1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/mntent.h> 38 #include <sys/mount.h> 39 #include <sys/cmn_err.h> 40 #include "fs/fs_subr.h" 41 #include <sys/zfs_znode.h> 42 #include <sys/zfs_dir.h> 43 #include <sys/zil.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/dmu.h> 46 #include <sys/dsl_prop.h> 47 #include <sys/dsl_dataset.h> 48 #include <sys/dsl_deleg.h> 49 #include <sys/spa.h> 50 #include <sys/zap.h> 51 #include <sys/sa.h> 52 #include <sys/sa_impl.h> 53 #include <sys/varargs.h> 54 #include <sys/policy.h> 55 #include <sys/atomic.h> 56 #include <sys/mkdev.h> 57 #include <sys/modctl.h> 58 #include <sys/refstr.h> 59 #include <sys/zfs_ioctl.h> 60 #include <sys/zfs_ctldir.h> 61 #include <sys/zfs_fuid.h> 62 #include <sys/bootconf.h> 63 #include <sys/sunddi.h> 64 #include <sys/dnlc.h> 65 #include <sys/dmu_objset.h> 66 #include <sys/spa_boot.h> 67 #include "zfs_comutil.h" 68 69 int zfsfstype; 70 vfsops_t *zfs_vfsops = NULL; 71 static major_t zfs_major; 72 static minor_t zfs_minor; 73 static kmutex_t zfs_dev_mtx; 74 75 extern int sys_shutdown; 76 77 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 78 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 79 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 80 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 81 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 82 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 83 static void zfs_freevfs(vfs_t *vfsp); 84 85 static const fs_operation_def_t zfs_vfsops_template[] = { 86 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 87 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 88 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 89 VFSNAME_ROOT, { .vfs_root = zfs_root }, 90 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 91 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 92 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 94 NULL, NULL 95 }; 96 97 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 98 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 99 NULL, NULL 100 }; 101 102 /* 103 * We need to keep a count of active fs's. 104 * This is necessary to prevent our module 105 * from being unloaded after a umount -f 106 */ 107 static uint32_t zfs_active_fs_count = 0; 108 109 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 110 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 111 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 112 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 113 114 /* 115 * MO_DEFAULT is not used since the default value is determined 116 * by the equivalent property. 117 */ 118 static mntopt_t mntopts[] = { 119 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 120 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 121 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 122 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 123 }; 124 125 static mntopts_t zfs_mntopts = { 126 sizeof (mntopts) / sizeof (mntopt_t), 127 mntopts 128 }; 129 130 /*ARGSUSED*/ 131 int 132 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 133 { 134 /* 135 * Data integrity is job one. We don't want a compromised kernel 136 * writing to the storage pool, so we never sync during panic. 137 */ 138 if (panicstr) 139 return (0); 140 141 /* 142 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 143 * to sync metadata, which they would otherwise cache indefinitely. 144 * Semantically, the only requirement is that the sync be initiated. 145 * The DMU syncs out txgs frequently, so there's nothing to do. 146 */ 147 if (flag & SYNC_ATTR) 148 return (0); 149 150 if (vfsp != NULL) { 151 /* 152 * Sync a specific filesystem. 153 */ 154 zfsvfs_t *zfsvfs = vfsp->vfs_data; 155 dsl_pool_t *dp; 156 157 ZFS_ENTER(zfsvfs); 158 dp = dmu_objset_pool(zfsvfs->z_os); 159 160 /* 161 * If the system is shutting down, then skip any 162 * filesystems which may exist on a suspended pool. 163 */ 164 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 165 ZFS_EXIT(zfsvfs); 166 return (0); 167 } 168 169 if (zfsvfs->z_log != NULL) 170 zil_commit(zfsvfs->z_log, 0); 171 172 ZFS_EXIT(zfsvfs); 173 } else { 174 /* 175 * Sync all ZFS filesystems. This is what happens when you 176 * run sync(1M). Unlike other filesystems, ZFS honors the 177 * request by waiting for all pools to commit all dirty data. 178 */ 179 spa_sync_allpools(); 180 } 181 182 return (0); 183 } 184 185 static int 186 zfs_create_unique_device(dev_t *dev) 187 { 188 major_t new_major; 189 190 do { 191 ASSERT3U(zfs_minor, <=, MAXMIN32); 192 minor_t start = zfs_minor; 193 do { 194 mutex_enter(&zfs_dev_mtx); 195 if (zfs_minor >= MAXMIN32) { 196 /* 197 * If we're still using the real major 198 * keep out of /dev/zfs and /dev/zvol minor 199 * number space. If we're using a getudev()'ed 200 * major number, we can use all of its minors. 201 */ 202 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 203 zfs_minor = ZFS_MIN_MINOR; 204 else 205 zfs_minor = 0; 206 } else { 207 zfs_minor++; 208 } 209 *dev = makedevice(zfs_major, zfs_minor); 210 mutex_exit(&zfs_dev_mtx); 211 } while (vfs_devismounted(*dev) && zfs_minor != start); 212 if (zfs_minor == start) { 213 /* 214 * We are using all ~262,000 minor numbers for the 215 * current major number. Create a new major number. 216 */ 217 if ((new_major = getudev()) == (major_t)-1) { 218 cmn_err(CE_WARN, 219 "zfs_mount: Can't get unique major " 220 "device number."); 221 return (-1); 222 } 223 mutex_enter(&zfs_dev_mtx); 224 zfs_major = new_major; 225 zfs_minor = 0; 226 227 mutex_exit(&zfs_dev_mtx); 228 } else { 229 break; 230 } 231 /* CONSTANTCONDITION */ 232 } while (1); 233 234 return (0); 235 } 236 237 static void 238 atime_changed_cb(void *arg, uint64_t newval) 239 { 240 zfsvfs_t *zfsvfs = arg; 241 242 if (newval == TRUE) { 243 zfsvfs->z_atime = TRUE; 244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 246 } else { 247 zfsvfs->z_atime = FALSE; 248 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 249 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 250 } 251 } 252 253 static void 254 xattr_changed_cb(void *arg, uint64_t newval) 255 { 256 zfsvfs_t *zfsvfs = arg; 257 258 if (newval == TRUE) { 259 /* XXX locking on vfs_flag? */ 260 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 261 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 262 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 263 } else { 264 /* XXX locking on vfs_flag? */ 265 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 266 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 267 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 268 } 269 } 270 271 static void 272 blksz_changed_cb(void *arg, uint64_t newval) 273 { 274 zfsvfs_t *zfsvfs = arg; 275 276 if (newval < SPA_MINBLOCKSIZE || 277 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 278 newval = SPA_MAXBLOCKSIZE; 279 280 zfsvfs->z_max_blksz = newval; 281 zfsvfs->z_vfs->vfs_bsize = newval; 282 } 283 284 static void 285 readonly_changed_cb(void *arg, uint64_t newval) 286 { 287 zfsvfs_t *zfsvfs = arg; 288 289 if (newval) { 290 /* XXX locking on vfs_flag? */ 291 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 292 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 293 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 294 } else { 295 /* XXX locking on vfs_flag? */ 296 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 297 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 298 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 299 } 300 } 301 302 static void 303 devices_changed_cb(void *arg, uint64_t newval) 304 { 305 zfsvfs_t *zfsvfs = arg; 306 307 if (newval == FALSE) { 308 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 311 } else { 312 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 313 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 314 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 315 } 316 } 317 318 static void 319 setuid_changed_cb(void *arg, uint64_t newval) 320 { 321 zfsvfs_t *zfsvfs = arg; 322 323 if (newval == FALSE) { 324 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 327 } else { 328 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 329 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 