1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/mntent.h> 38 #include <sys/mount.h> 39 #include <sys/cmn_err.h> 40 #include "fs/fs_subr.h" 41 #include <sys/zfs_znode.h> 42 #include <sys/zfs_dir.h> 43 #include <sys/zil.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/dmu.h> 46 #include <sys/dsl_prop.h> 47 #include <sys/dsl_dataset.h> 48 #include <sys/dsl_deleg.h> 49 #include <sys/spa.h> 50 #include <sys/zap.h> 51 #include <sys/varargs.h> 52 #include <sys/policy.h> 53 #include <sys/atomic.h> 54 #include <sys/mkdev.h> 55 #include <sys/modctl.h> 56 #include <sys/refstr.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/zfs_ctldir.h> 59 #include <sys/bootconf.h> 60 #include <sys/sunddi.h> 61 #include <sys/dnlc.h> 62 63 int zfsfstype; 64 vfsops_t *zfs_vfsops = NULL; 65 static major_t zfs_major; 66 static minor_t zfs_minor; 67 static kmutex_t zfs_dev_mtx; 68 69 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 70 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 71 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 72 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 73 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 74 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 75 static void zfs_freevfs(vfs_t *vfsp); 76 77 static const fs_operation_def_t zfs_vfsops_template[] = { 78 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 79 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 80 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 81 VFSNAME_ROOT, { .vfs_root = zfs_root }, 82 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 83 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 84 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 85 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 86 NULL, NULL 87 }; 88 89 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 90 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 91 NULL, NULL 92 }; 93 94 /* 95 * We need to keep a count of active fs's. 96 * This is necessary to prevent our module 97 * from being unloaded after a umount -f 98 */ 99 static uint32_t zfs_active_fs_count = 0; 100 101 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 102 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 103 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 104 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 105 106 /* 107 * MO_DEFAULT is not used since the default value is determined 108 * by the equivalent property. 109 */ 110 static mntopt_t mntopts[] = { 111 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 112 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 113 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 114 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 115 }; 116 117 static mntopts_t zfs_mntopts = { 118 sizeof (mntopts) / sizeof (mntopt_t), 119 mntopts 120 }; 121 122 /*ARGSUSED*/ 123 int 124 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 125 { 126 /* 127 * Data integrity is job one. We don't want a compromised kernel 128 * writing to the storage pool, so we never sync during panic. 129 */ 130 if (panicstr) 131 return (0); 132 133 /* 134 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 135 * to sync metadata, which they would otherwise cache indefinitely. 136 * Semantically, the only requirement is that the sync be initiated. 137 * The DMU syncs out txgs frequently, so there's nothing to do. 138 */ 139 if (flag & SYNC_ATTR) 140 return (0); 141 142 if (vfsp != NULL) { 143 /* 144 * Sync a specific filesystem. 145 */ 146 zfsvfs_t *zfsvfs = vfsp->vfs_data; 147 148 ZFS_ENTER(zfsvfs); 149 if (zfsvfs->z_log != NULL) 150 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 151 else 152 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 153 ZFS_EXIT(zfsvfs); 154 } else { 155 /* 156 * Sync all ZFS filesystems. This is what happens when you 157 * run sync(1M). Unlike other filesystems, ZFS honors the 158 * request by waiting for all pools to commit all dirty data. 159 */ 160 spa_sync_allpools(); 161 } 162 163 return (0); 164 } 165 166 static int 167 zfs_create_unique_device(dev_t *dev) 168 { 169 major_t new_major; 170 171 do { 172 ASSERT3U(zfs_minor, <=, MAXMIN32); 173 minor_t start = zfs_minor; 174 do { 175 mutex_enter(&zfs_dev_mtx); 176 if (zfs_minor >= MAXMIN32) { 177 /* 178 * If we're still using the real major 179 * keep out of /dev/zfs and /dev/zvol minor 180 * number space. If we're using a getudev()'ed 181 * major number, we can use all of its minors. 182 */ 183 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 184 zfs_minor = ZFS_MIN_MINOR; 185 else 186 zfs_minor = 0; 187 } else { 188 zfs_minor++; 189 } 190 *dev = makedevice(zfs_major, zfs_minor); 191 mutex_exit(&zfs_dev_mtx); 192 } while (vfs_devismounted(*dev) && zfs_minor != start); 193 if (zfs_minor == start) { 194 /* 195 * We are using all ~262,000 minor numbers for the 196 * current major number. Create a new major number. 