1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/pathname.h> 32 #include <sys/vnode.h> 33 #include <sys/vfs.h> 34 #include <sys/vfs_opreg.h> 35 #include <sys/mntent.h> 36 #include <sys/mount.h> 37 #include <sys/cmn_err.h> 38 #include "fs/fs_subr.h" 39 #include <sys/zfs_znode.h> 40 #include <sys/zfs_dir.h> 41 #include <sys/zil.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_deleg.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/refstr.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/zfs_ctldir.h> 57 #include <sys/zfs_fuid.h> 58 #include <sys/bootconf.h> 59 #include <sys/sunddi.h> 60 #include <sys/dnlc.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa_boot.h> 63 64 int zfsfstype; 65 vfsops_t *zfs_vfsops = NULL; 66 static major_t zfs_major; 67 static minor_t zfs_minor; 68 static kmutex_t zfs_dev_mtx; 69 70 extern int sys_shutdown; 71 72 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 73 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 74 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 75 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 76 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 77 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 78 static void zfs_freevfs(vfs_t *vfsp); 79 80 static const fs_operation_def_t zfs_vfsops_template[] = { 81 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 82 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 83 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 84 VFSNAME_ROOT, { .vfs_root = zfs_root }, 85 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 86 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 87 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 88 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 89 NULL, NULL 90 }; 91 92 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 94 NULL, NULL 95 }; 96 97 /* 98 * We need to keep a count of active fs's. 99 * This is necessary to prevent our module 100 * from being unloaded after a umount -f 101 */ 102 static uint32_t zfs_active_fs_count = 0; 103 104 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 105 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 107 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 108 109 /* 110 * MO_DEFAULT is not used since the default value is determined 111 * by the equivalent property. 112 */ 113 static mntopt_t mntopts[] = { 114 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 115 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 116 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 117 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 118 }; 119 120 static mntopts_t zfs_mntopts = { 121 sizeof (mntopts) / sizeof (mntopt_t), 122 mntopts 123 }; 124 125 /*ARGSUSED*/ 126 int 127 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 128 { 129 /* 130 * Data integrity is job one. We don't want a compromised kernel 131 * writing to the storage pool, so we never sync during panic. 132 */ 133 if (panicstr) 134 return (0); 135 136 /* 137 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 138 * to sync metadata, which they would otherwise cache indefinitely. 139 * Semantically, the only requirement is that the sync be initiated. 140 * The DMU syncs out txgs frequently, so there's nothing to do. 141 */ 142 if (flag & SYNC_ATTR) 143 return (0); 144 145 if (vfsp != NULL) { 146 /* 147 * Sync a specific filesystem. 148 */ 149 zfsvfs_t *zfsvfs = vfsp->vfs_data; 150 dsl_pool_t *dp; 151 152 ZFS_ENTER(zfsvfs); 153 dp = dmu_objset_pool(zfsvfs->z_os); 154 155 /* 156 * If the system is shutting down, then skip any 157 * filesystems which may exist on a suspended pool. 158 */ 159 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 160 ZFS_EXIT(zfsvfs); 161 return (0); 162 } 163 164 if (zfsvfs->z_log != NULL) 165 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 166 else 167 txg_wait_synced(dp, 0); 168 ZFS_EXIT(zfsvfs); 169 } else { 170 /* 171 * Sync all ZFS filesystems. This is what happens when you 172 * run sync(1M). Unlike other filesystems, ZFS honors the 173 * request by waiting for all pools to commit all dirty data. 174 */ 175 spa_sync_allpools(); 176 } 177 178 return (0); 179 } 180 181 static int 182 zfs_create_unique_device(dev_t *dev) 183 { 184 major_t new_major; 185 186 do { 187 ASSERT3U(zfs_minor, <=, MAXMIN32); 188 minor_t start = zfs_minor; 189 do { 190 mutex_enter(&zfs_dev_mtx); 191 if (zfs_minor >= MAXMIN32) { 192 /* 193 * If we're still using the real major 194 * keep out of /dev/zfs and /dev/zvol minor 195 * number space. If we're using a getudev()'ed 196 * major number, we can use all of its minors. 197 */ 198 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 199 zfs_minor = ZFS_MIN_MINOR; 200 else 201 zfs_minor = 0; 202 } else { 203 zfs_minor++; 204 } 205 *dev = makedevice(zfs_major, zfs_minor); 206 mutex_exit(&zfs_dev_mtx); 207 } while (vfs_devismounted(*dev) && zfs_minor != start); 208 if (zfs_minor == start) { 209 /* 210 * We are using all ~262,000 minor numbers for the 211 * current major number. Create a new major number. 212 */ 213 if ((new_major = getudev()) == (major_t)-1) { 214 cmn_err(CE_WARN, 215 "zfs_mount: Can't get unique major " 216 "device number."); 217 return (-1); 218 } 219 mutex_enter(&zfs_dev_mtx); 220 zfs_major = new_major; 221 zfs_minor = 0; 222 223 mutex_exit(&zfs_dev_mtx); 224 } else { 225 break; 226 } 227 /* CONSTANTCONDITION */ 228 } while (1); 229 230 return (0); 231 } 232 233 static void 234 atime_changed_cb(void *arg, uint64_t newval) 235 { 236 zfsvfs_t *zfsvfs = arg; 237 238 if (newval == TRUE) { 239 zfsvfs->z_atime = TRUE; 240 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 241 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 242 } else { 243 zfsvfs->z_atime = FALSE; 244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 246 } 247 } 248 249 static void 250 xattr_changed_cb(void *arg, uint64_t newval) 251 { 252 zfsvfs_t *zfsvfs = arg; 253 254 if (newval == TRUE) { 255 /* XXX locking on vfs_flag? */ 256 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 257 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 258 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 259 } else { 260 /* XXX locking on vfs_flag? */ 261 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 262 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 263 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 264 } 265 } 266 267 static void 268 blksz_changed_cb(void *arg, uint64_t newval) 269 { 270 zfsvfs_t *zfsvfs = arg; 271 272 if (newval < SPA_MINBLOCKSIZE || 273 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 274 newval = SPA_MAXBLOCKSIZE; 275 276 zfsvfs->z_max_blksz = newval; 277 zfsvfs->z_vfs->vfs_bsize = newval; 278 } 279 280 static void 281 readonly_changed_cb(void *arg, uint64_t newval) 282 { 283 zfsvfs_t *zfsvfs = arg; 284 285 if (newval) { 286 /* XXX locking on vfs_flag? */ 287 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 288 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 289 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 290 } else { 291 /* XXX locking on vfs_flag? */ 