (error); 968 } else if (why == ROOT_REMOUNT) { 969 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 970 vfsp->vfs_flag |= VFS_REMOUNT; 971 972 /* refresh mount options */ 973 zfs_unregister_callbacks(vfsp->vfs_data); 974 return (zfs_register_callbacks(vfsp)); 975 976 } else if (why == ROOT_UNMOUNT) { 977 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 978 (void) zfs_sync(vfsp, 0, 0); 979 return (0); 980 } 981 982 /* 983 * if "why" is equal to anything else other than ROOT_INIT, 984 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 985 */ 986 return (ENOTSUP); 987 } 988 989 /*ARGSUSED*/ 990 static int 991 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 992 { 993 char *osname; 994 pathname_t spn; 995 int error = 0; 996 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 997 UIO_SYSSPACE : UIO_USERSPACE; 998 int canwrite; 999 1000 if (mvp->v_type != VDIR) 1001 return (ENOTDIR); 1002 1003 mutex_enter(&mvp->v_lock); 1004 if ((uap->flags & MS_REMOUNT) == 0 && 1005 (uap->flags & MS_OVERLAY) == 0 && 1006 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1007 mutex_exit(&mvp->v_lock); 1008 return (EBUSY); 1009 } 1010 mutex_exit(&mvp->v_lock); 1011 1012 /* 1013 * ZFS does not support passing unparsed data in via MS_DATA. 1014 * Users should use the MS_OPTIONSTR interface; this means 1015 * that all option parsing is already done and the options struct 1016 * can be interrogated. 1017 */ 1018 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1019 return (EINVAL); 1020 1021 /* 1022 * Get the objset name (the "special" mount argument). 1023 */ 1024 if (error = pn_get(uap->spec, fromspace, &spn)) 1025 return (error); 1026 1027 osname = spn.pn_path; 1028 1029 /* 1030 * Check for mount privilege? 1031 * 1032 * If we don't have privilege then see if 1033 * we have local permission to allow it 1034 */ 1035 error = secpolicy_fs_mount(cr, mvp, vfsp); 1036 if (error) { 1037 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 1038 if (error == 0) { 1039 vattr_t vattr; 1040 1041 /* 1042 * Make sure user is the owner of the mount point 1043 * or has sufficient privileges. 1044 */ 1045 1046 vattr.va_mask = AT_UID; 1047 1048 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1049 goto out; 1050 } 1051 1052 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1053 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1054 error = EPERM; 1055 goto out; 1056 } 1057 1058 secpolicy_fs_mount_clearopts(cr, vfsp); 1059 } else { 1060 goto out; 1061 } 1062 } 1063 1064 /* 1065 * Refuse to mount a filesystem if we are in a local zone and the 1066 * dataset is not visible. 1067 */ 1068 if (!INGLOBALZONE(curproc) && 1069 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1070 error = EPERM; 1071 goto out; 1072 } 1073 1074 /* 1075 * When doing a remount, we simply refresh our temporary properties 1076 * according to those options set in the current VFS options. 1077 */ 1078 if (uap->flags & MS_REMOUNT) { 1079 /* refresh mount options */ 1080 zfs_unregister_callbacks(vfsp->vfs_data); 1081 error = zfs_register_callbacks(vfsp); 1082 goto out; 1083 } 1084 1085 error = zfs_domount(vfsp, osname); 1086 1087 /* 1088 * Add an extra VFS_HOLD on our parent vfs so that it can't 1089 * disappear due to a forced unmount. 1090 */ 1091 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1092 VFS_HOLD(mvp->v_vfsp); 1093 1094 out: 1095 pn_free(&spn); 1096 return (error); 1097 } 1098 1099 static int 1100 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1101 { 1102 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1103 dev32_t d32; 1104 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1105 1106 ZFS_ENTER(zfsvfs); 1107 1108 dmu_objset_space(zfsvfs->z_os, 1109 &refdbytes, &availbytes, &usedobjs, &availobjs); 1110 1111 /* 1112 * The underlying storage pool actually uses multiple block sizes. 1113 * We report the fragsize as the smallest block size we support, 1114 * and we report our blocksize as the filesystem's maximum blocksize. 