1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/pathname.h> 32 #include <sys/vnode.h> 33 #include <sys/vfs.h> 34 #include <sys/vfs_opreg.h> 35 #include <sys/mntent.h> 36 #include <sys/mount.h> 37 #include <sys/cmn_err.h> 38 #include "fs/fs_subr.h" 39 #include <sys/zfs_znode.h> 40 #include <sys/zfs_dir.h> 41 #include <sys/zil.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_deleg.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/refstr.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/zfs_ctldir.h> 57 #include <sys/zfs_fuid.h> 58 #include <sys/bootconf.h> 59 #include <sys/sunddi.h> 60 #include <sys/dnlc.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa_boot.h> 63 64 int zfsfstype; 65 vfsops_t *zfs_vfsops = NULL; 66 static major_t zfs_major; 67 static minor_t zfs_minor; 68 static kmutex_t zfs_dev_mtx; 69 70 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 71 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 72 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 73 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 74 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 75 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 76 static void zfs_freevfs(vfs_t *vfsp); 77 78 static const fs_operation_def_t zfs_vfsops_template[] = { 79 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 80 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 81 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 82 VFSNAME_ROOT, { .vfs_root = zfs_root }, 83 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 84 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 85 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 86 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 87 NULL, NULL 88 }; 89 90 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 91 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 92 NULL, NULL 93 }; 94 95 /* 96 * We need to keep a count of active fs's. 97 * This is necessary to prevent our module 98 * from being unloaded after a umount -f 99 */ 100 static uint32_t zfs_active_fs_count = 0; 101 102 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 103 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 104 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 105 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 106 107 /* 108 * MO_DEFAULT is not used since the default value is determined 109 * by the equivalent property. 110 */ 111 static mntopt_t mntopts[] = { 112 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 113 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 114 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 115 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 116 }; 117 118 static mntopts_t zfs_mntopts = { 119 sizeof (mntopts) / sizeof (mntopt_t), 120 mntopts 121 }; 122 123 /*ARGSUSED*/ 124 int 125 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 126 { 127 /* 128 * Data integrity is job one. We don't want a compromised kernel 129 * writing to the storage pool, so we never sync during panic. 130 */ 131 if (panicstr) 132 return (0); 133 134 /* 135 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 136 * to sync metadata, which they would otherwise cache indefinitely. 137 * Semantically, the only requirement is that the sync be initiated. 138 * The DMU syncs out txgs frequently, so there's nothing to do. 139 */ 140 if (flag & SYNC_ATTR) 141 return (0); 142 143 if (vfsp != NULL) { 144 /* 145 * Sync a specific filesystem. 146 */ 147 zfsvfs_t *zfsvfs = vfsp->vfs_data; 148 149 ZFS_ENTER(zfsvfs); 150 if (zfsvfs->z_log != NULL) 151 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 152 else 153 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 154 ZFS_EXIT(zfsvfs); 155 } else { 156 /* 157 * Sync all ZFS filesystems. This is what happens when you 158 * run sync(1M). Unlike other filesystems, ZFS honors the 159 * request by waiting for all pools to commit all dirty data. 160 */ 161 spa_sync_allpools(); 162 } 163 164 return (0); 165 } 166 167 static int 168 zfs_create_unique_device(dev_t *dev) 169 { 170 major_t new_major; 171 172 do { 173 ASSERT3U(zfs_minor, <=, MAXMIN32); 174 minor_t start = zfs_minor; 175 do { 176 mutex_enter(&zfs_dev_mtx); 177 if (zfs_minor >= MAXMIN32) { 178 /* 179 * If we're still using the real major 180 * keep out of /dev/zfs and /dev/zvol minor 181 * number space. If we're using a getudev()'ed 182 * major number, we can use all of its minors. 183 */ 184 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 185 zfs_minor = ZFS_MIN_MINOR; 186 else 187 zfs_minor = 0; 188 } else { 189 zfs_minor++; 190 } 191 *dev = makedevice(zfs_major, zfs_minor); 192 mutex_exit(&zfs_dev_mtx); 193 } while (vfs_devismounted(*dev) && zfs_minor != start); 194 if (zfs_minor == start) { 195 /* 196 * We are using all ~262,000 minor numbers for the 197 * current major number. Create a new major number. 