292 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 295 } 296 } 297 298 static void 299 devices_changed_cb(void *arg, uint64_t newval) 300 { 301 zfsvfs_t *zfsvfs = arg; 302 303 if (newval == FALSE) { 304 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 305 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 306 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 307 } else { 308 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 311 } 312 } 313 314 static void 315 setuid_changed_cb(void *arg, uint64_t newval) 316 { 317 zfsvfs_t *zfsvfs = arg; 318 319 if (newval == FALSE) { 320 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 321 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 322 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 323 } else { 324 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 327 } 328 } 329 330 static void 331 exec_changed_cb(void *arg, uint64_t newval) 332 { 333 zfsvfs_t *zfsvfs = arg; 334 335 if (newval == FALSE) { 336 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 337 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 338 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 339 } else { 340 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 343 } 344 } 345 346 /* 347 * The nbmand mount option can be changed at mount time. 348 * We can't allow it to be toggled on live file systems or incorrect 349 * behavior may be seen from cifs clients 350 * 351 * This property isn't registered via dsl_prop_register(), but this callback 352 * will be called when a file system is first mounted 353 */ 354 static void 355 nbmand_changed_cb(void *arg, uint64_t newval) 356 { 357 zfsvfs_t *zfsvfs = arg; 358 if (newval == FALSE) { 359 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 360 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 361 } else { 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 364 } 365 } 366 367 static void 368 snapdir_changed_cb(void *arg, uint64_t newval) 369 { 370 zfsvfs_t *zfsvfs = arg; 371 372 zfsvfs->z_show_ctldir = newval; 373 } 374 375 static void 376 vscan_changed_cb(void *arg, uint64_t newval) 377 { 378 zfsvfs_t *zfsvfs = arg; 379 380 zfsvfs->z_vscan = newval; 381 } 382 383 static void 384 acl_mode_changed_cb(void *arg, uint64_t newval) 385 { 386 zfsvfs_t *zfsvfs = arg; 387 388 zfsvfs->z_acl_mode = newval; 389 } 390 391 static void 392 acl_inherit_changed_cb(void *arg, uint64_t newval) 393 { 394 zfsvfs_t *zfsvfs = arg; 395 396 zfsvfs->z_acl_inherit = newval; 397 } 398 399 static int 400 zfs_register_callbacks(vfs_t *vfsp) 401 { 402 struct dsl_dataset *ds = NULL; 403 objset_t *os = NULL; 404 zfsvfs_t *zfsvfs = NULL; 405 uint64_t nbmand; 406 int readonly, do_readonly = B_FALSE; 407 int setuid, do_setuid = B_FALSE; 408 int exec, do_exec = B_FALSE; 409 int devices, do_devices = B_FALSE; 410 int xattr, do_xattr = B_FALSE; 411 int atime, do_atime = B_FALSE; 412 int error = 0; 413 414 ASSERT(vfsp); 415 zfsvfs = vfsp->vfs_data; 416 ASSERT(zfsvfs); 417 os = zfsvfs->z_os; 418 419 /* 420 * The act of registering our callbacks will destroy any mount 421 * options we may have. In order to enable temporary overrides 422 * of mount options, we stash away the current values and 423 * restore them after we register the callbacks. 424 */ 425 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 426 readonly = B_TRUE; 427 do_readonly = B_TRUE; 428 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 429 readonly = B_FALSE; 430 do_readonly = B_TRUE; 431 } 432 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 433 devices = B_FALSE; 434 setuid = B_FALSE; 435 do_devices = B_TRUE; 436 do_setuid = B_TRUE; 437 } else { 438 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 439 devices = B_FALSE; 440 do_devices = B_TRUE; 441 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 442 devices = B_TRUE; 443 do_devices = B_TRUE; 444 } 445 446 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 447 setuid = B_FALSE; 448 do_setuid = B_TRUE; 449 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 450 setuid = B_TRUE; 451 do_setuid = B_TRUE; 452 } 453 } 454 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 455 exec = B_FALSE; 456 do_exec = B_TRUE; 457 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 458 exec = B_TRUE; 459 do_exec = B_TRUE; 460 } 461 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 462 xattr = B_FALSE; 463 do_xattr = B_TRUE; 464 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 465 xattr = B_TRUE; 466 do_xattr = B_TRUE; 467 } 468 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 469 atime = B_FALSE; 470 do_atime = B_TRUE; 471 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 472 atime = B_TRUE; 473 do_atime = B_TRUE; 474 } 475 476 /* 477 * nbmand is a special property. It can only be changed at 478 * mount time. 479 * 480 * This is weird, but it is documented to only be changeable 481 * at mount time. 482 */ 483 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 484 nbmand = B_FALSE; 485 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 486 nbmand = B_TRUE; 487 } else { 488 char osname[MAXNAMELEN]; 489 490 dmu_objset_name(os, osname); 491 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 492 NULL)) { 493 return (error); 494 } 495 } 496 497 /* 498 * Register property callbacks. 499 * 500 * It would probably be fine to just check for i/o error from 501 * the first prop_register(), but I guess I like to go 502 * overboard... 503 */ 504 ds = dmu_objset_ds(os); 505 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "xattr", xattr_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "recordsize", blksz_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "readonly", readonly_changed_cb, zfsvfs); 512 error = error ? error : dsl_prop_register(ds, 513 "devices", devices_changed_cb, zfsvfs); 514 error = error ? error : dsl_prop_register(ds, 515 "setuid", setuid_changed_cb, zfsvfs); 516 error = error ? error : dsl_prop_register(ds, 517 "exec", exec_changed_cb, zfsvfs); 518 error = error ? error : dsl_prop_register(ds, 519 "snapdir", snapdir_changed_cb, zfsvfs); 520 error = error ? error : dsl_prop_register(ds, 521 "aclmode", acl_mode_changed_cb, zfsvfs); 522 error = error ? error : dsl_prop_register(ds, 523 "aclinherit", acl_inherit_changed_cb, zfsvfs); 524 error = error ? error : dsl_prop_register(ds, 525 "vscan", vscan_changed_cb, zfsvfs); 526 if (error) 527 goto unregister; 528 529 /* 530 * Invoke our callbacks to restore temporary mount options. 531 */ 532 if (do_readonly) 533 readonly_changed_cb(zfsvfs, readonly); 534 if (do_setuid) 535 setuid_changed_cb(zfsvfs, setuid); 536 if (do_exec) 537 exec_changed_cb(zfsvfs, exec); 538 if (do_devices) 539 devices_changed_cb(zfsvfs, devices); 540 if (do_xattr) 541 xattr_changed_cb(zfsvfs, xattr); 542 if (do_atime) 543 atime_changed_cb(zfsvfs, atime); 544 545 nbmand_changed_cb(zfsvfs, nbmand); 546 547 return (0); 548 549 unregister: 550 /* 551 * We may attempt to unregister some callbacks that are not 552 * registered, but this is OK; it will simply return ENOMSG, 553 * which we will ignore. 