1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/acl.h> 35 #include <sys/vnode.h> 36 #include <sys/vfs.h> 37 #include <sys/mntent.h> 38 #include <sys/mount.h> 39 #include <sys/cmn_err.h> 40 #include "fs/fs_subr.h" 41 #include <sys/zfs_znode.h> 42 #include <sys/zil.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/dmu.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/spa.h> 47 #include <sys/zap.h> 48 #include <sys/varargs.h> 49 #include <sys/policy.h> 50 #include <sys/atomic.h> 51 #include <sys/mkdev.h> 52 #include <sys/modctl.h> 53 #include <sys/zfs_ioctl.h> 54 #include <sys/zfs_ctldir.h> 55 #include <sys/bootconf.h> 56 #include <sys/sunddi.h> 57 #include <sys/dnlc.h> 58 59 int zfsfstype; 60 vfsops_t *zfs_vfsops = NULL; 61 static major_t zfs_major; 62 static minor_t zfs_minor; 63 static kmutex_t zfs_dev_mtx; 64 65 extern char zfs_bootpath[BO_MAXOBJNAME]; 66 67 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 68 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 69 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 70 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 71 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 72 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 73 static void zfs_freevfs(vfs_t *vfsp); 74 static void zfs_objset_close(zfsvfs_t *zfsvfs); 75 76 static const fs_operation_def_t zfs_vfsops_template[] = { 77 VFSNAME_MOUNT, zfs_mount, 78 VFSNAME_MOUNTROOT, zfs_mountroot, 79 VFSNAME_UNMOUNT, zfs_umount, 80 VFSNAME_ROOT, zfs_root, 81 VFSNAME_STATVFS, zfs_statvfs, 82 VFSNAME_SYNC, (fs_generic_func_p) zfs_sync, 83 VFSNAME_VGET, zfs_vget, 84 VFSNAME_FREEVFS, (fs_generic_func_p) zfs_freevfs, 85 NULL, NULL 86 }; 87 88 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 89 VFSNAME_FREEVFS, (fs_generic_func_p) zfs_freevfs, 90 NULL, NULL 91 }; 92 93 /* 94 * We need to keep a count of active fs's. 95 * This is necessary to prevent our module 96 * from being unloaded after a umount -f 97 */ 98 static uint32_t zfs_active_fs_count = 0; 99 100 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 101 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 102 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 103 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 104 105 /* 106 * MNTOPT_DEFAULT was removed from MNTOPT_XATTR, since the 107 * default value is now determined by the xattr property. 108 */ 109 static mntopt_t mntopts[] = { 110 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 111 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 112 { MNTOPT_NOATIME, noatime_cancel, NULL, MO_DEFAULT, NULL }, 113 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 114 }; 115 116 static mntopts_t zfs_mntopts = { 117 sizeof (mntopts) / sizeof (mntopt_t), 118 mntopts 119 }; 120 121 /*ARGSUSED*/ 122 int 123 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 124 { 125 /* 126 * Data integrity is job one. We don't want a compromised kernel 127 * writing to the storage pool, so we never sync during panic. 128 */ 129 if (panicstr) 130 return (0); 131 132 /* 133 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 134 * to sync metadata, which they would otherwise cache indefinitely. 135 * Semantically, the only requirement is that the sync be initiated. 136 * The DMU syncs out txgs frequently, so there's nothing to do. 137 */ 138 if (flag & SYNC_ATTR) 139 return (0); 140 141 if (vfsp != NULL) { 142 /* 143 * Sync a specific filesystem. 144 */ 145 zfsvfs_t *zfsvfs = vfsp->vfs_data; 146 147 ZFS_ENTER(zfsvfs); 148 if (zfsvfs->z_log != NULL) 149 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 150 else 151 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 152 ZFS_EXIT(zfsvfs); 153 } else { 154 /* 155 * Sync all ZFS filesystems. This is what happens when you 156 * run sync(1M). Unlike other filesystems, ZFS honors the 157 * request by waiting for all pools to commit all dirty data. 158 */ 159 spa_sync_allpools(); 160 } 161 162 return (0); 163 } 164 165 static int 166 zfs_create_unique_device(dev_t *dev) 167 { 168 major_t new_major; 169 170 do { 171 ASSERT3U(zfs_minor, <=, MAXMIN32); 172 minor_t start = zfs_minor; 173 do { 174 mutex_enter(&zfs_dev_mtx); 175 if (zfs_minor >= MAXMIN32) { 176 /* 177 * If we're still using the real major 178 * keep out of /dev/zfs and /dev/zvol minor 179 * number space. If we're using a getudev()'ed 180 * major number, we can use all of its minors. 