198 */ 199 if ((new_major = getudev()) == (major_t)-1) { 200 cmn_err(CE_WARN, 201 "zfs_mount: Can't get unique major " 202 "device number."); 203 return (-1); 204 } 205 mutex_enter(&zfs_dev_mtx); 206 zfs_major = new_major; 207 zfs_minor = 0; 208 209 mutex_exit(&zfs_dev_mtx); 210 } else { 211 break; 212 } 213 /* CONSTANTCONDITION */ 214 } while (1); 215 216 return (0); 217 } 218 219 static void 220 atime_changed_cb(void *arg, uint64_t newval) 221 { 222 zfsvfs_t *zfsvfs = arg; 223 224 if (newval == TRUE) { 225 zfsvfs->z_atime = TRUE; 226 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 227 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 228 } else { 229 zfsvfs->z_atime = FALSE; 230 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 231 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 232 } 233 } 234 235 static void 236 xattr_changed_cb(void *arg, uint64_t newval) 237 { 238 zfsvfs_t *zfsvfs = arg; 239 240 if (newval == TRUE) { 241 /* XXX locking on vfs_flag? */ 242 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 243 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 244 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 245 } else { 246 /* XXX locking on vfs_flag? */ 247 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 248 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 249 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 250 } 251 } 252 253 static void 254 blksz_changed_cb(void *arg, uint64_t newval) 255 { 256 zfsvfs_t *zfsvfs = arg; 257 258 if (newval < SPA_MINBLOCKSIZE || 259 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 260 newval = SPA_MAXBLOCKSIZE; 261 262 zfsvfs->z_max_blksz = newval; 263 zfsvfs->z_vfs->vfs_bsize = newval; 264 } 265 266 static void 267 readonly_changed_cb(void *arg, uint64_t newval) 268 { 269 zfsvfs_t *zfsvfs = arg; 270 271 if (newval) { 272 /* XXX locking on vfs_flag? */ 273 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 274 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 275 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 276 } else { 277 /* XXX locking on vfs_flag? */ 278 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 279 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 280 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 281 } 282 } 283 284 static void 285 devices_changed_cb(void *arg, uint64_t newval) 286 { 287 zfsvfs_t *zfsvfs = arg; 288 289 if (newval == FALSE) { 290 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 291 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 292 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 293 } else { 294 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 295 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 296 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 297 } 298 } 299 300 static void 301 setuid_changed_cb(void *arg, uint64_t newval) 302 { 303 zfsvfs_t *zfsvfs = arg; 304 305 if (newval == FALSE) { 306 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 307 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 308 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 309 } else { 310 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 311 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 312 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 313 } 314 } 315 316 static void 317 exec_changed_cb(void *arg, uint64_t newval) 318 { 319 zfsvfs_t *zfsvfs = arg; 320 321 if (newval == FALSE) { 322 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 323 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 324 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 325 } else { 326 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 327 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 328 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 329 } 330 } 331 332 /* 333 * The nbmand mount option can be changed at mount time. 334 * We can't allow it to be toggled on live file systems or incorrect 335 * behavior may be seen from cifs clients 336 * 337 * This property isn't registered via dsl_prop_register(), but this callback 338 * will be called when a file system is first mounted 339 */ 340 static void 341 nbmand_changed_cb(void *arg, uint64_t newval) 342 { 343 zfsvfs_t *zfsvfs = arg; 344 if (newval == FALSE) { 345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 347 } else { 348 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 349 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 350 } 351 } 352 353 static void 354 snapdir_changed_cb(void *arg, uint64_t newval) 355 { 356 zfsvfs_t *zfsvfs = arg; 357 358 zfsvfs->z_show_ctldir = newval; 359 } 360 361 static void 362 vscan_changed_cb(void *arg, uint64_t newval) 363 { 364 zfsvfs_t *zfsvfs = arg; 365 366 zfsvfs->z_vscan = newval; 367 } 368 369 static void 370 acl_mode_changed_cb(void *arg, uint64_t newval) 371 { 372 zfsvfs_t *zfsvfs = arg; 373 374 zfsvfs->z_acl_mode = newval; 375 } 376 377 static void 378 acl_inherit_changed_cb(void *arg, uint64_t newval) 379 { 380 zfsvfs_t *zfsvfs = arg; 381 382 zfsvfs->z_acl_inherit = newval; 383 } 384 385 static int 386 zfs_register_callbacks(vfs_t *vfsp) 387 { 388 struct dsl_dataset *ds = NULL; 389 objset_t *os = NULL; 390 zfsvfs_t *zfsvfs = NULL; 391 uint64_t nbmand; 392 int readonly, do_readonly = B_FALSE; 393 int setuid, do_setuid = B_FALSE; 394 int exec, do_exec = B_FALSE; 395 int devices, do_devices = B_FALSE; 396 int xattr, do_xattr = B_FALSE; 397 int atime, do_atime = B_FALSE; 398 int error = 0; 399 400 ASSERT(vfsp); 401 zfsvfs = vfsp->vfs_data; 402 ASSERT(zfsvfs); 403 os = zfsvfs->z_os; 404 405 /* 406 * The act of registering our callbacks will destroy any mount 407 * options we may have. In order to enable temporary overrides 408 * of mount options, we stash away the current values and 409 * restore them after we register the callbacks. 