1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2010 Robert Milkowski */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/systm.h> 30 #include <sys/sysmacros.h> 31 #include <sys/kmem.h> 32 #include <sys/pathname.h> 33 #include <sys/vnode.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/mntent.h> 37 #include <sys/mount.h> 38 #include <sys/cmn_err.h> 39 #include "fs/fs_subr.h" 40 #include <sys/zfs_znode.h> 41 #include <sys/zfs_dir.h> 42 #include <sys/zil.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/dmu.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dsl_dataset.h> 47 #include <sys/dsl_deleg.h> 48 #include <sys/spa.h> 49 #include <sys/zap.h> 50 #include <sys/sa.h> 51 #include <sys/varargs.h> 52 #include <sys/policy.h> 53 #include <sys/atomic.h> 54 #include <sys/mkdev.h> 55 #include <sys/modctl.h> 56 #include <sys/refstr.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/zfs_ctldir.h> 59 #include <sys/zfs_fuid.h> 60 #include <sys/bootconf.h> 61 #include <sys/sunddi.h> 62 #include <sys/dnlc.h> 63 #include <sys/dmu_objset.h> 64 #include <sys/spa_boot.h> 65 #include <sys/sa.h> 66 #include "zfs_comutil.h" 67 68 int zfsfstype; 69 vfsops_t *zfs_vfsops = NULL; 70 static major_t zfs_major; 71 static minor_t zfs_minor; 72 static kmutex_t zfs_dev_mtx; 73 74 extern int sys_shutdown; 75 76 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 77 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 78 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 79 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 80 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 81 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 82 static void zfs_freevfs(vfs_t *vfsp); 83 84 static const fs_operation_def_t zfs_vfsops_template[] = { 85 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 86 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 87 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 88 VFSNAME_ROOT, { .vfs_root = zfs_root }, 89 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 90 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 91 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 92 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 93 NULL, NULL 94 }; 95 96 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 97 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 98 NULL, NULL 99 }; 100 101 /* 102 * We need to keep a count of active fs's. 103 * This is necessary to prevent our module 104 * from being unloaded after a umount -f 105 */ 106 static uint32_t zfs_active_fs_count = 0; 107 108 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 109 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 110 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 111 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 112 113 /* 114 * MO_DEFAULT is not used since the default value is determined 115 * by the equivalent property. 116 */ 117 static mntopt_t mntopts[] = { 118 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 119 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 120 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 121 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 122 }; 123 124 static mntopts_t zfs_mntopts = { 125 sizeof (mntopts) / sizeof (mntopt_t), 126 mntopts 127 }; 128 129 /*ARGSUSED*/ 130 int 131 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 132 { 133 /* 134 * Data integrity is job one. We don't want a compromised kernel 135 * writing to the storage pool, so we never sync during panic. 136 */ 137 if (panicstr) 138 return (0); 139 140 /* 141 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 142 * to sync metadata, which they would otherwise cache indefinitely. 143 * Semantically, the only requirement is that the sync be initiated. 144 * The DMU syncs out txgs frequently, so there's nothing to do. 145 */ 146 if (flag & SYNC_ATTR) 147 return (0); 148 149 if (vfsp != NULL) { 150 /* 151 * Sync a specific filesystem. 152 */ 153 zfsvfs_t *zfsvfs = vfsp->vfs_data; 154 dsl_pool_t *dp; 155 156 ZFS_ENTER(zfsvfs); 157 dp = dmu_objset_pool(zfsvfs->z_os); 158 159 /* 160 * If the system is shutting down, then skip any 161 * filesystems which may exist on a suspended pool. 162 */ 163 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 164 ZFS_EXIT(zfsvfs); 165 return (0); 166 } 167 168 if (zfsvfs->z_log != NULL) 169 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 170 171 ZFS_EXIT(zfsvfs); 172 } else { 173 /* 174 * Sync all ZFS filesystems. This is what happens when you 175 * run sync(1M). Unlike other filesystems, ZFS honors the 176 * request by waiting for all pools to commit all dirty data. 177 */ 178 spa_sync_allpools(); 179 } 180 181 return (0); 182 } 183 184 static int 185 zfs_create_unique_device(dev_t *dev) 186 { 187 major_t new_major; 188 189 do { 190 ASSERT3U(zfs_minor, <=, MAXMIN32); 191 minor_t start = zfs_minor; 192 do { 193 mutex_enter(&zfs_dev_mtx); 194 if (zfs_minor >= MAXMIN32) { 195 /* 196 * If we're still using the real major 197 * keep out of /dev/zfs and /dev/zvol minor 198 * number space. If we're using a getudev()'ed 199 * major number, we can use all of its minors. 200 */ 201 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 202 zfs_minor = ZFS_MIN_MINOR; 203 else 204 zfs_minor = 0; 205 } else { 206 zfs_minor++; 207 } 208 *dev = makedevice(zfs_major, zfs_minor); 209 mutex_exit(&zfs_dev_mtx); 210 } while (vfs_devismounted(*dev) && zfs_minor != start); 211 if (zfs_minor == start) { 212 /* 213 * We are using all ~262,000 minor numbers for the 214 * current major number. Create a new major number. 215 */ 216 if ((new_major = getudev()) == (major_t)-1) { 217 cmn_err(CE_WARN, 218 "zfs_mount: Can't get unique major " 219 "device number."); 220 return (-1); 221 } 222 mutex_enter(&zfs_dev_mtx); 223 zfs_major = new_major; 224 zfs_minor = 0; 225 226 mutex_exit(&zfs_dev_mtx); 227 } else { 228 break; 229 } 230 /* CONSTANTCONDITION */ 231 } while (1); 232 233 return (0); 234 } 235 236 static void 237 atime_changed_cb(void *arg, uint64_t newval) 238 { 239 zfsvfs_t *zfsvfs = arg; 240 241 if (newval == TRUE) { 242 zfsvfs->z_atime = TRUE; 243 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 244 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 245 } else { 246 zfsvfs->z_atime = FALSE; 247 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 248 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 249 } 250 } 251 252 static void 253 xattr_changed_cb(void *arg, uint64_t newval) 254 { 255 zfsvfs_t *zfsvfs = arg; 256 257 if (newval == TRUE) { 258 /* XXX locking on vfs_flag? */ 259 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 260 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 261 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 262 } else { 263 /* XXX locking on vfs_flag? */ 264 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 265 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 266 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 267 } 268 } 269 270 static void 271 blksz_changed_cb(void *arg, uint64_t newval) 272 { 273 zfsvfs_t *zfsvfs = arg; 274 275 if (newval < SPA_MINBLOCKSIZE || 276 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 277 newval = SPA_MAXBLOCKSIZE; 278 279 zfsvfs->z_max_blksz = newval; 280 zfsvfs->z_vfs->vfs_bsize = newval; 281 } 282 283 static void 284 readonly_changed_cb(void *arg, uint64_t newval) 285 { 286 zfsvfs_t *zfsvfs = arg; 287 288 if (newval) { 289 /* XXX locking on vfs_flag? */ 290 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 291 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 292 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 293 } else { 294 /* XXX locking on vfs_flag? */ 295 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 296 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 297 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 298 } 299 } 300 301 static void 302 devices_changed_cb(void *arg, uint64_t