181 */ 182 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 183 zfs_minor = ZFS_MIN_MINOR; 184 else 185 zfs_minor = 0; 186 } else { 187 zfs_minor++; 188 } 189 *dev = makedevice(zfs_major, zfs_minor); 190 mutex_exit(&zfs_dev_mtx); 191 } while (vfs_devismounted(*dev) && zfs_minor != start); 192 if (zfs_minor == start) { 193 /* 194 * We are using all ~262,000 minor numbers for the 195 * current major number. Create a new major number. 196 */ 197 if ((new_major = getudev()) == (major_t)-1) { 198 cmn_err(CE_WARN, 199 "zfs_mount: Can't get unique major " 200 "device number."); 201 return (-1); 202 } 203 mutex_enter(&zfs_dev_mtx); 204 zfs_major = new_major; 205 zfs_minor = 0; 206 207 mutex_exit(&zfs_dev_mtx); 208 } else { 209 break; 210 } 211 /* CONSTANTCONDITION */ 212 } while (1); 213 214 return (0); 215 } 216 217 static void 218 atime_changed_cb(void *arg, uint64_t newval) 219 { 220 zfsvfs_t *zfsvfs = arg; 221 222 if (newval == TRUE) { 223 zfsvfs->z_atime = TRUE; 224 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 225 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 226 } else { 227 zfsvfs->z_atime = FALSE; 228 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 229 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 230 } 231 } 232 233 static void 234 xattr_changed_cb(void *arg, uint64_t newval) 235 { 236 zfsvfs_t *zfsvfs = arg; 237 238 if (newval == TRUE) { 239 /* XXX locking on vfs_flag? */ 240 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 241 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 242 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 243 } else { 244 /* XXX locking on vfs_flag? */ 245 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 246 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 247 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 248 } 249 } 250 251 static void 252 blksz_changed_cb(void *arg, uint64_t newval) 253 { 254 zfsvfs_t *zfsvfs = arg; 255 256 if (newval < SPA_MINBLOCKSIZE || 257 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 258 newval = SPA_MAXBLOCKSIZE; 259 260 zfsvfs->z_max_blksz = newval; 261 zfsvfs->z_vfs->vfs_bsize = newval; 262 } 263 264 static void 265 readonly_changed_cb(void *arg, uint64_t newval) 266 { 267 zfsvfs_t *zfsvfs = arg; 268 269 if (newval) { 270 /* XXX locking on vfs_flag? */ 271 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 272 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 273 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 274 (void) zfs_delete_thread_target(zfsvfs, 0); 275 } else { 276 /* XXX locking on vfs_flag? */ 277 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 278 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 279 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 280 (void) zfs_delete_thread_target(zfsvfs, 1); 281 } 282 } 283 284 static void 285 devices_changed_cb(void *arg, uint64_t newval) 286 { 287 zfsvfs_t *zfsvfs = arg; 288 289 if (newval == FALSE) { 290 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 291 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 292 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 293 } else { 294 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 295 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 296 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 297 } 298 } 299 300 static void 301 setuid_changed_cb(void *arg, uint64_t newval) 302 { 303 zfsvfs_t *zfsvfs = arg; 304 305 if (newval == FALSE) { 306 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 307 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 308 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 309 } else { 310 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 311 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 312 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 313 } 314 } 315 316 static void 317 exec_changed_cb(void *arg, uint64_t newval) 318 { 319 zfsvfs_t *zfsvfs = arg; 320 321 if (newval == FALSE) { 322 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 323 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 324 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 325 } else { 326 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 327 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 328 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 329 } 330 } 331 332 static void 333 snapdir_changed_cb(void *arg, uint64_t newval) 334 { 335 zfsvfs_t *zfsvfs = arg; 336 337 zfsvfs->z_show_ctldir = newval; 338 } 339 340 static void 341 acl_mode_changed_cb(void *arg, uint64_t newval) 342 { 343 zfsvfs_t *zfsvfs = arg; 344 345 zfsvfs->z_acl_mode = newval; 346 } 347 348 static void 349 acl_inherit_changed_cb(void *arg, uint64_t newval) 350 { 351 zfsvfs_t *zfsvfs = arg; 352 353 zfsvfs->z_acl_inherit = newval; 354 } 355 356 static int 357 zfs_refresh_properties(vfs_t *vfsp) 358 { 359 zfsvfs_t *zfsvfs = vfsp->vfs_data; 360 361 /* 362 * Remount operations default to "rw" unless "ro" is explicitly 363 * specified. 