1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/acl.h> 35 #include <sys/vnode.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/mntent.h> 39 #include <sys/mount.h> 40 #include <sys/cmn_err.h> 41 #include "fs/fs_subr.h" 42 #include <sys/zfs_znode.h> 43 #include <sys/zfs_dir.h> 44 #include <sys/zil.h> 45 #include <sys/fs/zfs.h> 46 #include <sys/dmu.h> 47 #include <sys/dsl_prop.h> 48 #include <sys/dsl_dataset.h> 49 #include <sys/spa.h> 50 #include <sys/zap.h> 51 #include <sys/varargs.h> 52 #include <sys/policy.h> 53 #include <sys/atomic.h> 54 #include <sys/mkdev.h> 55 #include <sys/modctl.h> 56 #include <sys/zfs_ioctl.h> 57 #include <sys/zfs_ctldir.h> 58 #include <sys/bootconf.h> 59 #include <sys/sunddi.h> 60 #include <sys/dnlc.h> 61 62 int zfsfstype; 63 vfsops_t *zfs_vfsops = NULL; 64 static major_t zfs_major; 65 static minor_t zfs_minor; 66 static kmutex_t zfs_dev_mtx; 67 68 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 69 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 70 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 71 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 72 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 73 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 74 static void zfs_freevfs(vfs_t *vfsp); 75 static void zfs_objset_close(zfsvfs_t *zfsvfs); 76 77 static const fs_operation_def_t zfs_vfsops_template[] = { 78 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 79 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 80 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 81 VFSNAME_ROOT, { .vfs_root = zfs_root }, 82 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 83 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 84 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 85 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 86 NULL, NULL 87 }; 88 89 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 90 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 91 NULL, NULL 92 }; 93 94 /* 95 * We need to keep a count of active fs's. 96 * This is necessary to prevent our module 97 * from being unloaded after a umount -f 98 */ 99 static uint32_t zfs_active_fs_count = 0; 100 101 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 102 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 103 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 104 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 105 106 /* 107 * MNTOPT_DEFAULT was removed from MNTOPT_XATTR, since the 108 * default value is now determined by the xattr property. 109 */ 110 static mntopt_t mntopts[] = { 111 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 112 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 113 { MNTOPT_NOATIME, noatime_cancel, NULL, MO_DEFAULT, NULL }, 114 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 115 }; 116 117 static mntopts_t zfs_mntopts = { 118 sizeof (mntopts) / sizeof (mntopt_t), 119 mntopts 120 }; 121 122 /*ARGSUSED*/ 123 int 124 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 125 { 126 /* 127 * Data integrity is job one. We don't want a compromised kernel 128 * writing to the storage pool, so we never sync during panic. 129 */ 130 if (panicstr) 131 return (0); 132 133 /* 134 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 135 * to sync metadata, which they would otherwise cache indefinitely. 136 * Semantically, the only requirement is that the sync be initiated. 137 * The DMU syncs out txgs frequently, so there's nothing to do. 138 */ 139 if (flag & SYNC_ATTR) 140 return (0); 141 142 if (vfsp != NULL) { 143 /* 144 * Sync a specific filesystem. 145 */ 146 zfsvfs_t *zfsvfs = vfsp->vfs_data; 147 148 ZFS_ENTER(zfsvfs); 149 if (zfsvfs->z_log != NULL) 150 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 151 else 152 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 153 ZFS_EXIT(zfsvfs); 154 } else { 155 /* 156 * Sync all ZFS filesystems. This is what happens when you 157 * run sync(1M). Unlike other filesystems, ZFS honors the 158 * request by waiting for all pools to commit all dirty data. 159 */ 160 spa_sync_allpools(); 161 } 162 163 return (0); 164 } 165 166 static int 167 zfs_create_unique_device(dev_t *dev) 168 { 169 major_t new_major; 170 171 do { 172 ASSERT3U(zfs_minor, <=, MAXMIN32); 173 minor_t start = zfs_minor; 174 do { 175 mutex_enter(&zfs_dev_mtx); 176 if (zfs_minor >= MAXMIN32) { 177 /* 178 * If we're still using the real major 179 * keep out of /dev/zfs and /dev/zvol minor 180 * number space. If we're using a getudev()'ed 181 * major number, we can use all of its minors. 