newval) 303 { 304 zfsvfs_t *zfsvfs = arg; 305 306 if (newval == FALSE) { 307 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 308 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 309 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 310 } else { 311 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 312 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 313 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 314 } 315 } 316 317 static void 318 setuid_changed_cb(void *arg, uint64_t newval) 319 { 320 zfsvfs_t *zfsvfs = arg; 321 322 if (newval == FALSE) { 323 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 324 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 325 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 326 } else { 327 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 328 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 329 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 330 } 331 } 332 333 static void 334 exec_changed_cb(void *arg, uint64_t newval) 335 { 336 zfsvfs_t *zfsvfs = arg; 337 338 if (newval == FALSE) { 339 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 340 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 341 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 342 } else { 343 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 344 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 345 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 346 } 347 } 348 349 /* 350 * The nbmand mount option can be changed at mount time. 351 * We can't allow it to be toggled on live file systems or incorrect 352 * behavior may be seen from cifs clients 353 * 354 * This property isn't registered via dsl_prop_register(), but this callback 355 * will be called when a file system is first mounted 356 */ 357 static void 358 nbmand_changed_cb(void *arg, uint64_t newval) 359 { 360 zfsvfs_t *zfsvfs = arg; 361 if (newval == FALSE) { 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 364 } else { 365 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 366 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 367 } 368 } 369 370 static void 371 snapdir_changed_cb(void *arg, uint64_t newval) 372 { 373 zfsvfs_t *zfsvfs = arg; 374 375 zfsvfs->z_show_ctldir = newval; 376 } 377 378 static void 379 vscan_changed_cb(void *arg, uint64_t newval) 380 { 381 zfsvfs_t *zfsvfs = arg; 382 383 zfsvfs->z_vscan = newval; 384 } 385 386 static void 387 acl_inherit_changed_cb(void *arg, uint64_t newval) 388 { 389 zfsvfs_t *zfsvfs = arg; 390 391 zfsvfs->z_acl_inherit = newval; 392 } 393 394 static int 395 zfs_register_callbacks(vfs_t *vfsp) 396 { 397 struct dsl_dataset *ds = NULL; 398 objset_t *os = NULL; 399 zfsvfs_t *zfsvfs = NULL; 400 uint64_t nbmand; 401 int readonly, do_readonly = B_FALSE; 402 int setuid, do_setuid = B_FALSE; 403 int exec, do_exec = B_FALSE; 404 int devices, do_devices = B_FALSE; 405 int xattr, do_xattr = B_FALSE; 406 int atime, do_atime = B_FALSE; 407 int error = 0; 408 409 ASSERT(vfsp); 410 zfsvfs = vfsp->vfs_data; 411 ASSERT(zfsvfs); 412 os = zfsvfs->z_os; 413 414 /* 415 * The act of registering our callbacks will destroy any mount 416 * options we may have. In order to enable temporary overrides 417 * of mount options, we stash away the current values and 418 * restore them after we register the callbacks. 419 */ 420 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 421 readonly = B_TRUE; 422 do_readonly = B_TRUE; 423 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 424 readonly = B_FALSE; 425 do_readonly = B_TRUE; 426 } 427 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 428 devices = B_FALSE; 429 setuid = B_FALSE; 430 do_devices = B_TRUE; 431 do_setuid = B_TRUE; 432 } else { 433 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 434 devices = B_FALSE; 435 do_devices = B_TRUE; 436 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 437 devices = B_TRUE; 438 do_devices = B_TRUE; 439 } 440 441 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 442 setuid = B_FALSE; 443 do_setuid = B_TRUE; 444 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 445 setuid = B_TRUE; 446 do_setuid = B_TRUE; 447 } 448 } 449 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 450 exec = B_FALSE; 451 do_exec = B_TRUE; 452 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 453 exec = B_TRUE; 454 do_exec = B_TRUE; 455 } 456 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 457 xattr = B_FALSE; 458 do_xattr = B_TRUE; 459 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 460 xattr = B_TRUE; 461 do_xattr = B_TRUE; 462 } 463 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 464 atime = B_FALSE; 465 do_atime = B_TRUE; 466 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 467 atime = B_TRUE; 468 do_atime = B_TRUE; 469 } 470 471 /* 472 * nbmand is a special property. It can only be changed at 473 * mount time. 474 * 475 * This is weird, but it is documented to only be changeable 476 * at mount time. 477 */ 478 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 479 nbmand = B_FALSE; 480 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 481 nbmand = B_TRUE; 482 } else { 483 char osname[MAXNAMELEN]; 484 485 dmu_objset_name(os, osname); 486 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 487 NULL)) { 488 return (error); 489 } 490 } 491 492 /* 493 * Register property callbacks. 494 * 495 * It would probably be fine to just check for i/o error from 496 * the first prop_register(), but I guess I like to go 497 * overboard... 498 */ 499 ds = dmu_objset_ds(os); 500 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 501 error = error ? error : dsl_prop_register(ds, 502 "xattr", xattr_changed_cb, zfsvfs); 503 error = error ? error : dsl_prop_register(ds, 504 "recordsize", blksz_changed_cb, zfsvfs); 505 error = error ? error : dsl_prop_register(ds, 506 "readonly", readonly_changed_cb, zfsvfs); 507 error = error ? error : dsl_prop_register(ds, 508 "devices", devices_changed_cb, zfsvfs); 509 error = error ? error : dsl_prop_register(ds, 510 "setuid", setuid_changed_cb, zfsvfs); 511 error = error ? error : dsl_prop_register(ds, 512 "exec", exec_changed_cb, zfsvfs); 513 error = error ? error : dsl_prop_register(ds, 514 "snapdir", snapdir_changed_cb, zfsvfs); 515 error = error ? error : dsl_prop_register(ds, 516 "aclinherit", acl_inherit_changed_cb, zfsvfs); 517 error = error ? error : dsl_prop_register(ds, 518 "vscan", vscan_changed_cb, zfsvfs); 519 if (error) 520 goto unregister; 521 522 /* 523 * Invoke our callbacks to restore temporary mount options. 524 */ 525 if (do_readonly) 526 readonly_changed_cb(zfsvfs, readonly); 527 if (do_setuid) 528 setuid_changed_cb(zfsvfs, setuid); 529 if (do_exec) 530 exec_changed_cb(zfsvfs, exec); 531 if (do_devices) 532 devices_changed_cb(zfsvfs, devices); 533 if (do_xattr) 534 xattr_changed_cb(zfsvfs, xattr); 535 if (do_atime) 536 atime_changed_cb(zfsvfs, atime); 537 538 nbmand_changed_cb(zfsvfs, nbmand); 539 540 return (0); 541 542 unregister: 543 /* 544 * We may attempt to unregister some callbacks that are not 545 * registered, but this is OK; it will simply return ENOMSG, 546 * which we will ignore. 547 */ 548 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 549 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 550 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 551 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 552 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 553 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 554 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 555 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 556 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 557 zfsvfs); 558 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 559 return (error); 560 561 } 562 563 static int 564 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 565 uint64_t *userp, uint64_t *groupp) 566 { 567 znode_phys_t *znp = data; 568 int error = 0; 569 570 /* 571 * Is it a valid type of object to track? 