1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/mntent.h> 38 #include <sys/mount.h> 39 #include <sys/cmn_err.h> 40 #include "fs/fs_subr.h" 41 #include <sys/zfs_znode.h> 42 #include <sys/zfs_dir.h> 43 #include <sys/zil.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/dmu.h> 46 #include <sys/dsl_prop.h> 47 #include <sys/dsl_dataset.h> 48 #include <sys/dsl_deleg.h> 49 #include <sys/spa.h> 50 #include <sys/zap.h> 51 #include <sys/varargs.h> 52 #include <sys/policy.h> 53 #include <sys/atomic.h> 54 #include <sys/mkdev.h> 55 #include <sys/modctl.h> 56 #include <sys/refstr.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/zfs_ctldir.h> 59 #include <sys/bootconf.h> 60 #include <sys/sunddi.h> 61 #include <sys/dnlc.h> 62 63 int zfsfstype; 64 vfsops_t *zfs_vfsops = NULL; 65 static major_t zfs_major; 66 static minor_t zfs_minor; 67 static kmutex_t zfs_dev_mtx; 68 69 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 70 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 71 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 72 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 73 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 74 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 75 static void zfs_freevfs(vfs_t *vfsp); 76 static void zfs_objset_close(zfsvfs_t *zfsvfs); 77 78 static const fs_operation_def_t zfs_vfsops_template[] = { 79 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 80 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 81 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 82 VFSNAME_ROOT, { .vfs_root = zfs_root }, 83 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 84 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 85 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 86 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 87 NULL, NULL 88 }; 89 90 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 91 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 92 NULL, NULL 93 }; 94 95 /* 96 * We need to keep a count of active fs's. 97 * This is necessary to prevent our module 98 * from being unloaded after a umount -f 99 */ 100 static uint32_t zfs_active_fs_count = 0; 101 102 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 103 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 104 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 105 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 106 107 /* 108 * MO_DEFAULT is not used since the default value is determined 109 * by the equivalent property. 110 */ 111 static mntopt_t mntopts[] = { 112 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 113 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 114 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 115 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 116 }; 117 118 static mntopts_t zfs_mntopts = { 119 sizeof (mntopts) / sizeof (mntopt_t), 120 mntopts 121 }; 122 123 /*ARGSUSED*/ 124 int 125 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 126 { 127 /* 128 * Data integrity is job one. We don't want a compromised kernel 129 * writing to the storage pool, so we never sync during panic. 130 */ 131 if (panicstr) 132 return (0); 133 134 /* 135 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 136 * to sync metadata, which they would otherwise cache indefinitely. 137 * Semantically, the only requirement is that the sync be initiated. 138 * The DMU syncs out txgs frequently, so there's nothing to do. 139 */ 140 if (flag & SYNC_ATTR) 141 return (0); 142 143 if (vfsp != NULL) { 144 /* 145 * Sync a specific filesystem. 146 */ 147 zfsvfs_t *zfsvfs = vfsp->vfs_data; 148 149 ZFS_ENTER(zfsvfs); 150 if (zfsvfs->z_log != NULL) 151 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 152 else 153 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 154 ZFS_EXIT(zfsvfs); 155 } else { 156 /* 157 * Sync all ZFS filesystems. This is what happens when you 158 * run sync(1M). Unlike other filesystems, ZFS honors the 159 * request by waiting for all pools to commit all dirty data. 160 */ 161 spa_sync_allpools(); 162 } 163 164 return (0); 165 } 166 167 static int 168 zfs_create_unique_device(dev_t *dev) 169 { 170 major_t new_major; 171 172 do { 173 ASSERT3U(zfs_minor, <=, MAXMIN32); 174 minor_t start = zfs_minor; 175 do { 176 mutex_enter(&zfs_dev_mtx); 177 if (zfs_minor >= MAXMIN32) { 178 /* 179 * If we're still using the real major 180 * keep out of /dev/zfs and /dev/zvol minor 181 * number space. If we're using a getudev()'ed 182 * major number, we can use all of its minors. 183 */ 184 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 185 zfs_minor = ZFS_MIN_MINOR; 186 else 187 zfs_minor = 0; 188 } else { 189 zfs_minor++; 190 } 191 *dev = makedevice(zfs_major, zfs_minor); 192 mutex_exit(&zfs_dev_mtx); 193 } while (vfs_devismounted(*dev) && zfs_minor != start); 194 if (zfs_minor == start) { 195 /* 196 * We are using all ~262,000 minor numbers for the 197 * current major number. Create a new major number. 