xref: /titanic_41/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision 1c21d43942e6e4ea4bc6e0b8c9827a1e9c2119f1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/sysmacros.h>
30 #include <sys/kmem.h>
31 #include <sys/pathname.h>
32 #include <sys/vnode.h>
33 #include <sys/vfs.h>
34 #include <sys/vfs_opreg.h>
35 #include <sys/mntent.h>
36 #include <sys/mount.h>
37 #include <sys/cmn_err.h>
38 #include "fs/fs_subr.h"
39 #include <sys/zfs_znode.h>
40 #include <sys/zfs_dir.h>
41 #include <sys/zil.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/dmu.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_dataset.h>
46 #include <sys/dsl_deleg.h>
47 #include <sys/spa.h>
48 #include <sys/zap.h>
49 #include <sys/varargs.h>
50 #include <sys/policy.h>
51 #include <sys/atomic.h>
52 #include <sys/mkdev.h>
53 #include <sys/modctl.h>
54 #include <sys/refstr.h>
55 #include <sys/zfs_ioctl.h>
56 #include <sys/zfs_ctldir.h>
57 #include <sys/zfs_fuid.h>
58 #include <sys/bootconf.h>
59 #include <sys/sunddi.h>
60 #include <sys/dnlc.h>
61 #include <sys/dmu_objset.h>
62 #include <sys/spa_boot.h>
63 
64 int zfsfstype;
65 vfsops_t *zfs_vfsops = NULL;
66 static major_t zfs_major;
67 static minor_t zfs_minor;
68 static kmutex_t	zfs_dev_mtx;
69 
70 extern int sys_shutdown;
71 
72 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
73 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
74 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
75 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
76 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
77 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
78 static void zfs_freevfs(vfs_t *vfsp);
79 
80 static const fs_operation_def_t zfs_vfsops_template[] = {
81 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
82 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
83 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
84 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
85 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
86 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
87 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
88 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
89 	NULL,			NULL
90 };
91 
92 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
93 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
94 	NULL,			NULL
95 };
96 
97 /*
98  * We need to keep a count of active fs's.
99  * This is necessary to prevent our module
100  * from being unloaded after a umount -f
101  */
102 static uint32_t	zfs_active_fs_count = 0;
103 
104 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
105 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
107 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
108 
109 /*
110  * MO_DEFAULT is not used since the default value is determined
111  * by the equivalent property.
112  */
113 static mntopt_t mntopts[] = {
114 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
115 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
116 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
117 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
118 };
119 
120 static mntopts_t zfs_mntopts = {
121 	sizeof (mntopts) / sizeof (mntopt_t),
122 	mntopts
123 };
124 
125 /*ARGSUSED*/
126 int
127 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
128 {
129 	/*
130 	 * Data integrity is job one.  We don't want a compromised kernel
131 	 * writing to the storage pool, so we never sync during panic.
132 	 */
133 	if (panicstr)
134 		return (0);
135 
136 	/*
137 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
138 	 * to sync metadata, which they would otherwise cache indefinitely.
139 	 * Semantically, the only requirement is that the sync be initiated.
140 	 * The DMU syncs out txgs frequently, so there's nothing to do.
141 	 */
142 	if (flag & SYNC_ATTR)
143 		return (0);
144 
145 	if (vfsp != NULL) {
146 		/*
147 		 * Sync a specific filesystem.
148 		 */
149 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
150 		dsl_pool_t *dp;
151 
152 		ZFS_ENTER(zfsvfs);
153 		dp = dmu_objset_pool(zfsvfs->z_os);
154 
155 		/*
156 		 * If the system is shutting down, then skip any
157 		 * filesystems which may exist on a suspended pool.
158 		 */
159 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
160 			ZFS_EXIT(zfsvfs);
161 			return (0);
162 		}
163 
164 		if (zfsvfs->z_log != NULL)
165 			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
166 		else
167 			txg_wait_synced(dp, 0);
168 		ZFS_EXIT(zfsvfs);
169 	} else {
170 		/*
171 		 * Sync all ZFS filesystems.  This is what happens when you
172 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
173 		 * request by waiting for all pools to commit all dirty data.
174 		 */
175 		spa_sync_allpools();
176 	}
177 
178 	return (0);
179 }
180 
181 static int
182 zfs_create_unique_device(dev_t *dev)
183 {
184 	major_t new_major;
185 
186 	do {
187 		ASSERT3U(zfs_minor, <=, MAXMIN32);
188 		minor_t start = zfs_minor;
189 		do {
190 			mutex_enter(&zfs_dev_mtx);
191 			if (zfs_minor >= MAXMIN32) {
192 				/*
193 				 * If we're still using the real major
194 				 * keep out of /dev/zfs and /dev/zvol minor
195 				 * number space.  If we're using a getudev()'ed
196 				 * major number, we can use all of its minors.
197 				 */
198 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
199 					zfs_minor = ZFS_MIN_MINOR;
200 				else
201 					zfs_minor = 0;
202 			} else {
203 				zfs_minor++;
204 			}
205 			*dev = makedevice(zfs_major, zfs_minor);
206 			mutex_exit(&zfs_dev_mtx);
207 		} while (vfs_devismounted(*dev) && zfs_minor != start);
208 		if (zfs_minor == start) {
209 			/*
210 			 * We are using all ~262,000 minor numbers for the
211 			 * current major number.  Create a new major number.
212 			 */
213 			if ((new_major = getudev()) == (major_t)-1) {
214 				cmn_err(CE_WARN,
215 				    "zfs_mount: Can't get unique major "
216 				    "device number.");
217 				return (-1);
218 			}
219 			mutex_enter(&zfs_dev_mtx);
220 			zfs_major = new_major;
221 			zfs_minor = 0;
222 
223 			mutex_exit(&zfs_dev_mtx);
224 		} else {
225 			break;
226 		}
227 		/* CONSTANTCONDITION */
228 	} while (1);
229 
230 	return (0);
231 }
232 
233 static void
234 atime_changed_cb(void *arg, uint64_t newval)
235 {
236 	zfsvfs_t *zfsvfs = arg;
237 
238 	if (newval == TRUE) {
239 		zfsvfs->z_atime = TRUE;
240 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
241 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
242 	} else {
243 		zfsvfs->z_atime = FALSE;
244 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
245 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
246 	}
247 }
248 
249 static void
250 xattr_changed_cb(void *arg, uint64_t newval)
251 {
252 	zfsvfs_t *zfsvfs = arg;
253 
254 	if (newval == TRUE) {
255 		/* XXX locking on vfs_flag? */
256 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
257 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
258 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
259 	} else {
260 		/* XXX locking on vfs_flag? */
261 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
262 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
263 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
264 	}
265 }
266 
267 static void
268 blksz_changed_cb(void *arg, uint64_t newval)
269 {
270 	zfsvfs_t *zfsvfs = arg;
271 
272 	if (newval < SPA_MINBLOCKSIZE ||
273 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
274 		newval = SPA_MAXBLOCKSIZE;
275 
276 	zfsvfs->z_max_blksz = newval;
277 	zfsvfs->z_vfs->vfs_bsize = newval;
278 }
279 
280 static void
281 readonly_changed_cb(void *arg, uint64_t newval)
282 {
283 	zfsvfs_t *zfsvfs = arg;
284 
285 	if (newval) {
286 		/* XXX locking on vfs_flag? */
287 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
288 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
289 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
290 	} else {
291 		/* XXX locking on vfs_flag? */
292 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
293 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
294 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
295 	}
296 }
297 
298 static void
299 devices_changed_cb(void *arg, uint64_t newval)
300 {
301 	zfsvfs_t *zfsvfs = arg;
302 
303 	if (newval == FALSE) {
304 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
305 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
306 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
307 	} else {
308 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
309 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
310 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
311 	}
312 }
313 
314 static void
315 setuid_changed_cb(void *arg, uint64_t newval)
316 {
317 	zfsvfs_t *zfsvfs = arg;
318 
319 	if (newval == FALSE) {
320 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
321 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
322 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
323 	} else {
324 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
325 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
326 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
327 	}
328 }
329 
330 static void
331 exec_changed_cb(void *arg, uint64_t newval)
332 {
333 	zfsvfs_t *zfsvfs = arg;
334 
335 	if (newval == FALSE) {
336 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
337 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
338 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
339 	} else {
340 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
341 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
342 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
343 	}
344 }
345 
346 /*
347  * The nbmand mount option can be changed at mount time.