1115 */ 1116 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1117 statp->f_bsize = zfsvfs->z_max_blksz; 1118 1119 /* 1120 * The following report "total" blocks of various kinds in the 1121 * file system, but reported in terms of f_frsize - the 1122 * "fragment" size. 1123 */ 1124 1125 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1126 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1127 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1128 1129 /* 1130 * statvfs() should really be called statufs(), because it assumes 1131 * static metadata. ZFS doesn't preallocate files, so the best 1132 * we can do is report the max that could possibly fit in f_files, 1133 * and that minus the number actually used in f_ffree. 1134 * For f_ffree, report the smaller of the number of object available 1135 * and the number of blocks (each object will take at least a block). 1136 */ 1137 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1138 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1139 statp->f_files = statp->f_ffree + usedobjs; 1140 1141 (void) cmpldev(&d32, vfsp->vfs_dev); 1142 statp->f_fsid = d32; 1143 1144 /* 1145 * We're a zfs filesystem. 1146 */ 1147 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1148 1149 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1150 1151 statp->f_namemax = ZFS_MAXNAMELEN; 1152 1153 /* 1154 * We have all of 32 characters to stuff a string here. 1155 * Is there anything useful we could/should provide? 1156 */ 1157 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1158 1159 ZFS_EXIT(zfsvfs); 1160 return (0); 1161 } 1162 1163 static int 1164 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1165 { 1166 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1167 znode_t *rootzp; 1168 int error; 1169 1170 ZFS_ENTER(zfsvfs); 1171 1172 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1173 if (error == 0) 1174 *vpp = ZTOV(rootzp); 1175 1176 ZFS_EXIT(zfsvfs); 1177 return (error); 1178 } 1179 1180 /* 1181 * Teardown the zfsvfs::z_os. 1182 * 1183 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1184 * and 'z_teardown_inactive_lock' held. 1185 */ 1186 static int 1187 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1188 { 1189 znode_t *zp; 1190 1191 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1192 1193 if (!unmounting) { 1194 /* 1195 * We purge the parent filesystem's vfsp as the parent 1196 * filesystem and all of its snapshots have their vnode's 1197 * v_vfsp set to the parent's filesystem's vfsp. Note, 1198 * 'z_parent' is self referential for non-snapshots. 1199 */ 1200 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1201 } 1202 1203 /* 1204 * Close the zil. NB: Can't close the zil while zfs_inactive 1205 * threads are blocked as zil_close can call zfs_inactive. 1206 */ 1207 if (zfsvfs->z_log) { 1208 zil_close(zfsvfs->z_log); 1209 zfsvfs->z_log = NULL; 1210 } 1211 1212 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1213 1214 /* 1215 * If we are not unmounting (ie: online recv) and someone already 1216 * unmounted this file system while we were doing the switcheroo, 1217 * or a reopen of z_os failed then just bail out now. 1218 */ 1219 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1220 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1221 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1222 return (EIO); 1223 } 1224 1225 /* 1226 * At this point there are no vops active, and any new vops will 1227 * fail with EIO since we have z_teardown_lock for writer (only 1228 * relavent for forced unmount). 1229 * 1230 * Release all holds on dbufs. 