554 */ 555 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 556 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 557 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 558 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 559 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 560 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 561 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 562 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 563 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 564 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 565 zfsvfs); 566 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 567 return (error); 568 569 } 570 571 static void 572 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid, 573 int64_t delta, dmu_tx_t *tx) 574 { 575 uint64_t used = 0; 576 char buf[32]; 577 int err; 578 uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 579 580 if (delta == 0) 581 return; 582 583 (void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid); 584 err = zap_lookup(os, obj, buf, 8, 1, &used); 585 ASSERT(err == 0 || err == ENOENT); 586 /* no underflow/overflow */ 587 ASSERT(delta > 0 || used >= -delta); 588 ASSERT(delta < 0 || used + delta > used); 589 used += delta; 590 if (used == 0) 591 err = zap_remove(os, obj, buf, tx); 592 else 593 err = zap_update(os, obj, buf, 8, 1, &used, tx); 594 ASSERT(err == 0); 595 } 596 597 static void 598 zfs_space_delta_cb(objset_t *os, dmu_object_type_t bonustype, 599 void *oldbonus, void *newbonus, 600 uint64_t oldused, uint64_t newused, dmu_tx_t *tx) 601 { 602 znode_phys_t *oldznp = oldbonus; 603 znode_phys_t *newznp = newbonus; 604 605 if (bonustype != DMU_OT_ZNODE) 606 return; 607 608 /* We charge 512 for the dnode (if it's allocated). */ 609 if (oldznp->zp_gen != 0) 610 oldused += DNODE_SIZE; 611 if (newznp->zp_gen != 0) 612 newused += DNODE_SIZE; 613 614 if (oldznp->zp_uid == newznp->zp_uid) { 615 uidacct(os, B_FALSE, oldznp->zp_uid, newused-oldused, tx); 616 } else { 617 uidacct(os, B_FALSE, oldznp->zp_uid, -oldused, tx); 618 uidacct(os, B_FALSE, newznp->zp_uid, newused, tx); 619 } 620 621 if (oldznp->zp_gid == newznp->zp_gid) { 622 uidacct(os, B_TRUE, oldznp->zp_gid, newused-oldused, tx); 623 } else { 624 uidacct(os, B_TRUE, oldznp->zp_gid, -oldused, tx); 625 uidacct(os, B_TRUE, newznp->zp_gid, newused, tx); 626 } 627 } 628 629 static void 630 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 631 char *domainbuf, int buflen, uid_t *ridp) 632 { 633 extern uint64_t strtonum(const char *str, char **nptr); 634 uint64_t fuid; 635 const char *domain; 636 637 fuid = strtonum(fuidstr, NULL); 638 639 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 640 if (domain) 641 (void) strlcpy(domainbuf, domain, buflen); 642 else 643 domainbuf[0] = '\0'; 644 *ridp = FUID_RID(fuid); 645 } 646 647 static uint64_t 648 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 649 { 650 switch (type) { 651 case ZFS_PROP_USERUSED: 652 return (DMU_USERUSED_OBJECT); 653 case ZFS_PROP_GROUPUSED: 654 return (DMU_GROUPUSED_OBJECT); 655 case ZFS_PROP_USERQUOTA: 656 return (zfsvfs->z_userquota_obj); 657 case ZFS_PROP_GROUPQUOTA: 658 return (zfsvfs->z_groupquota_obj); 659 } 660 return (0); 661 } 662 663 int 664 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 665 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 666 { 667 int error; 668 zap_cursor_t zc; 669 zap_attribute_t za; 670 zfs_useracct_t *buf = vbuf; 671 uint64_t obj; 672 673 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 674 return (ENOTSUP); 675 676 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 677 if (obj == 0) { 678 *bufsizep = 0; 679 return (0); 680 } 681 682 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 683 (error = zap_cursor_retrieve(&zc, &za)) == 0; 684 zap_cursor_advance(&zc)) { 685 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 686 *bufsizep) 687 break; 688 689 fuidstr_to_sid(zfsvfs, za.za_name, 690 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 691 692 buf->zu_space = za.za_first_integer; 693 buf++; 694 } 695 if (error == ENOENT) 696 error = 0; 697 698 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 699 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 700 *cookiep = zap_cursor_serialize(&zc); 701 zap_cursor_fini(&zc); 702 return (error); 703 } 704 705 /* 706 * buf must be big enough (eg, 32 bytes) 707 */ 708 static int 709 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 710 char *buf, boolean_t addok) 711 { 712 uint64_t fuid; 713 int domainid = 0; 714 715 if (domain && domain[0]) { 716 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 717 if (domainid == -1) 718 return (ENOENT); 719 } 720 fuid = FUID_ENCODE(domainid, rid); 721 (void) sprintf(buf, "%llx", (longlong_t)fuid); 722 return (0); 723 } 724 725 int 726 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 727 const char *domain, uint64_t rid, uint64_t *valp) 728 { 729 char buf[32]; 730 int err; 731 uint64_t obj; 732 733 *valp = 0; 734 735 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 736 return (ENOTSUP); 737 738 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 739 if (obj == 0) 740 return (0); 741 742 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 743 if (err) 744 return (err); 745 746 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 747 if (err == ENOENT) 748 err = 0; 749 return (err); 750 } 751 752 int 753 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 754 const char *domain, uint64_t rid, uint64_t quota) 755 { 756 char buf[32]; 757 int err; 758 dmu_tx_t *tx; 759 uint64_t *objp; 760 boolean_t fuid_dirtied; 761 762 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 763 return (EINVAL); 764 765 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 766 return (ENOTSUP); 767 768 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 769 &zfsvfs->z_groupquota_obj; 770 771 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 772 if (err) 773 return (err); 774 fuid_dirtied = zfsvfs->z_fuid_dirty; 775 776 tx = dmu_tx_create(zfsvfs->z_os); 777 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 778 if (*objp == 0) { 779 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 780 zfs_userquota_prop_prefixes[type]); 781 } 782 if (fuid_dirtied) 783 zfs_fuid_txhold(zfsvfs, tx); 784 err = dmu_tx_assign(tx, TXG_WAIT); 785 if (err) { 786 dmu_tx_abort(tx); 787 return (err); 788 } 789 790 mutex_enter(&zfsvfs->z_lock); 791 if (*objp == 0) { 792 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 793 DMU_OT_NONE, 0, tx); 794 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 795 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 796 } 797 mutex_exit(&zfsvfs->z_lock); 798 799 if (quota == 0) { 800 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 801 if (err == ENOENT) 802 err = 0; 803 } else { 804 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 805 } 806 ASSERT(err == 0); 807 if (fuid_dirtied) 808 zfs_fuid_sync(zfsvfs, tx); 809 dmu_tx_commit(tx); 810 return (err); 811 } 812 813 boolean_t 814 zfs_usergroup_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 815 { 816 char buf[32]; 