330 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 331 } 332 } 333 334 static void 335 exec_changed_cb(void *arg, uint64_t newval) 336 { 337 zfsvfs_t *zfsvfs = arg; 338 339 if (newval == FALSE) { 340 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 343 } else { 344 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 347 } 348 } 349 350 /* 351 * The nbmand mount option can be changed at mount time. 352 * We can't allow it to be toggled on live file systems or incorrect 353 * behavior may be seen from cifs clients 354 * 355 * This property isn't registered via dsl_prop_register(), but this callback 356 * will be called when a file system is first mounted 357 */ 358 static void 359 nbmand_changed_cb(void *arg, uint64_t newval) 360 { 361 zfsvfs_t *zfsvfs = arg; 362 if (newval == FALSE) { 363 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 364 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 365 } else { 366 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 367 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 368 } 369 } 370 371 static void 372 snapdir_changed_cb(void *arg, uint64_t newval) 373 { 374 zfsvfs_t *zfsvfs = arg; 375 376 zfsvfs->z_show_ctldir = newval; 377 } 378 379 static void 380 vscan_changed_cb(void *arg, uint64_t newval) 381 { 382 zfsvfs_t *zfsvfs = arg; 383 384 zfsvfs->z_vscan = newval; 385 } 386 387 static void 388 acl_mode_changed_cb(void *arg, uint64_t newval) 389 { 390 zfsvfs_t *zfsvfs = arg; 391 392 zfsvfs->z_acl_mode = newval; 393 } 394 395 static void 396 acl_inherit_changed_cb(void *arg, uint64_t newval) 397 { 398 zfsvfs_t *zfsvfs = arg; 399 400 zfsvfs->z_acl_inherit = newval; 401 } 402 403 static int 404 zfs_register_callbacks(vfs_t *vfsp) 405 { 406 struct dsl_dataset *ds = NULL; 407 objset_t *os = NULL; 408 zfsvfs_t *zfsvfs = NULL; 409 uint64_t nbmand; 410 boolean_t readonly = B_FALSE; 411 boolean_t do_readonly = B_FALSE; 412 boolean_t setuid = B_FALSE; 413 boolean_t do_setuid = B_FALSE; 414 boolean_t exec = B_FALSE; 415 boolean_t do_exec = B_FALSE; 416 boolean_t devices = B_FALSE; 417 boolean_t do_devices = B_FALSE; 418 boolean_t xattr = B_FALSE; 419 boolean_t do_xattr = B_FALSE; 420 boolean_t atime = B_FALSE; 421 boolean_t do_atime = B_FALSE; 422 int error = 0; 423 424 ASSERT(vfsp); 425 zfsvfs = vfsp->vfs_data; 426 ASSERT(zfsvfs); 427 os = zfsvfs->z_os; 428 429 /* 430 * The act of registering our callbacks will destroy any mount 431 * options we may have. In order to enable temporary overrides 432 * of mount options, we stash away the current values and 433 * restore them after we register the callbacks. 434 */ 435 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || 436 !spa_writeable(dmu_objset_spa(os))) { 437 readonly = B_TRUE; 438 do_readonly = B_TRUE; 439 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 440 readonly = B_FALSE; 441 do_readonly = B_TRUE; 442 } 443 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 444 devices = B_FALSE; 445 setuid = B_FALSE; 446 do_devices = B_TRUE; 447 do_setuid = B_TRUE; 448 } else { 449 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 450 devices = B_FALSE; 451 do_devices = B_TRUE; 452 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 453 devices = B_TRUE; 454 do_devices = B_TRUE; 455 } 456 457 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 458 setuid = B_FALSE; 459 do_setuid = B_TRUE; 460 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 461 setuid = B_TRUE; 462 do_setuid = B_TRUE; 463 } 464 } 465 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 466 exec = B_FALSE; 467 do_exec = B_TRUE; 468 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 469 exec = B_TRUE; 470 do_exec = B_TRUE; 471 } 472 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 473 xattr = B_FALSE; 474 do_xattr = B_TRUE; 475 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 476 xattr = B_TRUE; 477 do_xattr = B_TRUE; 478 } 479 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 480 atime = B_FALSE; 481 do_atime = B_TRUE; 482 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 483 atime = B_TRUE; 484 do_atime = B_TRUE; 485 } 486 487 /* 488 * nbmand is a special property. It can only be changed at 489 * mount time. 490 * 491 * This is weird, but it is documented to only be changeable 492 * at mount time. 493 */ 494 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 495 nbmand = B_FALSE; 496 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 497 nbmand = B_TRUE; 498 } else { 499 char osname[MAXNAMELEN]; 500 501 dmu_objset_name(os, osname); 502 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 503 NULL)) { 504 return (error); 505 } 506 } 507 508 /* 509 * Register property callbacks. 510 * 511 * It would probably be fine to just check for i/o error from 512 * the first prop_register(), but I guess I like to go 513 * overboard... 514 */ 515 ds = dmu_objset_ds(os); 516 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 517 error = dsl_prop_register(ds, 518 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); 519 error = error ? error : dsl_prop_register(ds, 520 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); 521 error = error ? error : dsl_prop_register(ds, 522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); 523 error = error ? error : dsl_prop_register(ds, 524 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); 525 error = error ? error : dsl_prop_register(ds, 526 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); 527 error = error ? error : dsl_prop_register(ds, 528 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); 529 error = error ? error : dsl_prop_register(ds, 530 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); 531 error = error ? error : dsl_prop_register(ds, 532 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); 533 error = error ? error : dsl_prop_register(ds, 534 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); 535 error = error ? error : dsl_prop_register(ds, 536 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, 537 zfsvfs); 538 error = error ? error : dsl_prop_register(ds, 539 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); 540 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 541 if (error) 542 goto unregister; 543 544 /* 545 * Invoke our callbacks to restore temporary mount options. 546 */ 547 if (do_readonly) 548 readonly_changed_cb(zfsvfs, readonly); 549 if (do_setuid) 550 setuid_changed_cb(zfsvfs, setuid); 551 if (do_exec) 552 exec_changed_cb(zfsvfs, exec); 553 if (do_devices) 554 devices_changed_cb(zfsvfs, devices); 555 if (do_xattr) 556 xattr_changed_cb(zfsvfs, xattr); 557 if (do_atime) 558 atime_changed_cb(zfsvfs, atime); 559 560 nbmand_changed_cb(zfsvfs, nbmand); 561 562 return (0); 563 564 unregister: 565 /* 566 * We may attempt to unregister some callbacks that are not 567 * registered, but this is OK; it will simply return ENOMSG, 568 * which we will ignore. 569 */ 570 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME), 571 atime_changed_cb, zfsvfs); 572 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR), 573 xattr_changed_cb, zfsvfs); 574 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE), 575 blksz_changed_cb, zfsvfs); 576 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY), 577 readonly_changed_cb, zfsvfs); 578 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES), 579 devices_changed_cb, zfsvfs); 580 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID), 581 setuid_changed_cb, zfsvfs); 582 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC), 583 exec_changed_cb, zfsvfs); 584 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR), 585 snapdir_changed_cb, zfsvfs); 586 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE), 587 acl_mode_changed_cb, zfsvfs); 588 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT), 589 acl_inherit_changed_cb, zfsvfs); 590 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN), 591 vscan_changed_cb, zfsvfs); 592 return (error); 593 } 594 595 static int 596 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 597 uint64_t *userp, uint64_t *groupp) 598 { 599 /* 600 * Is it a valid type of object to track? 