182 */ 183 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 184 zfs_minor = ZFS_MIN_MINOR; 185 else 186 zfs_minor = 0; 187 } else { 188 zfs_minor++; 189 } 190 *dev = makedevice(zfs_major, zfs_minor); 191 mutex_exit(&zfs_dev_mtx); 192 } while (vfs_devismounted(*dev) && zfs_minor != start); 193 if (zfs_minor == start) { 194 /* 195 * We are using all ~262,000 minor numbers for the 196 * current major number. Create a new major number. 197 */ 198 if ((new_major = getudev()) == (major_t)-1) { 199 cmn_err(CE_WARN, 200 "zfs_mount: Can't get unique major " 201 "device number."); 202 return (-1); 203 } 204 mutex_enter(&zfs_dev_mtx); 205 zfs_major = new_major; 206 zfs_minor = 0; 207 208 mutex_exit(&zfs_dev_mtx); 209 } else { 210 break; 211 } 212 /* CONSTANTCONDITION */ 213 } while (1); 214 215 return (0); 216 } 217 218 static void 219 atime_changed_cb(void *arg, uint64_t newval) 220 { 221 zfsvfs_t *zfsvfs = arg; 222 223 if (newval == TRUE) { 224 zfsvfs->z_atime = TRUE; 225 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 226 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 227 } else { 228 zfsvfs->z_atime = FALSE; 229 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 230 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 231 } 232 } 233 234 static void 235 xattr_changed_cb(void *arg, uint64_t newval) 236 { 237 zfsvfs_t *zfsvfs = arg; 238 239 if (newval == TRUE) { 240 /* XXX locking on vfs_flag? */ 241 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 242 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 243 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 244 } else { 245 /* XXX locking on vfs_flag? */ 246 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 247 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 248 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 249 } 250 } 251 252 static void 253 blksz_changed_cb(void *arg, uint64_t newval) 254 { 255 zfsvfs_t *zfsvfs = arg; 256 257 if (newval < SPA_MINBLOCKSIZE || 258 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 259 newval = SPA_MAXBLOCKSIZE; 260 261 zfsvfs->z_max_blksz = newval; 262 zfsvfs->z_vfs->vfs_bsize = newval; 263 } 264 265 static void 266 readonly_changed_cb(void *arg, uint64_t newval) 267 { 268 zfsvfs_t *zfsvfs = arg; 269 270 if (newval) { 271 /* XXX locking on vfs_flag? */ 272 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 273 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 274 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 275 } else { 276 /* XXX locking on vfs_flag? */ 277 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 278 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 279 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 280 } 281 } 282 283 static void 284 devices_changed_cb(void *arg, uint64_t newval) 285 { 286 zfsvfs_t *zfsvfs = arg; 287 288 if (newval == FALSE) { 289 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 290 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 291 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 292 } else { 293 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 294 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 295 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 296 } 297 } 298 299 static void 300 setuid_changed_cb(void *arg, uint64_t newval) 301 { 302 zfsvfs_t *zfsvfs = arg; 303 304 if (newval == FALSE) { 305 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 306 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 307 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 308 } else { 309 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 310 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 311 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 312 } 313 } 314 315 static void 316 exec_changed_cb(void *arg, uint64_t newval) 317 { 318 zfsvfs_t *zfsvfs = arg; 319 320 if (newval == FALSE) { 321 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 322 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 323 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 324 } else { 325 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 326 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 327 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 328 } 329 } 330 331 static void 332 snapdir_changed_cb(void *arg, uint64_t newval) 333 { 334 zfsvfs_t *zfsvfs = arg; 335 336 zfsvfs->z_show_ctldir = newval; 337 } 338 339 static void 340 acl_mode_changed_cb(void *arg, uint64_t newval) 341 { 342 zfsvfs_t *zfsvfs = arg; 343 344 zfsvfs->z_acl_mode = newval; 345 } 346 347 static void 348 acl_inherit_changed_cb(void *arg, uint64_t newval) 349 { 350 zfsvfs_t *zfsvfs = arg; 351 352 zfsvfs->z_acl_inherit = newval; 353 } 354 355 static int 356 zfs_refresh_properties(vfs_t *vfsp) 357 { 358 zfsvfs_t *zfsvfs = vfsp->vfs_data; 359 360 /* 361 * Remount operations default to "rw" unless "ro" is explicitly 362 * specified. 