817 uint64_t used, quota, usedobj, quotaobj; 818 int err; 819 820 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 821 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 822 823 if (quotaobj == 0 || zfsvfs->z_replay) 824 return (B_FALSE); 825 826 (void) sprintf(buf, "%llx", (longlong_t)fuid); 827 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 828 if (err != 0) 829 return (B_FALSE); 830 831 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 832 if (err != 0) 833 return (B_FALSE); 834 return (used >= quota); 835 } 836 837 int 838 zfsvfs_create(const char *osname, int mode, zfsvfs_t **zvp) 839 { 840 objset_t *os; 841 zfsvfs_t *zfsvfs; 842 uint64_t zval; 843 int i, error; 844 845 if (error = dsl_prop_get_integer(osname, "readonly", &zval, NULL)) 846 return (error); 847 if (zval) 848 mode |= DS_MODE_READONLY; 849 850 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &os); 851 if (error == EROFS) { 852 mode |= DS_MODE_READONLY; 853 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &os); 854 } 855 if (error) 856 return (error); 857 858 /* 859 * Initialize the zfs-specific filesystem structure. 860 * Should probably make this a kmem cache, shuffle fields, 861 * and just bzero up to z_hold_mtx[]. 862 */ 863 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 864 zfsvfs->z_vfs = NULL; 865 zfsvfs->z_parent = zfsvfs; 866 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 867 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 868 zfsvfs->z_os = os; 869 870 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 871 if (error) { 872 goto out; 873 } else if (zfsvfs->z_version > ZPL_VERSION) { 874 (void) printf("Mismatched versions: File system " 875 "is version %llu on-disk format, which is " 876 "incompatible with this software version %lld!", 877 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION); 878 error = ENOTSUP; 879 goto out; 880 } 881 882 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 883 goto out; 884 zfsvfs->z_norm = (int)zval; 885 886 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 887 goto out; 888 zfsvfs->z_utf8 = (zval != 0); 889 890 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 891 goto out; 892 zfsvfs->z_case = (uint_t)zval; 893 894 /* 895 * Fold case on file systems that are always or sometimes case 896 * insensitive. 897 */ 898 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 899 zfsvfs->z_case == ZFS_CASE_MIXED) 900 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 901 902 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 903 904 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 905 &zfsvfs->z_root); 906 if (error) 907 goto out; 908 ASSERT(zfsvfs->z_root != 0); 909 910 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 911 &zfsvfs->z_unlinkedobj); 912 if (error) 913 goto out; 914 915 error = zap_lookup(os, MASTER_NODE_OBJ, 916 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 917 8, 1, &zfsvfs->z_userquota_obj); 918 if (error && error != ENOENT) 919 goto out; 920 921 error = zap_lookup(os, MASTER_NODE_OBJ, 922 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 923 8, 1, &zfsvfs->z_groupquota_obj); 924 if (error && error != ENOENT) 925 goto out; 926 927 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 928 &zfsvfs->z_fuid_obj); 929 if (error && error != ENOENT) 930 goto out; 931 932 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 933 &zfsvfs->z_shares_dir); 934 if (error && error != ENOENT) 935 goto out; 936 937 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 938 mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL); 939 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 940 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 941 offsetof(znode_t, z_link_node)); 942 rrw_init(&zfsvfs->z_teardown_lock); 943 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 944 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 945 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 946 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 947 948 *zvp = zfsvfs; 949 return (0); 950 951 out: 952 dmu_objset_close(os); 953 *zvp = NULL; 954 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 955 return (error); 956 } 957 958 static int 959 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 960 { 961 int error; 962 963 error = zfs_register_callbacks(zfsvfs->z_vfs); 964 if (error) 965 return (error); 966 967 /* 968 * Set the objset user_ptr to track its zfsvfs. 969 */ 970 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 971 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 972 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 973 974 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 975 if (zil_disable) { 976 zil_destroy(zfsvfs->z_log, 0); 977 zfsvfs->z_log = NULL; 978 } 979 980 /* 981 * If we are not mounting (ie: online recv), then we don't 982 * have to worry about replaying the log as we blocked all 983 * operations out since we closed the ZIL. 984 */ 985 if (mounting) { 986 boolean_t readonly; 987 988 /* 989 * During replay we remove the read only flag to 990 * allow replays to succeed. 991 */ 992 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 993 if (readonly != 0) 994 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 995 else 996 zfs_unlinked_drain(zfsvfs); 997 998 if (zfsvfs->z_log) { 999 /* 1000 * Parse and replay the intent log. 1001 * 1002 * Because of ziltest, this must be done after 1003 * zfs_unlinked_drain(). (Further note: ziltest 1004 * doesn't use readonly mounts, where 1005 * zfs_unlinked_drain() isn't called.) This is because 1006 * ziltest causes spa_sync() to think it's committed, 1007 * but actually it is not, so the intent log contains 1008 * many txg's worth of changes. 1009 * 1010 * In particular, if object N is in the unlinked set in 1011 * the last txg to actually sync, then it could be 1012 * actually freed in a later txg and then reallocated 1013 * in a yet later txg. This would write a "create 1014 * object N" record to the intent log. Normally, this 1015 * would be fine because the spa_sync() would have 1016 * written out the fact that object N is free, before 1017 * we could write the "create object N" intent log 1018 * record. 1019 * 1020 * But when we are in ziltest mode, we advance the "open 1021 * txg" without actually spa_sync()-ing the changes to 1022 * disk. So we would see that object N is still 1023 * allocated and in the unlinked set, and there is an 1024 * intent log record saying to allocate it. 1025 */ 1026 zfsvfs->z_replay = B_TRUE; 1027 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); 1028 zfsvfs->z_replay = B_FALSE; 1029 } 1030 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1031 } 1032 1033 return (0); 1034 } 1035 1036 void 1037 zfsvfs_free(zfsvfs_t *zfsvfs) 1038 { 1039 int i; 1040 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1041 1042 /* 1043 * This is a barrier to prevent the filesystem from going away in 1044 * zfs_znode_move() until we can safely ensure that the filesystem is 1045 * not unmounted. We consider the filesystem valid before the barrier 1046 * and invalid after the barrier. 