198 */ 199 if ((new_major = getudev()) == (major_t)-1) { 200 cmn_err(CE_WARN, 201 "zfs_mount: Can't get unique major " 202 "device number."); 203 return (-1); 204 } 205 mutex_enter(&zfs_dev_mtx); 206 zfs_major = new_major; 207 zfs_minor = 0; 208 209 mutex_exit(&zfs_dev_mtx); 210 } else { 211 break; 212 } 213 /* CONSTANTCONDITION */ 214 } while (1); 215 216 return (0); 217 } 218 219 static void 220 atime_changed_cb(void *arg, uint64_t newval) 221 { 222 zfsvfs_t *zfsvfs = arg; 223 224 if (newval == TRUE) { 225 zfsvfs->z_atime = TRUE; 226 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 227 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 228 } else { 229 zfsvfs->z_atime = FALSE; 230 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 231 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 232 } 233 } 234 235 static void 236 xattr_changed_cb(void *arg, uint64_t newval) 237 { 238 zfsvfs_t *zfsvfs = arg; 239 240 if (newval == TRUE) { 241 /* XXX locking on vfs_flag? */ 242 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 243 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 244 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 245 } else { 246 /* XXX locking on vfs_flag? */ 247 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 248 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 249 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 250 } 251 } 252 253 static void 254 blksz_changed_cb(void *arg, uint64_t newval) 255 { 256 zfsvfs_t *zfsvfs = arg; 257 258 if (newval < SPA_MINBLOCKSIZE || 259 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 260 newval = SPA_MAXBLOCKSIZE; 261 262 zfsvfs->z_max_blksz = newval; 263 zfsvfs->z_vfs->vfs_bsize = newval; 264 } 265 266 static void 267 readonly_changed_cb(void *arg, uint64_t newval) 268 { 269 zfsvfs_t *zfsvfs = arg; 270 271 if (newval) { 272 /* XXX locking on vfs_flag? */ 273 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 274 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 275 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 276 } else { 277 /* XXX locking on vfs_flag? */ 278 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 279 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 280 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 281 } 282 } 283 284 static void 285 devices_changed_cb(void *arg, uint64_t newval) 286 { 287 zfsvfs_t *zfsvfs = arg; 288 289 if (newval == FALSE) { 290 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 291 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 292 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 293 } else { 294 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 295 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 296 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 297 } 298 } 299 300 static void 301 setuid_changed_cb(void *arg, uint64_t newval) 302 { 303 zfsvfs_t *zfsvfs = arg; 304 305 if (newval == FALSE) { 306 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 307 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 308 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 309 } else { 310 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 311 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 312 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 313 } 314 } 315 316 static void 317 exec_changed_cb(void *arg, uint64_t newval) 318 { 319 zfsvfs_t *zfsvfs = arg; 320 321 if (newval == FALSE) { 322 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 323 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 324 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 325 } else { 326 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 327 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 328 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 329 } 330 } 331 332 static void 333 snapdir_changed_cb(void *arg, uint64_t newval) 334 { 335 zfsvfs_t *zfsvfs = arg; 336 337 zfsvfs->z_show_ctldir = newval; 338 } 339 340 static void 341 acl_mode_changed_cb(void *arg, uint64_t newval) 342 { 343 zfsvfs_t *zfsvfs = arg; 344 345 zfsvfs->z_acl_mode = newval; 346 } 347 348 static void 349 acl_inherit_changed_cb(void *arg, uint64_t newval) 350 { 351 zfsvfs_t *zfsvfs = arg; 352 353 zfsvfs->z_acl_inherit = newval; 354 } 355 356 static int 357 zfs_register_callbacks(vfs_t *vfsp) 358 { 359 struct dsl_dataset *ds = NULL; 360 objset_t *os = NULL; 361 zfsvfs_t *zfsvfs = NULL; 362 int readonly, do_readonly = FALSE; 363 int setuid, do_setuid = FALSE; 364 int exec, do_exec = FALSE; 365 int devices, do_devices = FALSE; 366 int xattr, do_xattr = FALSE; 367 int atime, do_atime = FALSE; 368 int error = 0; 369 370 ASSERT(vfsp); 371 zfsvfs = vfsp->vfs_data; 372 ASSERT(zfsvfs); 373 os = zfsvfs->z_os; 374 375 /* 376 * The act of registering our callbacks will destroy any mount 377 * options we may have. In order to enable temporary overrides 378 * of mount options, we stash away the current values and 379 * restore them after we register the callbacks. 