364 */ 365 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 366 readonly_changed_cb(zfsvfs, B_TRUE); 367 } else { 368 if (!dmu_objset_is_snapshot(zfsvfs->z_os)) 369 readonly_changed_cb(zfsvfs, B_FALSE); 370 else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) 371 return (EROFS); 372 } 373 374 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 375 devices_changed_cb(zfsvfs, B_FALSE); 376 setuid_changed_cb(zfsvfs, B_FALSE); 377 } else { 378 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 379 devices_changed_cb(zfsvfs, B_FALSE); 380 else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) 381 devices_changed_cb(zfsvfs, B_TRUE); 382 383 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 384 setuid_changed_cb(zfsvfs, B_FALSE); 385 else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) 386 setuid_changed_cb(zfsvfs, B_TRUE); 387 } 388 389 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 390 exec_changed_cb(zfsvfs, B_FALSE); 391 else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) 392 exec_changed_cb(zfsvfs, B_TRUE); 393 394 if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) 395 atime_changed_cb(zfsvfs, B_TRUE); 396 else if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) 397 atime_changed_cb(zfsvfs, B_FALSE); 398 399 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 400 xattr_changed_cb(zfsvfs, B_TRUE); 401 else if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) 402 xattr_changed_cb(zfsvfs, B_FALSE); 403 404 return (0); 405 } 406 407 static int 408 zfs_register_callbacks(vfs_t *vfsp) 409 { 410 struct dsl_dataset *ds = NULL; 411 objset_t *os = NULL; 412 zfsvfs_t *zfsvfs = NULL; 413 int readonly, do_readonly = FALSE; 414 int setuid, do_setuid = FALSE; 415 int exec, do_exec = FALSE; 416 int devices, do_devices = FALSE; 417 int xattr, do_xattr = FALSE; 418 int error = 0; 419 420 ASSERT(vfsp); 421 zfsvfs = vfsp->vfs_data; 422 ASSERT(zfsvfs); 423 os = zfsvfs->z_os; 424 425 /* 426 * The act of registering our callbacks will destroy any mount 427 * options we may have. In order to enable temporary overrides 428 * of mount options, we stash away the current values and 429 * restore them after we register the callbacks. 430 */ 431 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 432 readonly = B_TRUE; 433 do_readonly = B_TRUE; 434 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 435 readonly = B_FALSE; 436 do_readonly = B_TRUE; 437 } 438 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 439 devices = B_FALSE; 440 setuid = B_FALSE; 441 do_devices = B_TRUE; 442 do_setuid = B_TRUE; 443 } else { 444 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 445 devices = B_FALSE; 446 do_devices = B_TRUE; 447 } else if (vfs_optionisset(vfsp, 448 MNTOPT_DEVICES, NULL)) { 449 devices = B_TRUE; 450 do_devices = B_TRUE; 451 } 452 453 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 454 setuid = B_FALSE; 455 do_setuid = B_TRUE; 456 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 457 setuid = B_TRUE; 458 do_setuid = B_TRUE; 459 } 460 } 461 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 462 exec = B_FALSE; 463 do_exec = B_TRUE; 464 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 465 exec = B_TRUE; 466 do_exec = B_TRUE; 467 } 468 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 469 xattr = B_FALSE; 470 do_xattr = B_TRUE; 471 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 472 xattr = B_TRUE; 473 do_xattr = B_TRUE; 474 } 475 476 /* 477 * Register property callbacks. 478 * 479 * It would probably be fine to just check for i/o error from 480 * the first prop_register(), but I guess I like to go 481 * overboard... 