410 */ 411 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 412 readonly = B_TRUE; 413 do_readonly = B_TRUE; 414 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 415 readonly = B_FALSE; 416 do_readonly = B_TRUE; 417 } 418 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 419 devices = B_FALSE; 420 setuid = B_FALSE; 421 do_devices = B_TRUE; 422 do_setuid = B_TRUE; 423 } else { 424 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 425 devices = B_FALSE; 426 do_devices = B_TRUE; 427 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 428 devices = B_TRUE; 429 do_devices = B_TRUE; 430 } 431 432 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 433 setuid = B_FALSE; 434 do_setuid = B_TRUE; 435 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 436 setuid = B_TRUE; 437 do_setuid = B_TRUE; 438 } 439 } 440 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 441 exec = B_FALSE; 442 do_exec = B_TRUE; 443 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 444 exec = B_TRUE; 445 do_exec = B_TRUE; 446 } 447 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 448 xattr = B_FALSE; 449 do_xattr = B_TRUE; 450 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 451 xattr = B_TRUE; 452 do_xattr = B_TRUE; 453 } 454 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 455 atime = B_FALSE; 456 do_atime = B_TRUE; 457 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 458 atime = B_TRUE; 459 do_atime = B_TRUE; 460 } 461 462 /* 463 * nbmand is a special property. It can only be changed at 464 * mount time. 465 * 466 * This is weird, but it is documented to only be changeable 467 * at mount time. 468 */ 469 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 470 nbmand = B_FALSE; 471 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 472 nbmand = B_TRUE; 473 } else { 474 char osname[MAXNAMELEN]; 475 476 dmu_objset_name(os, osname); 477 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 478 NULL)) { 479 return (error); 480 } 481 } 482 483 /* 484 * Register property callbacks. 485 * 486 * It would probably be fine to just check for i/o error from 487 * the first prop_register(), but I guess I like to go 488 * overboard... 489 */ 490 ds = dmu_objset_ds(os); 491 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 492 error = error ? error : dsl_prop_register(ds, 493 "xattr", xattr_changed_cb, zfsvfs); 494 error = error ? error : dsl_prop_register(ds, 495 "recordsize", blksz_changed_cb, zfsvfs); 496 error = error ? error : dsl_prop_register(ds, 497 "readonly", readonly_changed_cb, zfsvfs); 498 error = error ? error : dsl_prop_register(ds, 499 "devices", devices_changed_cb, zfsvfs); 500 error = error ? error : dsl_prop_register(ds, 501 "setuid", setuid_changed_cb, zfsvfs); 502 error = error ? error : dsl_prop_register(ds, 503 "exec", exec_changed_cb, zfsvfs); 504 error = error ? error : dsl_prop_register(ds, 505 "snapdir", snapdir_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "aclmode", acl_mode_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "aclinherit", acl_inherit_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "vscan", vscan_changed_cb, zfsvfs); 512 if (error) 513 goto unregister; 514 515 /* 516 * Invoke our callbacks to restore temporary mount options. 517 */ 518 if (do_readonly) 519 readonly_changed_cb(zfsvfs, readonly); 520 if (do_setuid) 521 setuid_changed_cb(zfsvfs, setuid); 522 if (do_exec) 523 exec_changed_cb(zfsvfs, exec); 524 if (do_devices) 525 devices_changed_cb(zfsvfs, devices); 526 if (do_xattr) 527 xattr_changed_cb(zfsvfs, xattr); 528 if (do_atime) 529 atime_changed_cb(zfsvfs, atime); 530 531 nbmand_changed_cb(zfsvfs, nbmand); 532 533 return (0); 534 535 unregister: 536 /* 537 * We may attempt to unregister some callbacks that are not 538 * registered, but this is OK; it will simply return ENOMSG, 539 * which we will ignore. 540 */ 541 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 542 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 543 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 544 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 545 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 546 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 547 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 548 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 549 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 550 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 551 zfsvfs); 552 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 553 return (error); 554 555 } 556 557 static int 558 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 559 { 560 int error; 561 562 error = zfs_register_callbacks(zfsvfs->z_vfs); 563 if (error) 564 return (error); 565 566 /* 567 * Set the objset user_ptr to track its zfsvfs. 568 */ 569 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 570 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 571 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 572 573 /* 574 * If we are not mounting (ie: online recv), then we don't 575 * have to worry about replaying the log as we blocked all 576 * operations out since we closed the ZIL. 577 */ 578 if (mounting) { 579 boolean_t readonly; 580 581 /* 582 * During replay we remove the read only flag to 583 * allow replays to succeed. 584 */ 585 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 586 if (readonly != 0) 587 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 588 else 589 zfs_unlinked_drain(zfsvfs); 590 591 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 592 if (zil_disable) { 593 zil_destroy(zfsvfs->z_log, 0); 594 zfsvfs->z_log = NULL; 595 } else { 596 /* 597 * Parse and replay the intent log. 598 * 599 * Because of ziltest, this must be done after 600 * zfs_unlinked_drain(). (Further note: ziltest 601 * doesn't use readonly mounts, where 602 * zfs_unlinked_drain() isn't called.) This is because 603 * ziltest causes spa_sync() to think it's committed, 604 * but actually it is not, so the intent log contains 605 * many txg's worth of changes. 606 * 607 * In particular, if object N is in the unlinked set in 608 * the last txg to actually sync, then it could be 609 * actually freed in a later txg and then reallocated 610 * in a yet later txg. This would write a "create 611 * object N" record to the intent log. Normally, this 612 * would be fine because the spa_sync() would have 613 * written out the fact that object N is free, before 614 * we could write the "create object N" intent log 615 * record. 