572 */ 573 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 574 return (ENOENT); 575 576 /* 577 * If we have a NULL data pointer 578 * then assume the id's aren't changing and 579 * return EEXIST to the dmu to let it know to 580 * use the same ids 581 */ 582 if (data == NULL) 583 return (EEXIST); 584 585 if (bonustype == DMU_OT_ZNODE) { 586 *userp = znp->zp_uid; 587 *groupp = znp->zp_gid; 588 } else { 589 int hdrsize; 590 591 ASSERT(bonustype == DMU_OT_SA); 592 hdrsize = sa_hdrsize(data); 593 594 if (hdrsize != 0) { 595 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 596 SA_UID_OFFSET)); 597 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 598 SA_GID_OFFSET)); 599 } else { 600 /* 601 * This should only happen for newly created 602 * files that haven't had the znode data filled 603 * in yet. 604 */ 605 *userp = 0; 606 *groupp = 0; 607 } 608 } 609 return (error); 610 } 611 612 static void 613 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 614 char *domainbuf, int buflen, uid_t *ridp) 615 { 616 uint64_t fuid; 617 const char *domain; 618 619 fuid = strtonum(fuidstr, NULL); 620 621 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 622 if (domain) 623 (void) strlcpy(domainbuf, domain, buflen); 624 else 625 domainbuf[0] = '\0'; 626 *ridp = FUID_RID(fuid); 627 } 628 629 static uint64_t 630 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 631 { 632 switch (type) { 633 case ZFS_PROP_USERUSED: 634 return (DMU_USERUSED_OBJECT); 635 case ZFS_PROP_GROUPUSED: 636 return (DMU_GROUPUSED_OBJECT); 637 case ZFS_PROP_USERQUOTA: 638 return (zfsvfs->z_userquota_obj); 639 case ZFS_PROP_GROUPQUOTA: 640 return (zfsvfs->z_groupquota_obj); 641 } 642 return (0); 643 } 644 645 int 646 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 647 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 648 { 649 int error; 650 zap_cursor_t zc; 651 zap_attribute_t za; 652 zfs_useracct_t *buf = vbuf; 653 uint64_t obj; 654 655 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 656 return (ENOTSUP); 657 658 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 659 if (obj == 0) { 660 *bufsizep = 0; 661 return (0); 662 } 663 664 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 665 (error = zap_cursor_retrieve(&zc, &za)) == 0; 666 zap_cursor_advance(&zc)) { 667 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 668 *bufsizep) 669 break; 670 671 fuidstr_to_sid(zfsvfs, za.za_name, 672 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 673 674 buf->zu_space = za.za_first_integer; 675 buf++; 676 } 677 if (error == ENOENT) 678 error = 0; 679 680 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 681 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 682 *cookiep = zap_cursor_serialize(&zc); 683 zap_cursor_fini(&zc); 684 return (error); 685 } 686 687 /* 688 * buf must be big enough (eg, 32 bytes) 689 */ 690 static int 691 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 692 char *buf, boolean_t addok) 693 { 694 uint64_t fuid; 695 int domainid = 0; 696 697 if (domain && domain[0]) { 698 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 699 if (domainid == -1) 700 return (ENOENT); 701 } 702 fuid = FUID_ENCODE(domainid, rid); 703 (void) sprintf(buf, "%llx", (longlong_t)fuid); 704 return (0); 705 } 706 707 int 708 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 709 const char *domain, uint64_t rid, uint64_t *valp) 710 { 711 char buf[32]; 712 int err; 713 uint64_t obj; 714 715 *valp = 0; 716 717 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 718 return (ENOTSUP); 719 720 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 721 if (obj == 0) 722 return (0); 723 724 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 725 if (err) 726 return (err); 727 728 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 729 if (err == ENOENT) 730 err = 0; 731 return (err); 732 } 733 734 int 735 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 736 const char *domain, uint64_t rid, uint64_t quota) 737 { 738 char buf[32]; 739 int err; 740 dmu_tx_t *tx; 741 uint64_t *objp; 742 boolean_t fuid_dirtied; 743 744 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 745 return (EINVAL); 746 747 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 748 return (ENOTSUP); 749 750 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 751 &zfsvfs->z_groupquota_obj; 752 753 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 754 if (err) 755 return (err); 756 fuid_dirtied = zfsvfs->z_fuid_dirty; 757 758 tx = dmu_tx_create(zfsvfs->z_os); 759 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 760 if (*objp == 0) { 761 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 762 zfs_userquota_prop_prefixes[type]); 763 } 764 if (fuid_dirtied) 765 zfs_fuid_txhold(zfsvfs, tx); 766 err = dmu_tx_assign(tx, TXG_WAIT); 767 if (err) { 768 dmu_tx_abort(tx); 769 return (err); 770 } 771 772 mutex_enter(&zfsvfs->z_lock); 773 if (*objp == 0) { 774 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 775 DMU_OT_NONE, 0, tx); 776 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 777 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 778 } 779 mutex_exit(&zfsvfs->z_lock); 780 781 if (quota == 0) { 782 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 783 if (err == ENOENT) 784 err = 0; 785 } else { 786 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 787 } 788 ASSERT(err == 0); 789 if (fuid_dirtied) 790 zfs_fuid_sync(zfsvfs, tx); 791 dmu_tx_commit(tx); 792 return (err); 793 } 794 795 boolean_t 796 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 797 { 798 char buf[32]; 799 uint64_t used, quota, usedobj, quotaobj; 800 int err; 801 802 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 803 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 804 805 if (quotaobj == 0 || zfsvfs->z_replay) 806 return (B_FALSE); 807 808 (void) sprintf(buf, "%llx", (longlong_t)fuid); 809 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 810 if (err != 0) 811 return (B_FALSE); 812 813 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 814 if (err != 0) 815 return (B_FALSE); 816 return (used >= quota); 817 } 818 819 boolean_t 820 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 821 { 822 uint64_t fuid; 823 uint64_t quotaobj; 824 uid_t id; 825 826 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 827 828 id = isgroup ? zp->z_gid : zp->z_uid; 829 830 if (quotaobj == 0 || zfsvfs->z_replay) 831 return (B_FALSE); 832 833 if (IS_EPHEMERAL(id)) { 834 VERIFY(0 == sa_lookup(zp->z_sa_hdl, 835 isgroup ? SA_ZPL_GID(zfsvfs) : SA_ZPL_UID(zfsvfs), 836 &fuid, sizeof (fuid))); 837 } else { 838 fuid = (uint64_t)id; 839 } 840 841 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 842 } 843 844 int 845 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 846 { 847 objset_t *os; 848 zfsvfs_t *zfsvfs; 849 uint64_t zval; 850 int i, error; 851 uint64_t sa_obj; 852 853 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 854 855 /* 856 * We claim to always be readonly so we can open snapshots; 857 * other ZPL code will prevent us from writing to snapshots. 858 */ 859 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 860 if (error) { 861 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 862 return (error); 863 } 864 865 /* 866 * Initialize the zfs-specific filesystem structure. 867 * Should probably make this a kmem cache, shuffle fields, 868 * and just bzero up to z_hold_mtx[]. 