348  * We can't allow it to be toggled on live file systems or incorrect
349  * behavior may be seen from cifs clients
350  *
351  * This property isn't registered via dsl_prop_register(), but this callback
352  * will be called when a file system is first mounted
353  */
354 static void
355 nbmand_changed_cb(void *arg, uint64_t newval)
356 {
357 	zfsvfs_t *zfsvfs = arg;
358 	if (newval == FALSE) {
359 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
360 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
361 	} else {
362 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
363 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
364 	}
365 }
366 
367 static void
368 snapdir_changed_cb(void *arg, uint64_t newval)
369 {
370 	zfsvfs_t *zfsvfs = arg;
371 
372 	zfsvfs->z_show_ctldir = newval;
373 }
374 
375 static void
376 vscan_changed_cb(void *arg, uint64_t newval)
377 {
378 	zfsvfs_t *zfsvfs = arg;
379 
380 	zfsvfs->z_vscan = newval;
381 }
382 
383 static void
384 acl_mode_changed_cb(void *arg, uint64_t newval)
385 {
386 	zfsvfs_t *zfsvfs = arg;
387 
388 	zfsvfs->z_acl_mode = newval;
389 }
390 
391 static void
392 acl_inherit_changed_cb(void *arg, uint64_t newval)
393 {
394 	zfsvfs_t *zfsvfs = arg;
395 
396 	zfsvfs->z_acl_inherit = newval;
397 }
398 
399 static int
400 zfs_register_callbacks(vfs_t *vfsp)
401 {
402 	struct dsl_dataset *ds = NULL;
403 	objset_t *os = NULL;
404 	zfsvfs_t *zfsvfs = NULL;
405 	uint64_t nbmand;
406 	int readonly, do_readonly = B_FALSE;
407 	int setuid, do_setuid = B_FALSE;
408 	int exec, do_exec = B_FALSE;
409 	int devices, do_devices = B_FALSE;
410 	int xattr, do_xattr = B_FALSE;
411 	int atime, do_atime = B_FALSE;
412 	int error = 0;
413 
414 	ASSERT(vfsp);
415 	zfsvfs = vfsp->vfs_data;
416 	ASSERT(zfsvfs);
417 	os = zfsvfs->z_os;
418 
419 	/*
420 	 * The act of registering our callbacks will destroy any mount
421 	 * options we may have.  In order to enable temporary overrides
422 	 * of mount options, we stash away the current values and
423 	 * restore them after we register the callbacks.
424 	 */
425 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
426 		readonly = B_TRUE;
427 		do_readonly = B_TRUE;
428 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
429 		readonly = B_FALSE;
430 		do_readonly = B_TRUE;
431 	}
432 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
433 		devices = B_FALSE;
434 		setuid = B_FALSE;
435 		do_devices = B_TRUE;
436 		do_setuid = B_TRUE;
437 	} else {
438 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
439 			devices = B_FALSE;
440 			do_devices = B_TRUE;
441 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
442 			devices = B_TRUE;
443 			do_devices = B_TRUE;
444 		}
445 
446 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
447 			setuid = B_FALSE;
448 			do_setuid = B_TRUE;
449 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
450 			setuid = B_TRUE;
451 			do_setuid = B_TRUE;
452 		}
453 	}
454 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
455 		exec = B_FALSE;
456 		do_exec = B_TRUE;
457 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
458 		exec = B_TRUE;
459 		do_exec = B_TRUE;
460 	}
461 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
462 		xattr = B_FALSE;
463 		do_xattr = B_TRUE;
464 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
465 		xattr = B_TRUE;
466 		do_xattr = B_TRUE;
467 	}
468 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
469 		atime = B_FALSE;
470 		do_atime = B_TRUE;
471 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
472 		atime = B_TRUE;
473 		do_atime = B_TRUE;
474 	}
475 
476 	/*
477 	 * nbmand is a special property.  It can only be changed at
478 	 * mount time.
479 	 *
480 	 * This is weird, but it is documented to only be changeable
481 	 * at mount time.
482 	 */
483 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
484 		nbmand = B_FALSE;
485 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
486 		nbmand = B_TRUE;
487 	} else {
488 		char osname[MAXNAMELEN];
489 
490 		dmu_objset_name(os, osname);
491 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
492 		    NULL)) {
493 			return (error);
494 		}
495 	}
496 
497 	/*
498 	 * Register property callbacks.
499 	 *
500 	 * It would probably be fine to just check for i/o error from
501 	 * the first prop_register(), but I guess I like to go
502 	 * overboard...
503 	 */
504 	ds = dmu_objset_ds(os);
505 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
506 	error = error ? error : dsl_prop_register(ds,
507 	    "xattr", xattr_changed_cb, zfsvfs);
508 	error = error ? error : dsl_prop_register(ds,
509 	    "recordsize", blksz_changed_cb, zfsvfs);
510 	error = error ? error : dsl_prop_register(ds,
511 	    "readonly", readonly_changed_cb, zfsvfs);
512 	error = error ? error : dsl_prop_register(ds,
513 	    "devices", devices_changed_cb, zfsvfs);
514 	error = error ? error : dsl_prop_register(ds,
515 	    "setuid", setuid_changed_cb, zfsvfs);
516 	error = error ? error : dsl_prop_register(ds,
517 	    "exec", exec_changed_cb, zfsvfs);
518 	error = error ? error : dsl_prop_register(ds,
519 	    "snapdir", snapdir_changed_cb, zfsvfs);
520 	error = error ? error : dsl_prop_register(ds,
521 	    "aclmode", acl_mode_changed_cb, zfsvfs);
522 	error = error ? error : dsl_prop_register(ds,
523 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
524 	error = error ? error : dsl_prop_register(ds,
525 	    "vscan", vscan_changed_cb, zfsvfs);
526 	if (error)
527 		goto unregister;
528 
529 	/*
530 	 * Invoke our callbacks to restore temporary mount options.
531 	 */
532 	if (do_readonly)
533 		readonly_changed_cb(zfsvfs, readonly);
534 	if (do_setuid)
535 		setuid_changed_cb(zfsvfs, setuid);
536 	if (do_exec)
537 		exec_changed_cb(zfsvfs, exec);
538 	if (do_devices)
539 		devices_changed_cb(zfsvfs, devices);
540 	if (do_xattr)
541 		xattr_changed_cb(zfsvfs, xattr);
542 	if (do_atime)
543 		atime_changed_cb(zfsvfs, atime);
544 
545 	nbmand_changed_cb(zfsvfs, nbmand);
546 
547 	return (0);
548 
549 unregister:
550 	/*
551 	 * We may attempt to unregister some callbacks that are not
552 	 * registered, but this is OK; it will simply return ENOMSG,
553 	 * which we will ignore.