616 * 617 * But when we are in ziltest mode, we advance the "open 618 * txg" without actually spa_sync()-ing the changes to 619 * disk. So we would see that object N is still 620 * allocated and in the unlinked set, and there is an 621 * intent log record saying to allocate it. 622 */ 623 zfsvfs->z_replay = B_TRUE; 624 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); 625 zfsvfs->z_replay = B_FALSE; 626 } 627 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 628 } 629 630 return (0); 631 } 632 633 static void 634 zfs_freezfsvfs(zfsvfs_t *zfsvfs) 635 { 636 mutex_destroy(&zfsvfs->z_znodes_lock); 637 mutex_destroy(&zfsvfs->z_online_recv_lock); 638 list_destroy(&zfsvfs->z_all_znodes); 639 rrw_destroy(&zfsvfs->z_teardown_lock); 640 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 641 rw_destroy(&zfsvfs->z_fuid_lock); 642 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 643 } 644 645 static int 646 zfs_domount(vfs_t *vfsp, char *osname) 647 { 648 dev_t mount_dev; 649 uint64_t recordsize, readonly; 650 int error = 0; 651 int mode; 652 zfsvfs_t *zfsvfs; 653 znode_t *zp = NULL; 654 655 ASSERT(vfsp); 656 ASSERT(osname); 657 658 /* 659 * Initialize the zfs-specific filesystem structure. 660 * Should probably make this a kmem cache, shuffle fields, 661 * and just bzero up to z_hold_mtx[]. 662 */ 663 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 664 zfsvfs->z_vfs = vfsp; 665 zfsvfs->z_parent = zfsvfs; 666 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 667 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 668 669 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 670 mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL); 671 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 672 offsetof(znode_t, z_link_node)); 673 rrw_init(&zfsvfs->z_teardown_lock); 674 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 675 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 676 677 /* Initialize the generic filesystem structure. */ 678 vfsp->vfs_bcount = 0; 679 vfsp->vfs_data = NULL; 680 681 if (zfs_create_unique_device(&mount_dev) == -1) { 682 error = ENODEV; 683 goto out; 684 } 685 ASSERT(vfs_devismounted(mount_dev) == 0); 686 687 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 688 NULL)) 689 goto out; 690 691 vfsp->vfs_dev = mount_dev; 692 vfsp->vfs_fstype = zfsfstype; 693 vfsp->vfs_bsize = recordsize; 694 vfsp->vfs_flag |= VFS_NOTRUNC; 695 vfsp->vfs_data = zfsvfs; 696 697 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 698 goto out; 699 700 mode = DS_MODE_OWNER; 701 if (readonly) 702 mode |= DS_MODE_READONLY; 703 704 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 705 if (error == EROFS) { 706 mode = DS_MODE_OWNER | DS_MODE_READONLY; 707 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 708 &zfsvfs->z_os); 709 } 710 711 if (error) 712 goto out; 713 714 if (error = zfs_init_fs(zfsvfs, &zp)) 715 goto out; 716 717 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 718 VN_RELE(ZTOV(zp)); 719 720 /* 721 * Set features for file system. 722 */ 723 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 724 if (zfsvfs->z_use_fuids) { 725 vfs_set_feature(vfsp, VFSFT_XVATTR); 726 vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS); 727 vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS); 728 vfs_set_feature(vfsp, VFSFT_ACLONCREATE); 729 } 730 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 731 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 732 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 733 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 734 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 735 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 736 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 737 } 738 739 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 740 uint64_t pval; 741 742 ASSERT(mode & DS_MODE_READONLY); 743 atime_changed_cb(zfsvfs, B_FALSE); 744 readonly_changed_cb(zfsvfs, B_TRUE); 745 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 746 goto out; 747 xattr_changed_cb(zfsvfs, pval); 748 zfsvfs->z_issnap = B_TRUE; 749 } else { 750 error = zfsvfs_setup(zfsvfs, B_TRUE); 751 } 752 753 if (!zfsvfs->z_issnap) 754 zfsctl_create(zfsvfs); 755 out: 756 if (error) { 757 if (zfsvfs->z_os) 758 dmu_objset_close(zfsvfs->z_os); 759 zfs_freezfsvfs(zfsvfs); 760 } else { 761 atomic_add_32(&zfs_active_fs_count, 1); 762 } 763 764 return (error); 765 } 766 767 void 768 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 769 { 770 objset_t *os = zfsvfs->z_os; 771 struct dsl_dataset *ds; 772 773 /* 774 * Unregister properties. 775 */ 776 if (!dmu_objset_is_snapshot(os)) { 777 ds = dmu_objset_ds(os); 778 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 779 zfsvfs) == 0); 780 781 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 782 zfsvfs) == 0); 783 784 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 785 zfsvfs) == 0); 786 787 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 788 zfsvfs) == 0); 789 790 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 791 zfsvfs) == 0); 792 793 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 794 zfsvfs) == 0); 795 796 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 797 zfsvfs) == 0); 798 799 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 800 zfsvfs) == 0); 801 802 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 803 zfsvfs) == 0); 804 805 VERIFY(dsl_prop_unregister(ds, "aclinherit", 806 acl_inherit_changed_cb, zfsvfs) == 0); 807 808 VERIFY(dsl_prop_unregister(ds, "vscan", 809 vscan_changed_cb, zfsvfs) == 0); 810 } 811 } 812 813 /* 814 * Convert a decimal digit string to a uint64_t integer. 