601 */ 602 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 603 return (SET_ERROR(ENOENT)); 604 605 /* 606 * If we have a NULL data pointer 607 * then assume the id's aren't changing and 608 * return EEXIST to the dmu to let it know to 609 * use the same ids 610 */ 611 if (data == NULL) 612 return (SET_ERROR(EEXIST)); 613 614 if (bonustype == DMU_OT_ZNODE) { 615 znode_phys_t *znp = data; 616 *userp = znp->zp_uid; 617 *groupp = znp->zp_gid; 618 } else { 619 int hdrsize; 620 sa_hdr_phys_t *sap = data; 621 sa_hdr_phys_t sa = *sap; 622 boolean_t swap = B_FALSE; 623 624 ASSERT(bonustype == DMU_OT_SA); 625 626 if (sa.sa_magic == 0) { 627 /* 628 * This should only happen for newly created 629 * files that haven't had the znode data filled 630 * in yet. 631 */ 632 *userp = 0; 633 *groupp = 0; 634 return (0); 635 } 636 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) { 637 sa.sa_magic = SA_MAGIC; 638 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info); 639 swap = B_TRUE; 640 } else { 641 VERIFY3U(sa.sa_magic, ==, SA_MAGIC); 642 } 643 644 hdrsize = sa_hdrsize(&sa); 645 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t)); 646 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 647 SA_UID_OFFSET)); 648 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 649 SA_GID_OFFSET)); 650 if (swap) { 651 *userp = BSWAP_64(*userp); 652 *groupp = BSWAP_64(*groupp); 653 } 654 } 655 return (0); 656 } 657 658 static void 659 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 660 char *domainbuf, int buflen, uid_t *ridp) 661 { 662 uint64_t fuid; 663 const char *domain; 664 665 fuid = strtonum(fuidstr, NULL); 666 667 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 668 if (domain) 669 (void) strlcpy(domainbuf, domain, buflen); 670 else 671 domainbuf[0] = '\0'; 672 *ridp = FUID_RID(fuid); 673 } 674 675 static uint64_t 676 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 677 { 678 switch (type) { 679 case ZFS_PROP_USERUSED: 680 return (DMU_USERUSED_OBJECT); 681 case ZFS_PROP_GROUPUSED: 682 return (DMU_GROUPUSED_OBJECT); 683 case ZFS_PROP_USERQUOTA: 684 return (zfsvfs->z_userquota_obj); 685 case ZFS_PROP_GROUPQUOTA: 686 return (zfsvfs->z_groupquota_obj); 687 } 688 return (0); 689 } 690 691 int 692 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 693 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 694 { 695 int error; 696 zap_cursor_t zc; 697 zap_attribute_t za; 698 zfs_useracct_t *buf = vbuf; 699 uint64_t obj; 700 701 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 702 return (SET_ERROR(ENOTSUP)); 703 704 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 705 if (obj == 0) { 706 *bufsizep = 0; 707 return (0); 708 } 709 710 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 711 (error = zap_cursor_retrieve(&zc, &za)) == 0; 712 zap_cursor_advance(&zc)) { 713 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 714 *bufsizep) 715 break; 716 717 fuidstr_to_sid(zfsvfs, za.za_name, 718 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 719 720 buf->zu_space = za.za_first_integer; 721 buf++; 722 } 723 if (error == ENOENT) 724 error = 0; 725 726 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 727 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 728 *cookiep = zap_cursor_serialize(&zc); 729 zap_cursor_fini(&zc); 730 return (error); 731 } 732 733 /* 734 * buf must be big enough (eg, 32 bytes) 735 */ 736 static int 737 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 738 char *buf, boolean_t addok) 739 { 740 uint64_t fuid; 741 int domainid = 0; 742 743 if (domain && domain[0]) { 744 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 745 if (domainid == -1) 746 return (SET_ERROR(ENOENT)); 747 } 748 fuid = FUID_ENCODE(domainid, rid); 749 (void) sprintf(buf, "%llx", (longlong_t)fuid); 750 return (0); 751 } 752 753 int 754 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 755 const char *domain, uint64_t rid, uint64_t *valp) 756 { 757 char buf[32]; 758 int err; 759 uint64_t obj; 760 761 *valp = 0; 762 763 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 764 return (SET_ERROR(ENOTSUP)); 765 766 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 767 if (obj == 0) 768 return (0); 769 770 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 771 if (err) 772 return (err); 773 774 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 775 if (err == ENOENT) 776 err = 0; 777 return (err); 778 } 779 780 int 781 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 782 const char *domain, uint64_t rid, uint64_t quota) 783 { 784 char buf[32]; 785 int err; 786 dmu_tx_t *tx; 787 uint64_t *objp; 788 boolean_t fuid_dirtied; 789 790 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 791 return (SET_ERROR(EINVAL)); 792 793 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 794 return (SET_ERROR(ENOTSUP)); 795 796 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 797 &zfsvfs->z_groupquota_obj; 798 799 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 800 if (err) 801 return (err); 802 fuid_dirtied = zfsvfs->z_fuid_dirty; 803 804 tx = dmu_tx_create(zfsvfs->z_os); 805 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 806 if (*objp == 0) { 807 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 808 zfs_userquota_prop_prefixes[type]); 809 } 810 if (fuid_dirtied) 811 zfs_fuid_txhold(zfsvfs, tx); 812 err = dmu_tx_assign(tx, TXG_WAIT); 813 if (err) { 814 dmu_tx_abort(tx); 815 return (err); 816 } 817 818 mutex_enter(&zfsvfs->z_lock); 819 if (*objp == 0) { 820 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 821 DMU_OT_NONE, 0, tx); 822 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 823 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 824 } 825 mutex_exit(&zfsvfs->z_lock); 826 827 if (quota == 0) { 828 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 829 if (err == ENOENT) 830 err = 0; 831 } else { 832 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 833 } 834 ASSERT(err == 0); 835 if (fuid_dirtied) 836 zfs_fuid_sync(zfsvfs, tx); 837 dmu_tx_commit(tx); 838 return (err); 839 } 840 841 boolean_t 842 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 843 { 844 char buf[32]; 845 uint64_t used, quota, usedobj, quotaobj; 846 int err; 847 848 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 849 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 850 851 if (quotaobj == 0 || zfsvfs->z_replay) 852 return (B_FALSE); 853 854 (void) sprintf(buf, "%llx", (longlong_t)fuid); 855 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 856 if (err != 0) 857 return (B_FALSE); 858 859 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 860 if (err != 0) 861 return (B_FALSE); 862 return (used >= quota); 863 } 864 865 boolean_t 866 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 867 { 868 uint64_t fuid; 869 uint64_t quotaobj; 870 871 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 872 873 fuid = isgroup ? zp->z_gid : zp->z_uid; 874 875 if (quotaobj == 0 || zfsvfs->z_replay) 876 return (B_FALSE); 877 878 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 879 } 880 881 int 882 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 883 { 884 objset_t *os; 885 zfsvfs_t *zfsvfs; 886 uint64_t zval; 887 int i, error; 888 uint64_t sa_obj; 889 890 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 891 892 /* 893 * We claim to always be readonly so we can open snapshots; 894 * other ZPL code will prevent us from writing to snapshots. 895 */ 896 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 897 if (error) { 898 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 899 return (error); 900 } 901 902 /* 903 * Initialize the zfs-specific filesystem structure. 904 * Should probably make this a kmem cache, shuffle fields, 905 * and just bzero up to z_hold_mtx[]. 