869 */ 870 zfsvfs->z_vfs = NULL; 871 zfsvfs->z_parent = zfsvfs; 872 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 873 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 874 zfsvfs->z_os = os; 875 876 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 877 if (error) { 878 goto out; 879 } else if (zfsvfs->z_version > 880 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 881 (void) printf("Can't mount a version %lld file system " 882 "on a version %lld pool\n. Pool must be upgraded to mount " 883 "this file system.", (u_longlong_t)zfsvfs->z_version, 884 (u_longlong_t)spa_version(dmu_objset_spa(os))); 885 error = ENOTSUP; 886 goto out; 887 } 888 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 889 goto out; 890 zfsvfs->z_norm = (int)zval; 891 892 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 893 goto out; 894 zfsvfs->z_utf8 = (zval != 0); 895 896 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 897 goto out; 898 zfsvfs->z_case = (uint_t)zval; 899 900 /* 901 * Fold case on file systems that are always or sometimes case 902 * insensitive. 903 */ 904 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 905 zfsvfs->z_case == ZFS_CASE_MIXED) 906 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 907 908 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 909 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 910 911 if (zfsvfs->z_use_sa) { 912 /* should either have both of these objects or none */ 913 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 914 &sa_obj); 915 if (error) 916 return (error); 917 } else { 918 /* 919 * Pre SA versions file systems should never touch 920 * either the attribute registration or layout objects. 921 */ 922 sa_obj = 0; 923 } 924 925 zfsvfs->z_attr_table = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END); 926 927 if (zfsvfs->z_version >= ZPL_VERSION_SA) 928 sa_register_update_callback(os, zfs_sa_upgrade); 929 930 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 931 &zfsvfs->z_root); 932 if (error) 933 goto out; 934 ASSERT(zfsvfs->z_root != 0); 935 936 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 937 &zfsvfs->z_unlinkedobj); 938 if (error) 939 goto out; 940 941 error = zap_lookup(os, MASTER_NODE_OBJ, 942 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 943 8, 1, &zfsvfs->z_userquota_obj); 944 if (error && error != ENOENT) 945 goto out; 946 947 error = zap_lookup(os, MASTER_NODE_OBJ, 948 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 949 8, 1, &zfsvfs->z_groupquota_obj); 950 if (error && error != ENOENT) 951 goto out; 952 953 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 954 &zfsvfs->z_fuid_obj); 955 if (error && error != ENOENT) 956 goto out; 957 958 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 959 &zfsvfs->z_shares_dir); 960 if (error && error != ENOENT) 961 goto out; 962 963 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 964 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 965 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 966 offsetof(znode_t, z_link_node)); 967 rrw_init(&zfsvfs->z_teardown_lock); 968 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 969 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 970 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 971 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 972 973 *zfvp = zfsvfs; 974 return (0); 975 976 out: 977 dmu_objset_disown(os, zfsvfs); 978 *zfvp = NULL; 979 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 980 return (error); 981 } 982 983 static int 984 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 985 { 986 int error; 987 988 error = zfs_register_callbacks(zfsvfs->z_vfs); 989 if (error) 990 return (error); 991 992 /* 993 * Set the objset user_ptr to track its zfsvfs. 994 */ 995 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 996 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 997 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 998 999 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1000 1001 /* 1002 * If we are not mounting (ie: online recv), then we don't 1003 * have to worry about replaying the log as we blocked all 1004 * operations out since we closed the ZIL. 1005 */ 1006 if (mounting) { 1007 boolean_t readonly; 1008 1009 /* 1010 * During replay we remove the read only flag to 1011 * allow replays to succeed. 1012 */ 1013 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1014 if (readonly != 0) 1015 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1016 else 1017 zfs_unlinked_drain(zfsvfs); 1018 1019 /* 1020 * Parse and replay the intent log. 1021 * 1022 * Because of ziltest, this must be done after 1023 * zfs_unlinked_drain(). (Further note: ziltest 1024 * doesn't use readonly mounts, where 1025 * zfs_unlinked_drain() isn't called.) This is because 1026 * ziltest causes spa_sync() to think it's committed, 1027 * but actually it is not, so the intent log contains 1028 * many txg's worth of changes. 1029 * 1030 * In particular, if object N is in the unlinked set in 1031 * the last txg to actually sync, then it could be 1032 * actually freed in a later txg and then reallocated 1033 * in a yet later txg. This would write a "create 1034 * object N" record to the intent log. Normally, this 1035 * would be fine because the spa_sync() would have 1036 * written out the fact that object N is free, before 1037 * we could write the "create object N" intent log 1038 * record. 1039 * 1040 * But when we are in ziltest mode, we advance the "open 1041 * txg" without actually spa_sync()-ing the changes to 1042 * disk. So we would see that object N is still 1043 * allocated and in the unlinked set, and there is an 1044 * intent log record saying to allocate it. 1045 */ 1046 if (zil_replay_disable) { 1047 zil_destroy(zfsvfs->z_log, B_FALSE); 1048 } else { 1049 zfsvfs->z_replay = B_TRUE; 1050 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); 1051 zfsvfs->z_replay = B_FALSE; 1052 } 1053 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1054 } 1055 1056 return (0); 1057 } 1058 1059 void 1060 zfsvfs_free(zfsvfs_t *zfsvfs) 1061 { 1062 int i; 1063 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1064 1065 /* 1066 * This is a barrier to prevent the filesystem from going away in 1067 * zfs_znode_move() until we can safely ensure that the filesystem is 1068 * not unmounted. We consider the filesystem valid before the barrier 1069 * and invalid after the barrier. 1070 */ 1071 rw_enter(&zfsvfs_lock, RW_READER); 1072 rw_exit(&zfsvfs_lock); 1073 1074 zfs_fuid_destroy(zfsvfs); 1075 1076 mutex_destroy(&zfsvfs->z_znodes_lock); 1077 mutex_destroy(&zfsvfs->z_lock); 1078 list_destroy(&zfsvfs->z_all_znodes); 1079 rrw_destroy(&zfsvfs->z_teardown_lock); 1080 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1081 rw_destroy(&zfsvfs->z_fuid_lock); 1082 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1083 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1084 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1085 } 1086 1087 static void 1088 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1089 { 1090 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1091 if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) { 1092 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1093 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1094 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1095 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1096 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1097 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1098 } 1099 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1100 } 1101 1102 static int 1103 zfs_domount(vfs_t *vfsp, char *osname) 1104 { 1105 dev_t mount_dev; 1106 uint64_t recordsize, fsid_guid; 1107 int error = 0; 1108 zfsvfs_t *zfsvfs; 1109 1110 ASSERT(vfsp); 1111 ASSERT(osname); 1112 1113 error = zfsvfs_create(osname, &zfsvfs); 1114 if (error) 1115 return (error); 1116 zfsvfs->z_vfs = vfsp; 1117 1118 /* Initialize the generic filesystem structure. */ 1119 vfsp->vfs_bcount = 0; 1120 vfsp->vfs_data = NULL; 1121 1122 if (zfs_create_unique_device(&mount_dev) == -1) { 1123 error = ENODEV; 1124 goto out; 1125 } 1126 ASSERT(vfs_devismounted(mount_dev) == 0); 1127 1128 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1129 NULL)) 1130 goto out; 1131 1132 vfsp->vfs_dev = mount_dev; 1133 vfsp->vfs_fstype = zfsfstype; 1134 vfsp->vfs_bsize = recordsize; 1135 vfsp->vfs_flag |= VFS_NOTRUNC; 1136 vfsp->vfs_data = zfsvfs; 1137 1138 /* 1139 * The fsid is 64 bits, composed of an 8-bit fs type, which 1140 * separates our fsid from any other filesystem types, and a 1141 * 56-bit objset unique ID. The objset unique ID is unique to 1142 * all objsets open on this system, provided by unique_create(). 