815 */ 816 static int 817 str_to_uint64(char *str, uint64_t *objnum) 818 { 819 uint64_t num = 0; 820 821 while (*str) { 822 if (*str < '0' || *str > '9') 823 return (EINVAL); 824 825 num = num*10 + *str++ - '0'; 826 } 827 828 *objnum = num; 829 return (0); 830 } 831 832 /* 833 * The boot path passed from the boot loader is in the form of 834 * "rootpool-name/root-filesystem-object-number'. Convert this 835 * string to a dataset name: "rootpool-name/root-filesystem-name". 836 */ 837 static int 838 zfs_parse_bootfs(char *bpath, char *outpath) 839 { 840 char *slashp; 841 uint64_t objnum; 842 int error; 843 844 if (*bpath == 0 || *bpath == '/') 845 return (EINVAL); 846 847 (void) strcpy(outpath, bpath); 848 849 slashp = strchr(bpath, '/'); 850 851 /* if no '/', just return the pool name */ 852 if (slashp == NULL) { 853 return (0); 854 } 855 856 /* if not a number, just return the root dataset name */ 857 if (str_to_uint64(slashp+1, &objnum)) { 858 return (0); 859 } 860 861 *slashp = '\0'; 862 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 863 *slashp = '/'; 864 865 return (error); 866 } 867 868 static int 869 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 870 { 871 int error = 0; 872 static int zfsrootdone = 0; 873 zfsvfs_t *zfsvfs = NULL; 874 znode_t *zp = NULL; 875 vnode_t *vp = NULL; 876 char *zfs_bootfs; 877 char *zfs_devid; 878 879 ASSERT(vfsp); 880 881 /* 882 * The filesystem that we mount as root is defined in the 883 * boot property "zfs-bootfs" with a format of 884 * "poolname/root-dataset-objnum". 885 */ 886 if (why == ROOT_INIT) { 887 if (zfsrootdone++) 888 return (EBUSY); 889 /* 890 * the process of doing a spa_load will require the 891 * clock to be set before we could (for example) do 892 * something better by looking at the timestamp on 893 * an uberblock, so just set it to -1. 894 */ 895 clkset(-1); 896 897 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 898 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 899 "bootfs name"); 900 return (EINVAL); 901 } 902 zfs_devid = spa_get_bootprop("diskdevid"); 903 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 904 if (zfs_devid) 905 spa_free_bootprop(zfs_devid); 906 if (error) { 907 spa_free_bootprop(zfs_bootfs); 908 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 909 error); 910 return (error); 911 } 912 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 913 spa_free_bootprop(zfs_bootfs); 914 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 915 error); 916 return (error); 917 } 918 919 spa_free_bootprop(zfs_bootfs); 920 921 if (error = vfs_lock(vfsp)) 922 return (error); 923 924 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 925 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 926 goto out; 927 } 928 929 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 930 ASSERT(zfsvfs); 931 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 932 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 933 goto out; 934 } 935 936 vp = ZTOV(zp); 937 mutex_enter(&vp->v_lock); 938 vp->v_flag |= VROOT; 939 mutex_exit(&vp->v_lock); 940 rootvp = vp; 941 942 /* 943 * Leave rootvp held. The root file system is never unmounted. 944 */ 945 946 vfs_add((struct vnode *)0, vfsp, 947 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 948 out: 949 vfs_unlock(vfsp); 950 return (error); 951 } else if (why == ROOT_REMOUNT) { 952 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 953 vfsp->vfs_flag |= VFS_REMOUNT; 954 955 /* refresh mount options */ 956 zfs_unregister_callbacks(vfsp->vfs_data); 957 return (zfs_register_callbacks(vfsp)); 958 959 } else if (why == ROOT_UNMOUNT) { 960 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 961 (void) zfs_sync(vfsp, 0, 0); 962 return (0); 963 } 964 965 /* 966 * if "why" is equal to anything else other than ROOT_INIT, 967 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 968 */ 969 return (ENOTSUP); 970 } 971 972 /*ARGSUSED*/ 973 static int 974 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 975 { 976 char *osname; 977 pathname_t spn; 978 int error = 0; 979 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 980 UIO_SYSSPACE : UIO_USERSPACE; 981 int canwrite; 982 983 if (mvp->v_type != VDIR) 984 return (ENOTDIR); 985 986 mutex_enter(&mvp->v_lock); 987 if ((uap->flags & MS_REMOUNT) == 0 && 988 (uap->flags & MS_OVERLAY) == 0 && 989 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 990 mutex_exit(&mvp->v_lock); 991 return (EBUSY); 992 } 993 mutex_exit(&mvp->v_lock); 994 995 /* 996 * ZFS does not support passing unparsed data in via MS_DATA. 997 * Users should use the MS_OPTIONSTR interface; this means 998 * that all option parsing is already done and the options struct 999 * can be interrogated. 1000 */ 1001 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1002 return (EINVAL); 1003 1004 /* 1005 * Get the objset name (the "special" mount argument). 1006 */ 1007 if (error = pn_get(uap->spec, fromspace, &spn)) 1008 return (error); 1009 1010 osname = spn.pn_path; 1011 1012 /* 1013 * Check for mount privilege? 1014 * 1015 * If we don't have privilege then see if 1016 * we have local permission to allow it 1017 */ 1018 error = secpolicy_fs_mount(cr, mvp, vfsp); 1019 if (error) { 1020 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 1021 if (error == 0) { 1022 vattr_t vattr; 1023 1024 /* 1025 * Make sure user is the owner of the mount point 1026 * or has sufficient privileges. 1027 */ 1028 1029 vattr.va_mask = AT_UID; 1030 1031 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1032 goto out; 1033 } 1034 1035 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1036 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1037 error = EPERM; 1038 goto out; 1039 } 1040 1041 secpolicy_fs_mount_clearopts(cr, vfsp); 1042 } else { 1043 goto out; 1044 } 1045 } 1046 1047 /* 1048 * Refuse to mount a filesystem if we are in a local zone and the 1049 * dataset is not visible. 