554 	 */
555 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
556 	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
557 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
558 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
559 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
560 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
561 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
562 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
563 	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
564 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
565 	    zfsvfs);
566 	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
567 	return (error);
568 
569 }
570 
571 static void
572 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid,
573     int64_t delta, dmu_tx_t *tx)
574 {
575 	uint64_t used = 0;
576 	char buf[32];
577 	int err;
578 	uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
579 
580 	if (delta == 0)
581 		return;
582 
583 	(void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid);
584 	err = zap_lookup(os, obj, buf, 8, 1, &used);
585 	ASSERT(err == 0 || err == ENOENT);
586 	/* no underflow/overflow */
587 	ASSERT(delta > 0 || used >= -delta);
588 	ASSERT(delta < 0 || used + delta > used);
589 	used += delta;
590 	if (used == 0)
591 		err = zap_remove(os, obj, buf, tx);
592 	else
593 		err = zap_update(os, obj, buf, 8, 1, &used, tx);
594 	ASSERT(err == 0);
595 }
596 
597 static int
598 zfs_space_delta_cb(dmu_object_type_t bonustype, void *bonus,
599     uint64_t *userp, uint64_t *groupp)
600 {
601 	znode_phys_t *znp = bonus;
602 
603 	if (bonustype != DMU_OT_ZNODE)
604 		return (ENOENT);
605 
606 	*userp = znp->zp_uid;
607 	*groupp = znp->zp_gid;
608 	return (0);
609 }
610 
611 static void
612 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
613     char *domainbuf, int buflen, uid_t *ridp)
614 {
615 	uint64_t fuid;
616 	const char *domain;
617 
618 	fuid = strtonum(fuidstr, NULL);
619 
620 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
621 	if (domain)
622 		(void) strlcpy(domainbuf, domain, buflen);
623 	else
624 		domainbuf[0] = '\0';
625 	*ridp = FUID_RID(fuid);
626 }
627 
628 static uint64_t
629 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
630 {
631 	switch (type) {
632 	case ZFS_PROP_USERUSED:
633 		return (DMU_USERUSED_OBJECT);
634 	case ZFS_PROP_GROUPUSED:
635 		return (DMU_GROUPUSED_OBJECT);
636 	case ZFS_PROP_USERQUOTA:
637 		return (zfsvfs->z_userquota_obj);
638 	case ZFS_PROP_GROUPQUOTA:
639 		return (zfsvfs->z_groupquota_obj);
640 	}
641 	return (0);
642 }
643 
644 int
645 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
646     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
647 {
648 	int error;
649 	zap_cursor_t zc;
650 	zap_attribute_t za;
651 	zfs_useracct_t *buf = vbuf;
652 	uint64_t obj;
653 
654 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
655 		return (ENOTSUP);
656 
657 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
658 	if (obj == 0) {
659 		*bufsizep = 0;
660 		return (0);
661 	}
662 
663 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
664 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
665 	    zap_cursor_advance(&zc)) {
666 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
667 		    *bufsizep)
668 			break;
669 
670 		fuidstr_to_sid(zfsvfs, za.za_name,
671 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
672 
673 		buf->zu_space = za.za_first_integer;
674 		buf++;
675 	}
676 	if (error == ENOENT)
677 		error = 0;
678 
679 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
680 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
681 	*cookiep = zap_cursor_serialize(&zc);
682 	zap_cursor_fini(&zc);
683 	return (error);
684 }
685 
686 /*
687  * buf must be big enough (eg, 32 bytes)
688  */
689 static int
690 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
691     char *buf, boolean_t addok)
692 {
693 	uint64_t fuid;
694 	int domainid = 0;
695 
696 	if (domain && domain[0]) {
697 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
698 		if (domainid == -1)
699 			return (ENOENT);
700 	}
701 	fuid = FUID_ENCODE(domainid, rid);
702 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
703 	return (0);
704 }
705 
706 int
707 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
708     const char *domain, uint64_t rid, uint64_t *valp)
709 {
710 	char buf[32];
711 	int err;
712 	uint64_t obj;
713 
714 	*valp = 0;
715 
716 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
717 		return (ENOTSUP);
718 
719 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
720 	if (obj == 0)
721 		return (0);
722 
723 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
724 	if (err)
725 		return (err);
726 
727 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
728 	if (err == ENOENT)
729 		err = 0;
730 	return (err);
731 }
732 
733 int
734 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
735     const char *domain, uint64_t rid, uint64_t quota)
736 {
737 	char buf[32];
738 	int err;
739 	dmu_tx_t *tx;
740 	uint64_t *objp;
741 	boolean_t fuid_dirtied;
742 
743 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
744 		return (EINVAL);
745 
746 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
747 		return (ENOTSUP);
748 
749 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
750 	    &zfsvfs->z_groupquota_obj;
751 
752 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
753 	if (err)
754 		return (err);
755 	fuid_dirtied = zfsvfs->z_fuid_dirty;
756 
757 	tx = dmu_tx_create(zfsvfs->z_os);
758 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
759 	if (*objp == 0) {
760 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
761 		    zfs_userquota_prop_prefixes[type]);
762 	}
763 	if (fuid_dirtied)
764 		zfs_fuid_txhold(zfsvfs, tx);
765 	err = dmu_tx_assign(tx, TXG_WAIT);
766 	if (err) {
767 		dmu_tx_abort(tx);
768 		return (err);
769 	}
770 
771 	mutex_enter(&zfsvfs->z_lock);
772 	if (*objp == 0) {
773 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
774 		    DMU_OT_NONE, 0, tx);
775 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
776 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
777 	}
778 	mutex_exit(&zfsvfs->z_lock);
779 
780 	if (quota == 0) {
781 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
782 		if (err == ENOENT)
783 			err = 0;
784 	} else {
785 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
786 	}
787 	ASSERT(err == 0);
788 	if (fuid_dirtied)
789 		zfs_fuid_sync(zfsvfs, tx);
790 	dmu_tx_commit(tx);
791 	return (err);
792 }
793 
794 boolean_t
795 zfs_usergroup_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
796 {
797 	char buf[32];
798 	uint64_t used, quota, usedobj, quotaobj;
799 	int err;
800 
801 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
802 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
803 
804 	if (quotaobj == 0 || zfsvfs->z_replay)
805 		return (B_FALSE);
806 
807 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
808 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
809 	if (err != 0)
810 		return (B_FALSE);
811 
812 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
813 	if (err != 0)
814 		return (B_FALSE);
815 	return (used >= quota);
816 }
817 
818 int
819 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
820 {
821 	objset_t *os;
822 	zfsvfs_t *zfsvfs;
823 	uint64_t zval;
824 	int i, error;
825 
826 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
827 
828 	/*
829 	 * We claim to always be readonly so we can open snapshots;
830 	 * other ZPL code will prevent us from writing to snapshots.
831 	 */
832 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
833 	if (error) {
834 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
835 		return (error);
836 	}
837 
838 	/*
839 	 * Initialize the zfs-specific filesystem structure.
840 	 * Should probably make this a kmem cache, shuffle fields,
841 	 * and just bzero up to z_hold_mtx[].
842 	 */
843 	zfsvfs->z_vfs = NULL;
844 	zfsvfs->z_parent = zfsvfs;
845 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
846 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
847 	zfsvfs->z_os = os;
848 
849 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
850 	if (error) {
851 		goto out;
852 	} else if (zfsvfs->z_version > ZPL_VERSION) {
853 		(void) printf("Mismatched versions:  File system "
854 		    "is version %llu on-disk format, which is "
855 		    "incompatible with this software version %lld!",
856 		    (u_longlong_t)zfsvfs->z_version, ZPL_VERSION);
857 		error = ENOTSUP;
858 		goto out;
859 	}
860 
861 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
862 		goto out;
863 	zfsvfs->z_norm = (int)zval;
864 
865 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
866 		goto out;
867 	zfsvfs->z_utf8 = (zval != 0);
868 
869 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
870 		goto out;
871 	zfsvfs->z_case = (uint_t)zval;
872 
873 	/*
874 	 * Fold case on file systems that are always or sometimes case
875 	 * insensitive.