1143 * The 8-bit fs type must be put in the low bits of fsid[1] 1144 * because that's where other Solaris filesystems put it. 1145 */ 1146 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1147 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1148 vfsp->vfs_fsid.val[0] = fsid_guid; 1149 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1150 zfsfstype & 0xFF; 1151 1152 /* 1153 * Set features for file system. 1154 */ 1155 zfs_set_fuid_feature(zfsvfs); 1156 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1157 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1158 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1159 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1160 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1161 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1162 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1163 } 1164 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1165 1166 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1167 uint64_t pval; 1168 1169 atime_changed_cb(zfsvfs, B_FALSE); 1170 readonly_changed_cb(zfsvfs, B_TRUE); 1171 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1172 goto out; 1173 xattr_changed_cb(zfsvfs, pval); 1174 zfsvfs->z_issnap = B_TRUE; 1175 1176 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1177 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1178 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1179 } else { 1180 error = zfsvfs_setup(zfsvfs, B_TRUE); 1181 } 1182 1183 if (!zfsvfs->z_issnap) 1184 zfsctl_create(zfsvfs); 1185 out: 1186 if (error) { 1187 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1188 zfsvfs_free(zfsvfs); 1189 } else { 1190 atomic_add_32(&zfs_active_fs_count, 1); 1191 } 1192 1193 return (error); 1194 } 1195 1196 void 1197 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1198 { 1199 objset_t *os = zfsvfs->z_os; 1200 struct dsl_dataset *ds; 1201 1202 /* 1203 * Unregister properties. 1204 */ 1205 if (!dmu_objset_is_snapshot(os)) { 1206 ds = dmu_objset_ds(os); 1207 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1208 zfsvfs) == 0); 1209 1210 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1211 zfsvfs) == 0); 1212 1213 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1214 zfsvfs) == 0); 1215 1216 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1217 zfsvfs) == 0); 1218 1219 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1220 zfsvfs) == 0); 1221 1222 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1223 zfsvfs) == 0); 1224 1225 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1226 zfsvfs) == 0); 1227 1228 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1229 zfsvfs) == 0); 1230 1231 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1232 acl_inherit_changed_cb, zfsvfs) == 0); 1233 1234 VERIFY(dsl_prop_unregister(ds, "vscan", 1235 vscan_changed_cb, zfsvfs) == 0); 1236 } 1237 } 1238 1239 /* 1240 * Convert a decimal digit string to a uint64_t integer. 1241 */ 1242 static int 1243 str_to_uint64(char *str, uint64_t *objnum) 1244 { 1245 uint64_t num = 0; 1246 1247 while (*str) { 1248 if (*str < '0' || *str > '9') 1249 return (EINVAL); 1250 1251 num = num*10 + *str++ - '0'; 1252 } 1253 1254 *objnum = num; 1255 return (0); 1256 } 1257 1258 /* 1259 * The boot path passed from the boot loader is in the form of 1260 * "rootpool-name/root-filesystem-object-number'. Convert this 1261 * string to a dataset name: "rootpool-name/root-filesystem-name". 1262 */ 1263 static int 1264 zfs_parse_bootfs(char *bpath, char *outpath) 1265 { 1266 char *slashp; 1267 uint64_t objnum; 1268 int error; 1269 1270 if (*bpath == 0 || *bpath == '/') 1271 return (EINVAL); 1272 1273 (void) strcpy(outpath, bpath); 1274 1275 slashp = strchr(bpath, '/'); 1276 1277 /* if no '/', just return the pool name */ 1278 if (slashp == NULL) { 1279 return (0); 1280 } 1281 1282 /* if not a number, just return the root dataset name */ 1283 if (str_to_uint64(slashp+1, &objnum)) { 1284 return (0); 1285 } 1286 1287 *slashp = '\0'; 1288 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1289 *slashp = '/'; 1290 1291 return (error); 1292 } 1293 1294 /* 1295 * zfs_check_global_label: 1296 * Check that the hex label string is appropriate for the dataset 1297 * being mounted into the global_zone proper. 1298 * 1299 * Return an error if the hex label string is not default or 1300 * admin_low/admin_high. For admin_low labels, the corresponding 1301 * dataset must be readonly. 1302 */ 1303 int 1304 zfs_check_global_label(const char *dsname, const char *hexsl) 1305 { 1306 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1307 return (0); 1308 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1309 return (0); 1310 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1311 /* must be readonly */ 1312 uint64_t rdonly; 1313 1314 if (dsl_prop_get_integer(dsname, 1315 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1316 return (EACCES); 1317 return (rdonly ? 0 : EACCES); 1318 } 1319 return (EACCES); 1320 } 1321 1322 /* 1323 * zfs_mount_label_policy: 1324 * Determine whether the mount is allowed according to MAC check. 1325 * by comparing (where appropriate) label of the dataset against 1326 * the label of the zone being mounted into. If the dataset has 1327 * no label, create one. 1328 * 1329 * Returns: 1330 * 0 : access allowed 1331 * >0 : error code, such as EACCES 1332 */ 1333 static int 1334 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1335 { 1336 int error, retv; 1337 zone_t *mntzone = NULL; 1338 ts_label_t *mnt_tsl; 1339 bslabel_t *mnt_sl; 1340 bslabel_t ds_sl; 1341 char ds_hexsl[MAXNAMELEN]; 1342 1343 retv = EACCES; /* assume the worst */ 1344 1345 /* 1346 * Start by getting the dataset label if it exists. 1347 */ 1348 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1349 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1350 if (error) 1351 return (EACCES); 1352 1353 /* 1354 * If labeling is NOT enabled, then disallow the mount of datasets 1355 * which have a non-default label already. No other label checks 1356 * are needed. 1357 */ 1358 if (!is_system_labeled()) { 1359 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1360 return (0); 1361 return (EACCES); 1362 } 1363 1364 /* 1365 * Get the label of the mountpoint. If mounting into the global 1366 * zone (i.e. mountpoint is not within an active zone and the 1367 * zoned property is off), the label must be default or 1368 * admin_low/admin_high only; no other checks are needed. 1369 */ 1370 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1371 if (mntzone->zone_id == GLOBAL_ZONEID) { 1372 uint64_t zoned; 1373 1374 zone_rele(mntzone); 1375 1376 if (dsl_prop_get_integer(osname, 1377 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1378 return (EACCES); 1379 if (!zoned) 1380 return (zfs_check_global_label(osname, ds_hexsl)); 1381 else 1382 /* 1383 * This is the case of a zone dataset being mounted 1384 * initially, before the zone has been fully created; 1385 * allow this mount into global zone. 1386 */ 1387 return (0); 1388 } 1389 1390 mnt_tsl = mntzone->zone_slabel; 1391 ASSERT(mnt_tsl != NULL); 1392 label_hold(mnt_tsl); 1393 mnt_sl = label2bslabel(mnt_tsl); 1394 1395 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1396 /* 1397 * The dataset doesn't have a real label, so fabricate one. 1398 */ 1399 char *str = NULL; 1400 1401 if (l_to_str_internal(mnt_sl, &str) == 0 && 1402 dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1403 ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0) 1404 retv = 0; 1405 if (str != NULL) 1406 kmem_free(str, strlen(str) + 1); 1407 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1408 /* 1409 * Now compare labels to complete the MAC check. If the 1410 * labels are equal then allow access. If the mountpoint 1411 * label dominates the dataset label, allow readonly access. 