482 */ 483 ds = dmu_objset_ds(os); 484 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 485 error = error ? error : dsl_prop_register(ds, 486 "xattr", xattr_changed_cb, zfsvfs); 487 error = error ? error : dsl_prop_register(ds, 488 "recordsize", blksz_changed_cb, zfsvfs); 489 error = error ? error : dsl_prop_register(ds, 490 "readonly", readonly_changed_cb, zfsvfs); 491 error = error ? error : dsl_prop_register(ds, 492 "devices", devices_changed_cb, zfsvfs); 493 error = error ? error : dsl_prop_register(ds, 494 "setuid", setuid_changed_cb, zfsvfs); 495 error = error ? error : dsl_prop_register(ds, 496 "exec", exec_changed_cb, zfsvfs); 497 error = error ? error : dsl_prop_register(ds, 498 "snapdir", snapdir_changed_cb, zfsvfs); 499 error = error ? error : dsl_prop_register(ds, 500 "aclmode", acl_mode_changed_cb, zfsvfs); 501 error = error ? error : dsl_prop_register(ds, 502 "aclinherit", acl_inherit_changed_cb, zfsvfs); 503 if (error) 504 goto unregister; 505 506 /* 507 * Invoke our callbacks to restore temporary mount options. 508 */ 509 if (do_readonly) 510 readonly_changed_cb(zfsvfs, readonly); 511 if (do_setuid) 512 setuid_changed_cb(zfsvfs, setuid); 513 if (do_exec) 514 exec_changed_cb(zfsvfs, exec); 515 if (do_devices) 516 devices_changed_cb(zfsvfs, devices); 517 if (do_xattr) 518 xattr_changed_cb(zfsvfs, xattr); 519 520 return (0); 521 522 unregister: 523 /* 524 * We may attempt to unregister some callbacks that are not 525 * registered, but this is OK; it will simply return ENOMSG, 526 * which we will ignore. 527 */ 528 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 529 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 530 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 531 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 532 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 533 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 534 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 535 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 536 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 537 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 538 zfsvfs); 539 return (error); 540 541 } 542 543 static int 544 zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr) 545 { 546 dev_t mount_dev; 547 uint64_t recordsize, readonly; 548 int error = 0; 549 int mode; 550 zfsvfs_t *zfsvfs; 551 znode_t *zp = NULL; 552 553 ASSERT(vfsp); 554 ASSERT(osname); 555 556 /* 557 * Initialize the zfs-specific filesystem structure. 558 * Should probably make this a kmem cache, shuffle fields, 559 * and just bzero up to z_hold_mtx[]. 560 */ 561 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 562 zfsvfs->z_vfs = vfsp; 563 zfsvfs->z_parent = zfsvfs; 564 zfsvfs->z_assign = TXG_NOWAIT; 565 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 566 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 567 568 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 569 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 570 offsetof(znode_t, z_link_node)); 571 rw_init(&zfsvfs->z_um_lock, NULL, RW_DEFAULT, NULL); 572 573 /* Initialize the generic filesystem structure. */ 574 vfsp->vfs_bcount = 0; 575 vfsp->vfs_data = NULL; 576 577 if (zfs_create_unique_device(&mount_dev) == -1) { 578 error = ENODEV; 579 goto out; 580 } 581 ASSERT(vfs_devismounted(mount_dev) == 0); 582 583 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 584 NULL)) 585 goto out; 586 587 vfsp->vfs_dev = mount_dev; 588 vfsp->vfs_fstype = zfsfstype; 589 vfsp->vfs_bsize = recordsize; 590 vfsp->vfs_flag |= VFS_NOTRUNC; 591 vfsp->vfs_data = zfsvfs; 592 593 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 594 goto out; 595 596 if (readonly) 597 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 598 else 599 mode = DS_MODE_PRIMARY; 600 601 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 602 if (error == EROFS) { 603 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 604 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 605 &zfsvfs->z_os); 606 } 607 608 if (error) 609 goto out; 610 611 if (error = zfs_init_fs(zfsvfs, &zp, cr)) 612 goto out; 613 614 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 615 VN_RELE(ZTOV(zp)); 616 617 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 618 uint64_t xattr; 619 620 ASSERT(mode & DS_MODE_READONLY); 621 atime_changed_cb(zfsvfs, B_FALSE); 622 readonly_changed_cb(zfsvfs, B_TRUE); 623 if (error = dsl_prop_get_integer(osname, "xattr", &xattr, NULL)) 624 goto out; 625 xattr_changed_cb(zfsvfs, xattr); 626 zfsvfs->z_issnap = B_TRUE; 627 } else { 628 error = zfs_register_callbacks(vfsp); 629 if (error) 630 goto out; 631 632 /* 633 * Start a delete thread running. 