1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/mntent.h> 38 #include <sys/mount.h> 39 #include <sys/cmn_err.h> 40 #include "fs/fs_subr.h" 41 #include <sys/zfs_znode.h> 42 #include <sys/zfs_dir.h> 43 #include <sys/zil.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/dmu.h> 46 #include <sys/dsl_prop.h> 47 #include <sys/dsl_dataset.h> 48 #include <sys/dsl_deleg.h> 49 #include <sys/spa.h> 50 #include <sys/zap.h> 51 #include <sys/sa.h> 52 #include <sys/sa_impl.h> 53 #include <sys/varargs.h> 54 #include <sys/policy.h> 55 #include <sys/atomic.h> 56 #include <sys/mkdev.h> 57 #include <sys/modctl.h> 58 #include <sys/refstr.h> 59 #include <sys/zfs_ioctl.h> 60 #include <sys/zfs_ctldir.h> 61 #include <sys/zfs_fuid.h> 62 #include <sys/bootconf.h> 63 #include <sys/sunddi.h> 64 #include <sys/dnlc.h> 65 #include <sys/dmu_objset.h> 66 #include <sys/spa_boot.h> 67 #include <sys/zfs_events.h> 68 #include "zfs_comutil.h" 69 70 int zfsfstype; 71 vfsops_t *zfs_vfsops = NULL; 72 static major_t zfs_major; 73 static minor_t zfs_minor; 74 static kmutex_t zfs_dev_mtx; 75 76 extern int sys_shutdown; 77 78 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 79 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 80 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 81 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 82 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 83 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 84 static void zfs_freevfs(vfs_t *vfsp); 85 86 static const fs_operation_def_t zfs_vfsops_template[] = { 87 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 88 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 89 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 90 VFSNAME_ROOT, { .vfs_root = zfs_root }, 91 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 92 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 93 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 94 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 95 NULL, NULL 96 }; 97 98 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 99 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 100 NULL, NULL 101 }; 102 103 /* 104 * We need to keep a count of active fs's. 105 * This is necessary to prevent our module 106 * from being unloaded after a umount -f 107 */ 108 static uint32_t zfs_active_fs_count = 0; 109 110 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 111 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 112 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 113 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 114 115 /* 116 * MO_DEFAULT is not used since the default value is determined 117 * by the equivalent property. 118 */ 119 static mntopt_t mntopts[] = { 120 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 121 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 122 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 123 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 124 }; 125 126 static mntopts_t zfs_mntopts = { 127 sizeof (mntopts) / sizeof (mntopt_t), 128 mntopts 129 }; 130 131 /*ARGSUSED*/ 132 int 133 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 134 { 135 /* 136 * Data integrity is job one. We don't want a compromised kernel 137 * writing to the storage pool, so we never sync during panic. 138 */ 139 if (panicstr) 140 return (0); 141 142 /* 143 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 144 * to sync metadata, which they would otherwise cache indefinitely. 145 * Semantically, the only requirement is that the sync be initiated. 146 * The DMU syncs out txgs frequently, so there's nothing to do. 147 */ 148 if (flag & SYNC_ATTR) 149 return (0); 150 151 if (vfsp != NULL) { 152 /* 153 * Sync a specific filesystem. 154 */ 155 zfsvfs_t *zfsvfs = vfsp->vfs_data; 156 dsl_pool_t *dp; 157 158 ZFS_ENTER(zfsvfs); 159 dp = dmu_objset_pool(zfsvfs->z_os); 160 161 /* 162 * If the system is shutting down, then skip any 163 * filesystems which may exist on a suspended pool. 164 */ 165 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 166 ZFS_EXIT(zfsvfs); 167 return (0); 168 } 169 170 if (zfsvfs->z_log != NULL) 171 zil_commit(zfsvfs->z_log, 0); 172 173 ZFS_EXIT(zfsvfs); 174 } else { 175 /* 176 * Sync all ZFS filesystems. This is what happens when you 177 * run sync(1M). Unlike other filesystems, ZFS honors the 178 * request by waiting for all pools to commit all dirty data. 179 */ 180 spa_sync_allpools(); 181 } 182 183 return (0); 184 } 185 186 static int 187 zfs_create_unique_device(dev_t *dev) 188 { 189 major_t new_major; 190 191 do { 192 ASSERT3U(zfs_minor, <=, MAXMIN32); 193 minor_t start = zfs_minor; 194 do { 195 mutex_enter(&zfs_dev_mtx); 196 if (zfs_minor >= MAXMIN32) { 197 /* 198 * If we're still using the real major 199 * keep out of /dev/zfs and /dev/zvol minor 200 * number space. If we're using a getudev()'ed 201 * major number, we can use all of its minors. 202 */ 203 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 204 zfs_minor = ZFS_MIN_MINOR; 205 else 206 zfs_minor = 0; 207 } else { 208 zfs_minor++; 209 } 210 *dev = makedevice(zfs_major, zfs_minor); 211 mutex_exit(&zfs_dev_mtx); 212 } while (vfs_devismounted(*dev) && zfs_minor != start); 213 if (zfs_minor == start) { 214 /* 215 * We are using all ~262,000 minor numbers for the 216 * current major number. Create a new major number. 217 */ 218 if ((new_major = getudev()) == (major_t)-1) { 219 cmn_err(CE_WARN, 220 "zfs_mount: Can't get unique major " 221 "device number."); 222 return (-1); 223 } 224 mutex_enter(&zfs_dev_mtx); 225 zfs_major = new_major; 226 zfs_minor = 0; 227 228 mutex_exit(&zfs_dev_mtx); 229 } else { 230 break; 231 } 232 /* CONSTANTCONDITION */ 233 } while (1); 234 235 return (0); 236 } 237 238 static void 239 atime_changed_cb(void *arg, uint64_t newval) 240 { 241 zfsvfs_t *zfsvfs = arg; 242 243 if (newval == TRUE) { 244 zfsvfs->z_atime = TRUE; 245 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 246 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 247 } else { 248 zfsvfs->z_atime = FALSE; 249 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 250 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 251 } 252 } 253 254 static void 255 xattr_changed_cb(void *arg, uint64_t newval) 256 { 257 zfsvfs_t *zfsvfs = arg; 258 259 if (newval == TRUE) { 260 /* XXX locking on vfs_flag? */ 261 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 262 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 263 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 264 } else { 265 /* XXX locking on vfs_flag? */ 266 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 267 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 268 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 269 } 270 } 271 272 static void 273 blksz_changed_cb(void *arg, uint64_t newval) 274 { 275 zfsvfs_t *zfsvfs = arg; 276 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); 277 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); 278 ASSERT(ISP2(newval)); 279 280 zfsvfs->z_max_blksz = newval; 281 zfsvfs->z_vfs->vfs_bsize = newval; 282 } 283 284 static void 285 readonly_changed_cb(void *arg, uint64_t newval) 286 { 287 zfsvfs_t *zfsvfs = arg; 288 289 if (newval) { 290 /* XXX locking on vfs_flag? */ 291 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 292 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 293 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 294 } else { 295 /* XXX locking on vfs_flag? */ 296 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 297 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 298 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 299 } 300 } 301 302 static void 303 devices_changed_cb(void *arg, uint64_t newval) 304 { 305 zfsvfs_t *zfsvfs = arg; 306 307 if (newval == FALSE) { 308 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 311 } else { 312 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 313 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 314 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 315 } 316 } 317 318 static void 319 setuid_changed_cb(void *arg, uint64_t newval) 320 { 321 zfsvfs_t *zfsvfs = arg; 322 323 if (newval == FALSE) { 324 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 327 } else { 328 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 329 