380 */ 381 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 382 readonly = B_TRUE; 383 do_readonly = B_TRUE; 384 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 385 readonly = B_FALSE; 386 do_readonly = B_TRUE; 387 } 388 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 389 devices = B_FALSE; 390 setuid = B_FALSE; 391 do_devices = B_TRUE; 392 do_setuid = B_TRUE; 393 } else { 394 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 395 devices = B_FALSE; 396 do_devices = B_TRUE; 397 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 398 devices = B_TRUE; 399 do_devices = B_TRUE; 400 } 401 402 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 403 setuid = B_FALSE; 404 do_setuid = B_TRUE; 405 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 406 setuid = B_TRUE; 407 do_setuid = B_TRUE; 408 } 409 } 410 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 411 exec = B_FALSE; 412 do_exec = B_TRUE; 413 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 414 exec = B_TRUE; 415 do_exec = B_TRUE; 416 } 417 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 418 xattr = B_FALSE; 419 do_xattr = B_TRUE; 420 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 421 xattr = B_TRUE; 422 do_xattr = B_TRUE; 423 } 424 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 425 atime = B_FALSE; 426 do_atime = B_TRUE; 427 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 428 atime = B_TRUE; 429 do_atime = B_TRUE; 430 } 431 432 /* 433 * Register property callbacks. 434 * 435 * It would probably be fine to just check for i/o error from 436 * the first prop_register(), but I guess I like to go 437 * overboard... 438 */ 439 ds = dmu_objset_ds(os); 440 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 441 error = error ? error : dsl_prop_register(ds, 442 "xattr", xattr_changed_cb, zfsvfs); 443 error = error ? error : dsl_prop_register(ds, 444 "recordsize", blksz_changed_cb, zfsvfs); 445 error = error ? error : dsl_prop_register(ds, 446 "readonly", readonly_changed_cb, zfsvfs); 447 error = error ? error : dsl_prop_register(ds, 448 "devices", devices_changed_cb, zfsvfs); 449 error = error ? error : dsl_prop_register(ds, 450 "setuid", setuid_changed_cb, zfsvfs); 451 error = error ? error : dsl_prop_register(ds, 452 "exec", exec_changed_cb, zfsvfs); 453 error = error ? error : dsl_prop_register(ds, 454 "snapdir", snapdir_changed_cb, zfsvfs); 455 error = error ? error : dsl_prop_register(ds, 456 "aclmode", acl_mode_changed_cb, zfsvfs); 457 error = error ? error : dsl_prop_register(ds, 458 "aclinherit", acl_inherit_changed_cb, zfsvfs); 459 if (error) 460 goto unregister; 461 462 /* 463 * Invoke our callbacks to restore temporary mount options. 464 */ 465 if (do_readonly) 466 readonly_changed_cb(zfsvfs, readonly); 467 if (do_setuid) 468 setuid_changed_cb(zfsvfs, setuid); 469 if (do_exec) 470 exec_changed_cb(zfsvfs, exec); 471 if (do_devices) 472 devices_changed_cb(zfsvfs, devices); 473 if (do_xattr) 474 xattr_changed_cb(zfsvfs, xattr); 475 if (do_atime) 476 atime_changed_cb(zfsvfs, atime); 477 478 return (0); 479 480 unregister: 481 /* 482 * We may attempt to unregister some callbacks that are not 483 * registered, but this is OK; it will simply return ENOMSG, 484 * which we will ignore. 485 */ 486 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 487 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 488 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 489 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 490 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 491 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 492 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 493 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 494 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 495 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 496 zfsvfs); 497 return (error); 498 499 } 500 501 static int 502 zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr) 503 { 504 dev_t mount_dev; 505 uint64_t recordsize, readonly; 506 int error = 0; 507 int mode; 508 zfsvfs_t *zfsvfs; 509 znode_t *zp = NULL; 510 511 ASSERT(vfsp); 512 ASSERT(osname); 513 514 /* 515 * Initialize the zfs-specific filesystem structure. 516 * Should probably make this a kmem cache, shuffle fields, 517 * and just bzero up to z_hold_mtx[]. 