634 */ 635 (void) zfs_delete_thread_target(zfsvfs, 1); 636 637 /* 638 * Parse and replay the intent log. 639 */ 640 zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, 641 zfs_replay_vector, (void (*)(void *))zfs_delete_wait_empty); 642 643 if (!zil_disable) 644 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 645 } 646 647 if (!zfsvfs->z_issnap) 648 zfsctl_create(zfsvfs); 649 out: 650 if (error) { 651 if (zfsvfs->z_os) 652 dmu_objset_close(zfsvfs->z_os); 653 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 654 } else { 655 atomic_add_32(&zfs_active_fs_count, 1); 656 } 657 658 return (error); 659 660 } 661 662 void 663 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 664 { 665 objset_t *os = zfsvfs->z_os; 666 struct dsl_dataset *ds; 667 668 /* 669 * Unregister properties. 670 */ 671 if (!dmu_objset_is_snapshot(os)) { 672 ds = dmu_objset_ds(os); 673 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 674 zfsvfs) == 0); 675 676 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 677 zfsvfs) == 0); 678 679 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 680 zfsvfs) == 0); 681 682 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 683 zfsvfs) == 0); 684 685 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 686 zfsvfs) == 0); 687 688 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 689 zfsvfs) == 0); 690 691 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 692 zfsvfs) == 0); 693 694 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 695 zfsvfs) == 0); 696 697 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 698 zfsvfs) == 0); 699 700 VERIFY(dsl_prop_unregister(ds, "aclinherit", 701 acl_inherit_changed_cb, zfsvfs) == 0); 702 } 703 } 704 705 static int 706 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 707 { 708 int error = 0; 709 int ret = 0; 710 static int zfsrootdone = 0; 711 zfsvfs_t *zfsvfs = NULL; 712 znode_t *zp = NULL; 713 vnode_t *vp = NULL; 714 715 ASSERT(vfsp); 716 717 /* 718 * The filesystem that we mount as root is defined in 719 * /etc/system using the zfsroot variable. The value defined 720 * there is copied early in startup code to zfs_bootpath 721 * (defined in modsysfile.c). 722 */ 723 if (why == ROOT_INIT) { 724 if (zfsrootdone++) 725 return (EBUSY); 726 727 /* 728 * This needs to be done here, so that when we return from 729 * mountroot, the vfs resource name will be set correctly. 730 */ 731 if (snprintf(rootfs.bo_name, BO_MAXOBJNAME, "%s", zfs_bootpath) 732 >= BO_MAXOBJNAME) 733 return (ENAMETOOLONG); 734 735 if (error = vfs_lock(vfsp)) 736 return (error); 737 738 if (error = zfs_domount(vfsp, zfs_bootpath, CRED())) 739 goto out; 740 741 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 742 ASSERT(zfsvfs); 743 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) 744 goto out; 745 746 vp = ZTOV(zp); 747 mutex_enter(&vp->v_lock); 748 vp->v_flag |= VROOT; 749 mutex_exit(&vp->v_lock); 750 rootvp = vp; 751 752 /* 753 * The zfs_zget call above returns with a hold on vp, we release 754 * it here. 755 */ 756 VN_RELE(vp); 757 758 /* 759 * Mount root as readonly initially, it will be remouted 760 * read/write by /lib/svc/method/fs-usr. 761 */ 762 readonly_changed_cb(vfsp->vfs_data, B_TRUE); 763 vfs_add((struct vnode *)0, vfsp, 764 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 765 out: 766 vfs_unlock(vfsp); 767 ret = (error) ? error : 0; 768 return (ret); 769 770 } else if (why == ROOT_REMOUNT) { 771 772 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 773 vfsp->vfs_flag |= VFS_REMOUNT; 774 return (zfs_refresh_properties(vfsp)); 775 776 } else if (why == ROOT_UNMOUNT) { 777 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 778 (void) zfs_sync(vfsp, 0, 0); 779 return (0); 780 } 781 782 /* 783 * if "why" is equal to anything else other than ROOT_INIT, 784 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 785 */ 786 return (ENOTSUP); 787 } 788 789 /*ARGSUSED*/ 790 static int 791 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 792 { 793 char *osname; 794 pathname_t spn; 795 int error = 0; 796 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 797 UIO_SYSSPACE : UIO_USERSPACE; 798 int canwrite; 799 800 if (mvp->v_type != VDIR) 801 return (ENOTDIR); 802 803 mutex_enter(&mvp->v_lock); 804 if ((uap->flags & MS_REMOUNT) == 0 && 805 (uap->flags & MS_OVERLAY) == 0 && 806 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 807 mutex_exit(&mvp->v_lock); 808 return (EBUSY); 809 } 810 mutex_exit(&mvp->v_lock); 811 812 /* 813 * ZFS does not support passing unparsed data in via MS_DATA. 814 * Users should use the MS_OPTIONSTR interface; this means 815 * that all option parsing is already done and the options struct 816 * can be interrogated. 