906 */ 907 zfsvfs->z_vfs = NULL; 908 zfsvfs->z_parent = zfsvfs; 909 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 910 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 911 zfsvfs->z_os = os; 912 913 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 914 if (error) { 915 goto out; 916 } else if (zfsvfs->z_version > 917 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 918 (void) printf("Can't mount a version %lld file system " 919 "on a version %lld pool\n. Pool must be upgraded to mount " 920 "this file system.", (u_longlong_t)zfsvfs->z_version, 921 (u_longlong_t)spa_version(dmu_objset_spa(os))); 922 error = SET_ERROR(ENOTSUP); 923 goto out; 924 } 925 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 926 goto out; 927 zfsvfs->z_norm = (int)zval; 928 929 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 930 goto out; 931 zfsvfs->z_utf8 = (zval != 0); 932 933 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 934 goto out; 935 zfsvfs->z_case = (uint_t)zval; 936 937 /* 938 * Fold case on file systems that are always or sometimes case 939 * insensitive. 940 */ 941 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 942 zfsvfs->z_case == ZFS_CASE_MIXED) 943 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 944 945 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 946 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 947 948 if (zfsvfs->z_use_sa) { 949 /* should either have both of these objects or none */ 950 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 951 &sa_obj); 952 if (error) 953 return (error); 954 } else { 955 /* 956 * Pre SA versions file systems should never touch 957 * either the attribute registration or layout objects. 958 */ 959 sa_obj = 0; 960 } 961 962 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 963 &zfsvfs->z_attr_table); 964 if (error) 965 goto out; 966 967 if (zfsvfs->z_version >= ZPL_VERSION_SA) 968 sa_register_update_callback(os, zfs_sa_upgrade); 969 970 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 971 &zfsvfs->z_root); 972 if (error) 973 goto out; 974 ASSERT(zfsvfs->z_root != 0); 975 976 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 977 &zfsvfs->z_unlinkedobj); 978 if (error) 979 goto out; 980 981 error = zap_lookup(os, MASTER_NODE_OBJ, 982 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 983 8, 1, &zfsvfs->z_userquota_obj); 984 if (error && error != ENOENT) 985 goto out; 986 987 error = zap_lookup(os, MASTER_NODE_OBJ, 988 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 989 8, 1, &zfsvfs->z_groupquota_obj); 990 if (error && error != ENOENT) 991 goto out; 992 993 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 994 &zfsvfs->z_fuid_obj); 995 if (error && error != ENOENT) 996 goto out; 997 998 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 999 &zfsvfs->z_shares_dir); 1000 if (error && error != ENOENT) 1001 goto out; 1002 1003 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1004 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 1005 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 1006 offsetof(znode_t, z_link_node)); 1007 rrw_init(&zfsvfs->z_teardown_lock, B_FALSE); 1008 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 1009 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 1010 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1011 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1012 1013 *zfvp = zfsvfs; 1014 return (0); 1015 1016 out: 1017 dmu_objset_disown(os, zfsvfs); 1018 *zfvp = NULL; 1019 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1020 return (error); 1021 } 1022 1023 static int 1024 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 1025 { 1026 int error; 1027 1028 error = zfs_register_callbacks(zfsvfs->z_vfs); 1029 if (error) 1030 return (error); 1031 1032 /* 1033 * Set the objset user_ptr to track its zfsvfs. 1034 */ 1035 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1036 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1037 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1038 1039 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1040 1041 /* 1042 * If we are not mounting (ie: online recv), then we don't 1043 * have to worry about replaying the log as we blocked all 1044 * operations out since we closed the ZIL. 1045 */ 1046 if (mounting) { 1047 boolean_t readonly; 1048 1049 /* 1050 * During replay we remove the read only flag to 1051 * allow replays to succeed. 1052 */ 1053 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1054 if (readonly != 0) 1055 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1056 else 1057 zfs_unlinked_drain(zfsvfs); 1058 1059 /* 1060 * Parse and replay the intent log. 1061 * 1062 * Because of ziltest, this must be done after 1063 * zfs_unlinked_drain(). (Further note: ziltest 1064 * doesn't use readonly mounts, where 1065 * zfs_unlinked_drain() isn't called.) This is because 1066 * ziltest causes spa_sync() to think it's committed, 1067 * but actually it is not, so the intent log contains 1068 * many txg's worth of changes. 1069 * 1070 * In particular, if object N is in the unlinked set in 1071 * the last txg to actually sync, then it could be 1072 * actually freed in a later txg and then reallocated 1073 * in a yet later txg. This would write a "create 1074 * object N" record to the intent log. Normally, this 1075 * would be fine because the spa_sync() would have 1076 * written out the fact that object N is free, before 1077 * we could write the "create object N" intent log 1078 * record. 1079 * 1080 * But when we are in ziltest mode, we advance the "open 1081 * txg" without actually spa_sync()-ing the changes to 1082 * disk. So we would see that object N is still 1083 * allocated and in the unlinked set, and there is an 1084 * intent log record saying to allocate it. 1085 */ 1086 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 1087 if (zil_replay_disable) { 1088 zil_destroy(zfsvfs->z_log, B_FALSE); 1089 } else { 1090 zfsvfs->z_replay = B_TRUE; 1091 zil_replay(zfsvfs->z_os, zfsvfs, 1092 zfs_replay_vector); 1093 zfsvfs->z_replay = B_FALSE; 1094 } 1095 } 1096 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1097 } 1098 1099 return (0); 1100 } 1101 1102 void 1103 zfsvfs_free(zfsvfs_t *zfsvfs) 1104 { 1105 int i; 1106 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1107 1108 /* 1109 * This is a barrier to prevent the filesystem from going away in 1110 * zfs_znode_move() until we can safely ensure that the filesystem is 1111 * not unmounted. We consider the filesystem valid before the barrier 1112 * and invalid after the barrier. 1113 */ 1114 rw_enter(&zfsvfs_lock, RW_READER); 1115 rw_exit(&zfsvfs_lock); 1116 1117 zfs_fuid_destroy(zfsvfs); 1118 1119 mutex_destroy(&zfsvfs->z_znodes_lock); 1120 mutex_destroy(&zfsvfs->z_lock); 1121 list_destroy(&zfsvfs->z_all_znodes); 1122 rrw_destroy(&zfsvfs->z_teardown_lock); 1123 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1124 rw_destroy(&zfsvfs->z_fuid_lock); 1125 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1126 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1127 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1128 } 1129 1130 static void 1131 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1132 { 1133 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1134 if (zfsvfs->z_vfs) { 1135 if (zfsvfs->z_use_fuids) { 1136 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1137 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1138 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1139 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1140 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1141 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1142 } else { 1143 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1144 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1145 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1146 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1147 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1148 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1149 } 1150 } 1151 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1152 } 1153 1154 static int 1155 zfs_domount(vfs_t *vfsp, char *osname) 1156 { 1157 dev_t mount_dev; 1158 uint64_t recordsize, fsid_guid; 1159 int error = 0; 1160 zfsvfs_t *zfsvfs; 1161 1162 ASSERT(vfsp); 1163 ASSERT(osname); 1164 1165 error = zfsvfs_create(osname, &zfsvfs); 1166 if (error) 1167 return (error); 1168 zfsvfs->z_vfs = vfsp; 1169 1170 /* Initialize the generic filesystem structure. */ 1171 vfsp->vfs_bcount = 0; 1172 vfsp->vfs_data = NULL; 1173 1174 if (zfs_create_unique_device(&mount_dev) == -1) { 1175 error = SET_ERROR(ENODEV); 1176 goto out; 1177 } 1178 ASSERT(vfs_devismounted(mount_dev) == 0); 1179 1180 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1181 NULL)) 1182 goto out; 1183 1184 vfsp->vfs_dev = mount_dev; 1185 vfsp->vfs_fstype = zfsfstype; 1186 vfsp->vfs_bsize = recordsize; 1187 vfsp->vfs_flag |= VFS_NOTRUNC; 1188 vfsp->vfs_data = zfsvfs; 1189 1190 /* 1191 * The fsid is 64 bits, composed of an 8-bit fs type, which 1192 * separates our fsid from any other filesystem types, and a 1193 * 56-bit objset unique ID. The objset unique ID is unique to 1194 * all objsets open on this system, provided by unique_create(). 