1050 */ 1051 if (!INGLOBALZONE(curproc) && 1052 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1053 error = EPERM; 1054 goto out; 1055 } 1056 1057 /* 1058 * When doing a remount, we simply refresh our temporary properties 1059 * according to those options set in the current VFS options. 1060 */ 1061 if (uap->flags & MS_REMOUNT) { 1062 /* refresh mount options */ 1063 zfs_unregister_callbacks(vfsp->vfs_data); 1064 error = zfs_register_callbacks(vfsp); 1065 goto out; 1066 } 1067 1068 error = zfs_domount(vfsp, osname); 1069 1070 out: 1071 pn_free(&spn); 1072 return (error); 1073 } 1074 1075 static int 1076 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1077 { 1078 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1079 dev32_t d32; 1080 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1081 1082 ZFS_ENTER(zfsvfs); 1083 1084 dmu_objset_space(zfsvfs->z_os, 1085 &refdbytes, &availbytes, &usedobjs, &availobjs); 1086 1087 /* 1088 * The underlying storage pool actually uses multiple block sizes. 1089 * We report the fragsize as the smallest block size we support, 1090 * and we report our blocksize as the filesystem's maximum blocksize. 1091 */ 1092 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1093 statp->f_bsize = zfsvfs->z_max_blksz; 1094 1095 /* 1096 * The following report "total" blocks of various kinds in the 1097 * file system, but reported in terms of f_frsize - the 1098 * "fragment" size. 1099 */ 1100 1101 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1102 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1103 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1104 1105 /* 1106 * statvfs() should really be called statufs(), because it assumes 1107 * static metadata. ZFS doesn't preallocate files, so the best 1108 * we can do is report the max that could possibly fit in f_files, 1109 * and that minus the number actually used in f_ffree. 1110 * For f_ffree, report the smaller of the number of object available 1111 * and the number of blocks (each object will take at least a block). 1112 */ 1113 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1114 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1115 statp->f_files = statp->f_ffree + usedobjs; 1116 1117 (void) cmpldev(&d32, vfsp->vfs_dev); 1118 statp->f_fsid = d32; 1119 1120 /* 1121 * We're a zfs filesystem. 1122 */ 1123 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1124 1125 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1126 1127 statp->f_namemax = ZFS_MAXNAMELEN; 1128 1129 /* 1130 * We have all of 32 characters to stuff a string here. 1131 * Is there anything useful we could/should provide? 1132 */ 1133 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1134 1135 ZFS_EXIT(zfsvfs); 1136 return (0); 1137 } 1138 1139 static int 1140 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1141 { 1142 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1143 znode_t *rootzp; 1144 int error; 1145 1146 ZFS_ENTER(zfsvfs); 1147 1148 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1149 if (error == 0) 1150 *vpp = ZTOV(rootzp); 1151 1152 ZFS_EXIT(zfsvfs); 1153 return (error); 1154 } 1155 1156 /* 1157 * Teardown the zfsvfs::z_os. 1158 * 1159 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1160 * and 'z_teardown_inactive_lock' held. 1161 */ 1162 static int 1163 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1164 { 1165 znode_t *zp; 1166 1167 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1168 1169 if (!unmounting) { 1170 /* 1171 * We purge the parent filesystem's vfsp as the parent 1172 * filesystem and all of its snapshots have their vnode's 1173 * v_vfsp set to the parent's filesystem's vfsp. Note, 1174 * 'z_parent' is self referential for non-snapshots. 1175 */ 1176 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1177 } 1178 1179 /* 1180 * Close the zil. NB: Can't close the zil while zfs_inactive 1181 * threads are blocked as zil_close can call zfs_inactive. 1182 */ 1183 if (zfsvfs->z_log) { 1184 zil_close(zfsvfs->z_log); 1185 zfsvfs->z_log = NULL; 1186 } 1187 1188 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1189 1190 /* 1191 * If we are not unmounting (ie: online recv) and someone already 1192 * unmounted this file system while we were doing the switcheroo, 1193 * or a reopen of z_os failed then just bail out now. 1194 */ 1195 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1196 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1197 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1198 return (EIO); 1199 } 1200 1201 /* 1202 * At this point there are no vops active, and any new vops will 1203 * fail with EIO since we have z_teardown_lock for writer (only 1204 * relavent for forced unmount). 1205 * 1206 * Release all holds on dbufs. 1207 */ 1208 mutex_enter(&zfsvfs->z_znodes_lock); 1209 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1210 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1211 if (zp->z_dbuf) { 1212 ASSERT(ZTOV(zp)->v_count > 0); 1213 zfs_znode_dmu_fini(zp); 1214 } 1215 mutex_exit(&zfsvfs->z_znodes_lock); 1216 1217 /* 1218 * If we are unmounting, set the unmounted flag and let new vops 1219 * unblock. zfs_inactive will have the unmounted behavior, and all 1220 * other vops will fail with EIO. 1221 */ 1222 if (unmounting) { 1223 zfsvfs->z_unmounted = B_TRUE; 1224 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1225 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1226 } 1227 1228 /* 1229 * z_os will be NULL if there was an error in attempting to reopen 1230 * zfsvfs, so just return as the properties had already been 1231 * unregistered and cached data had been evicted before. 