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 330 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 331 } 332 } 333 334 static void 335 exec_changed_cb(void *arg, uint64_t newval) 336 { 337 zfsvfs_t *zfsvfs = arg; 338 339 if (newval == FALSE) { 340 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 343 } else { 344 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 347 } 348 } 349 350 /* 351 * The nbmand mount option can be changed at mount time. 352 * We can't allow it to be toggled on live file systems or incorrect 353 * behavior may be seen from cifs clients 354 * 355 * This property isn't registered via dsl_prop_register(), but this callback 356 * will be called when a file system is first mounted 357 */ 358 static void 359 nbmand_changed_cb(void *arg, uint64_t newval) 360 { 361 zfsvfs_t *zfsvfs = arg; 362 if (newval == FALSE) { 363 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 364 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 365 } else { 366 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 367 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 368 } 369 } 370 371 static void 372 snapdir_changed_cb(void *arg, uint64_t newval) 373 { 374 zfsvfs_t *zfsvfs = arg; 375 376 zfsvfs->z_show_ctldir = newval; 377 } 378 379 static void 380 vscan_changed_cb(void *arg, uint64_t newval) 381 { 382 zfsvfs_t *zfsvfs = arg; 383 384 zfsvfs->z_vscan = newval; 385 } 386 387 static void 388 acl_mode_changed_cb(void *arg, uint64_t newval) 389 { 390 zfsvfs_t *zfsvfs = arg; 391 392 zfsvfs->z_acl_mode = newval; 393 } 394 395 static void 396 acl_inherit_changed_cb(void *arg, uint64_t newval) 397 { 398 zfsvfs_t *zfsvfs = arg; 399 400 zfsvfs->z_acl_inherit = newval; 401 } 402 403 static int 404 zfs_register_callbacks(vfs_t *vfsp) 405 { 406 struct dsl_dataset *ds = NULL; 407 objset_t *os = NULL; 408 zfsvfs_t *zfsvfs = NULL; 409 uint64_t nbmand; 410 boolean_t readonly = B_FALSE; 411 boolean_t do_readonly = B_FALSE; 412 boolean_t setuid = B_FALSE; 413 boolean_t do_setuid = B_FALSE; 414 boolean_t exec = B_FALSE; 415 boolean_t do_exec = B_FALSE; 416 boolean_t devices = B_FALSE; 417 boolean_t do_devices = B_FALSE; 418 boolean_t xattr = B_FALSE; 419 boolean_t do_xattr = B_FALSE; 420 boolean_t atime = B_FALSE; 421 boolean_t do_atime = B_FALSE; 422 int error = 0; 423 424 ASSERT(vfsp); 425 zfsvfs = vfsp->vfs_data; 426 ASSERT(zfsvfs); 427 os = zfsvfs->z_os; 428 429 /* 430 * The act of registering our callbacks will destroy any mount 431 * options we may have. In order to enable temporary overrides 432 * of mount options, we stash away the current values and 433 * restore them after we register the callbacks. 434 */ 435 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || 436 !spa_writeable(dmu_objset_spa(os))) { 437 readonly = B_TRUE; 438 do_readonly = B_TRUE; 439 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 440 readonly = B_FALSE; 441 do_readonly = B_TRUE; 442 } 443 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 444 devices = B_FALSE; 445 setuid = B_FALSE; 446 do_devices = B_TRUE; 447 do_setuid = B_TRUE; 448 } else { 449 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 450 devices = B_FALSE; 451 do_devices = B_TRUE; 452 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 453 devices = B_TRUE; 454 do_devices = B_TRUE; 455 } 456 457 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 458 setuid = B_FALSE; 459 do_setuid = B_TRUE; 460 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 461 setuid = B_TRUE; 462 do_setuid = B_TRUE; 463 } 464 } 465 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 466 exec = B_FALSE; 467 do_exec = B_TRUE; 468 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 469 exec = B_TRUE; 470 do_exec = B_TRUE; 471 } 472 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 473 xattr = B_FALSE; 474 do_xattr = B_TRUE; 475 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 476 xattr = B_TRUE; 477 do_xattr = B_TRUE; 478 } 479 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 480 atime = B_FALSE; 481 do_atime = B_TRUE; 482 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 483 atime = B_TRUE; 484 do_atime = B_TRUE; 485 } 486 487 /* 488 * nbmand is a special property. It can only be changed at 489 * mount time. 490 * 491 * This is weird, but it is documented to only be changeable 492 * at mount time. 493 */ 494 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 495 nbmand = B_FALSE; 496 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 497 nbmand = B_TRUE; 498 } else { 499 char osname[MAXNAMELEN]; 500 501 dmu_objset_name(os, osname); 502 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 503 NULL)) { 504 return (error); 505 } 506 } 507 508 /* 509 * Register property callbacks. 510 * 511 * It would probably be fine to just check for i/o error from 512 * the first prop_register(), but I guess I like to go 513 * overboard... 514 */ 515 ds = dmu_objset_ds(os); 516 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 517 error = dsl_prop_register(ds, 518 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); 519 error = error ? error : dsl_prop_register(ds, 520 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); 521 error = error ? error : dsl_prop_register(ds, 522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); 523 error = error ? error : dsl_prop_register(ds, 524 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); 525 error = error ? error : dsl_prop_register(ds, 526 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); 527 error = error ? error : dsl_prop_register(ds, 528 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); 529 error = error ? error : dsl_prop_register(ds, 530 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); 531 error = error ? error : dsl_prop_register(ds, 532 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); 533 error = error ? error : dsl_prop_register(ds, 534 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); 535 error = error ? error : dsl_prop_register(ds, 536 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, 537 zfsvfs); 538 error = error ? error : dsl_prop_register(ds, 539 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); 540 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 541 if (error) 542 goto unregister; 543 544 /* 545 * Invoke our callbacks to restore temporary mount options. 546 */ 547 if (do_readonly) 548 readonly_changed_cb(zfsvfs, readonly); 549 if (do_setuid) 550 setuid_changed_cb(zfsvfs, setuid); 551 if (do_exec) 552 exec_changed_cb(zfsvfs, exec); 553 if (do_devices) 554 devices_changed_cb(zfsvfs, devices); 555 if (do_xattr) 556 xattr_changed_cb(zfsvfs, xattr); 557 if (do_atime) 558 atime_changed_cb(zfsvfs, atime); 559 560 nbmand_changed_cb(zfsvfs, nbmand); 561 562 return (0); 563 564 unregister: 565 /* 566 * We may attempt to unregister some callbacks that are not 567 * registered, but this is OK; it will simply return ENOMSG, 568 * which we will ignore. 569 */ 570 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME), 571 atime_changed_cb, zfsvfs); 572 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR), 573 xattr_changed_cb, zfsvfs); 574 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE), 575 blksz_changed_cb, zfsvfs); 576 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY), 577 readonly_changed_cb, zfsvfs); 578 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES), 579 devices_changed_cb, zfsvfs); 580 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID), 581 setuid_changed_cb, zfsvfs); 582 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC), 583 exec_changed_cb, zfsvfs); 584 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR), 585 snapdir_changed_cb, zfsvfs); 586 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE), 587 acl_mode_changed_cb, zfsvfs); 588 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT), 589 acl_inherit_changed_cb, zfsvfs); 590 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN), 591 vscan_changed_cb, zfsvfs); 592 return (error); 593 } 594 595 static int 596 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 597 uint64_t *userp, uint64_t *groupp) 598 { 599 /* 600 * Is it a valid type of object to track? 