197 */ 198 if ((new_major = getudev()) == (major_t)-1) { 199 cmn_err(CE_WARN, 200 "zfs_mount: Can't get unique major " 201 "device number."); 202 return (-1); 203 } 204 mutex_enter(&zfs_dev_mtx); 205 zfs_major = new_major; 206 zfs_minor = 0; 207 208 mutex_exit(&zfs_dev_mtx); 209 } else { 210 break; 211 } 212 /* CONSTANTCONDITION */ 213 } while (1); 214 215 return (0); 216 } 217 218 static void 219 atime_changed_cb(void *arg, uint64_t newval) 220 { 221 zfsvfs_t *zfsvfs = arg; 222 223 if (newval == TRUE) { 224 zfsvfs->z_atime = TRUE; 225 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 226 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 227 } else { 228 zfsvfs->z_atime = FALSE; 229 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 230 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 231 } 232 } 233 234 static void 235 xattr_changed_cb(void *arg, uint64_t newval) 236 { 237 zfsvfs_t *zfsvfs = arg; 238 239 if (newval == TRUE) { 240 /* XXX locking on vfs_flag? */ 241 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 242 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 243 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 244 } else { 245 /* XXX locking on vfs_flag? */ 246 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 247 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 248 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 249 } 250 } 251 252 static void 253 blksz_changed_cb(void *arg, uint64_t newval) 254 { 255 zfsvfs_t *zfsvfs = arg; 256 257 if (newval < SPA_MINBLOCKSIZE || 258 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 259 newval = SPA_MAXBLOCKSIZE; 260 261 zfsvfs->z_max_blksz = newval; 262 zfsvfs->z_vfs->vfs_bsize = newval; 263 } 264 265 static void 266 readonly_changed_cb(void *arg, uint64_t newval) 267 { 268 zfsvfs_t *zfsvfs = arg; 269 270 if (newval) { 271 /* XXX locking on vfs_flag? */ 272 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 273 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 274 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 275 } else { 276 /* XXX locking on vfs_flag? */ 277 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 278 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 279 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 280 } 281 } 282 283 static void 284 devices_changed_cb(void *arg, uint64_t newval) 285 { 286 zfsvfs_t *zfsvfs = arg; 287 288 if (newval == FALSE) { 289 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 290 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 291 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 292 } else { 293 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 294 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 295 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 296 } 297 } 298 299 static void 300 setuid_changed_cb(void *arg, uint64_t newval) 301 { 302 zfsvfs_t *zfsvfs = arg; 303 304 if (newval == FALSE) { 305 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 306 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 307 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 308 } else { 309 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 310 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 311 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 312 } 313 } 314 315 static void 316 exec_changed_cb(void *arg, uint64_t newval) 317 { 318 zfsvfs_t *zfsvfs = arg; 319 320 if (newval == FALSE) { 321 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 322 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 323 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 324 } else { 325 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 326 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 327 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 328 } 329 } 330 331 static void 332 snapdir_changed_cb(void *arg, uint64_t newval) 333 { 334 zfsvfs_t *zfsvfs = arg; 335 336 zfsvfs->z_show_ctldir = newval; 337 } 338 339 static void 340 acl_mode_changed_cb(void *arg, uint64_t newval) 341 { 342 zfsvfs_t *zfsvfs = arg; 343 344 zfsvfs->z_acl_mode = newval; 345 } 346 347 static void 348 acl_inherit_changed_cb(void *arg, uint64_t newval) 349 { 350 zfsvfs_t *zfsvfs = arg; 351 352 zfsvfs->z_acl_inherit = newval; 353 } 354 355 static int 356 zfs_register_callbacks(vfs_t *vfsp) 357 { 358 struct dsl_dataset *ds = NULL; 359 objset_t *os = NULL; 360 zfsvfs_t *zfsvfs = NULL; 361 int readonly, do_readonly = FALSE; 362 int setuid, do_setuid = FALSE; 363 int exec, do_exec = FALSE; 364 int devices, do_devices = FALSE; 365 int xattr, do_xattr = FALSE; 366 int atime, do_atime = FALSE; 367 int error = 0; 368 369 ASSERT(vfsp); 370 zfsvfs = vfsp->vfs_data; 371 ASSERT(zfsvfs); 372 os = zfsvfs->z_os; 373 374 /* 375 * The act of registering our callbacks will destroy any mount 376 * options we may have. In order to enable temporary overrides 377 * of mount options, we stash away the current values and 378 * restore them after we register the callbacks. 