363 */ 364 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 365 readonly_changed_cb(zfsvfs, B_TRUE); 366 } else { 367 if (!dmu_objset_is_snapshot(zfsvfs->z_os)) 368 readonly_changed_cb(zfsvfs, B_FALSE); 369 else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) 370 return (EROFS); 371 } 372 373 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 374 devices_changed_cb(zfsvfs, B_FALSE); 375 setuid_changed_cb(zfsvfs, B_FALSE); 376 } else { 377 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 378 devices_changed_cb(zfsvfs, B_FALSE); 379 else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) 380 devices_changed_cb(zfsvfs, B_TRUE); 381 382 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 383 setuid_changed_cb(zfsvfs, B_FALSE); 384 else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) 385 setuid_changed_cb(zfsvfs, B_TRUE); 386 } 387 388 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 389 exec_changed_cb(zfsvfs, B_FALSE); 390 else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) 391 exec_changed_cb(zfsvfs, B_TRUE); 392 393 if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) 394 atime_changed_cb(zfsvfs, B_TRUE); 395 else if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) 396 atime_changed_cb(zfsvfs, B_FALSE); 397 398 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 399 xattr_changed_cb(zfsvfs, B_TRUE); 400 else if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) 401 xattr_changed_cb(zfsvfs, B_FALSE); 402 403 return (0); 404 } 405 406 static int 407 zfs_register_callbacks(vfs_t *vfsp) 408 { 409 struct dsl_dataset *ds = NULL; 410 objset_t *os = NULL; 411 zfsvfs_t *zfsvfs = NULL; 412 int readonly, do_readonly = FALSE; 413 int setuid, do_setuid = FALSE; 414 int exec, do_exec = FALSE; 415 int devices, do_devices = FALSE; 416 int xattr, do_xattr = FALSE; 417 int error = 0; 418 419 ASSERT(vfsp); 420 zfsvfs = vfsp->vfs_data; 421 ASSERT(zfsvfs); 422 os = zfsvfs->z_os; 423 424 /* 425 * The act of registering our callbacks will destroy any mount 426 * options we may have. In order to enable temporary overrides 427 * of mount options, we stash away the current values and 428 * restore them after we register the callbacks. 429 */ 430 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 431 readonly = B_TRUE; 432 do_readonly = B_TRUE; 433 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 434 readonly = B_FALSE; 435 do_readonly = B_TRUE; 436 } 437 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 438 devices = B_FALSE; 439 setuid = B_FALSE; 440 do_devices = B_TRUE; 441 do_setuid = B_TRUE; 442 } else { 443 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 444 devices = B_FALSE; 445 do_devices = B_TRUE; 446 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 447 devices = B_TRUE; 448 do_devices = B_TRUE; 449 } 450 451 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 452 setuid = B_FALSE; 453 do_setuid = B_TRUE; 454 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 455 setuid = B_TRUE; 456 do_setuid = B_TRUE; 457 } 458 } 459 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 460 exec = B_FALSE; 461 do_exec = B_TRUE; 462 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 463 exec = B_TRUE; 464 do_exec = B_TRUE; 465 } 466 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 467 xattr = B_FALSE; 468 do_xattr = B_TRUE; 469 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 470 xattr = B_TRUE; 471 do_xattr = B_TRUE; 472 } 473 474 /* 475 * Register property callbacks. 476 * 477 * It would probably be fine to just check for i/o error from 478 * the first prop_register(), but I guess I like to go 479 * overboard... 