601 */ 602 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 603 return (SET_ERROR(ENOENT)); 604 605 /* 606 * If we have a NULL data pointer 607 * then assume the id's aren't changing and 608 * return EEXIST to the dmu to let it know to 609 * use the same ids 610 */ 611 if (data == NULL) 612 return (SET_ERROR(EEXIST)); 613 614 if (bonustype == DMU_OT_ZNODE) { 615 znode_phys_t *znp = data; 616 *userp = znp->zp_uid; 617 *groupp = znp->zp_gid; 618 } else { 619 int hdrsize; 620 sa_hdr_phys_t *sap = data; 621 sa_hdr_phys_t sa = *sap; 622 boolean_t swap = B_FALSE; 623 624 ASSERT(bonustype == DMU_OT_SA); 625 626 if (sa.sa_magic == 0) { 627 /* 628 * This should only happen for newly created 629 * files that haven't had the znode data filled 630 * in yet. 631 */ 632 *userp = 0; 633 *groupp = 0; 634 return (0); 635 } 636 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) { 637 sa.sa_magic = SA_MAGIC; 638 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info); 639 swap = B_TRUE; 640 } else { 641 VERIFY3U(sa.sa_magic, ==, SA_MAGIC); 642 } 643 644 hdrsize = sa_hdrsize(&sa); 645 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t)); 646 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 647 SA_UID_OFFSET)); 648 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 649 SA_GID_OFFSET)); 650 if (swap) { 651 *userp = BSWAP_64(*userp); 652 *groupp = BSWAP_64(*groupp); 653 } 654 } 655 return (0); 656 } 657 658 static void 659 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 660 char *domainbuf, int buflen, uid_t *ridp) 661 { 662 uint64_t fuid; 663 const char *domain; 664 665 fuid = strtonum(fuidstr, NULL); 666 667 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 668 if (domain) 669 (void) strlcpy(domainbuf, domain, buflen); 670 else 671 domainbuf[0] = '\0'; 672 *ridp = FUID_RID(fuid); 673 } 674 675 static uint64_t 676 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 677 { 678 switch (type) { 679 case ZFS_PROP_USERUSED: 680 return (DMU_USERUSED_OBJECT); 681 case ZFS_PROP_GROUPUSED: 682 return (DMU_GROUPUSED_OBJECT); 683 case ZFS_PROP_USERQUOTA: 684 return (zfsvfs->z_userquota_obj); 685 case ZFS_PROP_GROUPQUOTA: 686 return (zfsvfs->z_groupquota_obj); 687 } 688 return (0); 689 } 690 691 int 692 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 693 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 694 { 695 int error; 696 zap_cursor_t zc; 697 zap_attribute_t za; 698 zfs_useracct_t *buf = vbuf; 699 uint64_t obj; 700 701 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 702 return (SET_ERROR(ENOTSUP)); 703 704 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 705 if (obj == 0) { 706 *bufsizep = 0; 707 return (0); 708 } 709 710 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 711 (error = zap_cursor_retrieve(&zc, &za)) == 0; 712 zap_cursor_advance(&zc)) { 713 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 714 *bufsizep) 715 break; 716 717 fuidstr_to_sid(zfsvfs, za.za_name, 718 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 719 720 buf->zu_space = za.za_first_integer; 721 buf++; 722 } 723 if (error == ENOENT) 724 error = 0; 725 726 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 727 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 728 *cookiep = zap_cursor_serialize(&zc); 729 zap_cursor_fini(&zc); 730 return (error); 731 } 732 733 /* 734 * buf must be big enough (eg, 32 bytes) 735 */ 736 static int 737 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 738 char *buf, boolean_t addok) 739 { 740 uint64_t fuid; 741 int domainid = 0; 742 743 if (domain && domain[0]) { 744 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 745 if (domainid == -1) 746 return (SET_ERROR(ENOENT)); 747 } 748 fuid = FUID_ENCODE(domainid, rid); 749 (void) sprintf(buf, "%llx", (longlong_t)fuid); 750 return (0); 751 } 752 753 int 754 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 755 const char *domain, uint64_t rid, uint64_t *valp) 756 { 757 char buf[32]; 758 int err; 759 uint64_t obj; 760 761 *valp = 0; 762 763 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 764 return (SET_ERROR(ENOTSUP)); 765 766 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 767 if (obj == 0) 768 return (0); 769 770 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 771 if (err) 772 return (err); 773 774 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 775 if (err == ENOENT) 776 err = 0; 777 return (err); 778 } 779 780 int 781 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 782 const char *domain, uint64_t rid, uint64_t quota) 783 { 784 char buf[32]; 785 int err; 786 dmu_tx_t *tx; 787 uint64_t *objp; 788 boolean_t fuid_dirtied; 789 790 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 791 return (SET_ERROR(EINVAL)); 792 793 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 794 return (SET_ERROR(ENOTSUP)); 795 796 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 797 &zfsvfs->z_groupquota_obj; 798 799 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 800 if (err) 801 return (err); 802 fuid_dirtied = zfsvfs->z_fuid_dirty; 803 804 tx = dmu_tx_create(zfsvfs->z_os); 805 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 806 if (*objp == 0) { 807 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 808 zfs_userquota_prop_prefixes[type]); 809 } 810 if (fuid_dirtied) 811 zfs_fuid_txhold(zfsvfs, tx); 812 err = dmu_tx_assign(tx, TXG_WAIT); 813 if (err) { 814 dmu_tx_abort(tx); 815 return (err); 816 } 817 818 mutex_enter(&zfsvfs->z_lock); 819 if (*objp == 0) { 820 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 821 DMU_OT_NONE, 0, tx); 822 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 823 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 824 } 825 mutex_exit(&zfsvfs->z_lock); 826 827 if (quota == 0) { 828 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 829 if (err == ENOENT) 830 err = 0; 831 } else { 832 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 833 } 834 ASSERT(err == 0); 835 if (fuid_dirtied) 836 zfs_fuid_sync(zfsvfs, tx); 837 dmu_tx_commit(tx); 838 return (err); 839 } 840 841 boolean_t 842 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 843 { 844 char buf[32]; 845 uint64_t used, quota, usedobj, quotaobj; 846 int err; 847 848 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 849 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 850 851 if (quotaobj == 0 || zfsvfs->z_replay) 852 return (B_FALSE); 853 854 (void) sprintf(buf, "%llx", (longlong_t)fuid); 855 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 856 if (err != 0) 857 return (B_FALSE); 858 859 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 860 if (err != 0) 861 return (B_FALSE); 862 return (used >= quota); 863 } 864 865 boolean_t 866 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 867 { 868 uint64_t fuid; 869 uint64_t quotaobj; 870 871 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 872 873 fuid = isgroup ? zp->z_gid : zp->z_uid; 874 875 if (quotaobj == 0 || zfsvfs->z_replay) 876 return (B_FALSE); 877 878 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 879 } 880 881 int 882 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 883 { 884 objset_t *os; 885 zfsvfs_t *zfsvfs; 886 uint64_t zval; 887 int i, error; 888 uint64_t sa_obj; 889 890 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 891 892 /* 893 * We claim to always be readonly so we can open snapshots; 894 * other ZPL code will prevent us from writing to snapshots. 895 */ 896 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 897 if (error) { 898 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 899 return (error); 900 } 901 902 /* 903 * Initialize the zfs-specific filesystem structure. 904 * Should probably make this a kmem cache, shuffle fields, 905 * and just bzero up to z_hold_mtx[]. 906 */ 907 zfsvfs->z_vfs = NULL; 908 zfsvfs->z_parent = zfsvfs; 909 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; 910 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 911 zfsvfs->z_os = os; 912 913 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 914 if (error) { 915 goto out; 916 } else if (zfsvfs->z_version > 917 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 918 (void) printf("Can't mount a version %lld file system " 919 "on a version %lld pool\n. Pool must be upgraded to mount " 920 "this file system.", (u_longlong_t)zfsvfs->z_version, 921 (u_longlong_t)spa_version(dmu_objset_spa(os))); 922 error = SET_ERROR(ENOTSUP); 923 goto out; 924 } 925 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 926 goto out; 927 zfsvfs->z_norm = (int)zval; 928 929 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 930 goto out; 931 zfsvfs->z_utf8 = (zval != 0); 932 933 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 934 goto out; 935 zfsvfs->z_case = (uint_t)zval; 936 937 /* 938 * Fold case on file systems that are always or sometimes case 939 * insensitive. 