518 */ 519 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 520 zfsvfs->z_vfs = vfsp; 521 zfsvfs->z_parent = zfsvfs; 522 zfsvfs->z_assign = TXG_NOWAIT; 523 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 524 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 525 526 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 527 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 528 offsetof(znode_t, z_link_node)); 529 rw_init(&zfsvfs->z_um_lock, NULL, RW_DEFAULT, NULL); 530 531 /* Initialize the generic filesystem structure. */ 532 vfsp->vfs_bcount = 0; 533 vfsp->vfs_data = NULL; 534 535 if (zfs_create_unique_device(&mount_dev) == -1) { 536 error = ENODEV; 537 goto out; 538 } 539 ASSERT(vfs_devismounted(mount_dev) == 0); 540 541 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 542 NULL)) 543 goto out; 544 545 vfsp->vfs_dev = mount_dev; 546 vfsp->vfs_fstype = zfsfstype; 547 vfsp->vfs_bsize = recordsize; 548 vfsp->vfs_flag |= VFS_NOTRUNC; 549 vfsp->vfs_data = zfsvfs; 550 551 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 552 goto out; 553 554 if (readonly) 555 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 556 else 557 mode = DS_MODE_PRIMARY; 558 559 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 560 if (error == EROFS) { 561 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 562 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 563 &zfsvfs->z_os); 564 } 565 566 if (error) 567 goto out; 568 569 if (error = zfs_init_fs(zfsvfs, &zp, cr)) 570 goto out; 571 572 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 573 VN_RELE(ZTOV(zp)); 574 575 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 576 uint64_t xattr; 577 578 ASSERT(mode & DS_MODE_READONLY); 579 atime_changed_cb(zfsvfs, B_FALSE); 580 readonly_changed_cb(zfsvfs, B_TRUE); 581 if (error = dsl_prop_get_integer(osname, "xattr", &xattr, NULL)) 582 goto out; 583 xattr_changed_cb(zfsvfs, xattr); 584 zfsvfs->z_issnap = B_TRUE; 585 } else { 586 error = zfs_register_callbacks(vfsp); 587 if (error) 588 goto out; 589 590 if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) 591 zfs_unlinked_drain(zfsvfs); 592 593 /* 594 * Parse and replay the intent log. 595 * 596 * Because of ziltest, this must be done after 597 * zfs_unlinked_drain(). (Further note: ziltest doesn't 598 * use readonly mounts, where zfs_unlinked_drain() isn't 599 * called.) This is because ziltest causes spa_sync() 600 * to think it's committed, but actually it is not, so 601 * the intent log contains many txg's worth of changes. 602 * 603 * In particular, if object N is in the unlinked set in 604 * the last txg to actually sync, then it could be 605 * actually freed in a later txg and then reallocated in 606 * a yet later txg. This would write a "create object 607 * N" record to the intent log. Normally, this would be 608 * fine because the spa_sync() would have written out 609 * the fact that object N is free, before we could write 610 * the "create object N" intent log record. 611 * 612 * But when we are in ziltest mode, we advance the "open 613 * txg" without actually spa_sync()-ing the changes to 614 * disk. So we would see that object N is still 615 * allocated and in the unlinked set, and there is an 616 * intent log record saying to allocate it. 617 */ 618 zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, 619 zfs_replay_vector); 620 621 if (!zil_disable) 622 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 623 } 624 625 if (!zfsvfs->z_issnap) 626 zfsctl_create(zfsvfs); 627 out: 628 if (error) { 629 if (zfsvfs->z_os) 630 dmu_objset_close(zfsvfs->z_os); 631 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 632 } else { 633 atomic_add_32(&zfs_active_fs_count, 1); 634 } 635 636 return (error); 637 } 638 639 void 640 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 641 { 642 objset_t *os = zfsvfs->z_os; 643 struct dsl_dataset *ds; 644 645 /* 646 * Unregister properties. 647 */ 648 if (!dmu_objset_is_snapshot(os)) { 649 ds = dmu_objset_ds(os); 650 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 651 zfsvfs) == 0); 652 653 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 654 zfsvfs) == 0); 655 656 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 657 zfsvfs) == 0); 658 659 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 660 zfsvfs) == 0); 661 662 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 663 zfsvfs) == 0); 664 665 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 666 zfsvfs) == 0); 667 668 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 669 zfsvfs) == 0); 670 671 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 672 zfsvfs) == 0); 673 674 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 675 zfsvfs) == 0); 676 677 VERIFY(dsl_prop_unregister(ds, "aclinherit", 678 acl_inherit_changed_cb, zfsvfs) == 0); 679 } 680 } 681 682 /* 683 * Convert a decimal digit string to a uint64_t integer. 