1231 */ 1232 mutex_enter(&zfsvfs->z_znodes_lock); 1233 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1234 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1235 if (zp->z_dbuf) { 1236 ASSERT(ZTOV(zp)->v_count > 0); 1237 zfs_znode_dmu_fini(zp); 1238 } 1239 mutex_exit(&zfsvfs->z_znodes_lock); 1240 1241 /* 1242 * If we are unmounting, set the unmounted flag and let new vops 1243 * unblock. zfs_inactive will have the unmounted behavior, and all 1244 * other vops will fail with EIO. 1245 */ 1246 if (unmounting) { 1247 zfsvfs->z_unmounted = B_TRUE; 1248 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1249 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1250 } 1251 1252 /* 1253 * z_os will be NULL if there was an error in attempting to reopen 1254 * zfsvfs, so just return as the properties had already been 1255 * unregistered and cached data had been evicted before. 1256 */ 1257 if (zfsvfs->z_os == NULL) 1258 return (0); 1259 1260 /* 1261 * Unregister properties. 1262 */ 1263 zfs_unregister_callbacks(zfsvfs); 1264 1265 /* 1266 * Evict cached data 1267 */ 1268 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1269 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1270 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1271 } 1272 1273 return (0); 1274 } 1275 1276 /*ARGSUSED*/ 1277 static int 1278 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1279 { 1280 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1281 objset_t *os; 1282 int ret; 1283 1284 ret = secpolicy_fs_unmount(cr, vfsp); 1285 if (ret) { 1286 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1287 ZFS_DELEG_PERM_MOUNT, cr); 1288 if (ret) 1289 return (ret); 1290 } 1291 1292 /* 1293 * We purge the parent filesystem's vfsp as the parent filesystem 1294 * and all of its snapshots have their vnode's v_vfsp set to the 1295 * parent's filesystem's vfsp. Note, 'z_parent' is self 1296 * referential for non-snapshots. 1297 */ 1298 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1299 1300 /* 1301 * Unmount any snapshots mounted under .zfs before unmounting the 1302 * dataset itself. 1303 */ 1304 if (zfsvfs->z_ctldir != NULL && 1305 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1306 return (ret); 1307 } 1308 1309 if (!(fflag & MS_FORCE)) { 1310 /* 1311 * Check the number of active vnodes in the file system. 1312 * Our count is maintained in the vfs structure, but the 1313 * number is off by 1 to indicate a hold on the vfs 1314 * structure itself. 1315 * 1316 * The '.zfs' directory maintains a reference of its 1317 * own, and any active references underneath are 1318 * reflected in the vnode count. 1319 */ 1320 if (zfsvfs->z_ctldir == NULL) { 1321 if (vfsp->vfs_count > 1) 1322 return (EBUSY); 1323 } else { 1324 if (vfsp->vfs_count > 2 || 1325 zfsvfs->z_ctldir->v_count > 1) 1326 return (EBUSY); 1327 } 1328 } 1329 1330 vfsp->vfs_flag |= VFS_UNMOUNTED; 1331 1332 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1333 os = zfsvfs->z_os; 1334 1335 /* 1336 * z_os will be NULL if there was an error in 1337 * attempting to reopen zfsvfs. 1338 */ 1339 if (os != NULL) { 1340 /* 1341 * Unset the objset user_ptr. 1342 */ 1343 mutex_enter(&os->os->os_user_ptr_lock); 1344 dmu_objset_set_user(os, NULL); 1345 mutex_exit(&os->os->os_user_ptr_lock); 1346 1347 /* 1348 * Finally release the objset 1349 */ 1350 dmu_objset_close(os); 1351 } 1352 1353 /* 1354 * We can now safely destroy the '.zfs' directory node. 1355 */ 1356 if (zfsvfs->z_ctldir != NULL) 1357 zfsctl_destroy(zfsvfs); 1358 1359 return (0); 1360 } 1361 1362 static int 1363 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1364 { 1365 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1366 znode_t *zp; 1367 uint64_t object = 0; 1368 uint64_t fid_gen = 0; 1369 uint64_t gen_mask; 1370 uint64_t zp_gen; 1371 int i, err; 1372 1373 *vpp = NULL; 1374 1375 ZFS_ENTER(zfsvfs); 1376 1377 if (fidp->fid_len == LONG_FID_LEN) { 1378 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1379 uint64_t objsetid = 0; 1380 uint64_t setgen = 0; 1381 1382 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1383 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1384 1385 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1386 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1387 1388 ZFS_EXIT(zfsvfs); 1389 1390 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1391 if (err) 1392 return (EINVAL); 1393 