1047 */ 1048 rw_enter(&zfsvfs_lock, RW_READER); 1049 rw_exit(&zfsvfs_lock); 1050 1051 zfs_fuid_destroy(zfsvfs); 1052 1053 mutex_destroy(&zfsvfs->z_znodes_lock); 1054 mutex_destroy(&zfsvfs->z_online_recv_lock); 1055 mutex_destroy(&zfsvfs->z_lock); 1056 list_destroy(&zfsvfs->z_all_znodes); 1057 rrw_destroy(&zfsvfs->z_teardown_lock); 1058 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1059 rw_destroy(&zfsvfs->z_fuid_lock); 1060 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1061 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1062 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1063 } 1064 1065 static void 1066 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1067 { 1068 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1069 if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) { 1070 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1071 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1072 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1073 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1074 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1075 } 1076 } 1077 1078 static int 1079 zfs_domount(vfs_t *vfsp, char *osname) 1080 { 1081 dev_t mount_dev; 1082 uint64_t recordsize, fsid_guid; 1083 int error = 0; 1084 zfsvfs_t *zfsvfs; 1085 1086 ASSERT(vfsp); 1087 ASSERT(osname); 1088 1089 error = zfsvfs_create(osname, DS_MODE_OWNER, &zfsvfs); 1090 if (error) 1091 return (error); 1092 zfsvfs->z_vfs = vfsp; 1093 1094 /* Initialize the generic filesystem structure. */ 1095 vfsp->vfs_bcount = 0; 1096 vfsp->vfs_data = NULL; 1097 1098 if (zfs_create_unique_device(&mount_dev) == -1) { 1099 error = ENODEV; 1100 goto out; 1101 } 1102 ASSERT(vfs_devismounted(mount_dev) == 0); 1103 1104 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1105 NULL)) 1106 goto out; 1107 1108 vfsp->vfs_dev = mount_dev; 1109 vfsp->vfs_fstype = zfsfstype; 1110 vfsp->vfs_bsize = recordsize; 1111 vfsp->vfs_flag |= VFS_NOTRUNC; 1112 vfsp->vfs_data = zfsvfs; 1113 1114 /* 1115 * The fsid is 64 bits, composed of an 8-bit fs type, which 1116 * separates our fsid from any other filesystem types, and a 1117 * 56-bit objset unique ID. The objset unique ID is unique to 1118 * all objsets open on this system, provided by unique_create(). 1119 * The 8-bit fs type must be put in the low bits of fsid[1] 1120 * because that's where other Solaris filesystems put it. 1121 */ 1122 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1123 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1124 vfsp->vfs_fsid.val[0] = fsid_guid; 1125 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1126 zfsfstype & 0xFF; 1127 1128 /* 1129 * Set features for file system. 1130 */ 1131 zfs_set_fuid_feature(zfsvfs); 1132 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1133 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1134 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1135 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1136 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1137 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1138 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1139 } 1140 1141 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1142 uint64_t pval; 1143 1144 atime_changed_cb(zfsvfs, B_FALSE); 1145 readonly_changed_cb(zfsvfs, B_TRUE); 1146 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1147 goto out; 1148 xattr_changed_cb(zfsvfs, pval); 1149 zfsvfs->z_issnap = B_TRUE; 1150 1151 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 1152 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1153 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 1154 } else { 1155 error = zfsvfs_setup(zfsvfs, B_TRUE); 1156 } 1157 1158 if (!zfsvfs->z_issnap) 1159 zfsctl_create(zfsvfs); 1160 out: 1161 if (error) { 1162 dmu_objset_close(zfsvfs->z_os); 1163 zfsvfs_free(zfsvfs); 1164 } else { 1165 atomic_add_32(&zfs_active_fs_count, 1); 1166 } 1167 1168 return (error); 1169 } 1170 1171 void 1172 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1173 { 1174 objset_t *os = zfsvfs->z_os; 1175 struct dsl_dataset *ds; 1176 1177 /* 1178 * Unregister properties. 1179 */ 1180 if (!dmu_objset_is_snapshot(os)) { 1181 ds = dmu_objset_ds(os); 1182 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1183 zfsvfs) == 0); 1184 1185 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1186 zfsvfs) == 0); 1187 1188 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1189 zfsvfs) == 0); 1190 1191 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1192 zfsvfs) == 0); 1193 1194 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1195 zfsvfs) == 0); 1196 1197 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1198 zfsvfs) == 0); 1199 1200 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1201 zfsvfs) == 0); 1202 1203 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1204 zfsvfs) == 0); 1205 1206 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 1207 zfsvfs) == 0); 1208 1209 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1210 acl_inherit_changed_cb, zfsvfs) == 0); 1211 1212 VERIFY(dsl_prop_unregister(ds, "vscan", 1213 vscan_changed_cb, zfsvfs) == 0); 1214 } 1215 } 1216 1217 /* 1218 * Convert a decimal digit string to a uint64_t integer. 1219 */ 1220 static int 1221 str_to_uint64(char *str, uint64_t *objnum) 1222 { 1223 uint64_t num = 0; 1224 1225 while (*str) { 1226 if (*str < '0' || *str > '9') 1227 return (EINVAL); 1228 1229 num = num*10 + *str++ - '0'; 1230 } 1231 1232 *objnum = num; 1233 return (0); 1234 } 1235 1236 /* 1237 * The boot path passed from the boot loader is in the form of 1238 * "rootpool-name/root-filesystem-object-number'. Convert this 1239 * string to a dataset name: "rootpool-name/root-filesystem-name". 1240 */ 1241 static int 1242 zfs_parse_bootfs(char *bpath, char *outpath) 1243 { 1244 char *slashp; 1245 uint64_t objnum; 1246 int error; 1247 1248 if (*bpath == 0 || *bpath == '/') 1249 return (EINVAL); 1250 1251 (void) strcpy(outpath, bpath); 1252 1253 slashp = strchr(bpath, '/'); 1254 1255 /* if no '/', just return the pool name */ 1256 if (slashp == NULL) { 1257 return (0); 1258 } 1259 1260 /* if not a number, just return the root dataset name */ 1261 if (str_to_uint64(slashp+1, &objnum)) { 1262 return (0); 1263 } 1264 1265 *slashp = '\0'; 1266 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1267 *slashp = '/'; 1268 1269 return (error); 1270 } 1271 1272 static int 1273 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1274 { 1275 int error = 0; 1276 static int zfsrootdone = 0; 1277 zfsvfs_t *zfsvfs = NULL; 1278 znode_t *zp = NULL; 1279 vnode_t *vp = NULL; 1280 char *zfs_bootfs; 1281 char *zfs_devid; 1282 1283 ASSERT(vfsp); 1284 1285 /* 1286 * The filesystem that we mount as root is defined in the 1287 * boot property "zfs-bootfs" with a format of 1288 * "poolname/root-dataset-objnum". 1289 */ 1290 if (why == ROOT_INIT) { 1291 if (zfsrootdone++) 1292 return (EBUSY); 1293 /* 1294 * the process of doing a spa_load will require the 1295 * clock to be set before we could (for example) do 1296 * something better by looking at the timestamp on 1297 * an uberblock, so just set it to -1. 