684 */ 685 static int 686 str_to_uint64(char *str, uint64_t *objnum) 687 { 688 uint64_t num = 0; 689 690 while (*str) { 691 if (*str < '0' || *str > '9') 692 return (EINVAL); 693 694 num = num*10 + *str++ - '0'; 695 } 696 697 *objnum = num; 698 return (0); 699 } 700 701 /* 702 * The boot path passed from the boot loader is in the form of 703 * "rootpool-name/root-filesystem-object-number'. Convert this 704 * string to a dataset name: "rootpool-name/root-filesystem-name". 705 */ 706 static int 707 parse_bootpath(char *bpath, char *outpath) 708 { 709 char *slashp; 710 uint64_t objnum; 711 int error; 712 713 if (*bpath == 0 || *bpath == '/') 714 return (EINVAL); 715 716 slashp = strchr(bpath, '/'); 717 718 /* if no '/', just return the pool name */ 719 if (slashp == NULL) { 720 (void) strcpy(outpath, bpath); 721 return (0); 722 } 723 724 if (error = str_to_uint64(slashp+1, &objnum)) 725 return (error); 726 727 *slashp = '\0'; 728 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 729 *slashp = '/'; 730 731 return (error); 732 } 733 734 static int 735 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 736 { 737 int error = 0; 738 int ret = 0; 739 static int zfsrootdone = 0; 740 zfsvfs_t *zfsvfs = NULL; 741 znode_t *zp = NULL; 742 vnode_t *vp = NULL; 743 char *zfs_bootpath; 744 745 ASSERT(vfsp); 746 747 /* 748 * The filesystem that we mount as root is defined in the 749 * "zfs-bootfs" property. 750 */ 751 if (why == ROOT_INIT) { 752 if (zfsrootdone++) 753 return (EBUSY); 754 755 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 756 DDI_PROP_DONTPASS, "zfs-bootfs", &zfs_bootpath) != 757 DDI_SUCCESS) 758 return (EIO); 759 760 error = parse_bootpath(zfs_bootpath, rootfs.bo_name); 761 ddi_prop_free(zfs_bootpath); 762 763 if (error) 764 return (error); 765 766 if (error = vfs_lock(vfsp)) 767 return (error); 768 769 if (error = zfs_domount(vfsp, rootfs.bo_name, CRED())) 770 goto out; 771 772 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 773 ASSERT(zfsvfs); 774 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) 775 goto out; 776 777 vp = ZTOV(zp); 778 mutex_enter(&vp->v_lock); 779 vp->v_flag |= VROOT; 780 mutex_exit(&vp->v_lock); 781 rootvp = vp; 782 783 /* 784 * The zfs_zget call above returns with a hold on vp, we release 785 * it here. 786 */ 787 VN_RELE(vp); 788 789 /* 790 * Mount root as readonly initially, it will be remouted 791 * read/write by /lib/svc/method/fs-usr. 792 */ 793 readonly_changed_cb(vfsp->vfs_data, B_TRUE); 794 vfs_add((struct vnode *)0, vfsp, 795 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 796 out: 797 vfs_unlock(vfsp); 798 ret = (error) ? error : 0; 799 return (ret); 800 } else if (why == ROOT_REMOUNT) { 801 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 802 vfsp->vfs_flag |= VFS_REMOUNT; 803 804 /* refresh mount options */ 805 zfs_unregister_callbacks(vfsp->vfs_data); 806 return (zfs_register_callbacks(vfsp)); 807 808 } else if (why == ROOT_UNMOUNT) { 809 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 810 (void) zfs_sync(vfsp, 0, 0); 811 return (0); 812 } 813 814 /* 815 * if "why" is equal to anything else other than ROOT_INIT, 816 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 817 */ 818 return (ENOTSUP); 819 } 820 821 /*ARGSUSED*/ 822 static int 823 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 824 { 825 char *osname; 826 pathname_t spn; 827 int error = 0; 828 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 829 UIO_SYSSPACE : UIO_USERSPACE; 830 int canwrite; 831 832 if (mvp->v_type != VDIR) 833 return (ENOTDIR); 834 835 mutex_enter(&mvp->v_lock); 836 if ((uap->flags & MS_REMOUNT) == 0 && 837 (uap->flags & MS_OVERLAY) == 0 && 838 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 839 mutex_exit(&mvp->v_lock); 840 return (EBUSY); 841 } 842 mutex_exit(&mvp->v_lock); 843 844 /* 845 * ZFS does not support passing unparsed data in via MS_DATA. 846 * Users should use the MS_OPTIONSTR interface; this means 847 * that all option parsing is already done and the options struct 848 * can be interrogated. 849 */ 850 if ((uap->flags & MS_DATA) && uap->datalen > 0) 851 return (EINVAL); 852 853 /* 854 * Get the objset name (the "special" mount argument). 855 */ 856 if (error = pn_get(uap->spec, fromspace, &spn)) 857 return (error); 858 859 osname = spn.pn_path; 860 861 /* 862 * Check for mount privilege? 863 * 864 * If we don't have privilege then see if 865 * we have local permission to allow it 866 */ 867 error = secpolicy_fs_mount(cr, mvp, vfsp); 868 if (error) { 869 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 870 if (error == 0) { 871 vattr_t vattr; 872 873 /* 874 * Make sure user is the owner of the mount point 875 * or has sufficient privileges. 