1195 * The 8-bit fs type must be put in the low bits of fsid[1] 1196 * because that's where other Solaris filesystems put it. 1197 */ 1198 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1199 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1200 vfsp->vfs_fsid.val[0] = fsid_guid; 1201 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1202 zfsfstype & 0xFF; 1203 1204 /* 1205 * Set features for file system. 1206 */ 1207 zfs_set_fuid_feature(zfsvfs); 1208 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1209 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1210 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1211 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1212 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1213 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1214 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1215 } 1216 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1217 1218 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1219 uint64_t pval; 1220 1221 atime_changed_cb(zfsvfs, B_FALSE); 1222 readonly_changed_cb(zfsvfs, B_TRUE); 1223 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1224 goto out; 1225 xattr_changed_cb(zfsvfs, pval); 1226 zfsvfs->z_issnap = B_TRUE; 1227 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1228 1229 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1230 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1231 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1232 } else { 1233 error = zfsvfs_setup(zfsvfs, B_TRUE); 1234 } 1235 1236 if (!zfsvfs->z_issnap) 1237 zfsctl_create(zfsvfs); 1238 out: 1239 if (error) { 1240 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1241 zfsvfs_free(zfsvfs); 1242 } else { 1243 atomic_add_32(&zfs_active_fs_count, 1); 1244 } 1245 1246 return (error); 1247 } 1248 1249 void 1250 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1251 { 1252 objset_t *os = zfsvfs->z_os; 1253 struct dsl_dataset *ds; 1254 1255 /* 1256 * Unregister properties. 1257 */ 1258 if (!dmu_objset_is_snapshot(os)) { 1259 ds = dmu_objset_ds(os); 1260 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1261 zfsvfs) == 0); 1262 1263 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1264 zfsvfs) == 0); 1265 1266 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1267 zfsvfs) == 0); 1268 1269 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1270 zfsvfs) == 0); 1271 1272 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1273 zfsvfs) == 0); 1274 1275 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1276 zfsvfs) == 0); 1277 1278 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1279 zfsvfs) == 0); 1280 1281 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1282 zfsvfs) == 0); 1283 1284 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 1285 zfsvfs) == 0); 1286 1287 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1288 acl_inherit_changed_cb, zfsvfs) == 0); 1289 1290 VERIFY(dsl_prop_unregister(ds, "vscan", 1291 vscan_changed_cb, zfsvfs) == 0); 1292 } 1293 } 1294 1295 /* 1296 * Convert a decimal digit string to a uint64_t integer. 1297 */ 1298 static int 1299 str_to_uint64(char *str, uint64_t *objnum) 1300 { 1301 uint64_t num = 0; 1302 1303 while (*str) { 1304 if (*str < '0' || *str > '9') 1305 return (SET_ERROR(EINVAL)); 1306 1307 num = num*10 + *str++ - '0'; 1308 } 1309 1310 *objnum = num; 1311 return (0); 1312 } 1313 1314 /* 1315 * The boot path passed from the boot loader is in the form of 1316 * "rootpool-name/root-filesystem-object-number'. Convert this 1317 * string to a dataset name: "rootpool-name/root-filesystem-name". 1318 */ 1319 static int 1320 zfs_parse_bootfs(char *bpath, char *outpath) 1321 { 1322 char *slashp; 1323 uint64_t objnum; 1324 int error; 1325 1326 if (*bpath == 0 || *bpath == '/') 1327 return (SET_ERROR(EINVAL)); 1328 1329 (void) strcpy(outpath, bpath); 1330 1331 slashp = strchr(bpath, '/'); 1332 1333 /* if no '/', just return the pool name */ 1334 if (slashp == NULL) { 1335 return (0); 1336 } 1337 1338 /* if not a number, just return the root dataset name */ 1339 if (str_to_uint64(slashp+1, &objnum)) { 1340 return (0); 1341 } 1342 1343 *slashp = '\0'; 1344 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1345 *slashp = '/'; 1346 1347 return (error); 1348 } 1349 1350 /* 1351 * zfs_check_global_label: 1352 * Check that the hex label string is appropriate for the dataset 1353 * being mounted into the global_zone proper. 1354 * 1355 * Return an error if the hex label string is not default or 1356 * admin_low/admin_high. For admin_low labels, the corresponding 1357 * dataset must be readonly. 1358 */ 1359 int 1360 zfs_check_global_label(const char *dsname, const char *hexsl) 1361 { 1362 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1363 return (0); 1364 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1365 return (0); 1366 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1367 /* must be readonly */ 1368 uint64_t rdonly; 1369 1370 if (dsl_prop_get_integer(dsname, 1371 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1372 return (SET_ERROR(EACCES)); 1373 return (rdonly ? 0 : EACCES); 1374 } 1375 return (SET_ERROR(EACCES)); 1376 } 1377 1378 /* 1379 * zfs_mount_label_policy: 1380 * Determine whether the mount is allowed according to MAC check. 1381 * by comparing (where appropriate) label of the dataset against 1382 * the label of the zone being mounted into. If the dataset has 1383 * no label, create one. 1384 * 1385 * Returns: 1386 * 0 : access allowed 1387 * >0 : error code, such as EACCES 1388 */ 1389 static int 1390 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1391 { 1392 int error, retv; 1393 zone_t *mntzone = NULL; 1394 ts_label_t *mnt_tsl; 1395 bslabel_t *mnt_sl; 1396 bslabel_t ds_sl; 1397 char ds_hexsl[MAXNAMELEN]; 1398 1399 retv = EACCES; /* assume the worst */ 1400 1401 /* 1402 * Start by getting the dataset label if it exists. 1403 */ 1404 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1405 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1406 if (error) 1407 return (SET_ERROR(EACCES)); 1408 1409 /* 1410 * If labeling is NOT enabled, then disallow the mount of datasets 1411 * which have a non-default label already. No other label checks 1412 * are needed. 1413 */ 1414 if (!is_system_labeled()) { 1415 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1416 return (0); 1417 return (SET_ERROR(EACCES)); 1418 } 1419 1420 /* 1421 * Get the label of the mountpoint. If mounting into the global 1422 * zone (i.e. mountpoint is not within an active zone and the 1423 * zoned property is off), the label must be default or 1424 * admin_low/admin_high only; no other checks are needed. 1425 */ 1426 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1427 if (mntzone->zone_id == GLOBAL_ZONEID) { 1428 uint64_t zoned; 1429 1430 zone_rele(mntzone); 1431 1432 if (dsl_prop_get_integer(osname, 1433 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1434 return (SET_ERROR(EACCES)); 1435 if (!zoned) 1436 return (zfs_check_global_label(osname, ds_hexsl)); 1437 else 1438 /* 1439 * This is the case of a zone dataset being mounted 1440 * initially, before the zone has been fully created; 1441 * allow this mount into global zone. 1442 */ 1443 return (0); 1444 } 1445 1446 mnt_tsl = mntzone->zone_slabel; 1447 ASSERT(mnt_tsl != NULL); 1448 label_hold(mnt_tsl); 1449 mnt_sl = label2bslabel(mnt_tsl); 1450 1451 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1452 /* 1453 * The dataset doesn't have a real label, so fabricate one. 1454 */ 1455 char *str = NULL; 1456 1457 if (l_to_str_internal(mnt_sl, &str) == 0 && 1458 dsl_prop_set_string(osname, 1459 zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1460 ZPROP_SRC_LOCAL, str) == 0) 1461 retv = 0; 1462 if (str != NULL) 1463 kmem_free(str, strlen(str) + 1); 1464 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1465 /* 1466 * Now compare labels to complete the MAC check. If the 1467 * labels are equal then allow access. If the mountpoint 1468 * label dominates the dataset label, allow readonly access. 