876 	 */
877 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
878 	    zfsvfs->z_case == ZFS_CASE_MIXED)
879 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
880 
881 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
882 
883 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
884 	    &zfsvfs->z_root);
885 	if (error)
886 		goto out;
887 	ASSERT(zfsvfs->z_root != 0);
888 
889 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
890 	    &zfsvfs->z_unlinkedobj);
891 	if (error)
892 		goto out;
893 
894 	error = zap_lookup(os, MASTER_NODE_OBJ,
895 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
896 	    8, 1, &zfsvfs->z_userquota_obj);
897 	if (error && error != ENOENT)
898 		goto out;
899 
900 	error = zap_lookup(os, MASTER_NODE_OBJ,
901 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
902 	    8, 1, &zfsvfs->z_groupquota_obj);
903 	if (error && error != ENOENT)
904 		goto out;
905 
906 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
907 	    &zfsvfs->z_fuid_obj);
908 	if (error && error != ENOENT)
909 		goto out;
910 
911 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
912 	    &zfsvfs->z_shares_dir);
913 	if (error && error != ENOENT)
914 		goto out;
915 
916 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
917 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
918 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
919 	    offsetof(znode_t, z_link_node));
920 	rrw_init(&zfsvfs->z_teardown_lock);
921 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
922 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
923 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
924 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
925 
926 	*zfvp = zfsvfs;
927 	return (0);
928 
929 out:
930 	dmu_objset_disown(os, zfsvfs);
931 	*zfvp = NULL;
932 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
933 	return (error);
934 }
935 
936 static int
937 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
938 {
939 	int error;
940 
941 	error = zfs_register_callbacks(zfsvfs->z_vfs);
942 	if (error)
943 		return (error);
944 
945 	/*
946 	 * Set the objset user_ptr to track its zfsvfs.
947 	 */
948 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
949 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
950 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
951 
952 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
953 	if (zil_disable) {
954 		zil_destroy(zfsvfs->z_log, B_FALSE);
955 		zfsvfs->z_log = NULL;
956 	}
957 
958 	/*
959 	 * If we are not mounting (ie: online recv), then we don't
960 	 * have to worry about replaying the log as we blocked all
961 	 * operations out since we closed the ZIL.
962 	 */
963 	if (mounting) {
964 		boolean_t readonly;
965 
966 		/*
967 		 * During replay we remove the read only flag to
968 		 * allow replays to succeed.
969 		 */
970 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
971 		if (readonly != 0)
972 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
973 		else
974 			zfs_unlinked_drain(zfsvfs);
975 
976 		if (zfsvfs->z_log) {
977 			/*
978 			 * Parse and replay the intent log.
979 			 *
980 			 * Because of ziltest, this must be done after
981 			 * zfs_unlinked_drain().  (Further note: ziltest
982 			 * doesn't use readonly mounts, where
983 			 * zfs_unlinked_drain() isn't called.)  This is because
984 			 * ziltest causes spa_sync() to think it's committed,
985 			 * but actually it is not, so the intent log contains
986 			 * many txg's worth of changes.
987 			 *
988 			 * In particular, if object N is in the unlinked set in
989 			 * the last txg to actually sync, then it could be
990 			 * actually freed in a later txg and then reallocated
991 			 * in a yet later txg.  This would write a "create
992 			 * object N" record to the intent log.  Normally, this
993 			 * would be fine because the spa_sync() would have
994 			 * written out the fact that object N is free, before
995 			 * we could write the "create object N" intent log
996 			 * record.
997 			 *
998 			 * But when we are in ziltest mode, we advance the "open
999 			 * txg" without actually spa_sync()-ing the changes to
1000 			 * disk.  So we would see that object N is still
1001 			 * allocated and in the unlinked set, and there is an
1002 			 * intent log record saying to allocate it.
1003 			 */
1004 			zfsvfs->z_replay = B_TRUE;
1005 			zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector);
1006 			zfsvfs->z_replay = B_FALSE;
1007 		}
1008 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1009 	}
1010 
1011 	return (0);
1012 }
1013 
1014 void
1015 zfsvfs_free(zfsvfs_t *zfsvfs)
1016 {
1017 	int i;
1018 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1019 
1020 	/*
1021 	 * This is a barrier to prevent the filesystem from going away in
1022 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1023 	 * not unmounted. We consider the filesystem valid before the barrier
1024 	 * and invalid after the barrier.
1025 	 */
1026 	rw_enter(&zfsvfs_lock, RW_READER);
1027 	rw_exit(&zfsvfs_lock);
1028 
1029 	zfs_fuid_destroy(zfsvfs);
1030 
1031 	mutex_destroy(&zfsvfs->z_znodes_lock);
1032 	mutex_destroy(&zfsvfs->z_lock);
1033 	list_destroy(&zfsvfs->z_all_znodes);
1034 	rrw_destroy(&zfsvfs->z_teardown_lock);
1035 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1036 	rw_destroy(&zfsvfs->z_fuid_lock);
1037 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1038 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1039 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1040 }
1041 
1042 static void
1043 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1044 {
1045 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1046 	if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
1047 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1048 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1049 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1050 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1051 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1052 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1053 	}
1054 }
1055 
1056 static int
1057 zfs_domount(vfs_t *vfsp, char *osname)
1058 {
1059 	dev_t mount_dev;
1060 	uint64_t recordsize, fsid_guid;
1061 	int error = 0;
1062 	zfsvfs_t *zfsvfs;
1063 
1064 	ASSERT(vfsp);
1065 	ASSERT(osname);
1066 
1067 	error = zfsvfs_create(osname, &zfsvfs);
1068 	if (error)
1069 		return (error);
1070 	zfsvfs->z_vfs = vfsp;
1071 
1072 	/* Initialize the generic filesystem structure. */
1073 	vfsp->vfs_bcount = 0;
1074 	vfsp->vfs_data = NULL;
1075 
1076 	if (zfs_create_unique_device(&mount_dev) == -1) {
1077 		error = ENODEV;
1078 		goto out;
1079 	}
1080 	ASSERT(vfs_devismounted(mount_dev) == 0);
1081 
1082 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1083 	    NULL))
1084 		goto out;
1085 
1086 	vfsp->vfs_dev = mount_dev;
1087 	vfsp->vfs_fstype = zfsfstype;
1088 	vfsp->vfs_bsize = recordsize;
1089 	vfsp->vfs_flag |= VFS_NOTRUNC;
1090 	vfsp->vfs_data = zfsvfs;
1091 
1092 	/*
1093 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1094 	 * separates our fsid from any other filesystem types, and a
1095 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1096 	 * all objsets open on this system, provided by unique_create().
1097 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1098 	 * because that's where other Solaris filesystems put it.
1099 	 */
1100 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1101 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1102 	vfsp->vfs_fsid.val[0] = fsid_guid;
1103 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1104 	    zfsfstype & 0xFF;
1105 
1106 	/*
1107 	 * Set features for file system.