379 */ 380 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 381 readonly = B_TRUE; 382 do_readonly = B_TRUE; 383 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 384 readonly = B_FALSE; 385 do_readonly = B_TRUE; 386 } 387 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 388 devices = B_FALSE; 389 setuid = B_FALSE; 390 do_devices = B_TRUE; 391 do_setuid = B_TRUE; 392 } else { 393 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 394 devices = B_FALSE; 395 do_devices = B_TRUE; 396 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 397 devices = B_TRUE; 398 do_devices = B_TRUE; 399 } 400 401 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 402 setuid = B_FALSE; 403 do_setuid = B_TRUE; 404 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 405 setuid = B_TRUE; 406 do_setuid = B_TRUE; 407 } 408 } 409 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 410 exec = B_FALSE; 411 do_exec = B_TRUE; 412 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 413 exec = B_TRUE; 414 do_exec = B_TRUE; 415 } 416 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 417 xattr = B_FALSE; 418 do_xattr = B_TRUE; 419 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 420 xattr = B_TRUE; 421 do_xattr = B_TRUE; 422 } 423 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 424 atime = B_FALSE; 425 do_atime = B_TRUE; 426 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 427 atime = B_TRUE; 428 do_atime = B_TRUE; 429 } 430 431 /* 432 * Register property callbacks. 433 * 434 * It would probably be fine to just check for i/o error from 435 * the first prop_register(), but I guess I like to go 436 * overboard... 437 */ 438 ds = dmu_objset_ds(os); 439 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 440 error = error ? error : dsl_prop_register(ds, 441 "xattr", xattr_changed_cb, zfsvfs); 442 error = error ? error : dsl_prop_register(ds, 443 "recordsize", blksz_changed_cb, zfsvfs); 444 error = error ? error : dsl_prop_register(ds, 445 "readonly", readonly_changed_cb, zfsvfs); 446 error = error ? error : dsl_prop_register(ds, 447 "devices", devices_changed_cb, zfsvfs); 448 error = error ? error : dsl_prop_register(ds, 449 "setuid", setuid_changed_cb, zfsvfs); 450 error = error ? error : dsl_prop_register(ds, 451 "exec", exec_changed_cb, zfsvfs); 452 error = error ? error : dsl_prop_register(ds, 453 "snapdir", snapdir_changed_cb, zfsvfs); 454 error = error ? error : dsl_prop_register(ds, 455 "aclmode", acl_mode_changed_cb, zfsvfs); 456 error = error ? error : dsl_prop_register(ds, 457 "aclinherit", acl_inherit_changed_cb, zfsvfs); 458 if (error) 459 goto unregister; 460 461 /* 462 * Invoke our callbacks to restore temporary mount options. 463 */ 464 if (do_readonly) 465 readonly_changed_cb(zfsvfs, readonly); 466 if (do_setuid) 467 setuid_changed_cb(zfsvfs, setuid); 468 if (do_exec) 469 exec_changed_cb(zfsvfs, exec); 470 if (do_devices) 471 devices_changed_cb(zfsvfs, devices); 472 if (do_xattr) 473 xattr_changed_cb(zfsvfs, xattr); 474 if (do_atime) 475 atime_changed_cb(zfsvfs, atime); 476 477 return (0); 478 479 unregister: 480 /* 481 * We may attempt to unregister some callbacks that are not 482 * registered, but this is OK; it will simply return ENOMSG, 483 * which we will ignore. 484 */ 485 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 486 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 487 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 488 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 489 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 490 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 491 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 492 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 493 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 494 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 495 zfsvfs); 496 return (error); 497 498 } 499 500 static int 501 zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr) 502 { 503 dev_t mount_dev; 504 uint64_t recordsize, readonly; 505 int error = 0; 506 int mode; 507 zfsvfs_t *zfsvfs; 508 znode_t *zp = NULL; 509 510 ASSERT(vfsp); 511 ASSERT(osname); 512 513 /* 514 * Initialize the zfs-specific filesystem structure. 