ZFS_ENTER(zfsvfs); 1394 } 1395 1396 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1397 zfid_short_t *zfid = (zfid_short_t *)fidp; 1398 1399 for (i = 0; i < sizeof (zfid->zf_object); i++) 1400 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1401 1402 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1403 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1404 } else { 1405 ZFS_EXIT(zfsvfs); 1406 return (EINVAL); 1407 } 1408 1409 /* A zero fid_gen means we are in the .zfs control directories */ 1410 if (fid_gen == 0 && 1411 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1412 *vpp = zfsvfs->z_ctldir; 1413 ASSERT(*vpp != NULL); 1414 if (object == ZFSCTL_INO_SNAPDIR) { 1415 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1416 0, NULL, NULL, NULL, NULL, NULL) == 0); 1417 } else { 1418 VN_HOLD(*vpp); 1419 } 1420 ZFS_EXIT(zfsvfs); 1421 return (0); 1422 } 1423 1424 gen_mask = -1ULL >> (64 - 8 * i); 1425 1426 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1427 if (err = zfs_zget(zfsvfs, object, &zp)) { 1428 ZFS_EXIT(zfsvfs); 1429 return (err); 1430 } 1431 zp_gen = zp->z_phys->zp_gen & gen_mask; 1432 if (zp_gen == 0) 1433 zp_gen = 1; 1434 if (zp->z_unlinked || zp_gen != fid_gen) { 1435 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1436 VN_RELE(ZTOV(zp)); 1437 ZFS_EXIT(zfsvfs); 1438 return (EINVAL); 1439 } 1440 1441 *vpp = ZTOV(zp); 1442 ZFS_EXIT(zfsvfs); 1443 return (0); 1444 } 1445 1446 /* 1447 * Block out VOPs and close zfsvfs_t::z_os 1448 * 1449 * Note, if successful, then we return with the 'z_teardown_lock' and 1450 * 'z_teardown_inactive_lock' write held. 1451 */ 1452 int 1453 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode) 1454 { 1455 int error; 1456 1457 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1458 return (error); 1459 1460 *mode = zfsvfs->z_os->os_mode; 1461 dmu_objset_name(zfsvfs->z_os, name); 1462 dmu_objset_close(zfsvfs->z_os); 1463 1464 return (0); 1465 } 1466 1467 /* 1468 * Reopen zfsvfs_t::z_os and release VOPs. 1469 */ 1470 int 1471 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode) 1472 { 1473 int err; 1474 1475 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1476 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1477 1478 err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 1479 if (err) { 1480 zfsvfs->z_os = NULL; 1481 } else { 1482 znode_t *zp; 1483 1484 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1485 1486 /* 1487 * Attempt to re-establish all the active znodes with 1488 * their dbufs. If a zfs_rezget() fails, then we'll let 1489 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1490 * when they try to use their znode. 1491 */ 1492 mutex_enter(&zfsvfs->z_znodes_lock); 1493 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1494 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1495 (void) zfs_rezget(zp); 1496 } 1497 mutex_exit(&zfsvfs->z_znodes_lock); 1498 1499 } 1500 1501 /* release the VOPs */ 1502 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1503 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1504 1505 if (err) { 1506 /* 1507 * Since we couldn't reopen zfsvfs::z_os, force 1508 * unmount this file system. 1509 */ 1510 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1511 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1512 } 1513 return (err); 1514 } 1515 1516 static void 1517 zfs_freevfs(vfs_t *vfsp) 1518 { 1519 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1520 int i; 1521 1522 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1523 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1524 1525 zfs_fuid_destroy(zfsvfs); 1526 1527 /* 1528 * If this is a snapshot, we have an extra VFS_HOLD on our parent 1529 * from zfs_mount(). Release it here. 1530 */ 1531 if (zfsvfs->z_issnap) 1532 VFS_RELE(zfsvfs->z_parent->z_vfs); 1533 1534 zfs_freezfsvfs(zfsvfs); 1535 1536 atomic_add_32(&zfs_active_fs_count, -1); 1537 } 1538 1539 /* 1540 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1541 * so we can't safely do any non-idempotent initialization here. 1542 * Leave that to zfs_init() and zfs_fini(), which are called 1543 * from the module's _init() and _fini() entry points. 