480 */ 481 ds = dmu_objset_ds(os); 482 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 483 error = error ? error : dsl_prop_register(ds, 484 "xattr", xattr_changed_cb, zfsvfs); 485 error = error ? error : dsl_prop_register(ds, 486 "recordsize", blksz_changed_cb, zfsvfs); 487 error = error ? error : dsl_prop_register(ds, 488 "readonly", readonly_changed_cb, zfsvfs); 489 error = error ? error : dsl_prop_register(ds, 490 "devices", devices_changed_cb, zfsvfs); 491 error = error ? error : dsl_prop_register(ds, 492 "setuid", setuid_changed_cb, zfsvfs); 493 error = error ? error : dsl_prop_register(ds, 494 "exec", exec_changed_cb, zfsvfs); 495 error = error ? error : dsl_prop_register(ds, 496 "snapdir", snapdir_changed_cb, zfsvfs); 497 error = error ? error : dsl_prop_register(ds, 498 "aclmode", acl_mode_changed_cb, zfsvfs); 499 error = error ? error : dsl_prop_register(ds, 500 "aclinherit", acl_inherit_changed_cb, zfsvfs); 501 if (error) 502 goto unregister; 503 504 /* 505 * Invoke our callbacks to restore temporary mount options. 506 */ 507 if (do_readonly) 508 readonly_changed_cb(zfsvfs, readonly); 509 if (do_setuid) 510 setuid_changed_cb(zfsvfs, setuid); 511 if (do_exec) 512 exec_changed_cb(zfsvfs, exec); 513 if (do_devices) 514 devices_changed_cb(zfsvfs, devices); 515 if (do_xattr) 516 xattr_changed_cb(zfsvfs, xattr); 517 518 return (0); 519 520 unregister: 521 /* 522 * We may attempt to unregister some callbacks that are not 523 * registered, but this is OK; it will simply return ENOMSG, 524 * which we will ignore. 525 */ 526 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 527 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 528 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 529 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 530 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 531 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 532 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 533 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 534 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 535 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 536 zfsvfs); 537 return (error); 538 539 } 540 541 static int 542 zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr) 543 { 544 dev_t mount_dev; 545 uint64_t recordsize, readonly; 546 int error = 0; 547 int mode; 548 zfsvfs_t *zfsvfs; 549 znode_t *zp = NULL; 550 551 ASSERT(vfsp); 552 ASSERT(osname); 553 554 /* 555 * Initialize the zfs-specific filesystem structure. 556 * Should probably make this a kmem cache, shuffle fields, 557 * and just bzero up to z_hold_mtx[]. 558 */ 559 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 560 zfsvfs->z_vfs = vfsp; 561 zfsvfs->z_parent = zfsvfs; 562 zfsvfs->z_assign = TXG_NOWAIT; 563 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 564 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 565 566 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 567 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 568 offsetof(znode_t, z_link_node)); 569 rw_init(&zfsvfs->z_um_lock, NULL, RW_DEFAULT, NULL); 570 571 /* Initialize the generic filesystem structure. */ 572 vfsp->vfs_bcount = 0; 573 vfsp->vfs_data = NULL; 574 575 if (zfs_create_unique_device(&mount_dev) == -1) { 576 error = ENODEV; 577 goto out; 578 } 579 ASSERT(vfs_devismounted(mount_dev) == 0); 580 581 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 582 NULL)) 583 goto out; 584 585 vfsp->vfs_dev = mount_dev; 586 vfsp->vfs_fstype = zfsfstype; 587 vfsp->vfs_bsize = recordsize; 588 vfsp->vfs_flag |= VFS_NOTRUNC; 589 vfsp->vfs_data = zfsvfs; 590 591 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 592 goto out; 593 594 if (readonly) 595 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 596 else 597 mode = DS_MODE_PRIMARY; 598 599 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 600 if (error == EROFS) { 601 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 602 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 603 &zfsvfs->z_os); 604 } 605 606 if (error) 607 goto out; 608 609 if (error = zfs_init_fs(zfsvfs, &zp, cr)) 610 goto out; 611 612 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 613 VN_RELE(ZTOV(zp)); 614 615 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 616 uint64_t xattr; 617 618 ASSERT(mode & DS_MODE_READONLY); 619 atime_changed_cb(zfsvfs, B_FALSE); 620 readonly_changed_cb(zfsvfs, B_TRUE); 621 if (error = dsl_prop_get_integer(osname, "xattr", &xattr, NULL)) 622 goto out; 623 xattr_changed_cb(zfsvfs, xattr); 624 zfsvfs->z_issnap = B_TRUE; 625 } else { 626 error = zfs_register_callbacks(vfsp); 627 if (error) 628 goto out; 629 630 zfs_unlinked_drain(zfsvfs); 631 632 /* 633 * Parse and replay the intent log. 634 */ 635 zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, 636 zfs_replay_vector); 637 638 if (!zil_disable) 639 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 640 } 641 642 if (!zfsvfs->z_issnap) 643 zfsctl_create(zfsvfs); 644 out: 645 if (error) { 646 if (zfsvfs->z_os) 647 dmu_objset_close(zfsvfs->z_os); 648 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 649 } else { 650 atomic_add_32(&zfs_active_fs_count, 1); 651 } 652 653 return (error); 654 655 } 656 657 void 658 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 659 { 660 objset_t *os = zfsvfs->z_os; 661 struct dsl_dataset *ds; 662 663 /* 664 * Unregister properties. 