1108 	 */
1109 	zfs_set_fuid_feature(zfsvfs);
1110 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1111 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1112 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1113 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1114 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1115 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1116 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1117 	}
1118 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1119 
1120 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1121 		uint64_t pval;
1122 
1123 		atime_changed_cb(zfsvfs, B_FALSE);
1124 		readonly_changed_cb(zfsvfs, B_TRUE);
1125 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1126 			goto out;
1127 		xattr_changed_cb(zfsvfs, pval);
1128 		zfsvfs->z_issnap = B_TRUE;
1129 
1130 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1131 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1132 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1133 	} else {
1134 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1135 	}
1136 
1137 	if (!zfsvfs->z_issnap)
1138 		zfsctl_create(zfsvfs);
1139 out:
1140 	if (error) {
1141 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1142 		zfsvfs_free(zfsvfs);
1143 	} else {
1144 		atomic_add_32(&zfs_active_fs_count, 1);
1145 	}
1146 
1147 	return (error);
1148 }
1149 
1150 void
1151 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1152 {
1153 	objset_t *os = zfsvfs->z_os;
1154 	struct dsl_dataset *ds;
1155 
1156 	/*
1157 	 * Unregister properties.
1158 	 */
1159 	if (!dmu_objset_is_snapshot(os)) {
1160 		ds = dmu_objset_ds(os);
1161 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1162 		    zfsvfs) == 0);
1163 
1164 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1165 		    zfsvfs) == 0);
1166 
1167 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1168 		    zfsvfs) == 0);
1169 
1170 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1171 		    zfsvfs) == 0);
1172 
1173 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1174 		    zfsvfs) == 0);
1175 
1176 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1177 		    zfsvfs) == 0);
1178 
1179 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1180 		    zfsvfs) == 0);
1181 
1182 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1183 		    zfsvfs) == 0);
1184 
1185 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1186 		    zfsvfs) == 0);
1187 
1188 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1189 		    acl_inherit_changed_cb, zfsvfs) == 0);
1190 
1191 		VERIFY(dsl_prop_unregister(ds, "vscan",
1192 		    vscan_changed_cb, zfsvfs) == 0);
1193 	}
1194 }
1195 
1196 /*
1197  * Convert a decimal digit string to a uint64_t integer.
1198  */
1199 static int
1200 str_to_uint64(char *str, uint64_t *objnum)
1201 {
1202 	uint64_t num = 0;
1203 
1204 	while (*str) {
1205 		if (*str < '0' || *str > '9')
1206 			return (EINVAL);
1207 
1208 		num = num*10 + *str++ - '0';
1209 	}
1210 
1211 	*objnum = num;
1212 	return (0);
1213 }
1214 
1215 /*
1216  * The boot path passed from the boot loader is in the form of
1217  * "rootpool-name/root-filesystem-object-number'. Convert this
1218  * string to a dataset name: "rootpool-name/root-filesystem-name".
1219  */
1220 static int
1221 zfs_parse_bootfs(char *bpath, char *outpath)
1222 {
1223 	char *slashp;
1224 	uint64_t objnum;
1225 	int error;
1226 
1227 	if (*bpath == 0 || *bpath == '/')
1228 		return (EINVAL);
1229 
1230 	(void) strcpy(outpath, bpath);
1231 
1232 	slashp = strchr(bpath, '/');
1233 
1234 	/* if no '/', just return the pool name */
1235 	if (slashp == NULL) {
1236 		return (0);
1237 	}
1238 
1239 	/* if not a number, just return the root dataset name */
1240 	if (str_to_uint64(slashp+1, &objnum)) {
1241 		return (0);
1242 	}
1243 
1244 	*slashp = '\0';
1245 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1246 	*slashp = '/';
1247 
1248 	return (error);
1249 }
1250 
1251 /*
1252  * zfs_check_global_label:
1253  *	Check that the hex label string is appropriate for the dataset
1254  *	being mounted into the global_zone proper.
1255  *
1256  *	Return an error if the hex label string is not default or
1257  *	admin_low/admin_high.  For admin_low labels, the corresponding
1258  *	dataset must be readonly.
1259  */
1260 int
1261 zfs_check_global_label(const char *dsname, const char *hexsl)
1262 {
1263 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1264 		return (0);
1265 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1266 		return (0);
1267 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1268 		/* must be readonly */
1269 		uint64_t rdonly;
1270 
1271 		if (dsl_prop_get_integer(dsname,
1272 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1273 			return (EACCES);
1274 		return (rdonly ? 0 : EACCES);
1275 	}
1276 	return (EACCES);
1277 }
1278 
1279 /*
1280  * zfs_mount_label_policy:
1281  *	Determine whether the mount is allowed according to MAC check.
1282  *	by comparing (where appropriate) label of the dataset against
1283  *	the label of the zone being mounted into.  If the dataset has
1284  *	no label, create one.
1285  *
1286  *	Returns:
1287  *		 0 :	access allowed
1288  *		>0 :	error code, such as EACCES
1289  */
1290 static int
1291 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1292 {
1293 	int		error, retv;
1294 	zone_t		*mntzone = NULL;
1295 	ts_label_t	*mnt_tsl;
1296 	bslabel_t	*mnt_sl;
1297 	bslabel_t	ds_sl;
1298 	char		ds_hexsl[MAXNAMELEN];
1299 
1300 	retv = EACCES;				/* assume the worst */
1301 
1302 	/*
1303 	 * Start by getting the dataset label if it exists.
1304 	 */
1305 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1306 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1307 	if (error)
1308 		return (EACCES);
1309 
1310 	/*
1311 	 * If labeling is NOT enabled, then disallow the mount of datasets
1312 	 * which have a non-default label already.  No other label checks
1313 	 * are needed.
1314 	 */
1315 	if (!is_system_labeled()) {
1316 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1317 			return (0);
1318 		return (EACCES);
1319 	}
1320 
1321 	/*
1322 	 * Get the label of the mountpoint.  If mounting into the global
1323 	 * zone (i.e. mountpoint is not within an active zone and the
1324 	 * zoned property is off), the label must be default or
1325 	 * admin_low/admin_high only; no other checks are needed.
1326 	 */
1327 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1328 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1329 		uint64_t zoned;
1330 
1331 		zone_rele(mntzone);
1332 
1333 		if (dsl_prop_get_integer(osname,
1334 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1335 			return (EACCES);
1336 		if (!zoned)
1337 			return (zfs_check_global_label(osname, ds_hexsl));
1338 		else
1339 			/*
1340 			 * This is the case of a zone dataset being mounted
1341 			 * initially, before the zone has been fully created;
1342 			 * allow this mount into global zone.
1343 			 */
1344 			return (0);
1345 	}
1346 
1347 	mnt_tsl = mntzone->zone_slabel;
1348 	ASSERT(mnt_tsl != NULL);
1349 	label_hold(mnt_tsl);
1350 	mnt_sl = label2bslabel(mnt_tsl);
1351 
1352 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1353 		/*
1354 		 * The dataset doesn't have a real label, so fabricate one.
1355 		 */
1356 		char *str = NULL;
1357 
1358 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1359 		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1360 		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1361 			retv = 0;
1362 		if (str != NULL)
1363 			kmem_free(str, strlen(str) + 1);
1364 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1365 		/*
1366 		 * Now compare labels to complete the MAC check.  If the
1367 		 * labels are equal then allow access.  If the mountpoint
1368 		 * label dominates the dataset label, allow readonly access.
1369 		 * Otherwise, access is denied.
1370 		 */
1371 		if (blequal(mnt_sl, &ds_sl))
1372 			retv = 0;
1373 		else if (bldominates(mnt_sl, &ds_sl)) {
1374 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1375 			retv = 0;
1376 		}
1377 	}
1378 
1379 	label_rele(mnt_tsl);
1380 	zone_rele(mntzone);
1381 	return (retv);
1382 }
1383 
1384 static int
1385 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1386 {
1387 	int error = 0;
1388 	static int zfsrootdone = 0;
1389 	zfsvfs_t *zfsvfs = NULL;
1390 	znode_t *zp = NULL;
1391 	vnode_t *vp = NULL;
1392 	char *zfs_bootfs;
1393 	char *zfs_devid;
1394 
1395 	ASSERT(vfsp);
1396 
1397 	/*
1398 	 * The filesystem that we mount as root is defined in the
1399 	 * boot property "zfs-bootfs" with a format of
1400 	 * "poolname/root-dataset-objnum".