515 * Should probably make this a kmem cache, shuffle fields, 516 * and just bzero up to z_hold_mtx[]. 517 */ 518 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 519 zfsvfs->z_vfs = vfsp; 520 zfsvfs->z_parent = zfsvfs; 521 zfsvfs->z_assign = TXG_NOWAIT; 522 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 523 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 524 525 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 526 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 527 offsetof(znode_t, z_link_node)); 528 rw_init(&zfsvfs->z_unmount_lock, NULL, RW_DEFAULT, NULL); 529 rw_init(&zfsvfs->z_unmount_inactive_lock, NULL, RW_DEFAULT, NULL); 530 531 /* Initialize the generic filesystem structure. */ 532 vfsp->vfs_bcount = 0; 533 vfsp->vfs_data = NULL; 534 535 if (zfs_create_unique_device(&mount_dev) == -1) { 536 error = ENODEV; 537 goto out; 538 } 539 ASSERT(vfs_devismounted(mount_dev) == 0); 540 541 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 542 NULL)) 543 goto out; 544 545 vfsp->vfs_dev = mount_dev; 546 vfsp->vfs_fstype = zfsfstype; 547 vfsp->vfs_bsize = recordsize; 548 vfsp->vfs_flag |= VFS_NOTRUNC; 549 vfsp->vfs_data = zfsvfs; 550 551 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 552 goto out; 553 554 if (readonly) 555 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 556 else 557 mode = DS_MODE_PRIMARY; 558 559 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 560 if (error == EROFS) { 561 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 562 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 563 &zfsvfs->z_os); 564 } 565 566 if (error) 567 goto out; 568 569 if (error = zfs_init_fs(zfsvfs, &zp, cr)) 570 goto out; 571 572 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 573 VN_RELE(ZTOV(zp)); 574 575 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 576 uint64_t xattr; 577 578 ASSERT(mode & DS_MODE_READONLY); 579 atime_changed_cb(zfsvfs, B_FALSE); 580 readonly_changed_cb(zfsvfs, B_TRUE); 581 if (error = dsl_prop_get_integer(osname, "xattr", &xattr, NULL)) 582 goto out; 583 xattr_changed_cb(zfsvfs, xattr); 584 zfsvfs->z_issnap = B_TRUE; 585 } else { 586 error = zfs_register_callbacks(vfsp); 587 if (error) 588 goto out; 589 590 if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) 591 zfs_unlinked_drain(zfsvfs); 592 593 /* 594 * Parse and replay the intent log. 595 * 596 * Because of ziltest, this must be done after 597 * zfs_unlinked_drain(). (Further note: ziltest doesn't 598 * use readonly mounts, where zfs_unlinked_drain() isn't 599 * called.) This is because ziltest causes spa_sync() 600 * to think it's committed, but actually it is not, so 601 * the intent log contains many txg's worth of changes. 602 * 603 * In particular, if object N is in the unlinked set in 604 * the last txg to actually sync, then it could be 605 * actually freed in a later txg and then reallocated in 606 * a yet later txg. This would write a "create object 607 * N" record to the intent log. Normally, this would be 608 * fine because the spa_sync() would have written out 609 * the fact that object N is free, before we could write 610 * the "create object N" intent log record. 611 * 612 * But when we are in ziltest mode, we advance the "open 613 * txg" without actually spa_sync()-ing the changes to 614 * disk. So we would see that object N is still 615 * allocated and in the unlinked set, and there is an 616 * intent log record saying to allocate it. 617 */ 618 zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, 619 zfs_replay_vector); 620 621 if (!zil_disable) 622 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 623 } 624 625 if (!zfsvfs->z_issnap) 626 zfsctl_create(zfsvfs); 627 out: 628 if (error) { 629 if (zfsvfs->z_os) 630 dmu_objset_close(zfsvfs->z_os); 631 mutex_destroy(&zfsvfs->z_znodes_lock); 632 list_destroy(&zfsvfs->z_all_znodes); 633 rw_destroy(&zfsvfs->z_unmount_lock); 634 rw_destroy(&zfsvfs->z_unmount_inactive_lock); 635 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 636 } else { 637 atomic_add_32(&zfs_active_fs_count, 1); 638 } 639 640 return (error); 641 } 642 643 void 644 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 645 { 646 objset_t *os = zfsvfs->z_os; 647 struct dsl_dataset *ds; 648 649 /* 650 * Unregister properties. 