665 */ 666 if (!dmu_objset_is_snapshot(os)) { 667 ds = dmu_objset_ds(os); 668 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 669 zfsvfs) == 0); 670 671 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 672 zfsvfs) == 0); 673 674 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 675 zfsvfs) == 0); 676 677 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 678 zfsvfs) == 0); 679 680 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 681 zfsvfs) == 0); 682 683 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 684 zfsvfs) == 0); 685 686 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 687 zfsvfs) == 0); 688 689 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 690 zfsvfs) == 0); 691 692 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 693 zfsvfs) == 0); 694 695 VERIFY(dsl_prop_unregister(ds, "aclinherit", 696 acl_inherit_changed_cb, zfsvfs) == 0); 697 } 698 } 699 700 /* 701 * Convert a decimal digit string to a uint64_t integer. 702 */ 703 static int 704 str_to_uint64(char *str, uint64_t *objnum) 705 { 706 uint64_t num = 0; 707 708 while (*str) { 709 if (*str < '0' || *str > '9') 710 return (EINVAL); 711 712 num = num*10 + *str++ - '0'; 713 } 714 715 *objnum = num; 716 return (0); 717 } 718 719 720 /* 721 * The boot path passed from the boot loader is in the form of 722 * "rootpool-name/root-filesystem-object-number'. Convert this 723 * string to a dataset name: "rootpool-name/root-filesystem-name". 724 */ 725 static int 726 parse_bootpath(char *bpath, char *outpath) 727 { 728 char *slashp; 729 uint64_t objnum; 730 int error; 731 732 if (*bpath == 0 || *bpath == '/') 733 return (EINVAL); 734 735 slashp = strchr(bpath, '/'); 736 737 /* if no '/', just return the pool name */ 738 if (slashp == NULL) { 739 (void) strcpy(outpath, bpath); 740 return (0); 741 } 742 743 if (error = str_to_uint64(slashp+1, &objnum)) 744 return (error); 745 746 *slashp = '\0'; 747 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 748 *slashp = '/'; 749 750 return (error); 751 } 752 753 static int 754 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 755 { 756 int error = 0; 757 int ret = 0; 758 static int zfsrootdone = 0; 759 zfsvfs_t *zfsvfs = NULL; 760 znode_t *zp = NULL; 761 vnode_t *vp = NULL; 762 char *zfs_bootpath; 763 764 ASSERT(vfsp); 765 766 /* 767 * The filesystem that we mount as root is defined in the 768 * "zfs-bootfs" property. 769 */ 770 if (why == ROOT_INIT) { 771 if (zfsrootdone++) 772 return (EBUSY); 773 774 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 775 DDI_PROP_DONTPASS, "zfs-bootfs", &zfs_bootpath) != 776 DDI_SUCCESS) 777 return (EIO); 778 779 error = parse_bootpath(zfs_bootpath, rootfs.bo_name); 780 ddi_prop_free(zfs_bootpath); 781 782 if (error) 783 return (error); 784 785 if (error = vfs_lock(vfsp)) 786 return (error); 787 788 if (error = zfs_domount(vfsp, rootfs.bo_name, CRED())) 789 goto out; 790 791 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 792 ASSERT(zfsvfs); 793 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) 794 goto out; 795 796 vp = ZTOV(zp); 797 mutex_enter(&vp->v_lock); 798 vp->v_flag |= VROOT; 799 mutex_exit(&vp->v_lock); 800 rootvp = vp; 801 802 /* 803 * The zfs_zget call above returns with a hold on vp, we release 804 * it here. 805 */ 806 VN_RELE(vp); 807 808 /* 809 * Mount root as readonly initially, it will be remouted 810 * read/write by /lib/svc/method/fs-usr. 811 */ 812 readonly_changed_cb(vfsp->vfs_data, B_TRUE); 813 vfs_add((struct vnode *)0, vfsp, 814 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 815 out: 816 vfs_unlock(vfsp); 817 ret = (error) ? error : 0; 818 return (ret); 819 820 } else if (why == ROOT_REMOUNT) { 821 822 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 823 vfsp->vfs_flag |= VFS_REMOUNT; 824 return (zfs_refresh_properties(vfsp)); 825 826 } else if (why == ROOT_UNMOUNT) { 827 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 828 (void) zfs_sync(vfsp, 