1469 * Otherwise, access is denied. 1470 */ 1471 if (blequal(mnt_sl, &ds_sl)) 1472 retv = 0; 1473 else if (bldominates(mnt_sl, &ds_sl)) { 1474 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1475 retv = 0; 1476 } 1477 } 1478 1479 label_rele(mnt_tsl); 1480 zone_rele(mntzone); 1481 return (retv); 1482 } 1483 1484 static int 1485 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1486 { 1487 int error = 0; 1488 static int zfsrootdone = 0; 1489 zfsvfs_t *zfsvfs = NULL; 1490 znode_t *zp = NULL; 1491 vnode_t *vp = NULL; 1492 char *zfs_bootfs; 1493 char *zfs_devid; 1494 1495 ASSERT(vfsp); 1496 1497 /* 1498 * The filesystem that we mount as root is defined in the 1499 * boot property "zfs-bootfs" with a format of 1500 * "poolname/root-dataset-objnum". 1501 */ 1502 if (why == ROOT_INIT) { 1503 if (zfsrootdone++) 1504 return (SET_ERROR(EBUSY)); 1505 /* 1506 * the process of doing a spa_load will require the 1507 * clock to be set before we could (for example) do 1508 * something better by looking at the timestamp on 1509 * an uberblock, so just set it to -1. 1510 */ 1511 clkset(-1); 1512 1513 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1514 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1515 "bootfs name"); 1516 return (SET_ERROR(EINVAL)); 1517 } 1518 zfs_devid = spa_get_bootprop("diskdevid"); 1519 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1520 if (zfs_devid) 1521 spa_free_bootprop(zfs_devid); 1522 if (error) { 1523 spa_free_bootprop(zfs_bootfs); 1524 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1525 error); 1526 return (error); 1527 } 1528 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1529 spa_free_bootprop(zfs_bootfs); 1530 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1531 error); 1532 return (error); 1533 } 1534 1535 spa_free_bootprop(zfs_bootfs); 1536 1537 if (error = vfs_lock(vfsp)) 1538 return (error); 1539 1540 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1541 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1542 goto out; 1543 } 1544 1545 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1546 ASSERT(zfsvfs); 1547 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1548 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1549 goto out; 1550 } 1551 1552 vp = ZTOV(zp); 1553 mutex_enter(&vp->v_lock); 1554 vp->v_flag |= VROOT; 1555 mutex_exit(&vp->v_lock); 1556 rootvp = vp; 1557 1558 /* 1559 * Leave rootvp held. The root file system is never unmounted. 1560 */ 1561 1562 vfs_add((struct vnode *)0, vfsp, 1563 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1564 out: 1565 vfs_unlock(vfsp); 1566 return (error); 1567 } else if (why == ROOT_REMOUNT) { 1568 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1569 vfsp->vfs_flag |= VFS_REMOUNT; 1570 1571 /* refresh mount options */ 1572 zfs_unregister_callbacks(vfsp->vfs_data); 1573 return (zfs_register_callbacks(vfsp)); 1574 1575 } else if (why == ROOT_UNMOUNT) { 1576 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1577 (void) zfs_sync(vfsp, 0, 0); 1578 return (0); 1579 } 1580 1581 /* 1582 * if "why" is equal to anything else other than ROOT_INIT, 1583 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1584 */ 1585 return (SET_ERROR(ENOTSUP)); 1586 } 1587 1588 /*ARGSUSED*/ 1589 static int 1590 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1591 { 1592 char *osname; 1593 pathname_t spn; 1594 int error = 0; 1595 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1596 UIO_SYSSPACE : UIO_USERSPACE; 1597 int canwrite; 1598 1599 if (mvp->v_type != VDIR) 1600 return (SET_ERROR(ENOTDIR)); 1601 1602 mutex_enter(&mvp->v_lock); 1603 if ((uap->flags & MS_REMOUNT) == 0 && 1604 (uap->flags & MS_OVERLAY) == 0 && 1605 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1606 mutex_exit(&mvp->v_lock); 1607 return (SET_ERROR(EBUSY)); 1608 } 1609 mutex_exit(&mvp->v_lock); 1610 1611 /* 1612 * ZFS does not support passing unparsed data in via MS_DATA. 1613 * Users should use the MS_OPTIONSTR interface; this means 1614 * that all option parsing is already done and the options struct 1615 * can be interrogated. 1616 */ 1617 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1618 return (SET_ERROR(EINVAL)); 1619 1620 /* 1621 * Get the objset name (the "special" mount argument). 1622 */ 1623 if (error = pn_get(uap->spec, fromspace, &spn)) 1624 return (error); 1625 1626 osname = spn.pn_path; 1627 1628 /* 1629 * Check for mount privilege? 1630 * 1631 * If we don't have privilege then see if 1632 * we have local permission to allow it 1633 */ 1634 error = secpolicy_fs_mount(cr, mvp, vfsp); 1635 if (error) { 1636 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1637 vattr_t vattr; 1638 1639 /* 1640 * Make sure user is the owner of the mount point 1641 * or has sufficient privileges. 1642 */ 1643 1644 vattr.va_mask = AT_UID; 1645 1646 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1647 goto out; 1648 } 1649 1650 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1651 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1652 goto out; 1653 } 1654 secpolicy_fs_mount_clearopts(cr, vfsp); 1655 } else { 1656 goto out; 1657 } 1658 } 1659 1660 /* 1661 * Refuse to mount a filesystem if we are in a local zone and the 1662 * dataset is not visible. 1663 */ 1664 if (!INGLOBALZONE(curproc) && 1665 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1666 error = SET_ERROR(EPERM); 1667 goto out; 1668 } 1669 1670 error = zfs_mount_label_policy(vfsp, osname); 1671 if (error) 1672 goto out; 1673 1674 /* 1675 * When doing a remount, we simply refresh our temporary properties 1676 * according to those options set in the current VFS options. 1677 */ 1678 if (uap->flags & MS_REMOUNT) { 1679 /* refresh mount options */ 1680 zfs_unregister_callbacks(vfsp->vfs_data); 1681 error = zfs_register_callbacks(vfsp); 1682 goto out; 1683 } 1684 1685 error = zfs_domount(vfsp, osname); 1686 1687 /* 1688 * Add an extra VFS_HOLD on our parent vfs so that it can't 1689 * disappear due to a forced unmount. 1690 */ 1691 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1692 VFS_HOLD(mvp->v_vfsp); 1693 1694 out: 1695 pn_free(&spn); 1696 return (error); 1697 } 1698 1699 static int 1700 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1701 { 1702 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1703 dev32_t d32; 1704 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1705 1706 ZFS_ENTER(zfsvfs); 1707 1708 dmu_objset_space(zfsvfs->z_os, 1709 &refdbytes, &availbytes, &usedobjs, &availobjs); 1710 1711 /* 1712 * The underlying storage pool actually uses multiple block sizes. 1713 * We report the fragsize as the smallest block size we support, 1714 * and we report our blocksize as the filesystem's maximum blocksize. 1715 */ 1716 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1717 statp->f_bsize = zfsvfs->z_max_blksz; 1718 1719 /* 1720 * The following report "total" blocks of various kinds in the 1721 * file system, but reported in terms of f_frsize - the 1722 * "fragment" size. 1723 */ 1724 1725 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1726 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1727 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1728 1729 /* 1730 * statvfs() should really be called statufs(), because it assumes 1731 * static metadata. ZFS doesn't preallocate files, so the best 1732 * we can do is report the max that could possibly fit in f_files, 1733 * and that minus the number actually used in f_ffree. 1734 * For f_ffree, report the smaller of the number of object available 1735 * and the number of blocks (each object will take at least a block). 