940 */ 941 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 942 zfsvfs->z_case == ZFS_CASE_MIXED) 943 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 944 945 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 946 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 947 948 if (zfsvfs->z_use_sa) { 949 /* should either have both of these objects or none */ 950 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 951 &sa_obj); 952 if (error) 953 return (error); 954 } else { 955 /* 956 * Pre SA versions file systems should never touch 957 * either the attribute registration or layout objects. 958 */ 959 sa_obj = 0; 960 } 961 962 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 963 &zfsvfs->z_attr_table); 964 if (error) 965 goto out; 966 967 if (zfsvfs->z_version >= ZPL_VERSION_SA) 968 sa_register_update_callback(os, zfs_sa_upgrade); 969 970 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 971 &zfsvfs->z_root); 972 if (error) 973 goto out; 974 ASSERT(zfsvfs->z_root != 0); 975 976 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 977 &zfsvfs->z_unlinkedobj); 978 if (error) 979 goto out; 980 981 error = zap_lookup(os, MASTER_NODE_OBJ, 982 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 983 8, 1, &zfsvfs->z_userquota_obj); 984 if (error && error != ENOENT) 985 goto out; 986 987 error = zap_lookup(os, MASTER_NODE_OBJ, 988 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 989 8, 1, &zfsvfs->z_groupquota_obj); 990 if (error && error != ENOENT) 991 goto out; 992 993 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 994 &zfsvfs->z_fuid_obj); 995 if (error && error != ENOENT) 996 goto out; 997 998 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 999 &zfsvfs->z_shares_dir); 1000 if (error && error != ENOENT) 1001 goto out; 1002 1003 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1004 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 1005 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 1006 offsetof(znode_t, z_link_node)); 1007 rrm_init(&zfsvfs->z_teardown_lock, B_FALSE); 1008 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 1009 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 1010 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1011 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1012 1013 *zfvp = zfsvfs; 1014 return (0); 1015 1016 out: 1017 dmu_objset_disown(os, zfsvfs); 1018 *zfvp = NULL; 1019 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1020 return (error); 1021 } 1022 1023 static int 1024 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 1025 { 1026 int error; 1027 1028 error = zfs_register_callbacks(zfsvfs->z_vfs); 1029 if (error) 1030 return (error); 1031 1032 /* 1033 * Set the objset user_ptr to track its zfsvfs. 1034 */ 1035 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1036 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1037 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1038 1039 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1040 1041 /* 1042 * If we are not mounting (ie: online recv), then we don't 1043 * have to worry about replaying the log as we blocked all 1044 * operations out since we closed the ZIL. 1045 */ 1046 if (mounting) { 1047 boolean_t readonly; 1048 1049 /* 1050 * During replay we remove the read only flag to 1051 * allow replays to succeed. 1052 */ 1053 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1054 if (readonly != 0) 1055 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1056 else 1057 zfs_unlinked_drain(zfsvfs); 1058 1059 /* 1060 * Parse and replay the intent log. 1061 * 1062 * Because of ziltest, this must be done after 1063 * zfs_unlinked_drain(). (Further note: ziltest 1064 * doesn't use readonly mounts, where 1065 * zfs_unlinked_drain() isn't called.) This is because 1066 * ziltest causes spa_sync() to think it's committed, 1067 * but actually it is not, so the intent log contains 1068 * many txg's worth of changes. 1069 * 1070 * In particular, if object N is in the unlinked set in 1071 * the last txg to actually sync, then it could be 1072 * actually freed in a later txg and then reallocated 1073 * in a yet later txg. This would write a "create 1074 * object N" record to the intent log. Normally, this 1075 * would be fine because the spa_sync() would have 1076 * written out the fact that object N is free, before 1077 * we could write the "create object N" intent log 1078 * record. 1079 * 1080 * But when we are in ziltest mode, we advance the "open 1081 * txg" without actually spa_sync()-ing the changes to 1082 * disk. So we would see that object N is still 1083 * allocated and in the unlinked set, and there is an 1084 * intent log record saying to allocate it. 1085 */ 1086 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 1087 if (zil_replay_disable) { 1088 zil_destroy(zfsvfs->z_log, B_FALSE); 1089 } else { 1090 zfsvfs->z_replay = B_TRUE; 1091 zil_replay(zfsvfs->z_os, zfsvfs, 1092 zfs_replay_vector); 1093 zfsvfs->z_replay = B_FALSE; 1094 } 1095 } 1096 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1097 } 1098 1099 return (0); 1100 } 1101 1102 void 1103 zfsvfs_free(zfsvfs_t *zfsvfs) 1104 { 1105 int i; 1106 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1107 1108 /* 1109 * This is a barrier to prevent the filesystem from going away in 1110 * zfs_znode_move() until we can safely ensure that the filesystem is 1111 * not unmounted. We consider the filesystem valid before the barrier 1112 * and invalid after the barrier. 1113 */ 1114 rw_enter(&zfsvfs_lock, RW_READER); 1115 rw_exit(&zfsvfs_lock); 1116 1117 zfs_fuid_destroy(zfsvfs); 1118 1119 mutex_destroy(&zfsvfs->z_znodes_lock); 1120 mutex_destroy(&zfsvfs->z_lock); 1121 list_destroy(&zfsvfs->z_all_znodes); 1122 rrm_destroy(&zfsvfs->z_teardown_lock); 1123 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1124 rw_destroy(&zfsvfs->z_fuid_lock); 1125 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1126 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1127 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1128 } 1129 1130 static void 1131 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1132 { 1133 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1134 if (zfsvfs->z_vfs) { 1135 if (zfsvfs->z_use_fuids) { 1136 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1137 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1138 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1139 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1140 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1141 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1142 } else { 1143 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1144 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1145 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1146 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1147 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1148 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1149 } 1150 } 1151 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1152 } 1153 1154 static int 1155 zfs_domount(vfs_t *vfsp, char *osname) 1156 { 1157 dev_t mount_dev; 1158 uint64_t recordsize, fsid_guid; 1159 int error = 0; 1160 zfsvfs_t *zfsvfs; 1161 1162 ASSERT(vfsp); 1163 ASSERT(osname); 1164 1165 error = zfsvfs_create(osname, &zfsvfs); 1166 if (error) 1167 return (error); 1168 zfsvfs->z_vfs = vfsp; 1169 1170 /* Initialize the generic filesystem structure. */ 1171 vfsp->vfs_bcount = 0; 1172 vfsp->vfs_data = NULL; 1173 1174 if (zfs_create_unique_device(&mount_dev) == -1) { 1175 error = SET_ERROR(ENODEV); 1176 goto out; 1177 } 1178 ASSERT(vfs_devismounted(mount_dev) == 0); 1179 1180 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1181 NULL)) 1182 goto out; 1183 1184 vfsp->vfs_dev = mount_dev; 1185 vfsp->vfs_fstype = zfsfstype; 1186 vfsp->vfs_bsize = recordsize; 1187 vfsp->vfs_flag |= VFS_NOTRUNC; 1188 vfsp->vfs_data = zfsvfs; 1189 1190 /* 1191 * The fsid is 64 bits, composed of an 8-bit fs type, which 1192 * separates our fsid from any other filesystem types, and a 1193 * 56-bit objset unique ID. The objset unique ID is unique to 1194 * all objsets open on this system, provided by unique_create(). 