651 */ 652 if (!dmu_objset_is_snapshot(os)) { 653 ds = dmu_objset_ds(os); 654 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 655 zfsvfs) == 0); 656 657 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 658 zfsvfs) == 0); 659 660 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 661 zfsvfs) == 0); 662 663 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 664 zfsvfs) == 0); 665 666 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 667 zfsvfs) == 0); 668 669 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 670 zfsvfs) == 0); 671 672 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 673 zfsvfs) == 0); 674 675 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 676 zfsvfs) == 0); 677 678 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 679 zfsvfs) == 0); 680 681 VERIFY(dsl_prop_unregister(ds, "aclinherit", 682 acl_inherit_changed_cb, zfsvfs) == 0); 683 } 684 } 685 686 /* 687 * Convert a decimal digit string to a uint64_t integer. 688 */ 689 static int 690 str_to_uint64(char *str, uint64_t *objnum) 691 { 692 uint64_t num = 0; 693 694 while (*str) { 695 if (*str < '0' || *str > '9') 696 return (EINVAL); 697 698 num = num*10 + *str++ - '0'; 699 } 700 701 *objnum = num; 702 return (0); 703 } 704 705 /* 706 * The boot path passed from the boot loader is in the form of 707 * "rootpool-name/root-filesystem-object-number'. Convert this 708 * string to a dataset name: "rootpool-name/root-filesystem-name". 709 */ 710 static int 711 parse_bootpath(char *bpath, char *outpath) 712 { 713 char *slashp; 714 uint64_t objnum; 715 int error; 716 717 if (*bpath == 0 || *bpath == '/') 718 return (EINVAL); 719 720 slashp = strchr(bpath, '/'); 721 722 /* if no '/', just return the pool name */ 723 if (slashp == NULL) { 724 (void) strcpy(outpath, bpath); 725 return (0); 726 } 727 728 if (error = str_to_uint64(slashp+1, &objnum)) 729 return (error); 730 731 *slashp = '\0'; 732 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 733 *slashp = '/'; 734 735 return (error); 736 } 737 738 static int 739 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 740 { 741 int error = 0; 742 int ret = 0; 743 static int zfsrootdone = 0; 744 zfsvfs_t *zfsvfs = NULL; 745 znode_t *zp = NULL; 746 vnode_t *vp = NULL; 747 char *zfs_bootpath; 748 749 ASSERT(vfsp); 750 751 /* 752 * The filesystem that we mount as root is defined in the 753 * "zfs-bootfs" property. 754 */ 755 if (why == ROOT_INIT) { 756 if (zfsrootdone++) 757 return (EBUSY); 758 759 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 760 DDI_PROP_DONTPASS, "zfs-bootfs", &zfs_bootpath) != 761 DDI_SUCCESS) 762 return (EIO); 763 764 error = parse_bootpath(zfs_bootpath, rootfs.bo_name); 765 ddi_prop_free(zfs_bootpath); 766 767 if (error) 768 return (error); 769 770 if (error = vfs_lock(vfsp)) 771 return (error); 772 773 if (error = zfs_domount(vfsp, rootfs.bo_name, CRED())) 774 goto out; 775 776 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 777 ASSERT(zfsvfs); 778 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) 779 goto out; 780 781 vp = ZTOV(zp); 782 mutex_enter(&vp->v_lock); 783 vp->v_flag |= VROOT; 784 mutex_exit(&vp->v_lock); 785 rootvp = vp; 786 787 /* 788 * The zfs_zget call above returns with a hold on vp, we release 789 * it here. 790 */ 791 VN_RELE(vp); 792 793 /* 794 * Mount root as readonly initially, it will be remouted 795 * read/write by /lib/svc/method/fs-usr. 796 */ 797 readonly_changed_cb(vfsp->vfs_data, B_TRUE); 798 vfs_add((struct vnode *)0, vfsp, 799 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 800 out: 801 vfs_unlock(vfsp); 802 ret = (error) ? error : 0; 803 return (ret); 804 } else if (why == ROOT_REMOUNT) { 805 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 806 vfsp->vfs_flag |= VFS_REMOUNT; 807 808 /* refresh mount options */ 809 zfs_unregister_callbacks(vfsp->vfs_data); 810 return (zfs_register_callbacks(vfsp)); 811 812 } else if (why == ROOT_UNMOUNT) { 813 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 814 (void) zfs_sync(vfsp, 0, 0); 815 return (0); 816 } 817 818 /* 819 * if "why" is equal to anything else other than ROOT_INIT, 820 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 821 */ 822 return (ENOTSUP); 823 } 824 825 /*ARGSUSED*/ 826 static int 827 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 828 { 829 char *osname; 830 pathname_t spn; 831 int error = 0; 832 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 833 UIO_SYSSPACE : UIO_USERSPACE; 834 int canwrite; 835 836 if (mvp->v_type != VDIR) 837 return (ENOTDIR); 838 839 mutex_enter(&mvp->v_lock); 840 if ((uap->flags & MS_REMOUNT) == 0 && 841 (uap->flags & MS_OVERLAY) == 0 && 842 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 843 mutex_exit(&mvp->v_lock); 844 return (EBUSY); 845 } 846 mutex_exit(&mvp->v_lock); 847 848 /* 849 * ZFS does not support passing unparsed data in via MS_DATA. 850 * Users should use the MS_OPTIONSTR interface; this means 851 * that all option parsing is already done and the options struct 852 * can be interrogated. 853 */ 854 if ((uap->flags & MS_DATA) && uap->datalen > 0) 855 return (EINVAL); 856 857 /* 858 * Get the objset name (the "special" mount argument). 