1401 	 */
1402 	if (why == ROOT_INIT) {
1403 		if (zfsrootdone++)
1404 			return (EBUSY);
1405 		/*
1406 		 * the process of doing a spa_load will require the
1407 		 * clock to be set before we could (for example) do
1408 		 * something better by looking at the timestamp on
1409 		 * an uberblock, so just set it to -1.
1410 		 */
1411 		clkset(-1);
1412 
1413 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1414 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1415 			    "bootfs name");
1416 			return (EINVAL);
1417 		}
1418 		zfs_devid = spa_get_bootprop("diskdevid");
1419 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1420 		if (zfs_devid)
1421 			spa_free_bootprop(zfs_devid);
1422 		if (error) {
1423 			spa_free_bootprop(zfs_bootfs);
1424 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1425 			    error);
1426 			return (error);
1427 		}
1428 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1429 			spa_free_bootprop(zfs_bootfs);
1430 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1431 			    error);
1432 			return (error);
1433 		}
1434 
1435 		spa_free_bootprop(zfs_bootfs);
1436 
1437 		if (error = vfs_lock(vfsp))
1438 			return (error);
1439 
1440 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1441 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1442 			goto out;
1443 		}
1444 
1445 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1446 		ASSERT(zfsvfs);
1447 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1448 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1449 			goto out;
1450 		}
1451 
1452 		vp = ZTOV(zp);
1453 		mutex_enter(&vp->v_lock);
1454 		vp->v_flag |= VROOT;
1455 		mutex_exit(&vp->v_lock);
1456 		rootvp = vp;
1457 
1458 		/*
1459 		 * Leave rootvp held.  The root file system is never unmounted.
1460 		 */
1461 
1462 		vfs_add((struct vnode *)0, vfsp,
1463 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1464 out:
1465 		vfs_unlock(vfsp);
1466 		return (error);
1467 	} else if (why == ROOT_REMOUNT) {
1468 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1469 		vfsp->vfs_flag |= VFS_REMOUNT;
1470 
1471 		/* refresh mount options */
1472 		zfs_unregister_callbacks(vfsp->vfs_data);
1473 		return (zfs_register_callbacks(vfsp));
1474 
1475 	} else if (why == ROOT_UNMOUNT) {
1476 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1477 		(void) zfs_sync(vfsp, 0, 0);
1478 		return (0);
1479 	}
1480 
1481 	/*
1482 	 * if "why" is equal to anything else other than ROOT_INIT,
1483 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1484 	 */
1485 	return (ENOTSUP);
1486 }
1487 
1488 /*ARGSUSED*/
1489 static int
1490 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1491 {
1492 	char		*osname;
1493 	pathname_t	spn;
1494 	int		error = 0;
1495 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1496 	    UIO_SYSSPACE : UIO_USERSPACE;
1497 	int		canwrite;
1498 
1499 	if (mvp->v_type != VDIR)
1500 		return (ENOTDIR);
1501 
1502 	mutex_enter(&mvp->v_lock);
1503 	if ((uap->flags & MS_REMOUNT) == 0 &&
1504 	    (uap->flags & MS_OVERLAY) == 0 &&
1505 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1506 		mutex_exit(&mvp->v_lock);
1507 		return (EBUSY);
1508 	}
1509 	mutex_exit(&mvp->v_lock);
1510 
1511 	/*
1512 	 * ZFS does not support passing unparsed data in via MS_DATA.
1513 	 * Users should use the MS_OPTIONSTR interface; this means
1514 	 * that all option parsing is already done and the options struct
1515 	 * can be interrogated.
1516 	 */
1517 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1518 		return (EINVAL);
1519 
1520 	/*
1521 	 * Get the objset name (the "special" mount argument).
1522 	 */
1523 	if (error = pn_get(uap->spec, fromspace, &spn))
1524 		return (error);
1525 
1526 	osname = spn.pn_path;
1527 
1528 	/*
1529 	 * Check for mount privilege?
1530 	 *
1531 	 * If we don't have privilege then see if
1532 	 * we have local permission to allow it
1533 	 */
1534 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1535 	if (error) {
1536 		error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr);
1537 		if (error == 0) {
1538 			vattr_t		vattr;
1539 
1540 			/*
1541 			 * Make sure user is the owner of the mount point
1542 			 * or has sufficient privileges.
1543 			 */
1544 
1545 			vattr.va_mask = AT_UID;
1546 
1547 			if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1548 				goto out;
1549 			}
1550 
1551 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1552 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1553 				error = EPERM;
1554 				goto out;
1555 			}
1556 
1557 			secpolicy_fs_mount_clearopts(cr, vfsp);
1558 		} else {
1559 			goto out;
1560 		}
1561 	}
1562 
1563 	/*
1564 	 * Refuse to mount a filesystem if we are in a local zone and the
1565 	 * dataset is not visible.
1566 	 */
1567 	if (!INGLOBALZONE(curproc) &&
1568 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1569 		error = EPERM;
1570 		goto out;
1571 	}
1572 
1573 	error = zfs_mount_label_policy(vfsp, osname);
1574 	if (error)
1575 		goto out;
1576 
1577 	/*
1578 	 * When doing a remount, we simply refresh our temporary properties
1579 	 * according to those options set in the current VFS options.
1580 	 */
1581 	if (uap->flags & MS_REMOUNT) {
1582 		/* refresh mount options */
1583 		zfs_unregister_callbacks(vfsp->vfs_data);
1584 		error = zfs_register_callbacks(vfsp);
1585 		goto out;
1586 	}
1587 
1588 	error = zfs_domount(vfsp, osname);
1589 
1590 	/*
1591 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1592 	 * disappear due to a forced unmount.
1593 	 */
1594 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1595 		VFS_HOLD(mvp->v_vfsp);
1596 
1597 out:
1598 	pn_free(&spn);
1599 	return (error);
1600 }
1601 
1602 static int
1603 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1604 {
1605 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1606 	dev32_t d32;
1607 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1608 
1609 	ZFS_ENTER(zfsvfs);
1610 
1611 	dmu_objset_space(zfsvfs->z_os,
1612 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1613 
1614 	/*
1615 	 * The underlying storage pool actually uses multiple block sizes.
1616 	 * We report the fragsize as the smallest block size we support,
1617 	 * and we report our blocksize as the filesystem's maximum blocksize.
1618 	 */
1619 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1620 	statp->f_bsize = zfsvfs->z_max_blksz;
1621 
1622 	/*
1623 	 * The following report "total" blocks of various kinds in the
1624 	 * file system, but reported in terms of f_frsize - the
1625 	 * "fragment" size.
1626 	 */
1627 
1628 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1629 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1630 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1631 
1632 	/*
1633 	 * statvfs() should really be called statufs(), because it assumes
1634 	 * static metadata.  ZFS doesn't preallocate files, so the best
1635 	 * we can do is report the max that could possibly fit in f_files,
1636 	 * and that minus the number actually used in f_ffree.
1637 	 * For f_ffree, report the smaller of the number of object available
1638 	 * and the number of blocks (each object will take at least a block).
1639 	 */
1640 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1641 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1642 	statp->f_files = statp->f_ffree + usedobjs;
1643 
1644 	(void) cmpldev(&d32, vfsp->vfs_dev);
1645 	statp->f_fsid = d32;
1646 
1647 	/*
1648 	 * We're a zfs filesystem.