876 */ 877 878 vattr.va_mask = AT_UID; 879 880 if (VOP_GETATTR(mvp, &vattr, 0, cr)) { 881 goto out; 882 } 883 884 if (error = secpolicy_vnode_owner(cr, vattr.va_uid)) { 885 goto out; 886 } 887 888 if (error = VOP_ACCESS(mvp, VWRITE, 0, cr)) { 889 goto out; 890 } 891 892 secpolicy_fs_mount_clearopts(cr, vfsp); 893 } else { 894 goto out; 895 } 896 } 897 898 /* 899 * Refuse to mount a filesystem if we are in a local zone and the 900 * dataset is not visible. 901 */ 902 if (!INGLOBALZONE(curproc) && 903 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 904 error = EPERM; 905 goto out; 906 } 907 908 /* 909 * When doing a remount, we simply refresh our temporary properties 910 * according to those options set in the current VFS options. 911 */ 912 if (uap->flags & MS_REMOUNT) { 913 /* refresh mount options */ 914 zfs_unregister_callbacks(vfsp->vfs_data); 915 error = zfs_register_callbacks(vfsp); 916 goto out; 917 } 918 919 error = zfs_domount(vfsp, osname, cr); 920 921 out: 922 pn_free(&spn); 923 return (error); 924 } 925 926 static int 927 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 928 { 929 zfsvfs_t *zfsvfs = vfsp->vfs_data; 930 dev32_t d32; 931 uint64_t refdbytes, availbytes, usedobjs, availobjs; 932 933 ZFS_ENTER(zfsvfs); 934 935 dmu_objset_space(zfsvfs->z_os, 936 &refdbytes, &availbytes, &usedobjs, &availobjs); 937 938 /* 939 * The underlying storage pool actually uses multiple block sizes. 940 * We report the fragsize as the smallest block size we support, 941 * and we report our blocksize as the filesystem's maximum blocksize. 942 */ 943 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 944 statp->f_bsize = zfsvfs->z_max_blksz; 945 946 /* 947 * The following report "total" blocks of various kinds in the 948 * file system, but reported in terms of f_frsize - the 949 * "fragment" size. 950 */ 951 952 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 953 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 954 statp->f_bavail = statp->f_bfree; /* no root reservation */ 955 956 /* 957 * statvfs() should really be called statufs(), because it assumes 958 * static metadata. ZFS doesn't preallocate files, so the best 959 * we can do is report the max that could possibly fit in f_files, 960 * and that minus the number actually used in f_ffree. 961 * For f_ffree, report the smaller of the number of object available 962 * and the number of blocks (each object will take at least a block). 963 */ 964 statp->f_ffree = MIN(availobjs, statp->f_bfree); 965 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 966 statp->f_files = statp->f_ffree + usedobjs; 967 968 (void) cmpldev(&d32, vfsp->vfs_dev); 969 statp->f_fsid = d32; 970 971 /* 972 * We're a zfs filesystem. 973 */ 974 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 975 976 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 977 978 statp->f_namemax = ZFS_MAXNAMELEN; 979 980 /* 981 * We have all of 32 characters to stuff a string here. 982 * Is there anything useful we could/should provide? 983 */ 984 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 985 986 ZFS_EXIT(zfsvfs); 987 return (0); 988 } 989 990 static int 991 zfs_root(vfs_t *vfsp, vnode_t **vpp) 992 { 993 zfsvfs_t *zfsvfs = vfsp->vfs_data; 994 znode_t *rootzp; 995 int error; 996 997 ZFS_ENTER(zfsvfs); 998 999 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1000 if (error == 0) 1001 *vpp = ZTOV(rootzp); 1002 1003 ZFS_EXIT(zfsvfs); 1004 return (error); 1005 } 1006 1007 /*ARGSUSED*/ 1008 static int 1009 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1010 { 1011 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1012 int ret; 1013 1014 ret = secpolicy_fs_unmount(cr, vfsp); 1015 if (ret) { 1016 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1017 ZFS_DELEG_PERM_MOUNT, cr); 1018 if (ret) 1019 return (ret); 1020 } 1021 1022 (void) dnlc_purge_vfsp(vfsp, 0); 1023 1024 /* 1025 * Unmount any snapshots mounted under .zfs before unmounting the 1026 * dataset itself. 1027 */ 1028 if (zfsvfs->z_ctldir != NULL && 1029 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1030 return (ret); 1031 } 1032 1033 if (fflag & MS_FORCE) { 1034 vfsp->vfs_flag |= VFS_UNMOUNTED; 1035 zfsvfs->z_unmounted1 = B_TRUE; 1036 1037 /* 1038 * Ensure that z_unmounted1 reaches global visibility 1039 * before z_op_cnt. 1040 */ 1041 membar_producer(); 1042 1043 /* 1044 * Wait for all zfs threads to leave zfs. 1045 * Grabbing a rwlock as reader in all vops and 1046 * as writer here doesn't work because it too easy to get 1047 * multiple reader enters as zfs can re-enter itself. 1048 * This can lead to deadlock if there is an intervening 1049 * rw_enter as writer. 