0, 0); 829 return (0); 830 } 831 832 /* 833 * if "why" is equal to anything else other than ROOT_INIT, 834 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 835 */ 836 return (ENOTSUP); 837 } 838 839 /*ARGSUSED*/ 840 static int 841 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 842 { 843 char *osname; 844 pathname_t spn; 845 int error = 0; 846 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 847 UIO_SYSSPACE : UIO_USERSPACE; 848 int canwrite; 849 850 if (mvp->v_type != VDIR) 851 return (ENOTDIR); 852 853 mutex_enter(&mvp->v_lock); 854 if ((uap->flags & MS_REMOUNT) == 0 && 855 (uap->flags & MS_OVERLAY) == 0 && 856 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 857 mutex_exit(&mvp->v_lock); 858 return (EBUSY); 859 } 860 mutex_exit(&mvp->v_lock); 861 862 /* 863 * ZFS does not support passing unparsed data in via MS_DATA. 864 * Users should use the MS_OPTIONSTR interface; this means 865 * that all option parsing is already done and the options struct 866 * can be interrogated. 867 */ 868 if ((uap->flags & MS_DATA) && uap->datalen > 0) 869 return (EINVAL); 870 871 /* 872 * When doing a remount, we simply refresh our temporary properties 873 * according to those options set in the current VFS options. 874 */ 875 if (uap->flags & MS_REMOUNT) { 876 return (zfs_refresh_properties(vfsp)); 877 } 878 879 /* 880 * Get the objset name (the "special" mount argument). 881 */ 882 if (error = pn_get(uap->spec, fromspace, &spn)) 883 return (error); 884 885 osname = spn.pn_path; 886 887 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) 888 goto out; 889 890 /* 891 * Refuse to mount a filesystem if we are in a local zone and the 892 * dataset is not visible. 893 */ 894 if (!INGLOBALZONE(curproc) && 895 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 896 error = EPERM; 897 goto out; 898 } 899 900 error = zfs_domount(vfsp, osname, cr); 901 902 out: 903 pn_free(&spn); 904 return (error); 905 } 906 907 static int 908 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 909 { 910 zfsvfs_t *zfsvfs = vfsp->vfs_data; 911 dev32_t d32; 912 uint64_t refdbytes, availbytes, usedobjs, availobjs; 913 914 ZFS_ENTER(zfsvfs); 915 916 dmu_objset_space(zfsvfs->z_os, 917 &refdbytes, &availbytes, &usedobjs, &availobjs); 918 919 /* 920 * The underlying storage pool actually uses multiple block sizes. 921 * We report the fragsize as the smallest block size we support, 922 * and we report our blocksize as the filesystem's maximum blocksize. 923 */ 924 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 925 statp->f_bsize = zfsvfs->z_max_blksz; 926 927 /* 928 * The following report "total" blocks of various kinds in the 929 * file system, but reported in terms of f_frsize - the 930 * "fragment" size. 931 */ 932 933 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 934 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 935 statp->f_bavail = statp->f_bfree; /* no root reservation */ 936 937 /* 938 * statvfs() should really be called statufs(), because it assumes 939 * static metadata. ZFS doesn't preallocate files, so the best 940 * we can do is report the max that could possibly fit in f_files, 941 * and that minus the number actually used in f_ffree. 942 * For f_ffree, report the smaller of the number of object available 943 * and the number of blocks (each object will take at least a block). 944 */ 945 statp->f_ffree = MIN(availobjs, statp->f_bfree); 946 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 947 statp->f_files = statp->f_ffree + usedobjs; 948 949 (void) cmpldev(&d32, vfsp->vfs_dev); 950 statp->f_fsid = d32; 951 952 /* 953 * We're a zfs filesystem. 954 */ 955 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 956 957 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 958 959 statp->f_namemax = ZFS_MAXNAMELEN; 960 961 /* 962 * We have all of 32 characters to stuff a string here. 963 * Is there anything useful we could/should provide? 964 */ 965 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 966 967 ZFS_EXIT(zfsvfs); 968 return (0); 969 } 970 971 static int 972 zfs_root(vfs_t *vfsp, vnode_t **vpp) 973 { 974 zfsvfs_t *zfsvfs = vfsp->vfs_data; 975 znode_t *rootzp; 976 int error; 977 978 ZFS_ENTER(zfsvfs); 979 980 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 981 if (error == 0) 982 *vpp = ZTOV(rootzp); 983 984 ZFS_EXIT(zfsvfs); 985 return (error); 986 } 987 988 /*ARGSUSED*/ 989 static int 990 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 991 { 992 zfsvfs_t *zfsvfs = vfsp->vfs_data; 993 int ret; 994 995 if ((ret = secpolicy_fs_unmount(cr, vfsp)) != 0) 996 return (ret); 997 998 999 (void) dnlc_purge_vfsp(vfsp, 0); 1000 1001 /* 1002 * Unmount any snapshots mounted under .zfs before unmounting the 1003 * dataset itself. 