817 */ 818 if ((uap->flags & MS_DATA) && uap->datalen > 0) 819 return (EINVAL); 820 821 /* 822 * When doing a remount, we simply refresh our temporary properties 823 * according to those options set in the current VFS options. 824 */ 825 if (uap->flags & MS_REMOUNT) { 826 return (zfs_refresh_properties(vfsp)); 827 } 828 829 /* 830 * Get the objset name (the "special" mount argument). 831 */ 832 if (error = pn_get(uap->spec, fromspace, &spn)) 833 return (error); 834 835 osname = spn.pn_path; 836 837 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) 838 goto out; 839 840 /* 841 * Refuse to mount a filesystem if we are in a local zone and the 842 * dataset is not visible. 843 */ 844 if (!INGLOBALZONE(curproc) && 845 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 846 error = EPERM; 847 goto out; 848 } 849 850 error = zfs_domount(vfsp, osname, cr); 851 852 out: 853 pn_free(&spn); 854 return (error); 855 } 856 857 static int 858 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 859 { 860 zfsvfs_t *zfsvfs = vfsp->vfs_data; 861 dev32_t d32; 862 uint64_t refdbytes, availbytes, usedobjs, availobjs; 863 864 ZFS_ENTER(zfsvfs); 865 866 dmu_objset_space(zfsvfs->z_os, 867 &refdbytes, &availbytes, &usedobjs, &availobjs); 868 869 /* 870 * The underlying storage pool actually uses multiple block sizes. 871 * We report the fragsize as the smallest block size we support, 872 * and we report our blocksize as the filesystem's maximum blocksize. 873 */ 874 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 875 statp->f_bsize = zfsvfs->z_max_blksz; 876 877 /* 878 * The following report "total" blocks of various kinds in the 879 * file system, but reported in terms of f_frsize - the 880 * "fragment" size. 881 */ 882 883 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 884 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 885 statp->f_bavail = statp->f_bfree; /* no root reservation */ 886 887 /* 888 * statvfs() should really be called statufs(), because it assumes 889 * static metadata. ZFS doesn't preallocate files, so the best 890 * we can do is report the max that could possibly fit in f_files, 891 * and that minus the number actually used in f_ffree. 892 * For f_ffree, report the smaller of the number of object available 893 * and the number of blocks (each object will take at least a block). 894 */ 895 statp->f_ffree = MIN(availobjs, statp->f_bfree); 896 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 897 statp->f_files = statp->f_ffree + usedobjs; 898 899 (void) cmpldev(&d32, vfsp->vfs_dev); 900 statp->f_fsid = d32; 901 902 /* 903 * We're a zfs filesystem. 904 */ 905 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 906 907 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 908 909 statp->f_namemax = ZFS_MAXNAMELEN; 910 911 /* 912 * We have all of 32 characters to stuff a string here. 913 * Is there anything useful we could/should provide? 914 */ 915 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 916 917 ZFS_EXIT(zfsvfs); 918 return (0); 919 } 920 921 static int 922 zfs_root(vfs_t *vfsp, vnode_t **vpp) 923 { 924 zfsvfs_t *zfsvfs = vfsp->vfs_data; 925 znode_t *rootzp; 926 int error; 927 928 ZFS_ENTER(zfsvfs); 929 930 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 931 if (error == 0) 932 *vpp = ZTOV(rootzp); 933 934 ZFS_EXIT(zfsvfs); 935 return (error); 936 } 937 938 /*ARGSUSED*/ 939 static int 940 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 941 { 942 zfsvfs_t *zfsvfs = vfsp->vfs_data; 943 int ret; 944 945 if ((ret = secpolicy_fs_unmount(cr, vfsp)) != 0) 946 return (ret); 947 948 949 (void) dnlc_purge_vfsp(vfsp, 0); 950 951 /* 952 * Unmount any snapshots mounted under .zfs before unmounting the 953 * dataset itself. 954 */ 955 if (zfsvfs->z_ctldir != NULL && 956 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) 957 return (ret); 958 959 if (fflag & MS_FORCE) { 960 vfsp->vfs_flag |= VFS_UNMOUNTED; 961 zfsvfs->z_unmounted1 = B_TRUE; 962 963 /* 964 * Wait for all zfs threads to leave zfs. 965 * Grabbing a rwlock as reader in all vops and 966 * as writer here doesn't work because it too easy to get 967 * multiple reader enters as zfs can re-enter itself. 