1050 * So a file system threads ref count (z_op_cnt) is used. 1051 * A polling loop on z_op_cnt may seem inefficient, but 1052 * - this saves all threads on exit from having to grab a 1053 * mutex in order to cv_signal 1054 * - only occurs on forced unmount in the rare case when 1055 * there are outstanding threads within the file system. 1056 */ 1057 while (zfsvfs->z_op_cnt) { 1058 delay(1); 1059 } 1060 1061 zfs_objset_close(zfsvfs); 1062 1063 return (0); 1064 } 1065 /* 1066 * Check the number of active vnodes in the file system. 1067 * Our count is maintained in the vfs structure, but the number 1068 * is off by 1 to indicate a hold on the vfs structure itself. 1069 * 1070 * The '.zfs' directory maintains a reference of its own, and any active 1071 * references underneath are reflected in the vnode count. 1072 */ 1073 if (zfsvfs->z_ctldir == NULL) { 1074 if (vfsp->vfs_count > 1) 1075 return (EBUSY); 1076 } else { 1077 if (vfsp->vfs_count > 2 || 1078 (zfsvfs->z_ctldir->v_count > 1 && !(fflag & MS_FORCE))) { 1079 return (EBUSY); 1080 } 1081 } 1082 1083 vfsp->vfs_flag |= VFS_UNMOUNTED; 1084 zfs_objset_close(zfsvfs); 1085 1086 return (0); 1087 } 1088 1089 static int 1090 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1091 { 1092 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1093 znode_t *zp; 1094 uint64_t object = 0; 1095 uint64_t fid_gen = 0; 1096 uint64_t gen_mask; 1097 uint64_t zp_gen; 1098 int i, err; 1099 1100 *vpp = NULL; 1101 1102 ZFS_ENTER(zfsvfs); 1103 1104 if (fidp->fid_len == LONG_FID_LEN) { 1105 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1106 uint64_t objsetid = 0; 1107 uint64_t setgen = 0; 1108 1109 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1110 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1111 1112 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1113 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1114 1115 ZFS_EXIT(zfsvfs); 1116 1117 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1118 if (err) 1119 return (EINVAL); 1120 ZFS_ENTER(zfsvfs); 1121 } 1122 1123 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1124 zfid_short_t *zfid = (zfid_short_t *)fidp; 1125 1126 for (i = 0; i < sizeof (zfid->zf_object); i++) 1127 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1128 1129 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1130 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1131 } else { 1132 ZFS_EXIT(zfsvfs); 1133 return (EINVAL); 1134 } 1135 1136 /* A zero fid_gen means we are in the .zfs control directories */ 1137 if (fid_gen == 0 && 1138 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1139 *vpp = zfsvfs->z_ctldir; 1140 ASSERT(*vpp != NULL); 1141 if (object == ZFSCTL_INO_SNAPDIR) { 1142 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1143 0, NULL, NULL) == 0); 1144 } else { 1145 VN_HOLD(*vpp); 1146 } 1147 ZFS_EXIT(zfsvfs); 1148 return (0); 1149 } 1150 1151 gen_mask = -1ULL >> (64 - 8 * i); 1152 1153 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1154 if (err = zfs_zget(zfsvfs, object, &zp)) { 1155 ZFS_EXIT(zfsvfs); 1156 return (err); 1157 } 1158 zp_gen = zp->z_phys->zp_gen & gen_mask; 1159 if (zp_gen == 0) 1160 zp_gen = 1; 1161 if (zp->z_unlinked || zp_gen != fid_gen) { 1162 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1163 VN_RELE(ZTOV(zp)); 1164 ZFS_EXIT(zfsvfs); 1165 return (EINVAL); 1166 } 1167 1168 *vpp = ZTOV(zp); 1169 ZFS_EXIT(zfsvfs); 1170 return (0); 1171 } 1172 1173 static void 1174 zfs_objset_close(zfsvfs_t *zfsvfs) 1175 { 1176 znode_t *zp, *nextzp; 1177 objset_t *os = zfsvfs->z_os; 1178 1179 /* 1180 * For forced unmount, at this point all vops except zfs_inactive 1181 * are erroring EIO. We need to now suspend zfs_inactive threads 1182 * while we are freeing dbufs before switching zfs_inactive 1183 * to use behaviour without a objset. 1184 */ 1185 rw_enter(&zfsvfs->z_um_lock, RW_WRITER); 1186 1187 /* 1188 * Release all holds on dbufs 1189 * Note, although we have stopped all other vop threads and 1190 * zfs_inactive(), the dmu can callback via znode_pageout_func() 1191 * which can zfs_znode_free() the znode. 1192 * So we lock z_all_znodes; search the list for a held 1193 * dbuf; drop the lock (we know zp can't disappear if we hold 1194 * a dbuf lock; then regrab the lock and restart. 1195 */ 1196 mutex_enter(&zfsvfs->z_znodes_lock); 1197 for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = nextzp) { 1198 nextzp = list_next(&zfsvfs->z_all_znodes, zp); 1199 if (zp->z_dbuf_held) { 1200 /* dbufs should only be held when force unmounting */ 1201 zp->z_dbuf_held = 0; 1202 mutex_exit(&zfsvfs->z_znodes_lock); 1203 dmu_buf_rele(zp->z_dbuf, NULL); 1204 /* Start again */ 1205 mutex_enter(&zfsvfs->z_znodes_lock); 1206 nextzp = list_head(&zfsvfs->z_all_znodes); 1207 } 1208 } 1209 mutex_exit(&zfsvfs->z_znodes_lock); 1210 1211 /* 1212 * Unregister properties. 