1195 * The 8-bit fs type must be put in the low bits of fsid[1] 1196 * because that's where other Solaris filesystems put it. 1197 */ 1198 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1199 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1200 vfsp->vfs_fsid.val[0] = fsid_guid; 1201 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1202 zfsfstype & 0xFF; 1203 1204 /* 1205 * Set features for file system. 1206 */ 1207 zfs_set_fuid_feature(zfsvfs); 1208 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1209 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1210 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1211 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1212 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1213 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1214 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1215 } 1216 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1217 1218 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1219 uint64_t pval; 1220 1221 atime_changed_cb(zfsvfs, B_FALSE); 1222 readonly_changed_cb(zfsvfs, B_TRUE); 1223 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1224 goto out; 1225 xattr_changed_cb(zfsvfs, pval); 1226 zfsvfs->z_issnap = B_TRUE; 1227 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1228 1229 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1230 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1231 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1232 } else { 1233 error = zfsvfs_setup(zfsvfs, B_TRUE); 1234 } 1235 1236 if (!zfsvfs->z_issnap) 1237 zfsctl_create(zfsvfs); 1238 out: 1239 if (error) { 1240 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1241 zfsvfs_free(zfsvfs); 1242 } else { 1243 atomic_inc_32(&zfs_active_fs_count); 1244 } 1245 1246 return (error); 1247 } 1248 1249 void 1250 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1251 { 1252 objset_t *os = zfsvfs->z_os; 1253 struct dsl_dataset *ds; 1254 1255 /* 1256 * Unregister properties. 1257 */ 1258 if (!dmu_objset_is_snapshot(os)) { 1259 ds = dmu_objset_ds(os); 1260 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1261 zfsvfs) == 0); 1262 1263 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1264 zfsvfs) == 0); 1265 1266 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1267 zfsvfs) == 0); 1268 1269 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1270 zfsvfs) == 0); 1271 1272 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1273 zfsvfs) == 0); 1274 1275 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1276 zfsvfs) == 0); 1277 1278 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1279 zfsvfs) == 0); 1280 1281 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1282 zfsvfs) == 0); 1283 1284 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 1285 zfsvfs) == 0); 1286 1287 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1288 acl_inherit_changed_cb, zfsvfs) == 0); 1289 1290 VERIFY(dsl_prop_unregister(ds, "vscan", 1291 vscan_changed_cb, zfsvfs) == 0); 1292 } 1293 } 1294 1295 /* 1296 * Convert a decimal digit string to a uint64_t integer. 1297 */ 1298 static int 1299 str_to_uint64(char *str, uint64_t *objnum) 1300 { 1301 uint64_t num = 0; 1302 1303 while (*str) { 1304 if (*str < '0' || *str > '9') 1305 return (SET_ERROR(EINVAL)); 1306 1307 num = num*10 + *str++ - '0'; 1308 } 1309 1310 *objnum = num; 1311 return (0); 1312 } 1313 1314 /* 1315 * The boot path passed from the boot loader is in the form of 1316 * "rootpool-name/root-filesystem-object-number'. Convert this 1317 * string to a dataset name: "rootpool-name/root-filesystem-name". 1318 */ 1319 static int 1320 zfs_parse_bootfs(char *bpath, char *outpath) 1321 { 1322 char *slashp; 1323 uint64_t objnum; 1324 int error; 1325 1326 if (*bpath == 0 || *bpath == '/') 1327 return (SET_ERROR(EINVAL)); 1328 1329 (void) strcpy(outpath, bpath); 1330 1331 slashp = strchr(bpath, '/'); 1332 1333 /* if no '/', just return the pool name */ 1334 if (slashp == NULL) { 1335 return (0); 1336 } 1337 1338 /* if not a number, just return the root dataset name */ 1339 if (str_to_uint64(slashp+1, &objnum)) { 1340 return (0); 1341 } 1342 1343 *slashp = '\0'; 1344 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1345 *slashp = '/'; 1346 1347 return (error); 1348 } 1349 1350 /* 1351 * Check that the hex label string is appropriate for the dataset being 1352 * mounted into the global_zone proper. 1353 * 1354 * Return an error if the hex label string is not default or 1355 * admin_low/admin_high. For admin_low labels, the corresponding 1356 * dataset must be readonly. 1357 */ 1358 int 1359 zfs_check_global_label(const char *dsname, const char *hexsl) 1360 { 1361 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1362 return (0); 1363 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1364 return (0); 1365 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1366 /* must be readonly */ 1367 uint64_t rdonly; 1368 1369 if (dsl_prop_get_integer(dsname, 1370 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1371 return (SET_ERROR(EACCES)); 1372 return (rdonly ? 0 : EACCES); 1373 } 1374 return (SET_ERROR(EACCES)); 1375 } 1376 1377 /* 1378 * Determine whether the mount is allowed according to MAC check. 1379 * by comparing (where appropriate) label of the dataset against 1380 * the label of the zone being mounted into. If the dataset has 1381 * no label, create one. 1382 * 1383 * Returns 0 if access allowed, error otherwise (e.g. EACCES) 1384 */ 1385 static int 1386 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1387 { 1388 int error, retv; 1389 zone_t *mntzone = NULL; 1390 ts_label_t *mnt_tsl; 1391 bslabel_t *mnt_sl; 1392 bslabel_t ds_sl; 1393 char ds_hexsl[MAXNAMELEN]; 1394 1395 retv = EACCES; /* assume the worst */ 1396 1397 /* 1398 * Start by getting the dataset label if it exists. 1399 */ 1400 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1401 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1402 if (error) 1403 return (SET_ERROR(EACCES)); 1404 1405 /* 1406 * If labeling is NOT enabled, then disallow the mount of datasets 1407 * which have a non-default label already. No other label checks 1408 * are needed. 1409 */ 1410 if (!is_system_labeled()) { 1411 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1412 return (0); 1413 return (SET_ERROR(EACCES)); 1414 } 1415 1416 /* 1417 * Get the label of the mountpoint. If mounting into the global 1418 * zone (i.e. mountpoint is not within an active zone and the 1419 * zoned property is off), the label must be default or 1420 * admin_low/admin_high only; no other checks are needed. 1421 */ 1422 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1423 if (mntzone->zone_id == GLOBAL_ZONEID) { 1424 uint64_t zoned; 1425 1426 zone_rele(mntzone); 1427 1428 if (dsl_prop_get_integer(osname, 1429 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1430 return (SET_ERROR(EACCES)); 1431 if (!zoned) 1432 return (zfs_check_global_label(osname, ds_hexsl)); 1433 else 1434 /* 1435 * This is the case of a zone dataset being mounted 1436 * initially, before the zone has been fully created; 1437 * allow this mount into global zone. 1438 */ 1439 return (0); 1440 } 1441 1442 mnt_tsl = mntzone->zone_slabel; 1443 ASSERT(mnt_tsl != NULL); 1444 label_hold(mnt_tsl); 1445 mnt_sl = label2bslabel(mnt_tsl); 1446 1447 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1448 /* 1449 * The dataset doesn't have a real label, so fabricate one. 1450 */ 1451 char *str = NULL; 1452 1453 if (l_to_str_internal(mnt_sl, &str) == 0 && 1454 dsl_prop_set_string(osname, 1455 zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1456 ZPROP_SRC_LOCAL, str) == 0) 1457 retv = 0; 1458 if (str != NULL) 1459 kmem_free(str, strlen(str) + 1); 1460 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1461 /* 1462 * Now compare labels to complete the MAC check. If the 1463 * labels are equal then allow access. If the mountpoint 1464 * label dominates the dataset label, allow readonly access. 1465 * Otherwise, access is denied. 