968 * This can lead to deadlock if there is an intervening 969 * rw_enter as writer. 970 * So a file system threads ref count (z_op_cnt) is used. 971 * A polling loop on z_op_cnt may seem inefficient, but 972 * - this saves all threads on exit from having to grab a 973 * mutex in order to cv_signal 974 * - only occurs on forced unmount in the rare case when 975 * there are outstanding threads within the file system. 976 */ 977 while (zfsvfs->z_op_cnt) { 978 delay(1); 979 } 980 981 zfs_objset_close(zfsvfs); 982 983 return (0); 984 } 985 /* 986 * Stop all delete threads. 987 */ 988 (void) zfs_delete_thread_target(zfsvfs, 0); 989 990 /* 991 * Check the number of active vnodes in the file system. 992 * Our count is maintained in the vfs structure, but the number 993 * is off by 1 to indicate a hold on the vfs structure itself. 994 * 995 * The '.zfs' directory maintains a reference of its own, and any active 996 * references underneath are reflected in the vnode count. 997 */ 998 if (zfsvfs->z_ctldir == NULL) { 999 if (vfsp->vfs_count > 1) { 1000 if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0) 1001 (void) zfs_delete_thread_target(zfsvfs, 1); 1002 return (EBUSY); 1003 } 1004 } else { 1005 if (vfsp->vfs_count > 2 || 1006 (zfsvfs->z_ctldir->v_count > 1 && !(fflag & MS_FORCE))) { 1007 if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0) 1008 (void) zfs_delete_thread_target(zfsvfs, 1); 1009 return (EBUSY); 1010 } 1011 } 1012 1013 vfsp->vfs_flag |= VFS_UNMOUNTED; 1014 zfs_objset_close(zfsvfs); 1015 1016 return (0); 1017 } 1018 1019 static int 1020 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1021 { 1022 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1023 znode_t *zp; 1024 uint64_t object = 0; 1025 uint64_t fid_gen = 0; 1026 uint64_t gen_mask; 1027 uint64_t zp_gen; 1028 int i, err; 1029 1030 *vpp = NULL; 1031 1032 ZFS_ENTER(zfsvfs); 1033 1034 if (fidp->fid_len == LONG_FID_LEN) { 1035 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1036 uint64_t objsetid = 0; 1037 uint64_t setgen = 0; 1038 1039 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1040 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1041 1042 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1043 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1044 1045 ZFS_EXIT(zfsvfs); 1046 1047 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1048 if (err) 1049 return (EINVAL); 1050 ZFS_ENTER(zfsvfs); 1051 } 1052 1053 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1054 zfid_short_t *zfid = (zfid_short_t *)fidp; 1055 1056 for (i = 0; i < sizeof (zfid->zf_object); i++) 1057 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1058 1059 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1060 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1061 } else { 1062 ZFS_EXIT(zfsvfs); 1063 return (EINVAL); 1064 } 1065 1066 /* A zero fid_gen means we are in the .zfs control directories */ 1067 if (fid_gen == 0 && 1068 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1069 *vpp = zfsvfs->z_ctldir; 1070 ASSERT(*vpp != NULL); 1071 if (object == ZFSCTL_INO_SNAPDIR) { 1072 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1073 0, NULL, NULL) == 0); 1074 } else { 1075 VN_HOLD(*vpp); 1076 } 1077 ZFS_EXIT(zfsvfs); 1078 return (0); 1079 } 1080 1081 gen_mask = -1ULL >> (64 - 8 * i); 1082 1083 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1084 if (err = zfs_zget(zfsvfs, object, &zp)) { 1085 ZFS_EXIT(zfsvfs); 1086 return (err); 1087 } 1088 zp_gen = zp->z_phys->zp_gen & gen_mask; 1089 if (zp_gen == 0) 1090 zp_gen = 1; 1091 if (zp->z_reap || zp_gen != fid_gen) { 1092 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1093 VN_RELE(ZTOV(zp)); 1094 ZFS_EXIT(zfsvfs); 1095 return (EINVAL); 1096 } 1097 1098 *vpp = ZTOV(zp); 1099 ZFS_EXIT(zfsvfs); 1100 return (0); 1101 } 1102 1103 static void 1104 zfs_objset_close(zfsvfs_t *zfsvfs) 1105 { 1106 zfs_delete_t *zd = &zfsvfs->z_delete_head; 1107 znode_t *zp, *nextzp; 1108 objset_t *os = zfsvfs->z_os; 1109 1110 /* 1111 * Stop all delete threads. 1112 */ 1113 (void) zfs_delete_thread_target(zfsvfs, 0); 1114 1115 /* 1116 * For forced unmount, at this point all vops except zfs_inactive 1117 * are erroring EIO. We need to now suspend zfs_inactive threads 1118 * while we are freeing dbufs before switching zfs_inactive 1119 * to use behaviour without a objset. 1120 */ 1121 rw_enter(&zfsvfs->z_um_lock, RW_WRITER); 1122 1123 /* 1124 * Release all delete in progress znodes 1125 * They will be processed when the file system remounts. 