859 */ 860 if (error = pn_get(uap->spec, fromspace, &spn)) 861 return (error); 862 863 osname = spn.pn_path; 864 865 /* 866 * Check for mount privilege? 867 * 868 * If we don't have privilege then see if 869 * we have local permission to allow it 870 */ 871 error = secpolicy_fs_mount(cr, mvp, vfsp); 872 if (error) { 873 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 874 if (error == 0) { 875 vattr_t vattr; 876 877 /* 878 * Make sure user is the owner of the mount point 879 * or has sufficient privileges. 880 */ 881 882 vattr.va_mask = AT_UID; 883 884 if (error = VOP_GETATTR(mvp, &vattr, 0, cr)) { 885 goto out; 886 } 887 888 if (error = secpolicy_vnode_owner(cr, vattr.va_uid)) { 889 goto out; 890 } 891 892 if (error = VOP_ACCESS(mvp, VWRITE, 0, cr)) { 893 goto out; 894 } 895 896 secpolicy_fs_mount_clearopts(cr, vfsp); 897 } else { 898 goto out; 899 } 900 } 901 902 /* 903 * Refuse to mount a filesystem if we are in a local zone and the 904 * dataset is not visible. 905 */ 906 if (!INGLOBALZONE(curproc) && 907 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 908 error = EPERM; 909 goto out; 910 } 911 912 /* 913 * When doing a remount, we simply refresh our temporary properties 914 * according to those options set in the current VFS options. 915 */ 916 if (uap->flags & MS_REMOUNT) { 917 /* refresh mount options */ 918 zfs_unregister_callbacks(vfsp->vfs_data); 919 error = zfs_register_callbacks(vfsp); 920 goto out; 921 } 922 923 error = zfs_domount(vfsp, osname, cr); 924 925 out: 926 pn_free(&spn); 927 return (error); 928 } 929 930 static int 931 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 932 { 933 zfsvfs_t *zfsvfs = vfsp->vfs_data; 934 dev32_t d32; 935 uint64_t refdbytes, availbytes, usedobjs, availobjs; 936 937 ZFS_ENTER(zfsvfs); 938 939 dmu_objset_space(zfsvfs->z_os, 940 &refdbytes, &availbytes, &usedobjs, &availobjs); 941 942 /* 943 * The underlying storage pool actually uses multiple block sizes. 944 * We report the fragsize as the smallest block size we support, 945 * and we report our blocksize as the filesystem's maximum blocksize. 946 */ 947 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 948 statp->f_bsize = zfsvfs->z_max_blksz; 949 950 /* 951 * The following report "total" blocks of various kinds in the 952 * file system, but reported in terms of f_frsize - the 953 * "fragment" size. 954 */ 955 956 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 957 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 958 statp->f_bavail = statp->f_bfree; /* no root reservation */ 959 960 /* 961 * statvfs() should really be called statufs(), because it assumes 962 * static metadata. ZFS doesn't preallocate files, so the best 963 * we can do is report the max that could possibly fit in f_files, 964 * and that minus the number actually used in f_ffree. 965 * For f_ffree, report the smaller of the number of object available 966 * and the number of blocks (each object will take at least a block). 967 */ 968 statp->f_ffree = MIN(availobjs, statp->f_bfree); 969 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 970 statp->f_files = statp->f_ffree + usedobjs; 971 972 (void) cmpldev(&d32, vfsp->vfs_dev); 973 statp->f_fsid = d32; 974 975 /* 976 * We're a zfs filesystem. 977 */ 978 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 979 980 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 981 982 statp->f_namemax = ZFS_MAXNAMELEN; 983 984 /* 985 * We have all of 32 characters to stuff a string here. 986 * Is there anything useful we could/should provide? 987 */ 988 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 989 990 ZFS_EXIT(zfsvfs); 991 return (0); 992 } 993 994 static int 995 zfs_root(vfs_t *vfsp, vnode_t **vpp) 996 { 997 zfsvfs_t *zfsvfs = vfsp->vfs_data; 998 znode_t *rootzp; 999 int error; 1000 1001 ZFS_ENTER(zfsvfs); 1002 1003 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1004 if (error == 0) 1005 *vpp = ZTOV(rootzp); 1006 1007 ZFS_EXIT(zfsvfs); 1008 return (error); 1009 } 1010 1011 /*ARGSUSED*/ 1012 static int 1013 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1014 { 1015 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1016 objset_t *os = zfsvfs->z_os; 1017 znode_t *zp, *nextzp; 1018 int ret; 1019 1020 ret = secpolicy_fs_unmount(cr, vfsp); 1021 if (ret) { 1022 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1023 ZFS_DELEG_PERM_MOUNT, cr); 1024 if (ret) 1025 return (ret); 1026 } 1027 1028 /* 1029 * We purge the parent filesystem's vfsp as the parent filesystem 1030 * and all of its snapshots have their vnode's v_vfsp set to the 1031 * parent's filesystem's vfsp. Note, 'z_parent' is self 1032 * referential for non-snapshots. 