1298 */ 1299 clkset(-1); 1300 1301 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1302 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1303 "bootfs name"); 1304 return (EINVAL); 1305 } 1306 zfs_devid = spa_get_bootprop("diskdevid"); 1307 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1308 if (zfs_devid) 1309 spa_free_bootprop(zfs_devid); 1310 if (error) { 1311 spa_free_bootprop(zfs_bootfs); 1312 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1313 error); 1314 return (error); 1315 } 1316 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1317 spa_free_bootprop(zfs_bootfs); 1318 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1319 error); 1320 return (error); 1321 } 1322 1323 spa_free_bootprop(zfs_bootfs); 1324 1325 if (error = vfs_lock(vfsp)) 1326 return (error); 1327 1328 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1329 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1330 goto out; 1331 } 1332 1333 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1334 ASSERT(zfsvfs); 1335 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1336 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1337 goto out; 1338 } 1339 1340 vp = ZTOV(zp); 1341 mutex_enter(&vp->v_lock); 1342 vp->v_flag |= VROOT; 1343 mutex_exit(&vp->v_lock); 1344 rootvp = vp; 1345 1346 /* 1347 * Leave rootvp held. The root file system is never unmounted. 1348 */ 1349 1350 vfs_add((struct vnode *)0, vfsp, 1351 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1352 out: 1353 vfs_unlock(vfsp); 1354 return (error); 1355 } else if (why == ROOT_REMOUNT) { 1356 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1357 vfsp->vfs_flag |= VFS_REMOUNT; 1358 1359 /* refresh mount options */ 1360 zfs_unregister_callbacks(vfsp->vfs_data); 1361 return (zfs_register_callbacks(vfsp)); 1362 1363 } else if (why == ROOT_UNMOUNT) { 1364 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1365 (void) zfs_sync(vfsp, 0, 0); 1366 return (0); 1367 } 1368 1369 /* 1370 * if "why" is equal to anything else other than ROOT_INIT, 1371 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1372 */ 1373 return (ENOTSUP); 1374 } 1375 1376 /*ARGSUSED*/ 1377 static int 1378 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1379 { 1380 char *osname; 1381 pathname_t spn; 1382 int error = 0; 1383 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1384 UIO_SYSSPACE : UIO_USERSPACE; 1385 int canwrite; 1386 1387 if (mvp->v_type != VDIR) 1388 return (ENOTDIR); 1389 1390 mutex_enter(&mvp->v_lock); 1391 if ((uap->flags & MS_REMOUNT) == 0 && 1392 (uap->flags & MS_OVERLAY) == 0 && 1393 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1394 mutex_exit(&mvp->v_lock); 1395 return (EBUSY); 1396 } 1397 mutex_exit(&mvp->v_lock); 1398 1399 /* 1400 * ZFS does not support passing unparsed data in via MS_DATA. 1401 * Users should use the MS_OPTIONSTR interface; this means 1402 * that all option parsing is already done and the options struct 1403 * can be interrogated. 1404 */ 1405 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1406 return (EINVAL); 1407 1408 /* 1409 * Get the objset name (the "special" mount argument). 1410 */ 1411 if (error = pn_get(uap->spec, fromspace, &spn)) 1412 return (error); 1413 1414 osname = spn.pn_path; 1415 1416 /* 1417 * Check for mount privilege? 1418 * 1419 * If we don't have privilege then see if 1420 * we have local permission to allow it 1421 */ 1422 error = secpolicy_fs_mount(cr, mvp, vfsp); 1423 if (error) { 1424 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 1425 if (error == 0) { 1426 vattr_t vattr; 1427 1428 /* 1429 * Make sure user is the owner of the mount point 1430 * or has sufficient privileges. 1431 */ 1432 1433 vattr.va_mask = AT_UID; 1434 1435 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1436 goto out; 1437 } 1438 1439 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1440 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1441 error = EPERM; 1442 goto out; 1443 } 1444 1445 secpolicy_fs_mount_clearopts(cr, vfsp); 1446 } else { 1447 goto out; 1448 } 1449 } 1450 1451 /* 1452 * Refuse to mount a filesystem if we are in a local zone and the 1453 * dataset is not visible. 1454 */ 1455 if (!INGLOBALZONE(curproc) && 1456 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1457 error = EPERM; 1458 goto out; 1459 } 1460 1461 /* 1462 * When doing a remount, we simply refresh our temporary properties 1463 * according to those options set in the current VFS options. 1464 */ 1465 if (uap->flags & MS_REMOUNT) { 1466 /* refresh mount options */ 1467 zfs_unregister_callbacks(vfsp->vfs_data); 1468 error = zfs_register_callbacks(vfsp); 1469 goto out; 1470 } 1471 1472 error = zfs_domount(vfsp, osname); 1473 1474 /* 1475 * Add an extra VFS_HOLD on our parent vfs so that it can't 1476 * disappear due to a forced unmount. 1477 */ 1478 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1479 VFS_HOLD(mvp->v_vfsp); 1480 1481 out: 1482 pn_free(&spn); 1483 return (error); 1484 } 1485 1486 static int 1487 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1488 { 1489 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1490 dev32_t d32; 1491 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1492 1493 ZFS_ENTER(zfsvfs); 1494 1495 dmu_objset_space(zfsvfs->z_os, 1496 &refdbytes, &availbytes, &usedobjs, &availobjs); 1497 1498 /* 1499 * The underlying storage pool actually uses multiple block sizes. 1500 * We report the fragsize as the smallest block size we support, 1501 * and we report our blocksize as the filesystem's maximum blocksize. 1502 */ 1503 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1504 statp->f_bsize = zfsvfs->z_max_blksz; 1505 1506 /* 1507 * The following report "total" blocks of various kinds in the 1508 * file system, but reported in terms of f_frsize - the 1509 * "fragment" size. 1510 */ 1511 1512 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1513 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1514 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1515 1516 /* 1517 * statvfs() should really be called statufs(), because it assumes 1518 * static metadata. ZFS doesn't preallocate files, so the best 1519 * we can do is report the max that could possibly fit in f_files, 1520 * and that minus the number actually used in f_ffree. 1521 * For f_ffree, report the smaller of the number of object available 1522 * and the number of blocks (each object will take at least a block). 1523 */ 1524 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1525 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1526 statp->f_files = statp->f_ffree + usedobjs; 1527 1528 (void) cmpldev(&d32, vfsp->vfs_dev); 1529 statp->f_fsid = d32; 1530 1531 /* 1532 * We're a zfs filesystem. 1533 */ 1534 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1535 1536 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1537 1538 statp->f_namemax = ZFS_MAXNAMELEN; 1539 1540 /* 1541 * We have all of 32 characters to stuff a string here. 1542 * Is there anything useful we could/should provide? 