1412 * Otherwise, access is denied. 1413 */ 1414 if (blequal(mnt_sl, &ds_sl)) 1415 retv = 0; 1416 else if (bldominates(mnt_sl, &ds_sl)) { 1417 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1418 retv = 0; 1419 } 1420 } 1421 1422 label_rele(mnt_tsl); 1423 zone_rele(mntzone); 1424 return (retv); 1425 } 1426 1427 static int 1428 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1429 { 1430 int error = 0; 1431 static int zfsrootdone = 0; 1432 zfsvfs_t *zfsvfs = NULL; 1433 znode_t *zp = NULL; 1434 vnode_t *vp = NULL; 1435 char *zfs_bootfs; 1436 char *zfs_devid; 1437 1438 ASSERT(vfsp); 1439 1440 /* 1441 * The filesystem that we mount as root is defined in the 1442 * boot property "zfs-bootfs" with a format of 1443 * "poolname/root-dataset-objnum". 1444 */ 1445 if (why == ROOT_INIT) { 1446 if (zfsrootdone++) 1447 return (EBUSY); 1448 /* 1449 * the process of doing a spa_load will require the 1450 * clock to be set before we could (for example) do 1451 * something better by looking at the timestamp on 1452 * an uberblock, so just set it to -1. 1453 */ 1454 clkset(-1); 1455 1456 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1457 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1458 "bootfs name"); 1459 return (EINVAL); 1460 } 1461 zfs_devid = spa_get_bootprop("diskdevid"); 1462 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1463 if (zfs_devid) 1464 spa_free_bootprop(zfs_devid); 1465 if (error) { 1466 spa_free_bootprop(zfs_bootfs); 1467 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1468 error); 1469 return (error); 1470 } 1471 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1472 spa_free_bootprop(zfs_bootfs); 1473 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1474 error); 1475 return (error); 1476 } 1477 1478 spa_free_bootprop(zfs_bootfs); 1479 1480 if (error = vfs_lock(vfsp)) 1481 return (error); 1482 1483 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1484 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1485 goto out; 1486 } 1487 1488 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1489 ASSERT(zfsvfs); 1490 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1491 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1492 goto out; 1493 } 1494 1495 vp = ZTOV(zp); 1496 mutex_enter(&vp->v_lock); 1497 vp->v_flag |= VROOT; 1498 mutex_exit(&vp->v_lock); 1499 rootvp = vp; 1500 1501 /* 1502 * Leave rootvp held. The root file system is never unmounted. 1503 */ 1504 1505 vfs_add((struct vnode *)0, vfsp, 1506 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1507 out: 1508 vfs_unlock(vfsp); 1509 return (error); 1510 } else if (why == ROOT_REMOUNT) { 1511 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1512 vfsp->vfs_flag |= VFS_REMOUNT; 1513 1514 /* refresh mount options */ 1515 zfs_unregister_callbacks(vfsp->vfs_data); 1516 return (zfs_register_callbacks(vfsp)); 1517 1518 } else if (why == ROOT_UNMOUNT) { 1519 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1520 (void) zfs_sync(vfsp, 0, 0); 1521 return (0); 1522 } 1523 1524 /* 1525 * if "why" is equal to anything else other than ROOT_INIT, 1526 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1527 */ 1528 return (ENOTSUP); 1529 } 1530 1531 /*ARGSUSED*/ 1532 static int 1533 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1534 { 1535 char *osname; 1536 pathname_t spn; 1537 int error = 0; 1538 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1539 UIO_SYSSPACE : UIO_USERSPACE; 1540 int canwrite; 1541 1542 if (mvp->v_type != VDIR) 1543 return (ENOTDIR); 1544 1545 mutex_enter(&mvp->v_lock); 1546 if ((uap->flags & MS_REMOUNT) == 0 && 1547 (uap->flags & MS_OVERLAY) == 0 && 1548 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1549 mutex_exit(&mvp->v_lock); 1550 return (EBUSY); 1551 } 1552 mutex_exit(&mvp->v_lock); 1553 1554 /* 1555 * ZFS does not support passing unparsed data in via MS_DATA. 1556 * Users should use the MS_OPTIONSTR interface; this means 1557 * that all option parsing is already done and the options struct 1558 * can be interrogated. 1559 */ 1560 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1561 return (EINVAL); 1562 1563 /* 1564 * Get the objset name (the "special" mount argument). 1565 */ 1566 if (error = pn_get(uap->spec, fromspace, &spn)) 1567 return (error); 1568 1569 osname = spn.pn_path; 1570 1571 /* 1572 * Check for mount privilege? 1573 * 1574 * If we don't have privilege then see if 1575 * we have local permission to allow it 1576 */ 1577 error = secpolicy_fs_mount(cr, mvp, vfsp); 1578 if (error) { 1579 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1580 vattr_t vattr; 1581 1582 /* 1583 * Make sure user is the owner of the mount point 1584 * or has sufficient privileges. 1585 */ 1586 1587 vattr.va_mask = AT_UID; 1588 1589 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1590 goto out; 1591 } 1592 1593 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1594 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1595 goto out; 1596 } 1597 secpolicy_fs_mount_clearopts(cr, vfsp); 1598 } else { 1599 goto out; 1600 } 1601 } 1602 1603 /* 1604 * Refuse to mount a filesystem if we are in a local zone and the 1605 * dataset is not visible. 1606 */ 1607 if (!INGLOBALZONE(curproc) && 1608 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1609 error = EPERM; 1610 goto out; 1611 } 1612 1613 error = zfs_mount_label_policy(vfsp, osname); 1614 if (error) 1615 goto out; 1616 1617 /* 1618 * When doing a remount, we simply refresh our temporary properties 1619 * according to those options set in the current VFS options. 1620 */ 1621 if (uap->flags & MS_REMOUNT) { 1622 /* refresh mount options */ 1623 zfs_unregister_callbacks(vfsp->vfs_data); 1624 error = zfs_register_callbacks(vfsp); 1625 goto out; 1626 } 1627 1628 error = zfs_domount(vfsp, osname); 1629 1630 /* 1631 * Add an extra VFS_HOLD on our parent vfs so that it can't 1632 * disappear due to a forced unmount. 1633 */ 1634 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1635 VFS_HOLD(mvp->v_vfsp); 1636 1637 out: 1638 pn_free(&spn); 1639 return (error); 1640 } 1641 1642 static int 1643 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1644 { 1645 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1646 dev32_t d32; 1647 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1648 1649 ZFS_ENTER(zfsvfs); 1650 1651 dmu_objset_space(zfsvfs->z_os, 1652 &refdbytes, &availbytes, &usedobjs, &availobjs); 1653 1654 /* 1655 * The underlying storage pool actually uses multiple block sizes. 1656 * We report the fragsize as the smallest block size we support, 1657 * and we report our blocksize as the filesystem's maximum blocksize. 1658 */ 1659 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1660 statp->f_bsize = zfsvfs->z_max_blksz; 1661 1662 /* 1663 * The following report "total" blocks of various kinds in the 1664 * file system, but reported in terms of f_frsize - the 1665 * "fragment" size. 1666 */ 1667 1668 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1669 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1670 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1671 1672 /* 1673 * statvfs() should really be called statufs(), because it assumes 1674 * static metadata. ZFS doesn't preallocate files, so the best 1675 * we can do is report the max that could possibly fit in f_files, 1676 * and that minus the number actually used in f_ffree. 1677 * For f_ffree, report the smaller of the number of object available 1678 * and the number of blocks (each object will take at least a block). 1679 */ 1680 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1681 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1682 statp->f_files = statp->f_ffree + usedobjs; 1683 1684 (void) cmpldev(&d32, vfsp->vfs_dev); 1685 statp->f_fsid = d32; 1686 1687 /* 1688 * We're a zfs filesystem. 