1466 */ 1467 if (blequal(mnt_sl, &ds_sl)) 1468 retv = 0; 1469 else if (bldominates(mnt_sl, &ds_sl)) { 1470 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1471 retv = 0; 1472 } 1473 } 1474 1475 label_rele(mnt_tsl); 1476 zone_rele(mntzone); 1477 return (retv); 1478 } 1479 1480 static int 1481 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1482 { 1483 int error = 0; 1484 static int zfsrootdone = 0; 1485 zfsvfs_t *zfsvfs = NULL; 1486 znode_t *zp = NULL; 1487 vnode_t *vp = NULL; 1488 char *zfs_bootfs; 1489 char *zfs_devid; 1490 1491 ASSERT(vfsp); 1492 1493 /* 1494 * The filesystem that we mount as root is defined in the 1495 * boot property "zfs-bootfs" with a format of 1496 * "poolname/root-dataset-objnum". 1497 */ 1498 if (why == ROOT_INIT) { 1499 if (zfsrootdone++) 1500 return (SET_ERROR(EBUSY)); 1501 /* 1502 * the process of doing a spa_load will require the 1503 * clock to be set before we could (for example) do 1504 * something better by looking at the timestamp on 1505 * an uberblock, so just set it to -1. 1506 */ 1507 clkset(-1); 1508 1509 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1510 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1511 "bootfs name"); 1512 return (SET_ERROR(EINVAL)); 1513 } 1514 zfs_devid = spa_get_bootprop("diskdevid"); 1515 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1516 if (zfs_devid) 1517 spa_free_bootprop(zfs_devid); 1518 if (error) { 1519 spa_free_bootprop(zfs_bootfs); 1520 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1521 error); 1522 return (error); 1523 } 1524 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1525 spa_free_bootprop(zfs_bootfs); 1526 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1527 error); 1528 return (error); 1529 } 1530 1531 spa_free_bootprop(zfs_bootfs); 1532 1533 if (error = vfs_lock(vfsp)) 1534 return (error); 1535 1536 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1537 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1538 goto out; 1539 } 1540 1541 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1542 ASSERT(zfsvfs); 1543 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1544 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1545 goto out; 1546 } 1547 1548 vp = ZTOV(zp); 1549 mutex_enter(&vp->v_lock); 1550 vp->v_flag |= VROOT; 1551 mutex_exit(&vp->v_lock); 1552 rootvp = vp; 1553 1554 /* 1555 * Leave rootvp held. The root file system is never unmounted. 1556 */ 1557 1558 vfs_add((struct vnode *)0, vfsp, 1559 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1560 out: 1561 vfs_unlock(vfsp); 1562 return (error); 1563 } else if (why == ROOT_REMOUNT) { 1564 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1565 vfsp->vfs_flag |= VFS_REMOUNT; 1566 1567 /* refresh mount options */ 1568 zfs_unregister_callbacks(vfsp->vfs_data); 1569 return (zfs_register_callbacks(vfsp)); 1570 1571 } else if (why == ROOT_UNMOUNT) { 1572 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1573 (void) zfs_sync(vfsp, 0, 0); 1574 return (0); 1575 } 1576 1577 /* 1578 * if "why" is equal to anything else other than ROOT_INIT, 1579 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1580 */ 1581 return (SET_ERROR(ENOTSUP)); 1582 } 1583 1584 /*ARGSUSED*/ 1585 static int 1586 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1587 { 1588 char *osname; 1589 pathname_t spn; 1590 int error = 0; 1591 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1592 UIO_SYSSPACE : UIO_USERSPACE; 1593 int canwrite; 1594 1595 if (mvp->v_type != VDIR) 1596 return (SET_ERROR(ENOTDIR)); 1597 1598 mutex_enter(&mvp->v_lock); 1599 if ((uap->flags & MS_REMOUNT) == 0 && 1600 (uap->flags & MS_OVERLAY) == 0 && 1601 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1602 mutex_exit(&mvp->v_lock); 1603 return (SET_ERROR(EBUSY)); 1604 } 1605 mutex_exit(&mvp->v_lock); 1606 1607 /* 1608 * ZFS does not support passing unparsed data in via MS_DATA. 1609 * Users should use the MS_OPTIONSTR interface; this means 1610 * that all option parsing is already done and the options struct 1611 * can be interrogated. 1612 */ 1613 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1614 return (SET_ERROR(EINVAL)); 1615 1616 /* 1617 * Get the objset name (the "special" mount argument). 1618 */ 1619 if (error = pn_get(uap->spec, fromspace, &spn)) 1620 return (error); 1621 1622 osname = spn.pn_path; 1623 1624 /* 1625 * Check for mount privilege? 1626 * 1627 * If we don't have privilege then see if 1628 * we have local permission to allow it 1629 */ 1630 error = secpolicy_fs_mount(cr, mvp, vfsp); 1631 if (error) { 1632 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1633 vattr_t vattr; 1634 1635 /* 1636 * Make sure user is the owner of the mount point 1637 * or has sufficient privileges. 1638 */ 1639 1640 vattr.va_mask = AT_UID; 1641 1642 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1643 goto out; 1644 } 1645 1646 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1647 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1648 goto out; 1649 } 1650 secpolicy_fs_mount_clearopts(cr, vfsp); 1651 } else { 1652 goto out; 1653 } 1654 } 1655 1656 /* 1657 * Refuse to mount a filesystem if we are in a local zone and the 1658 * dataset is not visible. 1659 */ 1660 if (!INGLOBALZONE(curproc) && 1661 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1662 error = SET_ERROR(EPERM); 1663 goto out; 1664 } 1665 1666 error = zfs_mount_label_policy(vfsp, osname); 1667 if (error) 1668 goto out; 1669 1670 /* 1671 * When doing a remount, we simply refresh our temporary properties 1672 * according to those options set in the current VFS options. 1673 */ 1674 if (uap->flags & MS_REMOUNT) { 1675 /* refresh mount options */ 1676 zfs_unregister_callbacks(vfsp->vfs_data); 1677 error = zfs_register_callbacks(vfsp); 1678 goto out; 1679 } 1680 1681 error = zfs_domount(vfsp, osname); 1682 1683 /* 1684 * Add an extra VFS_HOLD on our parent vfs so that it can't 1685 * disappear due to a forced unmount. 1686 */ 1687 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1688 VFS_HOLD(mvp->v_vfsp); 1689 1690 out: 1691 rw_enter(&rz_zev_rwlock, RW_READER); 1692 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_zfs_mount) 1693 rz_zev_callbacks->rz_zev_zfs_mount(vfsp, mvp, osname, 1694 uap->flags & MS_REMOUNT ? B_TRUE : B_FALSE); 1695 rw_exit(&rz_zev_rwlock); 1696 pn_free(&spn); 1697 return (error); 1698 } 1699 1700 static int 1701 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1702 { 1703 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1704 dev32_t d32; 1705 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1706 1707 ZFS_ENTER(zfsvfs); 1708 1709 dmu_objset_space(zfsvfs->z_os, 1710 &refdbytes, &availbytes, &usedobjs, &availobjs); 1711 1712 /* 1713 * The underlying storage pool actually uses multiple block sizes. 1714 * We report the fragsize as the smallest block size we support, 1715 * and we report our blocksize as the filesystem's maximum blocksize. 1716 */ 1717 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1718 statp->f_bsize = zfsvfs->z_max_blksz; 1719 1720 /* 1721 * The following report "total" blocks of various kinds in the 1722 * file system, but reported in terms of f_frsize - the 1723 * "fragment" size. 1724 */ 1725 1726 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1727 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1728 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1729 1730 /* 1731 * statvfs() should really be called statufs(), because it assumes 1732 * static metadata. ZFS doesn't preallocate files, so the best 1733 * we can do is report the max that could possibly fit in f_files, 1734 * and that minus the number actually used in f_ffree. 1735 * For f_ffree, report the smaller of the number of object available 1736 * and the number of blocks (each object will take at least a block). 1737 */ 1738 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1739 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1740 statp->f_files = statp->f_ffree + usedobjs; 1741 1742 (void) cmpldev(&d32, vfsp->vfs_dev); 1743 statp->f_fsid = d32; 1744 1745 /* 1746 * We're a zfs filesystem. 1747 */ 1748 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1749 1750 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1751 1752 statp->f_namemax = ZFS_MAXNAMELEN; 1753 1754 /* 1755 * We have all of 32 characters to stuff a string here. 1756 * Is there anything useful we could/should provide? 