1213 */ 1214 if (!dmu_objset_is_snapshot(os)) 1215 zfs_unregister_callbacks(zfsvfs); 1216 1217 /* 1218 * Switch zfs_inactive to behaviour without an objset. 1219 * It just tosses cached pages and frees the znode & vnode. 1220 * Then re-enable zfs_inactive threads in that new behaviour. 1221 */ 1222 zfsvfs->z_unmounted2 = B_TRUE; 1223 rw_exit(&zfsvfs->z_um_lock); /* re-enable any zfs_inactive threads */ 1224 1225 /* 1226 * Close the zil. Can't close the zil while zfs_inactive 1227 * threads are blocked as zil_close can call zfs_inactive. 1228 */ 1229 if (zfsvfs->z_log) { 1230 zil_close(zfsvfs->z_log); 1231 zfsvfs->z_log = NULL; 1232 } 1233 1234 /* 1235 * Evict all dbufs so that cached znodes will be freed 1236 */ 1237 if (dmu_objset_evict_dbufs(os, 1)) { 1238 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1239 (void) dmu_objset_evict_dbufs(os, 0); 1240 } 1241 1242 /* 1243 * Finally close the objset 1244 */ 1245 dmu_objset_close(os); 1246 1247 /* 1248 * We can now safely destroy the '.zfs' directory node. 1249 */ 1250 if (zfsvfs->z_ctldir != NULL) 1251 zfsctl_destroy(zfsvfs); 1252 1253 } 1254 1255 static void 1256 zfs_freevfs(vfs_t *vfsp) 1257 { 1258 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1259 1260 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1261 1262 atomic_add_32(&zfs_active_fs_count, -1); 1263 } 1264 1265 /* 1266 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1267 * so we can't safely do any non-idempotent initialization here. 1268 * Leave that to zfs_init() and zfs_fini(), which are called 1269 * from the module's _init() and _fini() entry points. 1270 */ 1271 /*ARGSUSED*/ 1272 static int 1273 zfs_vfsinit(int fstype, char *name) 1274 { 1275 int error; 1276 1277 zfsfstype = fstype; 1278 1279 /* 1280 * Setup vfsops and vnodeops tables. 1281 */ 1282 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1283 if (error != 0) { 1284 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1285 } 1286 1287 error = zfs_create_op_tables(); 1288 if (error) { 1289 zfs_remove_op_tables(); 1290 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1291 (void) vfs_freevfsops_by_type(zfsfstype); 1292 return (error); 1293 } 1294 1295 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1296 1297 /* 1298 * Unique major number for all zfs mounts. 1299 * If we run out of 32-bit minors, we'll getudev() another major. 1300 */ 1301 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1302 zfs_minor = ZFS_MIN_MINOR; 1303 1304 return (0); 1305 } 1306 1307 void 1308 zfs_init(void) 1309 { 1310 /* 1311 * Initialize .zfs directory structures 1312 */ 1313 zfsctl_init(); 1314 1315 /* 1316 * Initialize znode cache, vnode ops, etc... 1317 */ 1318 zfs_znode_init(); 1319 } 1320 1321 void 1322 zfs_fini(void) 1323 { 1324 zfsctl_fini(); 1325 zfs_znode_fini(); 1326 } 1327 1328 int 1329 zfs_busy(void) 1330 { 1331 return (zfs_active_fs_count != 0); 1332 } 1333 1334 int 1335 zfs_get_stats(objset_t *os, nvlist_t *nv) 1336 { 1337 int error; 1338 uint64_t val; 1339 1340 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &val); 1341 if (error == 0) 1342 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VERSION, val); 1343 1344 return (error); 1345 } 1346 1347 int 1348 zfs_set_version(const char *name, uint64_t newvers) 1349 { 1350 int error; 1351 objset_t *os; 1352 dmu_tx_t *tx; 1353 uint64_t curvers; 1354 1355 /* 1356 * XXX for now, require that the filesystem be unmounted. Would 1357 * be nice to find the zfsvfs_t and just update that if 1358 * possible. 1359 */ 1360 1361 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1362 return (EINVAL); 1363 1364 error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_PRIMARY, &os); 1365 if (error) 1366 return (error); 1367 1368 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1369 8, 1, &curvers); 1370 if (error) 1371 goto out; 1372 if (newvers < curvers) { 1373 error = EINVAL; 1374 goto out; 1375 } 1376 1377 tx = dmu_tx_create(os); 1378 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); 1379 error = dmu_tx_assign(tx, TXG_WAIT); 1380 if (error) { 1381 dmu_tx_abort(tx); 1382 goto out; 1383 } 1384 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 1385 &newvers, tx); 1386 1387 spa_history_internal_log(LOG_DS_UPGRADE, 1388 dmu_objset_spa(os), tx, CRED(), 1389 "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, 1390 dmu_objset_id(os)); 1391 dmu_tx_commit(tx); 1392 1393 out: 1394 dmu_objset_close(os); 1395 return (error); 1396 } 1397 1398 static vfsdef_t vfw = { 1399 VFSDEF_VERSION, 1400 MNTTYPE_ZFS, 1401 zfs_vfsinit, 1402 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS, 1403 &zfs_mntopts 1404 }; 1405 1406 struct modlfs zfs_modlfs = { 1407 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 1408 }; 1409