1736 */ 1737 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1738 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1739 statp->f_files = statp->f_ffree + usedobjs; 1740 1741 (void) cmpldev(&d32, vfsp->vfs_dev); 1742 statp->f_fsid = d32; 1743 1744 /* 1745 * We're a zfs filesystem. 1746 */ 1747 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1748 1749 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1750 1751 statp->f_namemax = ZFS_MAXNAMELEN; 1752 1753 /* 1754 * We have all of 32 characters to stuff a string here. 1755 * Is there anything useful we could/should provide? 1756 */ 1757 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1758 1759 ZFS_EXIT(zfsvfs); 1760 return (0); 1761 } 1762 1763 static int 1764 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1765 { 1766 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1767 znode_t *rootzp; 1768 int error; 1769 1770 ZFS_ENTER(zfsvfs); 1771 1772 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1773 if (error == 0) 1774 *vpp = ZTOV(rootzp); 1775 1776 ZFS_EXIT(zfsvfs); 1777 return (error); 1778 } 1779 1780 /* 1781 * Teardown the zfsvfs::z_os. 1782 * 1783 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1784 * and 'z_teardown_inactive_lock' held. 1785 */ 1786 static int 1787 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1788 { 1789 znode_t *zp; 1790 1791 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1792 1793 if (!unmounting) { 1794 /* 1795 * We purge the parent filesystem's vfsp as the parent 1796 * filesystem and all of its snapshots have their vnode's 1797 * v_vfsp set to the parent's filesystem's vfsp. Note, 1798 * 'z_parent' is self referential for non-snapshots. 1799 */ 1800 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1801 } 1802 1803 /* 1804 * Close the zil. NB: Can't close the zil while zfs_inactive 1805 * threads are blocked as zil_close can call zfs_inactive. 1806 */ 1807 if (zfsvfs->z_log) { 1808 zil_close(zfsvfs->z_log); 1809 zfsvfs->z_log = NULL; 1810 } 1811 1812 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1813 1814 /* 1815 * If we are not unmounting (ie: online recv) and someone already 1816 * unmounted this file system while we were doing the switcheroo, 1817 * or a reopen of z_os failed then just bail out now. 1818 */ 1819 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1820 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1821 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1822 return (SET_ERROR(EIO)); 1823 } 1824 1825 /* 1826 * At this point there are no vops active, and any new vops will 1827 * fail with EIO since we have z_teardown_lock for writer (only 1828 * relavent for forced unmount). 1829 * 1830 * Release all holds on dbufs. 1831 */ 1832 mutex_enter(&zfsvfs->z_znodes_lock); 1833 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1834 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1835 if (zp->z_sa_hdl) { 1836 ASSERT(ZTOV(zp)->v_count > 0); 1837 zfs_znode_dmu_fini(zp); 1838 } 1839 mutex_exit(&zfsvfs->z_znodes_lock); 1840 1841 /* 1842 * If we are unmounting, set the unmounted flag and let new vops 1843 * unblock. zfs_inactive will have the unmounted behavior, and all 1844 * other vops will fail with EIO. 1845 */ 1846 if (unmounting) { 1847 zfsvfs->z_unmounted = B_TRUE; 1848 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1849 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1850 } 1851 1852 /* 1853 * z_os will be NULL if there was an error in attempting to reopen 1854 * zfsvfs, so just return as the properties had already been 1855 * unregistered and cached data had been evicted before. 1856 */ 1857 if (zfsvfs->z_os == NULL) 1858 return (0); 1859 1860 /* 1861 * Unregister properties. 1862 */ 1863 zfs_unregister_callbacks(zfsvfs); 1864 1865 /* 1866 * Evict cached data 1867 */ 1868 if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) && 1869 !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) 1870 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1871 dmu_objset_evict_dbufs(zfsvfs->z_os); 1872 1873 return (0); 1874 } 1875 1876 /*ARGSUSED*/ 1877 static int 1878 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1879 { 1880 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1881 objset_t *os; 1882 int ret; 1883 1884 ret = secpolicy_fs_unmount(cr, vfsp); 1885 if (ret) { 1886 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1887 ZFS_DELEG_PERM_MOUNT, cr)) 1888 return (ret); 1889 } 1890 1891 /* 1892 * We purge the parent filesystem's vfsp as the parent filesystem 1893 * and all of its snapshots have their vnode's v_vfsp set to the 1894 * parent's filesystem's vfsp. Note, 'z_parent' is self 1895 * referential for non-snapshots. 1896 */ 1897 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1898 1899 /* 1900 * Unmount any snapshots mounted under .zfs before unmounting the 1901 * dataset itself. 1902 */ 1903 if (zfsvfs->z_ctldir != NULL && 1904 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1905 return (ret); 1906 } 1907 1908 if (!(fflag & MS_FORCE)) { 1909 /* 1910 * Check the number of active vnodes in the file system. 1911 * Our count is maintained in the vfs structure, but the 1912 * number is off by 1 to indicate a hold on the vfs 1913 * structure itself. 1914 * 1915 * The '.zfs' directory maintains a reference of its 1916 * own, and any active references underneath are 1917 * reflected in the vnode count. 1918 */ 1919 if (zfsvfs->z_ctldir == NULL) { 1920 if (vfsp->vfs_count > 1) 1921 return (SET_ERROR(EBUSY)); 1922 } else { 1923 if (vfsp->vfs_count > 2 || 1924 zfsvfs->z_ctldir->v_count > 1) 1925 return (SET_ERROR(EBUSY)); 1926 } 1927 } 1928 1929 vfsp->vfs_flag |= VFS_UNMOUNTED; 1930 1931 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1932 os = zfsvfs->z_os; 1933 1934 /* 1935 * z_os will be NULL if there was an error in 1936 * attempting to reopen zfsvfs. 1937 */ 1938 if (os != NULL) { 1939 /* 1940 * Unset the objset user_ptr. 1941 */ 1942 mutex_enter(&os->os_user_ptr_lock); 1943 dmu_objset_set_user(os, NULL); 1944 mutex_exit(&os->os_user_ptr_lock); 1945 1946 /* 1947 * Finally release the objset 1948 */ 1949 dmu_objset_disown(os, zfsvfs); 1950 } 1951 1952 /* 1953 * We can now safely destroy the '.zfs' directory node. 1954 */ 1955 if (zfsvfs->z_ctldir != NULL) 1956 zfsctl_destroy(zfsvfs); 1957 1958 return (0); 1959 } 1960 1961 static int 1962 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1963 { 1964 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1965 znode_t *zp; 1966 uint64_t object = 0; 1967 uint64_t fid_gen = 0; 1968 uint64_t gen_mask; 1969 uint64_t zp_gen; 1970 int i, err; 1971 1972 *vpp = NULL; 1973 1974 ZFS_ENTER(zfsvfs); 1975 1976 if (fidp->fid_len == LONG_FID_LEN) { 1977 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1978 uint64_t objsetid = 0; 1979 uint64_t setgen = 0; 1980 1981 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1982 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1983 1984 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1985 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1986 1987 ZFS_EXIT(zfsvfs); 1988 1989 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1990 if (err) 1991 return (SET_ERROR(EINVAL)); 1992 ZFS_ENTER(zfsvfs); 1993 } 1994 1995 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1996 zfid_short_t *zfid = (zfid_short_t *)fidp; 1997 1998 for (i = 0; i < sizeof (zfid->zf_object); i++) 1999 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 2000 2001 for (i = 0; i < sizeof (zfid->zf_gen); i++) 2002 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 2003 } else { 2004 ZFS_EXIT(zfsvfs); 2005 return (SET_ERROR(EINVAL)); 2006 } 2007 2008 /* A zero fid_gen means we are in the .zfs control directories */ 2009 if (fid_gen == 0 && 2010 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 2011 *vpp = zfsvfs->z_ctldir; 2012 ASSERT(*vpp != NULL); 2013 if (object == ZFSCTL_INO_SNAPDIR) { 2014 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 2015 0, NULL, NULL, NULL, NULL, NULL) == 0); 2016 } else { 2017 VN_HOLD(*vpp); 2018 } 2019 ZFS_EXIT(zfsvfs); 2020 return (0); 2021 } 2022 2023 gen_mask = -1ULL >> (64 - 8 * i); 2024 2025 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 2026 if (err = zfs_zget(zfsvfs, object, &zp)) { 2027 ZFS_EXIT(zfsvfs); 2028 return (err); 2029 } 2030 