1004 */ 1005 if (zfsvfs->z_ctldir != NULL && 1006 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) 1007 return (ret); 1008 1009 if (fflag & MS_FORCE) { 1010 vfsp->vfs_flag |= VFS_UNMOUNTED; 1011 zfsvfs->z_unmounted1 = B_TRUE; 1012 1013 /* 1014 * Ensure that z_unmounted1 reaches global visibility 1015 * before z_op_cnt. 1016 */ 1017 membar_producer(); 1018 1019 /* 1020 * Wait for all zfs threads to leave zfs. 1021 * Grabbing a rwlock as reader in all vops and 1022 * as writer here doesn't work because it too easy to get 1023 * multiple reader enters as zfs can re-enter itself. 1024 * This can lead to deadlock if there is an intervening 1025 * rw_enter as writer. 1026 * So a file system threads ref count (z_op_cnt) is used. 1027 * A polling loop on z_op_cnt may seem inefficient, but 1028 * - this saves all threads on exit from having to grab a 1029 * mutex in order to cv_signal 1030 * - only occurs on forced unmount in the rare case when 1031 * there are outstanding threads within the file system. 1032 */ 1033 while (zfsvfs->z_op_cnt) { 1034 delay(1); 1035 } 1036 1037 zfs_objset_close(zfsvfs); 1038 1039 return (0); 1040 } 1041 /* 1042 * Check the number of active vnodes in the file system. 1043 * Our count is maintained in the vfs structure, but the number 1044 * is off by 1 to indicate a hold on the vfs structure itself. 1045 * 1046 * The '.zfs' directory maintains a reference of its own, and any active 1047 * references underneath are reflected in the vnode count. 1048 */ 1049 if (zfsvfs->z_ctldir == NULL) { 1050 if (vfsp->vfs_count > 1) 1051 return (EBUSY); 1052 } else { 1053 if (vfsp->vfs_count > 2 || 1054 (zfsvfs->z_ctldir->v_count > 1 && !(fflag & MS_FORCE))) { 1055 return (EBUSY); 1056 } 1057 } 1058 1059 vfsp->vfs_flag |= VFS_UNMOUNTED; 1060 zfs_objset_close(zfsvfs); 1061 1062 return (0); 1063 } 1064 1065 static int 1066 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1067 { 1068 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1069 znode_t *zp; 1070 uint64_t object = 0; 1071 uint64_t fid_gen = 0; 1072 uint64_t gen_mask; 1073 uint64_t zp_gen; 1074 int i, err; 1075 1076 *vpp = NULL; 1077 1078 ZFS_ENTER(zfsvfs); 1079 1080 if (fidp->fid_len == LONG_FID_LEN) { 1081 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1082 uint64_t objsetid = 0; 1083 uint64_t setgen = 0; 1084 1085 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1086 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1087 1088 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1089 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1090 1091 ZFS_EXIT(zfsvfs); 1092 1093 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1094 if (err) 1095 return (EINVAL); 1096 ZFS_ENTER(zfsvfs); 1097 } 1098 1099 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1100 zfid_short_t *zfid = (zfid_short_t *)fidp; 1101 1102 for (i = 0; i < sizeof (zfid->zf_object); i++) 1103 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1104 1105 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1106 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1107 } else { 1108 ZFS_EXIT(zfsvfs); 1109 return (EINVAL); 1110 } 1111 1112 /* A zero fid_gen means we are in the .zfs control directories */ 1113 if (fid_gen == 0 && 1114 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1115 *vpp = zfsvfs->z_ctldir; 1116 ASSERT(*vpp != NULL); 1117 if (object == ZFSCTL_INO_SNAPDIR) { 1118 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1119 0, NULL, NULL) == 0); 1120 } else { 1121 VN_HOLD(*vpp); 1122 } 1123 ZFS_EXIT(zfsvfs); 1124 return (0); 1125 } 1126 1127 gen_mask = -1ULL >> (64 - 8 * i); 1128 1129 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1130 if (err = zfs_zget(zfsvfs, object, &zp)) { 1131 ZFS_EXIT(zfsvfs); 1132 return (err); 1133 } 1134 zp_gen = zp->z_phys->zp_gen & gen_mask; 1135 if (zp_gen == 0) 1136 zp_gen = 1; 1137 if (zp->z_unlinked || zp_gen != fid_gen) { 1138 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1139 VN_RELE(ZTOV(zp)); 1140 ZFS_EXIT(zfsvfs); 1141 return (EINVAL); 1142 } 1143 1144 *vpp = ZTOV(zp); 1145 ZFS_EXIT(zfsvfs); 1146 return (0); 1147 } 1148 1149 static void 1150 zfs_objset_close(zfsvfs_t *zfsvfs) 1151 { 1152 znode_t *zp, *nextzp; 1153 objset_t *os = zfsvfs->z_os; 1154 1155 /* 1156 * For forced unmount, at this point all vops except zfs_inactive 1157 * are erroring EIO. We need to now suspend zfs_inactive threads 1158 * while we are freeing dbufs before switching zfs_inactive 1159 * to use behaviour without a objset. 