1232 */ 1233 if (zfsvfs->z_os == NULL) 1234 return (0); 1235 1236 /* 1237 * Unregister properties. 1238 */ 1239 zfs_unregister_callbacks(zfsvfs); 1240 1241 /* 1242 * Evict cached data 1243 */ 1244 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1245 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1246 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1247 } 1248 1249 return (0); 1250 } 1251 1252 /*ARGSUSED*/ 1253 static int 1254 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1255 { 1256 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1257 objset_t *os; 1258 int ret; 1259 1260 ret = secpolicy_fs_unmount(cr, vfsp); 1261 if (ret) { 1262 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1263 ZFS_DELEG_PERM_MOUNT, cr); 1264 if (ret) 1265 return (ret); 1266 } 1267 1268 /* 1269 * We purge the parent filesystem's vfsp as the parent filesystem 1270 * and all of its snapshots have their vnode's v_vfsp set to the 1271 * parent's filesystem's vfsp. Note, 'z_parent' is self 1272 * referential for non-snapshots. 1273 */ 1274 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1275 1276 /* 1277 * Unmount any snapshots mounted under .zfs before unmounting the 1278 * dataset itself. 1279 */ 1280 if (zfsvfs->z_ctldir != NULL && 1281 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1282 return (ret); 1283 } 1284 1285 if (!(fflag & MS_FORCE)) { 1286 /* 1287 * Check the number of active vnodes in the file system. 1288 * Our count is maintained in the vfs structure, but the 1289 * number is off by 1 to indicate a hold on the vfs 1290 * structure itself. 1291 * 1292 * The '.zfs' directory maintains a reference of its 1293 * own, and any active references underneath are 1294 * reflected in the vnode count. 1295 */ 1296 if (zfsvfs->z_ctldir == NULL) { 1297 if (vfsp->vfs_count > 1) 1298 return (EBUSY); 1299 } else { 1300 if (vfsp->vfs_count > 2 || 1301 zfsvfs->z_ctldir->v_count > 1) 1302 return (EBUSY); 1303 } 1304 } 1305 1306 vfsp->vfs_flag |= VFS_UNMOUNTED; 1307 1308 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1309 os = zfsvfs->z_os; 1310 1311 /* 1312 * z_os will be NULL if there was an error in 1313 * attempting to reopen zfsvfs. 1314 */ 1315 if (os != NULL) { 1316 /* 1317 * Unset the objset user_ptr. 1318 */ 1319 mutex_enter(&os->os->os_user_ptr_lock); 1320 dmu_objset_set_user(os, NULL); 1321 mutex_exit(&os->os->os_user_ptr_lock); 1322 1323 /* 1324 * Finally release the objset 1325 */ 1326 dmu_objset_close(os); 1327 } 1328 1329 /* 1330 * We can now safely destroy the '.zfs' directory node. 1331 */ 1332 if (zfsvfs->z_ctldir != NULL) 1333 zfsctl_destroy(zfsvfs); 1334 1335 return (0); 1336 } 1337 1338 static int 1339 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1340 { 1341 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1342 znode_t *zp; 1343 uint64_t object = 0; 1344 uint64_t fid_gen = 0; 1345 uint64_t gen_mask; 1346 uint64_t zp_gen; 1347 int i, err; 1348 1349 *vpp = NULL; 1350 1351 ZFS_ENTER(zfsvfs); 1352 1353 if (fidp->fid_len == LONG_FID_LEN) { 1354 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1355 uint64_t objsetid = 0; 1356 uint64_t setgen = 0; 1357 1358 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1359 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1360 1361 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1362 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1363 1364 ZFS_EXIT(zfsvfs); 1365 1366 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1367 if (err) 1368 return (EINVAL); 1369 ZFS_ENTER(zfsvfs); 1370 } 1371 1372 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1373 zfid_short_t *zfid = (zfid_short_t *)fidp; 1374 1375 for (i = 0; i < sizeof (zfid->zf_object); i++) 1376 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1377 1378 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1379 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1380 } else { 1381 ZFS_EXIT(zfsvfs); 1382 return (EINVAL); 1383 } 1384 1385 /* A zero fid_gen means we are in the .zfs control directories */ 1386 if (fid_gen == 0 && 1387 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1388 *vpp = zfsvfs->z_ctldir; 1389 ASSERT(*vpp != NULL); 1390 if (object == ZFSCTL_INO_SNAPDIR) { 1391 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1392 0, NULL, NULL, NULL, NULL, NULL) == 0); 1393 } else { 1394 VN_HOLD(*vpp); 1395 } 1396 ZFS_EXIT(zfsvfs); 1397 return (0); 1398 } 1399 1400 gen_mask = -1ULL >> (64 - 8 * i); 1401 1402 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1403 if (err = zfs_zget(zfsvfs, object, &zp)) { 1404 ZFS_EXIT(zfsvfs); 1405 return (err); 1406 } 1407 zp_gen = zp->z_phys->zp_gen & gen_mask; 1408 if (zp_gen == 0) 1409 zp_gen = 1; 1410 if (zp->z_unlinked || zp_gen != fid_gen) { 1411 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1412 VN_RELE(ZTOV(zp)); 1413 ZFS_EXIT(zfsvfs); 1414 return (EINVAL); 1415 } 1416 1417 *vpp = ZTOV(zp); 1418 ZFS_EXIT(zfsvfs); 1419 return (0); 1420 } 1421 1422 /* 1423 * Block out VOPs and close zfsvfs_t::z_os 1424 * 1425 * Note, if successful, then we return with the 'z_teardown_lock' and 1426 * 'z_teardown_inactive_lock' write held. 1427 */ 1428 int 1429 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode) 1430 { 1431 int error; 1432 1433 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1434 return (error); 1435 1436 *mode = zfsvfs->z_os->os_mode; 1437 dmu_objset_name(zfsvfs->z_os, name); 1438 dmu_objset_close(zfsvfs->z_os); 1439 1440 return (0); 1441 } 1442 1443 /* 1444 * Reopen zfsvfs_t::z_os and release VOPs. 1445 */ 1446 int 1447 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode) 1448 { 1449 int err; 1450 1451 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1452 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1453 1454 err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 1455 if (err) { 1456 zfsvfs->z_os = NULL; 1457 } else { 1458 znode_t *zp; 1459 1460 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1461 1462 /* 1463 * Attempt to re-establish all the active znodes with 1464 * their dbufs. If a zfs_rezget() fails, then we'll let 1465 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1466 * when they try to use their znode. 