1757 */ 1758 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1759 1760 ZFS_EXIT(zfsvfs); 1761 return (0); 1762 } 1763 1764 static int 1765 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1766 { 1767 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1768 znode_t *rootzp; 1769 int error; 1770 1771 ZFS_ENTER(zfsvfs); 1772 1773 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1774 if (error == 0) 1775 *vpp = ZTOV(rootzp); 1776 1777 ZFS_EXIT(zfsvfs); 1778 return (error); 1779 } 1780 1781 /* 1782 * Teardown the zfsvfs::z_os. 1783 * 1784 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1785 * and 'z_teardown_inactive_lock' held. 1786 */ 1787 static int 1788 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1789 { 1790 znode_t *zp; 1791 1792 rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1793 1794 if (!unmounting) { 1795 /* 1796 * We purge the parent filesystem's vfsp as the parent 1797 * filesystem and all of its snapshots have their vnode's 1798 * v_vfsp set to the parent's filesystem's vfsp. Note, 1799 * 'z_parent' is self referential for non-snapshots. 1800 */ 1801 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1802 } 1803 1804 /* 1805 * Close the zil. NB: Can't close the zil while zfs_inactive 1806 * threads are blocked as zil_close can call zfs_inactive. 1807 */ 1808 if (zfsvfs->z_log) { 1809 zil_close(zfsvfs->z_log); 1810 zfsvfs->z_log = NULL; 1811 } 1812 1813 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1814 1815 /* 1816 * If we are not unmounting (ie: online recv) and someone already 1817 * unmounted this file system while we were doing the switcheroo, 1818 * or a reopen of z_os failed then just bail out now. 1819 */ 1820 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1821 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1822 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1823 return (SET_ERROR(EIO)); 1824 } 1825 1826 /* 1827 * At this point there are no vops active, and any new vops will 1828 * fail with EIO since we have z_teardown_lock for writer (only 1829 * relavent for forced unmount). 1830 * 1831 * Release all holds on dbufs. 1832 */ 1833 mutex_enter(&zfsvfs->z_znodes_lock); 1834 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1835 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1836 if (zp->z_sa_hdl) { 1837 ASSERT(ZTOV(zp)->v_count > 0); 1838 zfs_znode_dmu_fini(zp); 1839 } 1840 mutex_exit(&zfsvfs->z_znodes_lock); 1841 1842 /* 1843 * If we are unmounting, set the unmounted flag and let new vops 1844 * unblock. zfs_inactive will have the unmounted behavior, and all 1845 * other vops will fail with EIO. 1846 */ 1847 if (unmounting) { 1848 zfsvfs->z_unmounted = B_TRUE; 1849 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1850 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1851 } 1852 1853 /* 1854 * z_os will be NULL if there was an error in attempting to reopen 1855 * zfsvfs, so just return as the properties had already been 1856 * unregistered and cached data had been evicted before. 1857 */ 1858 if (zfsvfs->z_os == NULL) 1859 return (0); 1860 1861 /* 1862 * Unregister properties. 1863 */ 1864 zfs_unregister_callbacks(zfsvfs); 1865 1866 /* 1867 * Evict cached data 1868 */ 1869 if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) && 1870 !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) 1871 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1872 dmu_objset_evict_dbufs(zfsvfs->z_os); 1873 1874 return (0); 1875 } 1876 1877 /*ARGSUSED*/ 1878 static int 1879 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1880 { 1881 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1882 objset_t *os; 1883 int ret; 1884 1885 ret = secpolicy_fs_unmount(cr, vfsp); 1886 if (ret) { 1887 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1888 ZFS_DELEG_PERM_MOUNT, cr)) 1889 return (ret); 1890 } 1891 1892 /* 1893 * We purge the parent filesystem's vfsp as the parent filesystem 1894 * and all of its snapshots have their vnode's v_vfsp set to the 1895 * parent's filesystem's vfsp. Note, 'z_parent' is self 1896 * referential for non-snapshots. 1897 */ 1898 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1899 1900 /* 1901 * Unmount any snapshots mounted under .zfs before unmounting the 1902 * dataset itself. 1903 */ 1904 if (zfsvfs->z_ctldir != NULL && 1905 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1906 return (ret); 1907 } 1908 1909 if (!(fflag & MS_FORCE)) { 1910 /* 1911 * Check the number of active vnodes in the file system. 1912 * Our count is maintained in the vfs structure, but the 1913 * number is off by 1 to indicate a hold on the vfs 1914 * structure itself. 1915 * 1916 * The '.zfs' directory maintains a reference of its 1917 * own, and any active references underneath are 1918 * reflected in the vnode count. 1919 */ 1920 if (zfsvfs->z_ctldir == NULL) { 1921 if (vfsp->vfs_count > 1) 1922 return (SET_ERROR(EBUSY)); 1923 } else { 1924 if (vfsp->vfs_count > 2 || 1925 zfsvfs->z_ctldir->v_count > 1) 1926 return (SET_ERROR(EBUSY)); 1927 } 1928 } 1929 1930 vfsp->vfs_flag |= VFS_UNMOUNTED; 1931 1932 rw_enter(&rz_zev_rwlock, RW_READER); 1933 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_zfs_umount) 1934 rz_zev_callbacks->rz_zev_zfs_umount(vfsp); 1935 rw_exit(&rz_zev_rwlock); 1936 1937 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1938 os = zfsvfs->z_os; 1939 1940 /* 1941 * z_os will be NULL if there was an error in 1942 * attempting to reopen zfsvfs. 1943 */ 1944 if (os != NULL) { 1945 /* 1946 * Unset the objset user_ptr. 1947 */ 1948 mutex_enter(&os->os_user_ptr_lock); 1949 dmu_objset_set_user(os, NULL); 1950 mutex_exit(&os->os_user_ptr_lock); 1951 1952 /* 1953 * Finally release the objset 1954 */ 1955 dmu_objset_disown(os, zfsvfs); 1956 } 1957 1958 /* 1959 * We can now safely destroy the '.zfs' directory node. 1960 */ 1961 if (zfsvfs->z_ctldir != NULL) 1962 zfsctl_destroy(zfsvfs); 1963 1964 return (0); 1965 } 1966 1967 static int 1968 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1969 { 1970 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1971 znode_t *zp; 1972 uint64_t object = 0; 1973 uint64_t fid_gen = 0; 1974 uint64_t gen_mask; 1975 uint64_t zp_gen; 1976 int i, err; 1977 1978 *vpp = NULL; 1979 1980 ZFS_ENTER(zfsvfs); 1981 1982 if (fidp->fid_len == LONG_FID_LEN) { 1983 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1984 uint64_t objsetid = 0; 1985 uint64_t setgen = 0; 1986 1987 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1988 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1989 1990 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1991 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1992 1993 ZFS_EXIT(zfsvfs); 1994 1995 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1996 if (err) 1997 return (SET_ERROR(EINVAL)); 1998 ZFS_ENTER(zfsvfs); 1999 } 2000 2001 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 2002 zfid_short_t *zfid = (zfid_short_t *)fidp; 2003 2004 for (i = 0; i < sizeof (zfid->zf_object); i++) 2005 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 2006 2007 for (i = 0; i < sizeof (zfid->zf_gen); i++) 2008 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 2009 } else { 2010 ZFS_EXIT(zfsvfs); 2011 return (SET_ERROR(EINVAL)); 2012 } 2013 2014 /* A zero fid_gen means we are in the .zfs control directories */ 2015 if (fid_gen == 0 && 2016 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 2017 *vpp = zfsvfs->z_ctldir; 2018 ASSERT(*vpp != NULL); 2019 if (object == ZFSCTL_INO_SNAPDIR) { 2020 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 2021 0, NULL, NULL, NULL, NULL, NULL) == 0); 2022 } else { 2023 VN_HOLD(*vpp); 2024 } 2025 ZFS_EXIT(zfsvfs); 2026 return (0); 2027 } 2028 2029 gen_mask = -1ULL >> (64 - 8 * i); 2030 2031 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 2032 if (err = zfs_zget(zfsvfs, object, &zp)) { 2033 ZFS_EXIT(zfsvfs); 2034 return (err); 2035 } 2036 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 2037 sizeof (uint64_t)); 2038 zp_gen = zp_gen & gen_mask; 2039 if (zp_gen == 0) 2040 zp_gen = 1; 2041 if (zp->z_unlinked || zp_gen != fid_gen) { 2042 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 2043 VN_RELE(ZTOV(zp)); 2044 ZFS_EXIT(zfsvfs); 2045 return (SET_ERROR(EINVAL)); 2046 } 2047 2048 *vpp = ZTOV(zp); 2049 ZFS_EXIT(zfsvfs); 2050 return (0); 2051 } 2052 2053 /* 2054 * Block out VOPs and close zfsvfs_t::z_os 2055 * 2056 * Note, if successful, then we return with the 'z_teardown_lock' and 2057 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying 2058 * dataset and objset intact so that they can be atomically handed off during 2059 * a subsequent rollback or recv operation and the resume thereafter. 