1689 */ 1690 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1691 1692 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1693 1694 statp->f_namemax = ZFS_MAXNAMELEN; 1695 1696 /* 1697 * We have all of 32 characters to stuff a string here. 1698 * Is there anything useful we could/should provide? 1699 */ 1700 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1701 1702 ZFS_EXIT(zfsvfs); 1703 return (0); 1704 } 1705 1706 static int 1707 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1708 { 1709 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1710 znode_t *rootzp; 1711 int error; 1712 1713 ZFS_ENTER(zfsvfs); 1714 1715 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1716 if (error == 0) 1717 *vpp = ZTOV(rootzp); 1718 1719 ZFS_EXIT(zfsvfs); 1720 return (error); 1721 } 1722 1723 /* 1724 * Teardown the zfsvfs::z_os. 1725 * 1726 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1727 * and 'z_teardown_inactive_lock' held. 1728 */ 1729 static int 1730 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1731 { 1732 znode_t *zp; 1733 1734 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1735 1736 if (!unmounting) { 1737 /* 1738 * We purge the parent filesystem's vfsp as the parent 1739 * filesystem and all of its snapshots have their vnode's 1740 * v_vfsp set to the parent's filesystem's vfsp. Note, 1741 * 'z_parent' is self referential for non-snapshots. 1742 */ 1743 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1744 } 1745 1746 /* 1747 * Close the zil. NB: Can't close the zil while zfs_inactive 1748 * threads are blocked as zil_close can call zfs_inactive. 1749 */ 1750 if (zfsvfs->z_log) { 1751 zil_close(zfsvfs->z_log); 1752 zfsvfs->z_log = NULL; 1753 } 1754 1755 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1756 1757 /* 1758 * If we are not unmounting (ie: online recv) and someone already 1759 * unmounted this file system while we were doing the switcheroo, 1760 * or a reopen of z_os failed then just bail out now. 1761 */ 1762 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1763 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1764 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1765 return (EIO); 1766 } 1767 1768 /* 1769 * At this point there are no vops active, and any new vops will 1770 * fail with EIO since we have z_teardown_lock for writer (only 1771 * relavent for forced unmount). 1772 * 1773 * Release all holds on dbufs. 1774 */ 1775 mutex_enter(&zfsvfs->z_znodes_lock); 1776 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1777 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1778 if (zp->z_sa_hdl) { 1779 ASSERT(ZTOV(zp)->v_count > 0); 1780 zfs_znode_dmu_fini(zp); 1781 } 1782 mutex_exit(&zfsvfs->z_znodes_lock); 1783 1784 /* 1785 * If we are unmounting, set the unmounted flag and let new vops 1786 * unblock. zfs_inactive will have the unmounted behavior, and all 1787 * other vops will fail with EIO. 1788 */ 1789 if (unmounting) { 1790 zfsvfs->z_unmounted = B_TRUE; 1791 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1792 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1793 } 1794 1795 /* 1796 * z_os will be NULL if there was an error in attempting to reopen 1797 * zfsvfs, so just return as the properties had already been 1798 * unregistered and cached data had been evicted before. 1799 */ 1800 if (zfsvfs->z_os == NULL) 1801 return (0); 1802 1803 /* 1804 * Unregister properties. 1805 */ 1806 zfs_unregister_callbacks(zfsvfs); 1807 1808 /* 1809 * Evict cached data 1810 */ 1811 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1812 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1813 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1814 } 1815 1816 return (0); 1817 } 1818 1819 /*ARGSUSED*/ 1820 static int 1821 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1822 { 1823 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1824 objset_t *os; 1825 int ret; 1826 1827 ret = secpolicy_fs_unmount(cr, vfsp); 1828 if (ret) { 1829 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1830 ZFS_DELEG_PERM_MOUNT, cr)) 1831 return (ret); 1832 } 1833 1834 /* 1835 * We purge the parent filesystem's vfsp as the parent filesystem 1836 * and all of its snapshots have their vnode's v_vfsp set to the 1837 * parent's filesystem's vfsp. Note, 'z_parent' is self 1838 * referential for non-snapshots. 1839 */ 1840 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1841 1842 /* 1843 * Unmount any snapshots mounted under .zfs before unmounting the 1844 * dataset itself. 1845 */ 1846 if (zfsvfs->z_ctldir != NULL && 1847 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1848 return (ret); 1849 } 1850 1851 if (!(fflag & MS_FORCE)) { 1852 /* 1853 * Check the number of active vnodes in the file system. 1854 * Our count is maintained in the vfs structure, but the 1855 * number is off by 1 to indicate a hold on the vfs 1856 * structure itself. 1857 * 1858 * The '.zfs' directory maintains a reference of its 1859 * own, and any active references underneath are 1860 * reflected in the vnode count. 1861 */ 1862 if (zfsvfs->z_ctldir == NULL) { 1863 if (vfsp->vfs_count > 1) 1864 return (EBUSY); 1865 } else { 1866 if (vfsp->vfs_count > 2 || 1867 zfsvfs->z_ctldir->v_count > 1) 1868 return (EBUSY); 1869 } 1870 } 1871 1872 vfsp->vfs_flag |= VFS_UNMOUNTED; 1873 1874 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1875 os = zfsvfs->z_os; 1876 1877 /* 1878 * z_os will be NULL if there was an error in 1879 * attempting to reopen zfsvfs. 1880 */ 1881 if (os != NULL) { 1882 /* 1883 * Unset the objset user_ptr. 1884 */ 1885 mutex_enter(&os->os_user_ptr_lock); 1886 dmu_objset_set_user(os, NULL); 1887 mutex_exit(&os->os_user_ptr_lock); 1888 1889 /* 1890 * Finally release the objset 1891 */ 1892 dmu_objset_disown(os, zfsvfs); 1893 } 1894 1895 /* 1896 * We can now safely destroy the '.zfs' directory node. 1897 */ 1898 if (zfsvfs->z_ctldir != NULL) 1899 zfsctl_destroy(zfsvfs); 1900 1901 return (0); 1902 } 1903 1904 static int 1905 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1906 { 1907 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1908 znode_t *zp; 1909 uint64_t object = 0; 1910 uint64_t fid_gen = 0; 1911 uint64_t gen_mask; 1912 uint64_t zp_gen; 1913 int i, err; 1914 1915 *vpp = NULL; 1916 1917 ZFS_ENTER(zfsvfs); 1918 1919 if (fidp->fid_len == LONG_FID_LEN) { 1920 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1921 uint64_t objsetid = 0; 1922 uint64_t setgen = 0; 1923 1924 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1925 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1926 1927 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1928 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1929 1930 ZFS_EXIT(zfsvfs); 1931 1932 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1933 if (err) 1934 return (EINVAL); 1935 ZFS_ENTER(zfsvfs); 1936 } 1937 1938 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1939 zfid_short_t *zfid = (zfid_short_t *)fidp; 1940 1941 for (i = 0; i < sizeof (zfid->zf_object); i++) 1942 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1943 1944 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1945 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1946 } else { 1947 ZFS_EXIT(zfsvfs); 1948 return (EINVAL); 1949 } 1950 1951 /* A zero fid_gen means we are in the .zfs control directories */ 1952 if (fid_gen == 0 && 1953 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1954 *vpp = zfsvfs->z_ctldir; 1955 ASSERT(*vpp != NULL); 1956 if (object == ZFSCTL_INO_SNAPDIR) { 1957 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1958 0, NULL, NULL, NULL, NULL, NULL) == 0); 1959 } else { 1960 VN_HOLD(*vpp); 1961 } 1962 ZFS_EXIT(zfsvfs); 1963 return (0); 1964 } 1965 1966 gen_mask = -1ULL >> (64 - 8 * i); 1967 1968 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1969 if (err = zfs_zget(zfsvfs, object, &zp)) { 1970 ZFS_EXIT(zfsvfs); 1971 return (err); 1972 } 1973 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1974 sizeof (uint64_t)); 1975 zp_gen = zp_gen & gen_mask; 1976 if (zp_gen == 0) 1977 zp_gen = 1; 1978 if (zp->z_unlinked || zp_gen != fid_gen) { 1979 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1980 VN_RELE(ZTOV(zp)); 1981 ZFS_EXIT(zfsvfs); 1982 return (EINVAL); 1983 } 1984 1985 *vpp = ZTOV(zp); 1986 ZFS_EXIT(zfsvfs); 1987 return (0); 1988 } 1989 1990 /* 1991 * Block out VOPs and close zfsvfs_t::z_os 1992 * 1993 * Note, if successful, then we return with the 'z_teardown_lock' and 1994 * 'z_teardown_inactive_lock' write held. 1995 */ 1996 int 1997 zfs_suspend_fs(zfsvfs_t *zfsvfs) 1998 { 1999 int error; 2000 2001 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2002 return (error); 2003 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 2004 2005 return (0); 2006 } 2007 2008 /* 2009 * Reopen zfsvfs_t::z_os and release VOPs. 2010 */ 2011 int 2012 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 2013 { 2014 int err, err2; 2015 2016 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2017 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2018 2019 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs, 2020 &zfsvfs->z_os); 2021 if (err) { 2022 zfsvfs->z_os = NULL; 2023 } else { 2024 znode_t *zp; 2025 uint64_t sa_obj = 0; 2026 2027 err2 = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 2028 ZFS_SA_ATTRS, 8, 1, &sa_obj); 2029 2030 if ((err || err2) && zfsvfs->z_version >= ZPL_VERSION_SA) 2031 goto bail; 2032 2033 2034 zfsvfs->z_attr_table = sa_setup(zfsvfs->z_os, sa_obj, 2035 zfs_attr_table, ZPL_END); 2036 2037 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2038 2039 /* 2040 * Attempt to re-establish all the active znodes with 2041 * their dbufs. If a zfs_rezget() fails, then we'll let 2042 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2043 * when they try to use their znode. 2044 */ 2045 mutex_enter(&zfsvfs->z_znodes_lock); 2046 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2047 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2048 (void) zfs_rezget(zp); 2049 } 2050 mutex_exit(&zfsvfs->z_znodes_lock); 2051 2052 } 2053 2054 bail: 2055 /* release the VOPs */ 2056 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2057 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 2058 2059 if (err) { 2060 /* 2061 * Since we couldn't reopen zfsvfs::z_os, force 2062 * unmount this file system. 2063 */ 2064 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2065 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2066 } 2067 return (err); 2068 } 2069 2070 static void 2071 zfs_freevfs(vfs_t *vfsp) 2072 { 2073 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2074 2075 /* 2076 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2077 * from zfs_mount(). Release it here. If we came through 2078 * zfs_mountroot() instead, we didn't grab an extra hold, so 2079 * skip the VFS_RELE for rootvfs. 2080 */ 2081 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2082 VFS_RELE(zfsvfs->z_parent->z_vfs); 2083 2084 zfsvfs_free(zfsvfs); 2085 2086 atomic_add_32(&zfs_active_fs_count, -1); 2087 } 2088 2089 /* 2090 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2091 * so we can't safely do any non-idempotent initialization here. 2092 * Leave that to zfs_init() and zfs_fini(), which are called 2093 * from the module's _init() and _fini() entry points. 2094 */ 2095 /*ARGSUSED*/ 2096 static int 2097 zfs_vfsinit(int fstype, char *name) 2098 { 2099 int error; 2100 2101 zfsfstype = fstype; 2102 2103 /* 2104 * Setup vfsops and vnodeops tables. 2105 */ 2106 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2107 if (error != 0) { 2108 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2109 } 2110 2111 error = zfs_create_op_tables(); 2112 if (error) { 2113 zfs_remove_op_tables(); 2114 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2115 (void) vfs_freevfsops_by_type(zfsfstype); 2116 return (error); 2117 } 2118 2119 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2120 2121 /* 2122 * Unique major number for all zfs mounts. 2123 * If we run out of 32-bit minors, we'll getudev() another major. 2124 */ 2125 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2126 zfs_minor = ZFS_MIN_MINOR; 2127 2128 return (0); 2129 } 2130 2131 void 2132 zfs_init(void) 2133 { 2134 /* 2135 * Initialize .zfs directory structures 2136 */ 2137 zfsctl_init(); 2138 2139 /* 2140 * Initialize znode cache, vnode ops, etc... 2141 */ 2142 zfs_znode_init(); 2143 2144 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2145 } 2146 2147 void 2148 zfs_fini(void) 2149 { 2150 zfsctl_fini(); 2151 zfs_znode_fini(); 2152 } 2153 2154 int 2155 zfs_busy(void) 2156 { 2157 return (zfs_active_fs_count != 0); 2158 } 2159 2160 int 2161 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2162 { 2163 int error; 2164 objset_t *os = zfsvfs->z_os; 2165 dmu_tx_t *tx; 2166 2167 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2168 return (EINVAL); 2169 2170 if (newvers < zfsvfs->z_version) 2171 return (EINVAL); 2172 2173 if (zfs_spa_version_map(newvers) > 2174 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2175 return (ENOTSUP); 2176 2177 tx = dmu_tx_create(os); 2178 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2179 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2180 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2181 ZFS_SA_ATTRS); 2182 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2183 } 2184 error = dmu_tx_assign(tx, TXG_WAIT); 2185 if (error) { 2186 dmu_tx_abort(tx); 2187 return (error); 2188 } 2189 2190 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2191 8, 1, &newvers, tx); 2192 2193 if (error) { 2194 dmu_tx_commit(tx); 2195 return (error); 2196 } 2197 2198 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2199 uint64_t sa_obj; 2200 2201 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2202 SPA_VERSION_SA); 2203 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2204 DMU_OT_NONE, 0, tx); 2205 2206 error = zap_add(os, MASTER_NODE_OBJ, 2207 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2208 ASSERT3U(error, ==, 0); 2209 2210 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2211 sa_register_update_callback(os, zfs_sa_upgrade); 2212 } 2213 2214 spa_history_log_internal(LOG_DS_UPGRADE, 2215 dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu", 2216 zfsvfs->z_version, newvers, dmu_objset_id(os)); 2217 2218 dmu_tx_commit(tx); 2219 2220 zfsvfs->z_version = newvers; 2221 2222 if (zfsvfs->z_version >= ZPL_VERSION_FUID) 2223 zfs_set_fuid_feature(zfsvfs); 2224 2225 return (0); 2226 } 2227 2228 /* 2229 * Read a property stored within the master node. 2230 */ 2231 int 2232 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2233 { 2234 const char *pname; 2235 int error = ENOENT; 2236 2237 /* 2238 * Look up the file system's value for the property. For the 2239 * version property, we look up a slightly different string. 2240 */ 2241 if (prop == ZFS_PROP_VERSION) 2242 pname = ZPL_VERSION_STR; 2243 else 2244 pname = zfs_prop_to_name(prop); 2245 2246 if (os != NULL) 2247 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2248 2249 if (error == ENOENT) { 2250 /* No value set, use the default value */ 2251 switch (prop) { 2252 case ZFS_PROP_VERSION: 2253 *value = ZPL_VERSION; 2254 break; 2255 case ZFS_PROP_NORMALIZE: 2256 case ZFS_PROP_UTF8ONLY: 2257 *value = 0; 2258 break; 2259 case ZFS_PROP_CASE: 2260 *value = ZFS_CASE_SENSITIVE; 2261 break; 2262 default: 2263 return (error); 2264 } 2265 error = 0; 2266 } 2267 return (error); 2268 } 2269 2270 static vfsdef_t vfw = { 2271 VFSDEF_VERSION, 2272 MNTTYPE_ZFS, 2273 zfs_vfsinit, 2274 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2275 VSW_XID, 2276 &zfs_mntopts 2277 }; 2278 2279 struct modlfs zfs_modlfs = { 2280 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2281 }; 2282