1467 */ 1468 mutex_enter(&zfsvfs->z_znodes_lock); 1469 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1470 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1471 (void) zfs_rezget(zp); 1472 } 1473 mutex_exit(&zfsvfs->z_znodes_lock); 1474 1475 } 1476 1477 /* release the VOPs */ 1478 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1479 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1480 1481 if (err) { 1482 /* 1483 * Since we couldn't reopen zfsvfs::z_os, force 1484 * unmount this file system. 1485 */ 1486 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1487 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1488 } 1489 return (err); 1490 } 1491 1492 static void 1493 zfs_freevfs(vfs_t *vfsp) 1494 { 1495 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1496 int i; 1497 1498 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1499 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1500 1501 zfs_fuid_destroy(zfsvfs); 1502 zfs_freezfsvfs(zfsvfs); 1503 1504 atomic_add_32(&zfs_active_fs_count, -1); 1505 } 1506 1507 /* 1508 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1509 * so we can't safely do any non-idempotent initialization here. 1510 * Leave that to zfs_init() and zfs_fini(), which are called 1511 * from the module's _init() and _fini() entry points. 1512 */ 1513 /*ARGSUSED*/ 1514 static int 1515 zfs_vfsinit(int fstype, char *name) 1516 { 1517 int error; 1518 1519 zfsfstype = fstype; 1520 1521 /* 1522 * Setup vfsops and vnodeops tables. 1523 */ 1524 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1525 if (error != 0) { 1526 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1527 } 1528 1529 error = zfs_create_op_tables(); 1530 if (error) { 1531 zfs_remove_op_tables(); 1532 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1533 (void) vfs_freevfsops_by_type(zfsfstype); 1534 return (error); 1535 } 1536 1537 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1538 1539 /* 1540 * Unique major number for all zfs mounts. 1541 * If we run out of 32-bit minors, we'll getudev() another major. 1542 */ 1543 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1544 zfs_minor = ZFS_MIN_MINOR; 1545 1546 return (0); 1547 } 1548 1549 void 1550 zfs_init(void) 1551 { 1552 /* 1553 * Initialize .zfs directory structures 1554 */ 1555 zfsctl_init(); 1556 1557 /* 1558 * Initialize znode cache, vnode ops, etc... 1559 */ 1560 zfs_znode_init(); 1561 } 1562 1563 void 1564 zfs_fini(void) 1565 { 1566 zfsctl_fini(); 1567 zfs_znode_fini(); 1568 } 1569 1570 int 1571 zfs_busy(void) 1572 { 1573 return (zfs_active_fs_count != 0); 1574 } 1575 1576 int 1577 zfs_set_version(const char *name, uint64_t newvers) 1578 { 1579 int error; 1580 objset_t *os; 1581 dmu_tx_t *tx; 1582 uint64_t curvers; 1583 1584 /* 1585 * XXX for now, require that the filesystem be unmounted. Would 1586 * be nice to find the zfsvfs_t and just update that if 1587 * possible. 1588 */ 1589 1590 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1591 return (EINVAL); 1592 1593 error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_OWNER, &os); 1594 if (error) 1595 return (error); 1596 1597 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1598 8, 1, &curvers); 1599 if (error) 1600 goto out; 1601 if (newvers < curvers) { 1602 error = EINVAL; 1603 goto out; 1604 } 1605 1606 tx = dmu_tx_create(os); 1607 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); 1608 error = dmu_tx_assign(tx, TXG_WAIT); 1609 if (error) { 1610 dmu_tx_abort(tx); 1611 goto out; 1612 } 1613 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 1614 &newvers, tx); 1615 1616 spa_history_internal_log(LOG_DS_UPGRADE, 1617 dmu_objset_spa(os), tx, CRED(), 1618 "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, 1619 dmu_objset_id(os)); 1620 dmu_tx_commit(tx); 1621 1622 out: 1623 dmu_objset_close(os); 1624 return (error); 1625 } 1626 1627 /* 1628 * Read a property stored within the master node. 1629 */ 1630 int 1631 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 1632 { 1633 const char *pname; 1634 int error = ENOENT; 1635 1636 /* 1637 * Look up the file system's value for the property. For the 1638 * version property, we look up a slightly different string. 1639 */ 1640 if (prop == ZFS_PROP_VERSION) 1641 pname = ZPL_VERSION_STR; 1642 else 1643 pname = zfs_prop_to_name(prop); 1644 1645 if (os != NULL) 1646 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 1647 1648 if (error == ENOENT) { 1649 /* No value set, use the default value */ 1650 switch (prop) { 1651 case ZFS_PROP_VERSION: 1652 *value = ZPL_VERSION; 1653 break; 1654 case ZFS_PROP_NORMALIZE: 1655 case ZFS_PROP_UTF8ONLY: 1656 *value = 0; 1657 break; 1658 case ZFS_PROP_CASE: 1659 *value = ZFS_CASE_SENSITIVE; 1660 break; 1661 default: 1662 return (error); 1663 } 1664 error = 0; 1665 } 1666 return (error); 1667 } 1668 1669 static vfsdef_t vfw = { 1670 VFSDEF_VERSION, 1671 MNTTYPE_ZFS, 1672 zfs_vfsinit, 1673 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 1674 VSW_XID, 1675 &zfs_mntopts 1676 }; 1677 1678 struct modlfs zfs_modlfs = { 1679 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 1680 }; 1681