2060 */ 2061 int 2062 zfs_suspend_fs(zfsvfs_t *zfsvfs) 2063 { 2064 int error; 2065 2066 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2067 return (error); 2068 2069 return (0); 2070 } 2071 2072 /* 2073 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset 2074 * is an invariant across any of the operations that can be performed while the 2075 * filesystem was suspended. Whether it succeeded or failed, the preconditions 2076 * are the same: the relevant objset and associated dataset are owned by 2077 * zfsvfs, held, and long held on entry. 2078 */ 2079 int 2080 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 2081 { 2082 int err; 2083 znode_t *zp; 2084 uint64_t sa_obj = 0; 2085 2086 ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2087 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2088 2089 /* 2090 * We already own this, so just hold and rele it to update the 2091 * objset_t, as the one we had before may have been evicted. 2092 */ 2093 VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os)); 2094 VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs); 2095 VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset)); 2096 dmu_objset_rele(zfsvfs->z_os, zfsvfs); 2097 2098 /* 2099 * Make sure version hasn't changed 2100 */ 2101 2102 err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION, 2103 &zfsvfs->z_version); 2104 2105 if (err) 2106 goto bail; 2107 2108 err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 2109 ZFS_SA_ATTRS, 8, 1, &sa_obj); 2110 2111 if (err && zfsvfs->z_version >= ZPL_VERSION_SA) 2112 goto bail; 2113 2114 if ((err = sa_setup(zfsvfs->z_os, sa_obj, 2115 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0) 2116 goto bail; 2117 2118 if (zfsvfs->z_version >= ZPL_VERSION_SA) 2119 sa_register_update_callback(zfsvfs->z_os, 2120 zfs_sa_upgrade); 2121 2122 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2123 2124 zfs_set_fuid_feature(zfsvfs); 2125 2126 /* 2127 * Attempt to re-establish all the active znodes with 2128 * their dbufs. If a zfs_rezget() fails, then we'll let 2129 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2130 * when they try to use their znode. 2131 */ 2132 mutex_enter(&zfsvfs->z_znodes_lock); 2133 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2134 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2135 (void) zfs_rezget(zp); 2136 } 2137 mutex_exit(&zfsvfs->z_znodes_lock); 2138 2139 bail: 2140 /* release the VOPs */ 2141 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2142 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 2143 2144 if (err) { 2145 /* 2146 * Since we couldn't setup the sa framework, try to force 2147 * unmount this file system. 2148 */ 2149 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2150 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2151 } 2152 return (err); 2153 } 2154 2155 static void 2156 zfs_freevfs(vfs_t *vfsp) 2157 { 2158 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2159 2160 /* 2161 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2162 * from zfs_mount(). Release it here. If we came through 2163 * zfs_mountroot() instead, we didn't grab an extra hold, so 2164 * skip the VFS_RELE for rootvfs. 2165 */ 2166 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2167 VFS_RELE(zfsvfs->z_parent->z_vfs); 2168 2169 zfsvfs_free(zfsvfs); 2170 2171 atomic_dec_32(&zfs_active_fs_count); 2172 } 2173 2174 /* 2175 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2176 * so we can't safely do any non-idempotent initialization here. 2177 * Leave that to zfs_init() and zfs_fini(), which are called 2178 * from the module's _init() and _fini() entry points. 2179 */ 2180 /*ARGSUSED*/ 2181 static int 2182 zfs_vfsinit(int fstype, char *name) 2183 { 2184 int error; 2185 2186 zfsfstype = fstype; 2187 2188 /* 2189 * Setup vfsops and vnodeops tables. 2190 */ 2191 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2192 if (error != 0) { 2193 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2194 } 2195 2196 error = zfs_create_op_tables(); 2197 if (error) { 2198 zfs_remove_op_tables(); 2199 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2200 (void) vfs_freevfsops_by_type(zfsfstype); 2201 return (error); 2202 } 2203 2204 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2205 2206 /* 2207 * Unique major number for all zfs mounts. 2208 * If we run out of 32-bit minors, we'll getudev() another major. 2209 */ 2210 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2211 zfs_minor = ZFS_MIN_MINOR; 2212 2213 return (0); 2214 } 2215 2216 void 2217 zfs_init(void) 2218 { 2219 /* 2220 * Initialize .zfs directory structures 2221 */ 2222 zfsctl_init(); 2223 2224 /* 2225 * Initialize znode cache, vnode ops, etc... 2226 */ 2227 zfs_znode_init(); 2228 2229 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2230 } 2231 2232 void 2233 zfs_fini(void) 2234 { 2235 zfsctl_fini(); 2236 zfs_znode_fini(); 2237 } 2238 2239 int 2240 zfs_busy(void) 2241 { 2242 return (zfs_active_fs_count != 0); 2243 } 2244 2245 int 2246 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2247 { 2248 int error; 2249 objset_t *os = zfsvfs->z_os; 2250 dmu_tx_t *tx; 2251 2252 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2253 return (SET_ERROR(EINVAL)); 2254 2255 if (newvers < zfsvfs->z_version) 2256 return (SET_ERROR(EINVAL)); 2257 2258 if (zfs_spa_version_map(newvers) > 2259 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2260 return (SET_ERROR(ENOTSUP)); 2261 2262 tx = dmu_tx_create(os); 2263 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2264 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2265 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2266 ZFS_SA_ATTRS); 2267 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2268 } 2269 error = dmu_tx_assign(tx, TXG_WAIT); 2270 if (error) { 2271 dmu_tx_abort(tx); 2272 return (error); 2273 } 2274 2275 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2276 8, 1, &newvers, tx); 2277 2278 if (error) { 2279 dmu_tx_commit(tx); 2280 return (error); 2281 } 2282 2283 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2284 uint64_t sa_obj; 2285 2286 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2287 SPA_VERSION_SA); 2288 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2289 DMU_OT_NONE, 0, tx); 2290 2291 error = zap_add(os, MASTER_NODE_OBJ, 2292 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2293 ASSERT0(error); 2294 2295 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2296 sa_register_update_callback(os, zfs_sa_upgrade); 2297 } 2298 2299 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2300 "from %llu to %llu", zfsvfs->z_version, newvers); 2301 2302 dmu_tx_commit(tx); 2303 2304 zfsvfs->z_version = newvers; 2305 2306 zfs_set_fuid_feature(zfsvfs); 2307 2308 return (0); 2309 } 2310 2311 /* 2312 * Read a property stored within the master node. 2313 */ 2314 int 2315 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2316 { 2317 const char *pname; 2318 int error = ENOENT; 2319 2320 /* 2321 * Look up the file system's value for the property. For the 2322 * version property, we look up a slightly different string. 2323 */ 2324 if (prop == ZFS_PROP_VERSION) 2325 pname = ZPL_VERSION_STR; 2326 else 2327 pname = zfs_prop_to_name(prop); 2328 2329 if (os != NULL) 2330 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2331 2332 if (error == ENOENT) { 2333 /* No value set, use the default value */ 2334 switch (prop) { 2335 case ZFS_PROP_VERSION: 2336 *value = ZPL_VERSION; 2337 break; 2338 case ZFS_PROP_NORMALIZE: 2339 case ZFS_PROP_UTF8ONLY: 2340 *value = 0; 2341 break; 2342 case ZFS_PROP_CASE: 2343 *value = ZFS_CASE_SENSITIVE; 2344 break; 2345 default: 2346 return (error); 2347 } 2348 error = 0; 2349 } 2350 return (error); 2351 } 2352 2353 static vfsdef_t vfw = { 2354 VFSDEF_VERSION, 2355 MNTTYPE_ZFS, 2356 zfs_vfsinit, 2357 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2358 VSW_XID|VSW_ZMOUNT, 2359 &zfs_mntopts 2360 }; 2361 2362 struct modlfs zfs_modlfs = { 2363 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2364 }; 2365