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 2031 sizeof (uint64_t)); 2032 zp_gen = zp_gen & gen_mask; 2033 if (zp_gen == 0) 2034 zp_gen = 1; 2035 if (zp->z_unlinked || zp_gen != fid_gen) { 2036 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 2037 VN_RELE(ZTOV(zp)); 2038 ZFS_EXIT(zfsvfs); 2039 return (SET_ERROR(EINVAL)); 2040 } 2041 2042 *vpp = ZTOV(zp); 2043 ZFS_EXIT(zfsvfs); 2044 return (0); 2045 } 2046 2047 /* 2048 * Block out VOPs and close zfsvfs_t::z_os 2049 * 2050 * Note, if successful, then we return with the 'z_teardown_lock' and 2051 * 'z_teardown_inactive_lock' write held. 2052 */ 2053 int 2054 zfs_suspend_fs(zfsvfs_t *zfsvfs) 2055 { 2056 int error; 2057 2058 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2059 return (error); 2060 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 2061 2062 return (0); 2063 } 2064 2065 /* 2066 * Reopen zfsvfs_t::z_os and release VOPs. 2067 */ 2068 int 2069 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 2070 { 2071 int err; 2072 2073 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2074 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2075 2076 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs, 2077 &zfsvfs->z_os); 2078 if (err) { 2079 zfsvfs->z_os = NULL; 2080 } else { 2081 znode_t *zp; 2082 uint64_t sa_obj = 0; 2083 2084 /* 2085 * Make sure version hasn't changed 2086 */ 2087 2088 err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION, 2089 &zfsvfs->z_version); 2090 2091 if (err) 2092 goto bail; 2093 2094 err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 2095 ZFS_SA_ATTRS, 8, 1, &sa_obj); 2096 2097 if (err && zfsvfs->z_version >= ZPL_VERSION_SA) 2098 goto bail; 2099 2100 if ((err = sa_setup(zfsvfs->z_os, sa_obj, 2101 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0) 2102 goto bail; 2103 2104 if (zfsvfs->z_version >= ZPL_VERSION_SA) 2105 sa_register_update_callback(zfsvfs->z_os, 2106 zfs_sa_upgrade); 2107 2108 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2109 2110 zfs_set_fuid_feature(zfsvfs); 2111 2112 /* 2113 * Attempt to re-establish all the active znodes with 2114 * their dbufs. If a zfs_rezget() fails, then we'll let 2115 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2116 * when they try to use their znode. 2117 */ 2118 mutex_enter(&zfsvfs->z_znodes_lock); 2119 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2120 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2121 (void) zfs_rezget(zp); 2122 } 2123 mutex_exit(&zfsvfs->z_znodes_lock); 2124 } 2125 2126 bail: 2127 /* release the VOPs */ 2128 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2129 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 2130 2131 if (err) { 2132 /* 2133 * Since we couldn't reopen zfsvfs::z_os, or 2134 * setup the sa framework force unmount this file system. 2135 */ 2136 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2137 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2138 } 2139 return (err); 2140 } 2141 2142 static void 2143 zfs_freevfs(vfs_t *vfsp) 2144 { 2145 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2146 2147 /* 2148 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2149 * from zfs_mount(). Release it here. If we came through 2150 * zfs_mountroot() instead, we didn't grab an extra hold, so 2151 * skip the VFS_RELE for rootvfs. 2152 */ 2153 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2154 VFS_RELE(zfsvfs->z_parent->z_vfs); 2155 2156 zfsvfs_free(zfsvfs); 2157 2158 atomic_add_32(&zfs_active_fs_count, -1); 2159 } 2160 2161 /* 2162 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2163 * so we can't safely do any non-idempotent initialization here. 2164 * Leave that to zfs_init() and zfs_fini(), which are called 2165 * from the module's _init() and _fini() entry points. 2166 */ 2167 /*ARGSUSED*/ 2168 static int 2169 zfs_vfsinit(int fstype, char *name) 2170 { 2171 int error; 2172 2173 zfsfstype = fstype; 2174 2175 /* 2176 * Setup vfsops and vnodeops tables. 2177 */ 2178 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2179 if (error != 0) { 2180 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2181 } 2182 2183 error = zfs_create_op_tables(); 2184 if (error) { 2185 zfs_remove_op_tables(); 2186 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2187 (void) vfs_freevfsops_by_type(zfsfstype); 2188 return (error); 2189 } 2190 2191 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2192 2193 /* 2194 * Unique major number for all zfs mounts. 2195 * If we run out of 32-bit minors, we'll getudev() another major. 2196 */ 2197 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2198 zfs_minor = ZFS_MIN_MINOR; 2199 2200 return (0); 2201 } 2202 2203 void 2204 zfs_init(void) 2205 { 2206 /* 2207 * Initialize .zfs directory structures 2208 */ 2209 zfsctl_init(); 2210 2211 /* 2212 * Initialize znode cache, vnode ops, etc... 2213 */ 2214 zfs_znode_init(); 2215 2216 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2217 } 2218 2219 void 2220 zfs_fini(void) 2221 { 2222 zfsctl_fini(); 2223 zfs_znode_fini(); 2224 } 2225 2226 int 2227 zfs_busy(void) 2228 { 2229 return (zfs_active_fs_count != 0); 2230 } 2231 2232 int 2233 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2234 { 2235 int error; 2236 objset_t *os = zfsvfs->z_os; 2237 dmu_tx_t *tx; 2238 2239 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2240 return (SET_ERROR(EINVAL)); 2241 2242 if (newvers < zfsvfs->z_version) 2243 return (SET_ERROR(EINVAL)); 2244 2245 if (zfs_spa_version_map(newvers) > 2246 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2247 return (SET_ERROR(ENOTSUP)); 2248 2249 tx = dmu_tx_create(os); 2250 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2251 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2252 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2253 ZFS_SA_ATTRS); 2254 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2255 } 2256 error = dmu_tx_assign(tx, TXG_WAIT); 2257 if (error) { 2258 dmu_tx_abort(tx); 2259 return (error); 2260 } 2261 2262 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2263 8, 1, &newvers, tx); 2264 2265 if (error) { 2266 dmu_tx_commit(tx); 2267 return (error); 2268 } 2269 2270 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2271 uint64_t sa_obj; 2272 2273 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2274 SPA_VERSION_SA); 2275 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2276 DMU_OT_NONE, 0, tx); 2277 2278 error = zap_add(os, MASTER_NODE_OBJ, 2279 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2280 ASSERT0(error); 2281 2282 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2283 sa_register_update_callback(os, zfs_sa_upgrade); 2284 } 2285 2286 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2287 "from %llu to %llu", zfsvfs->z_version, newvers); 2288 2289 dmu_tx_commit(tx); 2290 2291 zfsvfs->z_version = newvers; 2292 2293 zfs_set_fuid_feature(zfsvfs); 2294 2295 return (0); 2296 } 2297 2298 /* 2299 * Read a property stored within the master node. 2300 */ 2301 int 2302 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2303 { 2304 const char *pname; 2305 int error = ENOENT; 2306 2307 /* 2308 * Look up the file system's value for the property. For the 2309 * version property, we look up a slightly different string. 2310 */ 2311 if (prop == ZFS_PROP_VERSION) 2312 pname = ZPL_VERSION_STR; 2313 else 2314 pname = zfs_prop_to_name(prop); 2315 2316 if (os != NULL) 2317 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2318 2319 if (error == ENOENT) { 2320 /* No value set, use the default value */ 2321 switch (prop) { 2322 case ZFS_PROP_VERSION: 2323 *value = ZPL_VERSION; 2324 break; 2325 case ZFS_PROP_NORMALIZE: 2326 case ZFS_PROP_UTF8ONLY: 2327 *value = 0; 2328 break; 2329 case ZFS_PROP_CASE: 2330 *value = ZFS_CASE_SENSITIVE; 2331 break; 2332 default: 2333 return (error); 2334 } 2335 error = 0; 2336 } 2337 return (error); 2338 } 2339 2340 static vfsdef_t vfw = { 2341 VFSDEF_VERSION, 2342 MNTTYPE_ZFS, 2343 zfs_vfsinit, 2344 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2345 VSW_XID|VSW_ZMOUNT, 2346 &zfs_mntopts 2347 }; 2348 2349 struct modlfs zfs_modlfs = { 2350 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2351 }; 2352