1544 */ 1545 /*ARGSUSED*/ 1546 static int 1547 zfs_vfsinit(int fstype, char *name) 1548 { 1549 int error; 1550 1551 zfsfstype = fstype; 1552 1553 /* 1554 * Setup vfsops and vnodeops tables. 1555 */ 1556 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1557 if (error != 0) { 1558 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1559 } 1560 1561 error = zfs_create_op_tables(); 1562 if (error) { 1563 zfs_remove_op_tables(); 1564 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1565 (void) vfs_freevfsops_by_type(zfsfstype); 1566 return (error); 1567 } 1568 1569 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1570 1571 /* 1572 * Unique major number for all zfs mounts. 1573 * If we run out of 32-bit minors, we'll getudev() another major. 1574 */ 1575 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1576 zfs_minor = ZFS_MIN_MINOR; 1577 1578 return (0); 1579 } 1580 1581 void 1582 zfs_init(void) 1583 { 1584 /* 1585 * Initialize .zfs directory structures 1586 */ 1587 zfsctl_init(); 1588 1589 /* 1590 * Initialize znode cache, vnode ops, etc... 1591 */ 1592 zfs_znode_init(); 1593 } 1594 1595 void 1596 zfs_fini(void) 1597 { 1598 zfsctl_fini(); 1599 zfs_znode_fini(); 1600 } 1601 1602 int 1603 zfs_busy(void) 1604 { 1605 return (zfs_active_fs_count != 0); 1606 } 1607 1608 int 1609 zfs_set_version(const char *name, uint64_t newvers) 1610 { 1611 int error; 1612 objset_t *os; 1613 dmu_tx_t *tx; 1614 uint64_t curvers; 1615 1616 /* 1617 * XXX for now, require that the filesystem be unmounted. Would 1618 * be nice to find the zfsvfs_t and just update that if 1619 * possible. 1620 */ 1621 1622 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1623 return (EINVAL); 1624 1625 error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_OWNER, &os); 1626 if (error) 1627 return (error); 1628 1629 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1630 8, 1, &curvers); 1631 if (error) 1632 goto out; 1633 if (newvers < curvers) { 1634 error = EINVAL; 1635 goto out; 1636 } 1637 1638 tx = dmu_tx_create(os); 1639 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); 1640 error = dmu_tx_assign(tx, TXG_WAIT); 1641 if (error) { 1642 dmu_tx_abort(tx); 1643 goto out; 1644 } 1645 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 1646 &newvers, tx); 1647 1648 spa_history_internal_log(LOG_DS_UPGRADE, 1649 dmu_objset_spa(os), tx, CRED(), 1650 "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, 1651 dmu_objset_id(os)); 1652 dmu_tx_commit(tx); 1653 1654 out: 1655 dmu_objset_close(os); 1656 return (error); 1657 } 1658 1659 /* 1660 * Read a property stored within the master node. 1661 */ 1662 int 1663 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 1664 { 1665 const char *pname; 1666 int error = ENOENT; 1667 1668 /* 1669 * Look up the file system's value for the property. For the 1670 * version property, we look up a slightly different string. 1671 */ 1672 if (prop == ZFS_PROP_VERSION) 1673 pname = ZPL_VERSION_STR; 1674 else 1675 pname = zfs_prop_to_name(prop); 1676 1677 if (os != NULL) 1678 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 1679 1680 if (error == ENOENT) { 1681 /* No value set, use the default value */ 1682 switch (prop) { 1683 case ZFS_PROP_VERSION: 1684 *value = ZPL_VERSION; 1685 break; 1686 case ZFS_PROP_NORMALIZE: 1687 case ZFS_PROP_UTF8ONLY: 1688 *value = 0; 1689 break; 1690 case ZFS_PROP_CASE: 1691 *value = ZFS_CASE_SENSITIVE; 1692 break; 1693 default: 1694 return (error); 1695 } 1696 error = 0; 1697 } 1698 return (error); 1699 } 1700 1701 static vfsdef_t vfw = { 1702 VFSDEF_VERSION, 1703 MNTTYPE_ZFS, 1704 zfs_vfsinit, 1705 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 1706 VSW_XID, 1707 &zfs_mntopts 1708 }; 1709 1710 struct modlfs zfs_modlfs = { 1711 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 1712 }; 1713