1033 */ 1034 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1035 1036 /* 1037 * Unmount any snapshots mounted under .zfs before unmounting the 1038 * dataset itself. 1039 */ 1040 if (zfsvfs->z_ctldir != NULL && 1041 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1042 return (ret); 1043 } 1044 1045 if (!(fflag & MS_FORCE)) { 1046 /* 1047 * Check the number of active vnodes in the file system. 1048 * Our count is maintained in the vfs structure, but the 1049 * number is off by 1 to indicate a hold on the vfs 1050 * structure itself. 1051 * 1052 * The '.zfs' directory maintains a reference of its 1053 * own, and any active references underneath are 1054 * reflected in the vnode count. 1055 */ 1056 if (zfsvfs->z_ctldir == NULL) { 1057 if (vfsp->vfs_count > 1) 1058 return (EBUSY); 1059 } else { 1060 if (vfsp->vfs_count > 2 || 1061 zfsvfs->z_ctldir->v_count > 1) { 1062 return (EBUSY); 1063 } 1064 } 1065 } 1066 1067 vfsp->vfs_flag |= VFS_UNMOUNTED; 1068 1069 rw_enter(&zfsvfs->z_unmount_lock, RW_WRITER); 1070 rw_enter(&zfsvfs->z_unmount_inactive_lock, RW_WRITER); 1071 1072 /* 1073 * At this point there are no vops active, and any new vops will 1074 * fail with EIO since we have z_unmount_lock for writer (only 1075 * relavent for forced unmount). 1076 * 1077 * Release all holds on dbufs. 1078 * Note, the dmu can still callback via znode_pageout_func() 1079 * which can zfs_znode_free() the znode. So we lock 1080 * z_all_znodes; search the list for a held dbuf; drop the lock 1081 * (we know zp can't disappear if we hold a dbuf lock) then 1082 * regrab the lock and restart. 1083 */ 1084 mutex_enter(&zfsvfs->z_znodes_lock); 1085 for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = nextzp) { 1086 nextzp = list_next(&zfsvfs->z_all_znodes, zp); 1087 if (zp->z_dbuf_held) { 1088 /* dbufs should only be held when force unmounting */ 1089 zp->z_dbuf_held = 0; 1090 mutex_exit(&zfsvfs->z_znodes_lock); 1091 dmu_buf_rele(zp->z_dbuf, NULL); 1092 /* Start again */ 1093 mutex_enter(&zfsvfs->z_znodes_lock); 1094 nextzp = list_head(&zfsvfs->z_all_znodes); 1095 } 1096 } 1097 mutex_exit(&zfsvfs->z_znodes_lock); 1098 1099 /* 1100 * Set the unmounted flag and let new vops unblock. 1101 * zfs_inactive will have the unmounted behavior, and all other 1102 * vops will fail with EIO. 1103 */ 1104 zfsvfs->z_unmounted = B_TRUE; 1105 rw_exit(&zfsvfs->z_unmount_lock); 1106 rw_exit(&zfsvfs->z_unmount_inactive_lock); 1107 1108 /* 1109 * Unregister properties. 1110 */ 1111 if (!dmu_objset_is_snapshot(os)) 1112 zfs_unregister_callbacks(zfsvfs); 1113 1114 /* 1115 * Close the zil. NB: Can't close the zil while zfs_inactive 1116 * threads are blocked as zil_close can call zfs_inactive. 1117 */ 1118 if (zfsvfs->z_log) { 1119 zil_close(zfsvfs->z_log); 1120 zfsvfs->z_log = NULL; 1121 } 1122 1123 /* 1124 * Evict all dbufs so that cached znodes will be freed 1125 */ 1126 if (dmu_objset_evict_dbufs(os, B_TRUE)) { 1127 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1128 (void) dmu_objset_evict_dbufs(os, B_FALSE); 1129 } 1130 1131 /* 1132 * Finally close the objset 1133 */ 1134 dmu_objset_close(os); 1135 1136 /* 1137 * We can now safely destroy the '.zfs' directory node. 1138 */ 1139 if (zfsvfs->z_ctldir != NULL) 1140 zfsctl_destroy(zfsvfs); 1141 1142 return (0); 1143 } 1144 1145 static int 1146 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1147 { 1148 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1149 znode_t *zp; 1150 uint64_t object = 0; 1151 uint64_t fid_gen = 0; 1152 uint64_t gen_mask; 1153 uint64_t zp_gen; 1154 int i, err; 1155 1156 *vpp = NULL; 1157 1158 ZFS_ENTER(zfsvfs); 1159 1160 if (fidp->fid_len == LONG_FID_LEN) { 1161 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1162 uint64_t objsetid = 0; 1163 uint64_t setgen = 0; 1164 1165 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1166 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1167 1168 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1169 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1170 1171 ZFS_EXIT(zfsvfs); 1172 1173 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1174 if (err) 1175 return (EINVAL); 1176 ZFS_ENTER(zfsvfs); 1177 } 1178 1179 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1180 zfid_short_t *zfid = (zfid_short_t *)fidp; 1181 1182 for (i = 0; i < sizeof (zfid->zf_object); i++) 1183 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1184 1185 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1186 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1187 } else { 1188 ZFS_EXIT(zfsvfs); 1189 return (EINVAL); 1190 } 1191 1192 /* A zero fid_gen means we are in the .zfs control directories */ 1193 if (fid_gen == 0 && 1194 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1195 *vpp = zfsvfs->z_ctldir; 1196 ASSERT(*vpp != NULL); 1197 if (object == ZFSCTL_INO_SNAPDIR) { 1198 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1199 0, NULL, NULL) == 0); 1200 } else { 1201 VN_HOLD(*vpp); 1202 } 1203 ZFS_EXIT(zfsvfs); 1204 return (0); 1205 } 1206 1207 gen_mask = -1ULL >> (64 - 8 * i); 1208 1209 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1210 if (err = zfs_zget(zfsvfs, object, &zp)) { 1211 ZFS_EXIT(zfsvfs); 1212 return (err); 1213 } 1214 zp_gen = zp->z_phys->zp_gen & gen_mask; 1215 if (zp_gen == 0) 1216 zp_gen = 1; 1217 if (zp->z_unlinked || zp_gen != fid_gen) { 1218 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1219 VN_RELE(ZTOV(zp)); 1220 ZFS_EXIT(zfsvfs); 1221 return (EINVAL); 1222 } 1223 1224 *vpp = ZTOV(zp); 1225 ZFS_EXIT(zfsvfs); 1226 return (0); 1227 } 1228 1229 static void 1230 zfs_freevfs(vfs_t *vfsp) 1231 { 1232 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1233 int i; 1234 1235 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1236 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1237 1238 mutex_destroy(&zfsvfs->z_znodes_lock); 1239 list_destroy(&zfsvfs->z_all_znodes); 1240 rw_destroy(&zfsvfs->z_unmount_lock); 1241 rw_destroy(&zfsvfs->z_unmount_inactive_lock); 1242 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1243 1244 atomic_add_32(&zfs_active_fs_count, -1); 1245 } 1246 1247 /* 1248 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1249 * so we can't safely do any non-idempotent initialization here. 1250 * Leave that to zfs_init() and zfs_fini(), which are called 1251 * from the module's _init() and _fini() entry points. 1252 */ 1253 /*ARGSUSED*/ 1254 static int 1255 zfs_vfsinit(int fstype, char *name) 1256 { 1257 int error; 1258 1259 zfsfstype = fstype; 1260 1261 /* 1262 * Setup vfsops and vnodeops tables. 1263 */ 1264 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1265 if (error != 0) { 1266 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1267 } 1268 1269 error = zfs_create_op_tables(); 1270 if (error) { 1271 zfs_remove_op_tables(); 1272 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1273 (void) vfs_freevfsops_by_type(zfsfstype); 1274 return (error); 1275 } 1276 1277 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1278 1279 /* 1280 * Unique major number for all zfs mounts. 1281 * If we run out of 32-bit minors, we'll getudev() another major. 1282 */ 1283 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1284 zfs_minor = ZFS_MIN_MINOR; 1285 1286 return (0); 1287 } 1288 1289 void 1290 zfs_init(void) 1291 { 1292 /* 1293 * Initialize .zfs directory structures 1294 */ 1295 zfsctl_init(); 1296 1297 /* 1298 * Initialize znode cache, vnode ops, etc... 1299 */ 1300 zfs_znode_init(); 1301 } 1302 1303 void 1304 zfs_fini(void) 1305 { 1306 zfsctl_fini(); 1307 zfs_znode_fini(); 1308 } 1309 1310 int 1311 zfs_busy(void) 1312 { 1313 return (zfs_active_fs_count != 0); 1314 } 1315 1316 int 1317 zfs_get_stats(objset_t *os, nvlist_t *nv) 1318 { 1319 int error; 1320 uint64_t val; 1321 1322 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &val); 1323 if (error == 0) 1324 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VERSION, val); 1325 1326 return (error); 1327 } 1328 1329 int 1330 zfs_set_version(const char *name, uint64_t newvers) 1331 { 1332 int error; 1333 objset_t *os; 1334 dmu_tx_t *tx; 1335 uint64_t curvers; 1336 1337 /* 1338 * XXX for now, require that the filesystem be unmounted. Would 1339 * be nice to find the zfsvfs_t and just update that if 1340 * possible. 1341 */ 1342 1343 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1344 return (EINVAL); 1345 1346 error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_PRIMARY, &os); 1347 if (error) 1348 return (error); 1349 1350 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1351 8, 1, &curvers); 1352 if (error) 1353 goto out; 1354 if (newvers < curvers) { 1355 error = EINVAL; 1356 goto out; 1357 } 1358 1359 tx = dmu_tx_create(os); 1360 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); 1361 error = dmu_tx_assign(tx, TXG_WAIT); 1362 if (error) { 1363 dmu_tx_abort(tx); 1364 goto out; 1365 } 1366 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 1367 &newvers, tx); 1368 1369 spa_history_internal_log(LOG_DS_UPGRADE, 1370 dmu_objset_spa(os), tx, CRED(), 1371 "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, 1372 dmu_objset_id(os)); 1373 dmu_tx_commit(tx); 1374 1375 out: 1376 dmu_objset_close(os); 1377 return (error); 1378 } 1379 1380 static vfsdef_t vfw = { 1381 VFSDEF_VERSION, 1382 MNTTYPE_ZFS, 1383 zfs_vfsinit, 1384 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS, 1385 &zfs_mntopts 1386 }; 1387 1388 struct modlfs zfs_modlfs = { 1389 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 1390 }; 1391