1649 	 */
1650 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1651 
1652 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1653 
1654 	statp->f_namemax = ZFS_MAXNAMELEN;
1655 
1656 	/*
1657 	 * We have all of 32 characters to stuff a string here.
1658 	 * Is there anything useful we could/should provide?
1659 	 */
1660 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1661 
1662 	ZFS_EXIT(zfsvfs);
1663 	return (0);
1664 }
1665 
1666 static int
1667 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1668 {
1669 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1670 	znode_t *rootzp;
1671 	int error;
1672 
1673 	ZFS_ENTER(zfsvfs);
1674 
1675 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1676 	if (error == 0)
1677 		*vpp = ZTOV(rootzp);
1678 
1679 	ZFS_EXIT(zfsvfs);
1680 	return (error);
1681 }
1682 
1683 /*
1684  * Teardown the zfsvfs::z_os.
1685  *
1686  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1687  * and 'z_teardown_inactive_lock' held.
1688  */
1689 static int
1690 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1691 {
1692 	znode_t	*zp;
1693 
1694 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1695 
1696 	if (!unmounting) {
1697 		/*
1698 		 * We purge the parent filesystem's vfsp as the parent
1699 		 * filesystem and all of its snapshots have their vnode's
1700 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1701 		 * 'z_parent' is self referential for non-snapshots.
1702 		 */
1703 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1704 	}
1705 
1706 	/*
1707 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1708 	 * threads are blocked as zil_close can call zfs_inactive.
1709 	 */
1710 	if (zfsvfs->z_log) {
1711 		zil_close(zfsvfs->z_log);
1712 		zfsvfs->z_log = NULL;
1713 	}
1714 
1715 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1716 
1717 	/*
1718 	 * If we are not unmounting (ie: online recv) and someone already
1719 	 * unmounted this file system while we were doing the switcheroo,
1720 	 * or a reopen of z_os failed then just bail out now.
1721 	 */
1722 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1723 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1724 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1725 		return (EIO);
1726 	}
1727 
1728 	/*
1729 	 * At this point there are no vops active, and any new vops will
1730 	 * fail with EIO since we have z_teardown_lock for writer (only
1731 	 * relavent for forced unmount).
1732 	 *
1733 	 * Release all holds on dbufs.
1734 	 */
1735 	mutex_enter(&zfsvfs->z_znodes_lock);
1736 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1737 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1738 		if (zp->z_dbuf) {
1739 			ASSERT(ZTOV(zp)->v_count > 0);
1740 			zfs_znode_dmu_fini(zp);
1741 		}
1742 	mutex_exit(&zfsvfs->z_znodes_lock);
1743 
1744 	/*
1745 	 * If we are unmounting, set the unmounted flag and let new vops
1746 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1747 	 * other vops will fail with EIO.
1748 	 */
1749 	if (unmounting) {
1750 		zfsvfs->z_unmounted = B_TRUE;
1751 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1752 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1753 	}
1754 
1755 	/*
1756 	 * z_os will be NULL if there was an error in attempting to reopen
1757 	 * zfsvfs, so just return as the properties had already been
1758 	 * unregistered and cached data had been evicted before.
1759 	 */
1760 	if (zfsvfs->z_os == NULL)
1761 		return (0);
1762 
1763 	/*
1764 	 * Unregister properties.
1765 	 */
1766 	zfs_unregister_callbacks(zfsvfs);
1767 
1768 	/*
1769 	 * Evict cached data
1770 	 */
1771 	if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
1772 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1773 		(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1774 	}
1775 
1776 	return (0);
1777 }
1778 
1779 /*ARGSUSED*/
1780 static int
1781 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1782 {
1783 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1784 	objset_t *os;
1785 	int ret;
1786 
1787 	ret = secpolicy_fs_unmount(cr, vfsp);
1788 	if (ret) {
1789 		ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1790 		    ZFS_DELEG_PERM_MOUNT, cr);
1791 		if (ret)
1792 			return (ret);
1793 	}
1794 
1795 	/*
1796 	 * We purge the parent filesystem's vfsp as the parent filesystem
1797 	 * and all of its snapshots have their vnode's v_vfsp set to the
1798 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1799 	 * referential for non-snapshots.
1800 	 */
1801 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1802 
1803 	/*
1804 	 * Unmount any snapshots mounted under .zfs before unmounting the
1805 	 * dataset itself.
1806 	 */
1807 	if (zfsvfs->z_ctldir != NULL &&
1808 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1809 		return (ret);
1810 	}
1811 
1812 	if (!(fflag & MS_FORCE)) {
1813 		/*
1814 		 * Check the number of active vnodes in the file system.
1815 		 * Our count is maintained in the vfs structure, but the
1816 		 * number is off by 1 to indicate a hold on the vfs
1817 		 * structure itself.
1818 		 *
1819 		 * The '.zfs' directory maintains a reference of its
1820 		 * own, and any active references underneath are
1821 		 * reflected in the vnode count.
1822 		 */
1823 		if (zfsvfs->z_ctldir == NULL) {
1824 			if (vfsp->vfs_count > 1)
1825 				return (EBUSY);
1826 		} else {
1827 			if (vfsp->vfs_count > 2 ||
1828 			    zfsvfs->z_ctldir->v_count > 1)
1829 				return (EBUSY);
1830 		}
1831 	}
1832 
1833 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1834 
1835 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1836 	os = zfsvfs->z_os;
1837 
1838 	/*
1839 	 * z_os will be NULL if there was an error in
1840 	 * attempting to reopen zfsvfs.
1841 	 */
1842 	if (os != NULL) {
1843 		/*
1844 		 * Unset the objset user_ptr.
1845 		 */
1846 		mutex_enter(&os->os_user_ptr_lock);
1847 		dmu_objset_set_user(os, NULL);
1848 		mutex_exit(&os->os_user_ptr_lock);
1849 
1850 		/*
1851 		 * Finally release the objset
1852 		 */
1853 		dmu_objset_disown(os, zfsvfs);
1854 	}
1855 
1856 	/*
1857 	 * We can now safely destroy the '.zfs' directory node.
1858 	 */
1859 	if (zfsvfs->z_ctldir != NULL)
1860 		zfsctl_destroy(zfsvfs);
1861 
1862 	return (0);
1863 }
1864 
1865 static int
1866 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1867 {
1868 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1869 	znode_t		*zp;
1870 	uint64_t	object = 0;
1871 	uint64_t	fid_gen = 0;
1872 	uint64_t	gen_mask;
1873 	uint64_t	zp_gen;
1874 	int 		i, err;
1875 
1876 	*vpp = NULL;
1877 
1878 	ZFS_ENTER(zfsvfs);
1879 
1880 	if (fidp->fid_len == LONG_FID_LEN) {
1881 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1882 		uint64_t	objsetid = 0;
1883 		uint64_t	setgen = 0;
1884 
1885 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1886 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1887 
1888 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1889 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1890 
1891 		ZFS_EXIT(zfsvfs);
1892 
1893 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1894 		if (err)
1895 			return (EINVAL);
1896 		ZFS_ENTER(zfsvfs);
1897 	}
1898 
1899 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1900 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1901 
1902 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1903 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1904 
1905 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1906 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1907 	} else {
1908 		ZFS_EXIT(zfsvfs);
1909 		return (EINVAL);
1910 	}
1911 
1912 	/* A zero fid_gen means we are in the .zfs control directories */
1913 	if (fid_gen == 0 &&
1914 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1915 		*vpp = zfsvfs->z_ctldir;
1916 		ASSERT(*vpp != NULL);
1917 		if (object == ZFSCTL_INO_SNAPDIR) {
1918 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1919 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1920 		} else {
1921 			VN_HOLD(*vpp);
1922 		}
1923 		ZFS_EXIT(zfsvfs);
1924 		return (0);
1925 	}
1926 
1927 	gen_mask = -1ULL >> (64 - 8 * i);
1928 
1929 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1930 	if (err = zfs_zget(zfsvfs, object, &zp)) {
1931 		ZFS_EXIT(zfsvfs);
1932 		return (err);
1933 	}
1934 	zp_gen = zp->z_phys->zp_gen & gen_mask;
1935 	if (zp_gen == 0)
1936 		zp_gen = 1;
1937 	if (zp->z_unlinked || zp_gen != fid_gen) {
1938 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1939 		VN_RELE(ZTOV(zp));
1940 		ZFS_EXIT(zfsvfs);
1941 		return (EINVAL);
1942 	}
1943 
1944 	*vpp = ZTOV(zp);
1945 	ZFS_EXIT(zfsvfs);
1946 	return (0);
1947 }
1948 
1949 /*
1950  * Block out VOPs and close zfsvfs_t::z_os
1951  *
1952  * Note, if successful, then we return with the 'z_teardown_lock' and
1953  * 'z_teardown_inactive_lock' write held.