1126 */ 1127 mutex_enter(&zd->z_mutex); 1128 while (zp = list_head(&zd->z_znodes)) { 1129 list_remove(&zd->z_znodes, zp); 1130 zp->z_dbuf_held = 0; 1131 dmu_buf_rele(zp->z_dbuf, NULL); 1132 } 1133 mutex_exit(&zd->z_mutex); 1134 1135 /* 1136 * Release all holds on dbufs 1137 * Note, although we have stopped all other vop threads and 1138 * zfs_inactive(), the dmu can callback via znode_pageout_func() 1139 * which can zfs_znode_free() the znode. 1140 * So we lock z_all_znodes; search the list for a held 1141 * dbuf; drop the lock (we know zp can't disappear if we hold 1142 * a dbuf lock; then regrab the lock and restart. 1143 */ 1144 mutex_enter(&zfsvfs->z_znodes_lock); 1145 for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = nextzp) { 1146 nextzp = list_next(&zfsvfs->z_all_znodes, zp); 1147 if (zp->z_dbuf_held) { 1148 /* dbufs should only be held when force unmounting */ 1149 zp->z_dbuf_held = 0; 1150 mutex_exit(&zfsvfs->z_znodes_lock); 1151 dmu_buf_rele(zp->z_dbuf, NULL); 1152 /* Start again */ 1153 mutex_enter(&zfsvfs->z_znodes_lock); 1154 nextzp = list_head(&zfsvfs->z_all_znodes); 1155 } 1156 } 1157 mutex_exit(&zfsvfs->z_znodes_lock); 1158 1159 /* 1160 * Unregister properties. 1161 */ 1162 if (!dmu_objset_is_snapshot(os)) 1163 zfs_unregister_callbacks(zfsvfs); 1164 1165 /* 1166 * Switch zfs_inactive to behaviour without an objset. 1167 * It just tosses cached pages and frees the znode & vnode. 1168 * Then re-enable zfs_inactive threads in that new behaviour. 1169 */ 1170 zfsvfs->z_unmounted2 = B_TRUE; 1171 rw_exit(&zfsvfs->z_um_lock); /* re-enable any zfs_inactive threads */ 1172 1173 /* 1174 * Close the zil. Can't close the zil while zfs_inactive 1175 * threads are blocked as zil_close can call zfs_inactive. 1176 */ 1177 if (zfsvfs->z_log) { 1178 zil_close(zfsvfs->z_log); 1179 zfsvfs->z_log = NULL; 1180 } 1181 1182 /* 1183 * Evict all dbufs so that cached znodes will be freed 1184 */ 1185 if (dmu_objset_evict_dbufs(os, 1)) { 1186 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1187 (void) dmu_objset_evict_dbufs(os, 0); 1188 } 1189 1190 /* 1191 * Finally close the objset 1192 */ 1193 dmu_objset_close(os); 1194 1195 /* 1196 * We can now safely destroy the '.zfs' directory node. 1197 */ 1198 if (zfsvfs->z_ctldir != NULL) 1199 zfsctl_destroy(zfsvfs); 1200 1201 } 1202 1203 static void 1204 zfs_freevfs(vfs_t *vfsp) 1205 { 1206 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1207 1208 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1209 1210 atomic_add_32(&zfs_active_fs_count, -1); 1211 } 1212 1213 /* 1214 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1215 * so we can't safely do any non-idempotent initialization here. 1216 * Leave that to zfs_init() and zfs_fini(), which are called 1217 * from the module's _init() and _fini() entry points. 1218 */ 1219 /*ARGSUSED*/ 1220 static int 1221 zfs_vfsinit(int fstype, char *name) 1222 { 1223 int error; 1224 1225 zfsfstype = fstype; 1226 1227 /* 1228 * Setup vfsops and vnodeops tables. 1229 */ 1230 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1231 if (error != 0) { 1232 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1233 } 1234 1235 error = zfs_create_op_tables(); 1236 if (error) { 1237 zfs_remove_op_tables(); 1238 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1239 (void) vfs_freevfsops_by_type(zfsfstype); 1240 return (error); 1241 } 1242 1243 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1244 1245 /* 1246 * Unique major number for all zfs mounts. 1247 * If we run out of 32-bit minors, we'll getudev() another major. 1248 */ 1249 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1250 zfs_minor = ZFS_MIN_MINOR; 1251 1252 return (0); 1253 } 1254 1255 void 1256 zfs_init(void) 1257 { 1258 /* 1259 * Initialize .zfs directory structures 1260 */ 1261 zfsctl_init(); 1262 1263 /* 1264 * Initialize znode cache, vnode ops, etc... 1265 */ 1266 zfs_znode_init(); 1267 } 1268 1269 void 1270 zfs_fini(void) 1271 { 1272 zfsctl_fini(); 1273 zfs_znode_fini(); 1274 } 1275 1276 int 1277 zfs_busy(void) 1278 { 1279 return (zfs_active_fs_count != 0); 1280 } 1281 1282 static vfsdef_t vfw = { 1283 VFSDEF_VERSION, 1284 MNTTYPE_ZFS, 1285 zfs_vfsinit, 1286 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS, 1287 &zfs_mntopts 1288 }; 1289 1290 struct modlfs zfs_modlfs = { 1291 &mod_fsops, "ZFS filesystem version " ZFS_VERSION_STRING, &vfw 1292 }; 1293