1160 */ 1161 rw_enter(&zfsvfs->z_um_lock, RW_WRITER); 1162 1163 /* 1164 * Release all holds on dbufs 1165 * Note, although we have stopped all other vop threads and 1166 * zfs_inactive(), the dmu can callback via znode_pageout_func() 1167 * which can zfs_znode_free() the znode. 1168 * So we lock z_all_znodes; search the list for a held 1169 * dbuf; drop the lock (we know zp can't disappear if we hold 1170 * a dbuf lock; then regrab the lock and restart. 1171 */ 1172 mutex_enter(&zfsvfs->z_znodes_lock); 1173 for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = nextzp) { 1174 nextzp = list_next(&zfsvfs->z_all_znodes, zp); 1175 if (zp->z_dbuf_held) { 1176 /* dbufs should only be held when force unmounting */ 1177 zp->z_dbuf_held = 0; 1178 mutex_exit(&zfsvfs->z_znodes_lock); 1179 dmu_buf_rele(zp->z_dbuf, NULL); 1180 /* Start again */ 1181 mutex_enter(&zfsvfs->z_znodes_lock); 1182 nextzp = list_head(&zfsvfs->z_all_znodes); 1183 } 1184 } 1185 mutex_exit(&zfsvfs->z_znodes_lock); 1186 1187 /* 1188 * Unregister properties. 1189 */ 1190 if (!dmu_objset_is_snapshot(os)) 1191 zfs_unregister_callbacks(zfsvfs); 1192 1193 /* 1194 * Switch zfs_inactive to behaviour without an objset. 1195 * It just tosses cached pages and frees the znode & vnode. 1196 * Then re-enable zfs_inactive threads in that new behaviour. 1197 */ 1198 zfsvfs->z_unmounted2 = B_TRUE; 1199 rw_exit(&zfsvfs->z_um_lock); /* re-enable any zfs_inactive threads */ 1200 1201 /* 1202 * Close the zil. Can't close the zil while zfs_inactive 1203 * threads are blocked as zil_close can call zfs_inactive. 1204 */ 1205 if (zfsvfs->z_log) { 1206 zil_close(zfsvfs->z_log); 1207 zfsvfs->z_log = NULL; 1208 } 1209 1210 /* 1211 * Evict all dbufs so that cached znodes will be freed 1212 */ 1213 if (dmu_objset_evict_dbufs(os, 1)) { 1214 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1215 (void) dmu_objset_evict_dbufs(os, 0); 1216 } 1217 1218 /* 1219 * Finally close the objset 1220 */ 1221 dmu_objset_close(os); 1222 1223 /* 1224 * We can now safely destroy the '.zfs' directory node. 1225 */ 1226 if (zfsvfs->z_ctldir != NULL) 1227 zfsctl_destroy(zfsvfs); 1228 1229 } 1230 1231 static void 1232 zfs_freevfs(vfs_t *vfsp) 1233 { 1234 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1235 1236 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1237 1238 atomic_add_32(&zfs_active_fs_count, -1); 1239 } 1240 1241 /* 1242 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1243 * so we can't safely do any non-idempotent initialization here. 1244 * Leave that to zfs_init() and zfs_fini(), which are called 1245 * from the module's _init() and _fini() entry points. 1246 */ 1247 /*ARGSUSED*/ 1248 static int 1249 zfs_vfsinit(int fstype, char *name) 1250 { 1251 int error; 1252 1253 zfsfstype = fstype; 1254 1255 /* 1256 * Setup vfsops and vnodeops tables. 1257 */ 1258 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1259 if (error != 0) { 1260 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1261 } 1262 1263 error = zfs_create_op_tables(); 1264 if (error) { 1265 zfs_remove_op_tables(); 1266 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1267 (void) vfs_freevfsops_by_type(zfsfstype); 1268 return (error); 1269 } 1270 1271 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1272 1273 /* 1274 * Unique major number for all zfs mounts. 1275 * If we run out of 32-bit minors, we'll getudev() another major. 1276 */ 1277 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1278 zfs_minor = ZFS_MIN_MINOR; 1279 1280 return (0); 1281 } 1282 1283 void 1284 zfs_init(void) 1285 { 1286 /* 1287 * Initialize .zfs directory structures 1288 */ 1289 zfsctl_init(); 1290 1291 /* 1292 * Initialize znode cache, vnode ops, etc... 1293 */ 1294 zfs_znode_init(); 1295 } 1296 1297 void 1298 zfs_fini(void) 1299 { 1300 zfsctl_fini(); 1301 zfs_znode_fini(); 1302 } 1303 1304 int 1305 zfs_busy(void) 1306 { 1307 return (zfs_active_fs_count != 0); 1308 } 1309 1310 static vfsdef_t vfw = { 1311 VFSDEF_VERSION, 1312 MNTTYPE_ZFS, 1313 zfs_vfsinit, 1314 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS, 1315 &zfs_mntopts 1316 }; 1317 1318 struct modlfs zfs_modlfs = { 1319 &mod_fsops, "ZFS filesystem version " ZFS_VERSION_STRING, &vfw 1320 }; 1321