1543 */ 1544 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1545 1546 ZFS_EXIT(zfsvfs); 1547 return (0); 1548 } 1549 1550 static int 1551 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1552 { 1553 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1554 znode_t *rootzp; 1555 int error; 1556 1557 ZFS_ENTER(zfsvfs); 1558 1559 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1560 if (error == 0) 1561 *vpp = ZTOV(rootzp); 1562 1563 ZFS_EXIT(zfsvfs); 1564 return (error); 1565 } 1566 1567 /* 1568 * Teardown the zfsvfs::z_os. 1569 * 1570 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1571 * and 'z_teardown_inactive_lock' held. 1572 */ 1573 static int 1574 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1575 { 1576 znode_t *zp; 1577 1578 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1579 1580 if (!unmounting) { 1581 /* 1582 * We purge the parent filesystem's vfsp as the parent 1583 * filesystem and all of its snapshots have their vnode's 1584 * v_vfsp set to the parent's filesystem's vfsp. Note, 1585 * 'z_parent' is self referential for non-snapshots. 1586 */ 1587 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1588 } 1589 1590 /* 1591 * Close the zil. NB: Can't close the zil while zfs_inactive 1592 * threads are blocked as zil_close can call zfs_inactive. 1593 */ 1594 if (zfsvfs->z_log) { 1595 zil_close(zfsvfs->z_log); 1596 zfsvfs->z_log = NULL; 1597 } 1598 1599 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1600 1601 /* 1602 * If we are not unmounting (ie: online recv) and someone already 1603 * unmounted this file system while we were doing the switcheroo, 1604 * or a reopen of z_os failed then just bail out now. 1605 */ 1606 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1607 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1608 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1609 return (EIO); 1610 } 1611 1612 /* 1613 * At this point there are no vops active, and any new vops will 1614 * fail with EIO since we have z_teardown_lock for writer (only 1615 * relavent for forced unmount). 1616 * 1617 * Release all holds on dbufs. 1618 */ 1619 mutex_enter(&zfsvfs->z_znodes_lock); 1620 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1621 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1622 if (zp->z_dbuf) { 1623 ASSERT(ZTOV(zp)->v_count > 0); 1624 zfs_znode_dmu_fini(zp); 1625 } 1626 mutex_exit(&zfsvfs->z_znodes_lock); 1627 1628 /* 1629 * If we are unmounting, set the unmounted flag and let new vops 1630 * unblock. zfs_inactive will have the unmounted behavior, and all 1631 * other vops will fail with EIO. 1632 */ 1633 if (unmounting) { 1634 zfsvfs->z_unmounted = B_TRUE; 1635 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1636 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1637 } 1638 1639 /* 1640 * z_os will be NULL if there was an error in attempting to reopen 1641 * zfsvfs, so just return as the properties had already been 1642 * unregistered and cached data had been evicted before. 1643 */ 1644 if (zfsvfs->z_os == NULL) 1645 return (0); 1646 1647 /* 1648 * Unregister properties. 1649 */ 1650 zfs_unregister_callbacks(zfsvfs); 1651 1652 /* 1653 * Evict cached data 1654 */ 1655 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1656 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1657 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1658 } 1659 1660 return (0); 1661 } 1662 1663 /*ARGSUSED*/ 1664 static int 1665 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1666 { 1667 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1668 objset_t *os; 1669 int ret; 1670 1671 ret = secpolicy_fs_unmount(cr, vfsp); 1672 if (ret) { 1673 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1674 ZFS_DELEG_PERM_MOUNT, cr); 1675 if (ret) 1676 return (ret); 1677 } 1678 1679 /* 1680 * We purge the parent filesystem's vfsp as the parent filesystem 1681 * and all of its snapshots have their vnode's v_vfsp set to the 1682 * parent's filesystem's vfsp. Note, 'z_parent' is self 1683 * referential for non-snapshots. 1684 */ 1685 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1686 1687 /* 1688 * Unmount any snapshots mounted under .zfs before unmounting the 1689 * dataset itself. 1690 */ 1691 if (zfsvfs->z_ctldir != NULL && 1692 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1693 return (ret); 1694 } 1695 1696 if (!(fflag & MS_FORCE)) { 1697 /* 1698 * Check the number of active vnodes in the file system. 1699 * Our count is maintained in the vfs structure, but the 1700 * number is off by 1 to indicate a hold on the vfs 1701 * structure itself. 1702 * 1703 * The '.zfs' directory maintains a reference of its 1704 * own, and any active references underneath are 1705 * reflected in the vnode count. 1706 */ 1707 if (zfsvfs->z_ctldir == NULL) { 1708 if (vfsp->vfs_count > 1) 1709 return (EBUSY); 1710 } else { 1711 if (vfsp->vfs_count > 2 || 1712 zfsvfs->z_ctldir->v_count > 1) 1713 return (EBUSY); 1714 } 1715 } 1716 1717 vfsp->vfs_flag |= VFS_UNMOUNTED; 1718 1719 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1720 os = zfsvfs->z_os; 1721 1722 /* 1723 * z_os will be NULL if there was an error in 1724 * attempting to reopen zfsvfs. 1725 */ 1726 if (os != NULL) { 1727 /* 1728 * Unset the objset user_ptr. 1729 */ 1730 mutex_enter(&os->os->os_user_ptr_lock); 1731 dmu_objset_set_user(os, NULL); 1732 mutex_exit(&os->os->os_user_ptr_lock); 1733 1734 /* 1735 * Finally release the objset 1736 */ 1737 dmu_objset_close(os); 1738 } 1739 1740 /* 1741 * We can now safely destroy the '.zfs' directory node. 1742 */ 1743 if (zfsvfs->z_ctldir != NULL) 1744 zfsctl_destroy(zfsvfs); 1745 1746 return (0); 1747 } 1748 1749 static int 1750 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1751 { 1752 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1753 znode_t *zp; 1754 uint64_t object = 0; 1755 uint64_t fid_gen = 0; 1756 uint64_t gen_mask; 1757 uint64_t zp_gen; 1758 int i, err; 1759 1760 *vpp = NULL; 1761 1762 ZFS_ENTER(zfsvfs); 1763 1764 if (fidp->fid_len == LONG_FID_LEN) { 1765 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1766 uint64_t objsetid = 0; 1767 uint64_t setgen = 0; 1768 1769 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1770 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1771 1772 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1773 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1774 1775 ZFS_EXIT(zfsvfs); 1776 1777 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1778 if (err) 1779 return (EINVAL); 1780 ZFS_ENTER(zfsvfs); 1781 } 1782 1783 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1784 zfid_short_t *zfid = (zfid_short_t *)fidp; 1785 1786 for (i = 0; i < sizeof (zfid->zf_object); i++) 1787 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1788 1789 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1790 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1791 } else { 1792 ZFS_EXIT(zfsvfs); 1793 return (EINVAL); 1794 } 1795 1796 /* A zero fid_gen means we are in the .zfs control directories */ 1797 if (fid_gen == 0 && 1798 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1799 *vpp = zfsvfs->z_ctldir; 1800 ASSERT(*vpp != NULL); 1801 if (object == ZFSCTL_INO_SNAPDIR) { 1802 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1803 0, NULL, NULL, NULL, NULL, NULL) == 0); 1804 } else { 1805 VN_HOLD(*vpp); 1806 } 1807 ZFS_EXIT(zfsvfs); 1808 return (0); 1809 } 1810 1811 gen_mask = -1ULL >> (64 - 8 * i); 1812 1813 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1814 if (err = zfs_zget(zfsvfs, object, &zp)) { 1815 ZFS_EXIT(zfsvfs); 1816 return (err); 1817 } 1818 zp_gen = zp->z_phys->zp_gen & gen_mask; 1819 if (zp_gen == 0) 1820 zp_gen = 1; 1821 if (zp->z_unlinked || zp_gen != fid_gen) { 1822 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1823 VN_RELE(ZTOV(zp)); 1824 ZFS_EXIT(zfsvfs); 1825 return (EINVAL); 1826 } 1827 1828 *vpp = ZTOV(zp); 1829 ZFS_EXIT(zfsvfs); 1830 return (0); 1831 } 1832 1833 /* 1834 * Block out VOPs and close zfsvfs_t::z_os 1835 * 1836 * Note, if successful, then we return with the 'z_teardown_lock' and 1837 * 'z_teardown_inactive_lock' write held. 1838 */ 1839 int 1840 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *modep) 1841 { 1842 int error; 1843 1844 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1845 return (error); 1846 1847 *modep = zfsvfs->z_os->os_mode; 1848 if (name) 1849 dmu_objset_name(zfsvfs->z_os, name); 1850 dmu_objset_close(zfsvfs->z_os); 1851 1852 return (0); 1853 } 1854 1855 /* 1856 * Reopen zfsvfs_t::z_os and release VOPs. 1857 */ 1858 int 1859 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode) 1860 { 1861 int err; 1862 1863 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1864 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1865 1866 err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 1867 if (err) { 1868 zfsvfs->z_os = NULL; 1869 } else { 1870 znode_t *zp; 1871 1872 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1873 1874 /* 1875 * Attempt to re-establish all the active znodes with 1876 * their dbufs. If a zfs_rezget() fails, then we'll let 1877 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1878 * when they try to use their znode. 1879 */ 1880 mutex_enter(&zfsvfs->z_znodes_lock); 1881 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1882 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1883 (void) zfs_rezget(zp); 1884 } 1885 mutex_exit(&zfsvfs->z_znodes_lock); 1886 1887 } 1888 1889 /* release the VOPs */ 1890 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1891 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1892 1893 if (err) { 1894 /* 1895 * Since we couldn't reopen zfsvfs::z_os, force 1896 * unmount this file system. 1897 */ 1898 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1899 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1900 } 1901 return (err); 1902 } 1903 1904 static void 1905 zfs_freevfs(vfs_t *vfsp) 1906 { 1907 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1908 1909 /* 1910 * If this is a snapshot, we have an extra VFS_HOLD on our parent 1911 * from zfs_mount(). Release it here. 1912 */ 1913 if (zfsvfs->z_issnap) 1914 VFS_RELE(zfsvfs->z_parent->z_vfs); 1915 1916 zfsvfs_free(zfsvfs); 1917 1918 atomic_add_32(&zfs_active_fs_count, -1); 1919 } 1920 1921 /* 1922 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1923 * so we can't safely do any non-idempotent initialization here. 1924 * Leave that to zfs_init() and zfs_fini(), which are called 1925 * from the module's _init() and _fini() entry points. 1926 */ 1927 /*ARGSUSED*/ 1928 static int 1929 zfs_vfsinit(int fstype, char *name) 1930 { 1931 int error; 1932 1933 zfsfstype = fstype; 1934 1935 /* 1936 * Setup vfsops and vnodeops tables. 1937 */ 1938 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1939 if (error != 0) { 1940 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1941 } 1942 1943 error = zfs_create_op_tables(); 1944 if (error) { 1945 zfs_remove_op_tables(); 1946 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1947 (void) vfs_freevfsops_by_type(zfsfstype); 1948 return (error); 1949 } 1950 1951 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1952 1953 /* 1954 * Unique major number for all zfs mounts. 1955 * If we run out of 32-bit minors, we'll getudev() another major. 1956 */ 1957 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1958 zfs_minor = ZFS_MIN_MINOR; 1959 1960 return (0); 1961 } 1962 1963 void 1964 zfs_init(void) 1965 { 1966 /* 1967 * Initialize .zfs directory structures 1968 */ 1969 zfsctl_init(); 1970 1971 /* 1972 * Initialize znode cache, vnode ops, etc... 1973 */ 1974 zfs_znode_init(); 1975 1976 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 1977 } 1978 1979 void 1980 zfs_fini(void) 1981 { 1982 zfsctl_fini(); 1983 zfs_znode_fini(); 1984 } 1985 1986 int 1987 zfs_busy(void) 1988 { 1989 return (zfs_active_fs_count != 0); 1990 } 1991 1992 int 1993 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 1994 { 1995 int error; 1996 objset_t *os = zfsvfs->z_os; 1997 dmu_tx_t *tx; 1998 1999 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2000 return (EINVAL); 2001 2002 if (newvers < zfsvfs->z_version) 2003 return (EINVAL); 2004 2005 tx = dmu_tx_create(os); 2006 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2007 error = dmu_tx_assign(tx, TXG_WAIT); 2008 if (error) { 2009 dmu_tx_abort(tx); 2010 return (error); 2011 } 2012 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2013 8, 1, &newvers, tx); 2014 2015 if (error) { 2016 dmu_tx_commit(tx); 2017 return (error); 2018 } 2019 2020 spa_history_internal_log(LOG_DS_UPGRADE, 2021 dmu_objset_spa(os), tx, CRED(), 2022 "oldver=%llu newver=%llu dataset = %llu", 2023 zfsvfs->z_version, newvers, dmu_objset_id(os)); 2024 2025 dmu_tx_commit(tx); 2026 2027 zfsvfs->z_version = newvers; 2028 2029 if (zfsvfs->z_version >= ZPL_VERSION_FUID) 2030 zfs_set_fuid_feature(zfsvfs); 2031 2032 return (0); 2033 } 2034 2035 /* 2036 * Read a property stored within the master node. 2037 */ 2038 int 2039 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2040 { 2041 const char *pname; 2042 int error = ENOENT; 2043 2044 /* 2045 * Look up the file system's value for the property. For the 2046 * version property, we look up a slightly different string. 2047 */ 2048 if (prop == ZFS_PROP_VERSION) 2049 pname = ZPL_VERSION_STR; 2050 else 2051 pname = zfs_prop_to_name(prop); 2052 2053 if (os != NULL) 2054 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2055 2056 if (error == ENOENT) { 2057 /* No value set, use the default value */ 2058 switch (prop) { 2059 case ZFS_PROP_VERSION: 2060 *value = ZPL_VERSION; 2061 break; 2062 case ZFS_PROP_NORMALIZE: 2063 case ZFS_PROP_UTF8ONLY: 2064 *value = 0; 2065 break; 2066 case ZFS_PROP_CASE: 2067 *value = ZFS_CASE_SENSITIVE; 2068 break; 2069 default: 2070 return (error); 2071 } 2072 error = 0; 2073 } 2074 return (error); 2075 } 2076 2077 static vfsdef_t vfw = { 2078 VFSDEF_VERSION, 2079 MNTTYPE_ZFS, 2080 zfs_vfsinit, 2081 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2082 VSW_XID, 2083 &zfs_mntopts 2084 }; 2085 2086 struct modlfs zfs_modlfs = { 2087 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2088 }; 2089