1954  */
1955 int
1956 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1957 {
1958 	int error;
1959 
1960 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1961 		return (error);
1962 	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1963 
1964 	return (0);
1965 }
1966 
1967 /*
1968  * Reopen zfsvfs_t::z_os and release VOPs.
1969  */
1970 int
1971 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
1972 {
1973 	int err;
1974 
1975 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
1976 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1977 
1978 	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
1979 	    &zfsvfs->z_os);
1980 	if (err) {
1981 		zfsvfs->z_os = NULL;
1982 	} else {
1983 		znode_t *zp;
1984 
1985 		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1986 
1987 		/*
1988 		 * Attempt to re-establish all the active znodes with
1989 		 * their dbufs.  If a zfs_rezget() fails, then we'll let
1990 		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
1991 		 * when they try to use their znode.
1992 		 */
1993 		mutex_enter(&zfsvfs->z_znodes_lock);
1994 		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1995 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1996 			(void) zfs_rezget(zp);
1997 		}
1998 		mutex_exit(&zfsvfs->z_znodes_lock);
1999 
2000 	}
2001 
2002 	/* release the VOPs */
2003 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2004 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2005 
2006 	if (err) {
2007 		/*
2008 		 * Since we couldn't reopen zfsvfs::z_os, force
2009 		 * unmount this file system.
2010 		 */
2011 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2012 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2013 	}
2014 	return (err);
2015 }
2016 
2017 static void
2018 zfs_freevfs(vfs_t *vfsp)
2019 {
2020 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2021 
2022 	/*
2023 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2024 	 * from zfs_mount().  Release it here.
2025 	 */
2026 	if (zfsvfs->z_issnap)
2027 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2028 
2029 	zfsvfs_free(zfsvfs);
2030 
2031 	atomic_add_32(&zfs_active_fs_count, -1);
2032 }
2033 
2034 /*
2035  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2036  * so we can't safely do any non-idempotent initialization here.
2037  * Leave that to zfs_init() and zfs_fini(), which are called
2038  * from the module's _init() and _fini() entry points.
2039  */
2040 /*ARGSUSED*/
2041 static int
2042 zfs_vfsinit(int fstype, char *name)
2043 {
2044 	int error;
2045 
2046 	zfsfstype = fstype;
2047 
2048 	/*
2049 	 * Setup vfsops and vnodeops tables.
2050 	 */
2051 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2052 	if (error != 0) {
2053 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
2054 	}
2055 
2056 	error = zfs_create_op_tables();
2057 	if (error) {
2058 		zfs_remove_op_tables();
2059 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2060 		(void) vfs_freevfsops_by_type(zfsfstype);
2061 		return (error);
2062 	}
2063 
2064 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2065 
2066 	/*
2067 	 * Unique major number for all zfs mounts.
2068 	 * If we run out of 32-bit minors, we'll getudev() another major.
2069 	 */
2070 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2071 	zfs_minor = ZFS_MIN_MINOR;
2072 
2073 	return (0);
2074 }
2075 
2076 void
2077 zfs_init(void)
2078 {
2079 	/*
2080 	 * Initialize .zfs directory structures
2081 	 */
2082 	zfsctl_init();
2083 
2084 	/*
2085 	 * Initialize znode cache, vnode ops, etc...
2086 	 */
2087 	zfs_znode_init();
2088 
2089 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2090 }
2091 
2092 void
2093 zfs_fini(void)
2094 {
2095 	zfsctl_fini();
2096 	zfs_znode_fini();
2097 }
2098 
2099 int
2100 zfs_busy(void)
2101 {
2102 	return (zfs_active_fs_count != 0);
2103 }
2104 
2105 int
2106 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2107 {
2108 	int error;
2109 	objset_t *os = zfsvfs->z_os;
2110 	dmu_tx_t *tx;
2111 
2112 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2113 		return (EINVAL);
2114 
2115 	if (newvers < zfsvfs->z_version)
2116 		return (EINVAL);
2117 
2118 	tx = dmu_tx_create(os);
2119 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2120 	error = dmu_tx_assign(tx, TXG_WAIT);
2121 	if (error) {
2122 		dmu_tx_abort(tx);
2123 		return (error);
2124 	}
2125 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2126 	    8, 1, &newvers, tx);
2127 
2128 	if (error) {
2129 		dmu_tx_commit(tx);
2130 		return (error);
2131 	}
2132 
2133 	spa_history_internal_log(LOG_DS_UPGRADE,
2134 	    dmu_objset_spa(os), tx, CRED(),
2135 	    "oldver=%llu newver=%llu dataset = %llu",
2136 	    zfsvfs->z_version, newvers, dmu_objset_id(os));
2137 
2138 	dmu_tx_commit(tx);
2139 
2140 	zfsvfs->z_version = newvers;
2141 
2142 	if (zfsvfs->z_version >= ZPL_VERSION_FUID)
2143 		zfs_set_fuid_feature(zfsvfs);
2144 
2145 	return (0);
2146 }
2147 
2148 /*
2149  * Read a property stored within the master node.
2150  */
2151 int
2152 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2153 {
2154 	const char *pname;
2155 	int error = ENOENT;
2156 
2157 	/*
2158 	 * Look up the file system's value for the property.  For the
2159 	 * version property, we look up a slightly different string.
2160 	 */
2161 	if (prop == ZFS_PROP_VERSION)
2162 		pname = ZPL_VERSION_STR;
2163 	else
2164 		pname = zfs_prop_to_name(prop);
2165 
2166 	if (os != NULL)
2167 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2168 
2169 	if (error == ENOENT) {
2170 		/* No value set, use the default value */
2171 		switch (prop) {
2172 		case ZFS_PROP_VERSION:
2173 			*value = ZPL_VERSION;
2174 			break;
2175 		case ZFS_PROP_NORMALIZE:
2176 		case ZFS_PROP_UTF8ONLY:
2177 			*value = 0;
2178 			break;
2179 		case ZFS_PROP_CASE:
2180 			*value = ZFS_CASE_SENSITIVE;
2181 			break;
2182 		default:
2183 			return (error);
2184 		}
2185 		error = 0;
2186 	}
2187 	return (error);
2188 }
2189 
2190 static vfsdef_t vfw = {
2191 	VFSDEF_VERSION,
2192 	MNTTYPE_ZFS,
2193 	zfs_vfsinit,
2194 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2195 	    VSW_XID,
2196 	&zfs_mntopts
2197 };
2198 
2199 struct modlfs zfs_modlfs = {
2200 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2201 };
2202