1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/pathname.h> 32 #include <sys/vnode.h> 33 #include <sys/vfs.h> 34 #include <sys/vfs_opreg.h> 35 #include <sys/mntent.h> 36 #include <sys/mount.h> 37 #include <sys/cmn_err.h> 38 #include "fs/fs_subr.h" 39 #include <sys/zfs_znode.h> 40 #include <sys/zfs_dir.h> 41 #include <sys/zil.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_deleg.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/refstr.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/zfs_ctldir.h> 57 #include <sys/zfs_fuid.h> 58 #include <sys/bootconf.h> 59 #include <sys/sunddi.h> 60 #include <sys/dnlc.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa_boot.h> 63 64 int zfsfstype; 65 vfsops_t *zfs_vfsops = NULL; 66 static major_t zfs_major; 67 static minor_t zfs_minor; 68 static kmutex_t zfs_dev_mtx; 69 70 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 71 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 72 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 73 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 74 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 75 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 76 static void zfs_freevfs(vfs_t *vfsp); 77 78 static const fs_operation_def_t zfs_vfsops_template[] = { 79 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 80 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 81 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 82 VFSNAME_ROOT, { .vfs_root = zfs_root }, 83 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 84 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 85 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 86 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 87 NULL, NULL 88 }; 89 90 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 91 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 92 NULL, NULL 93 }; 94 95 /* 96 * We need to keep a count of active fs's. 97 * This is necessary to prevent our module 98 * from being unloaded after a umount -f 99 */ 100 static uint32_t zfs_active_fs_count = 0; 101 102 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 103 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 104 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 105 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 106 107 /* 108 * MO_DEFAULT is not used since the default value is determined 109 * by the equivalent property. 110 */ 111 static mntopt_t mntopts[] = { 112 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 113 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 114 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 115 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 116 }; 117 118 static mntopts_t zfs_mntopts = { 119 sizeof (mntopts) / sizeof (mntopt_t), 120 mntopts 121 }; 122 123 /*ARGSUSED*/ 124 int 125 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 126 { 127 /* 128 * Data integrity is job one. We don't want a compromised kernel 129 * writing to the storage pool, so we never sync during panic. 130 */ 131 if (panicstr) 132 return (0); 133 134 /* 135 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 136 * to sync metadata, which they would otherwise cache indefinitely. 137 * Semantically, the only requirement is that the sync be initiated. 138 * The DMU syncs out txgs frequently, so there's nothing to do. 139 */ 140 if (flag & SYNC_ATTR) 141 return (0); 142 143 if (vfsp != NULL) { 144 /* 145 * Sync a specific filesystem. 146 */ 147 zfsvfs_t *zfsvfs = vfsp->vfs_data; 148 149 ZFS_ENTER(zfsvfs); 150 if (zfsvfs->z_log != NULL) 151 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 152 else 153 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 154 ZFS_EXIT(zfsvfs); 155 } else { 156 /* 157 * Sync all ZFS filesystems. This is what happens when you 158 * run sync(1M). Unlike other filesystems, ZFS honors the 159 * request by waiting for all pools to commit all dirty data. 160 */ 161 spa_sync_allpools(); 162 } 163 164 return (0); 165 } 166 167 static int 168 zfs_create_unique_device(dev_t *dev) 169 { 170 major_t new_major; 171 172 do { 173 ASSERT3U(zfs_minor, <=, MAXMIN32); 174 minor_t start = zfs_minor; 175 do { 176 mutex_enter(&zfs_dev_mtx); 177 if (zfs_minor >= MAXMIN32) { 178 /* 179 * If we're still using the real major 180 * keep out of /dev/zfs and /dev/zvol minor 181 * number space. If we're using a getudev()'ed 182 * major number, we can use all of its minors. 183 */ 184 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 185 zfs_minor = ZFS_MIN_MINOR; 186 else 187 zfs_minor = 0; 188 } else { 189 zfs_minor++; 190 } 191 *dev = makedevice(zfs_major, zfs_minor); 192 mutex_exit(&zfs_dev_mtx); 193 } while (vfs_devismounted(*dev) && zfs_minor != start); 194 if (zfs_minor == start) { 195 /* 196 * We are using all ~262,000 minor numbers for the 197 * current major number. Create a new major number. 198 */ 199 if ((new_major = getudev()) == (major_t)-1) { 200 cmn_err(CE_WARN, 201 "zfs_mount: Can't get unique major " 202 "device number."); 203 return (-1); 204 } 205 mutex_enter(&zfs_dev_mtx); 206 zfs_major = new_major; 207 zfs_minor = 0; 208 209 mutex_exit(&zfs_dev_mtx); 210 } else { 211 break; 212 } 213 /* CONSTANTCONDITION */ 214 } while (1); 215 216 return (0); 217 } 218 219 static void 220 atime_changed_cb(void *arg, uint64_t newval) 221 { 222 zfsvfs_t *zfsvfs = arg; 223 224 if (newval == TRUE) { 225 zfsvfs->z_atime = TRUE; 226 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 227 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 228 } else { 229 zfsvfs->z_atime = FALSE; 230 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 231 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 232 } 233 } 234 235 static void 236 xattr_changed_cb(void *arg, uint64_t newval) 237 { 238 zfsvfs_t *zfsvfs = arg; 239 240 if (newval == TRUE) { 241 /* XXX locking on vfs_flag? */ 242 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 243 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 244 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 245 } else { 246 /* XXX locking on vfs_flag? */ 247 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 248 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 249 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 250 } 251 } 252 253 static void 254 blksz_changed_cb(void *arg, uint64_t newval) 255 { 256 zfsvfs_t *zfsvfs = arg; 257 258 if (newval < SPA_MINBLOCKSIZE || 259 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 260 newval = SPA_MAXBLOCKSIZE; 261 262 zfsvfs->z_max_blksz = newval; 263 zfsvfs->z_vfs->vfs_bsize = newval; 264 } 265 266 static void 267 readonly_changed_cb(void *arg, uint64_t newval) 268 { 269 zfsvfs_t *zfsvfs = arg; 270 271 if (newval) { 272 /* XXX locking on vfs_flag? */ 273 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 274 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 275 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 276 } else { 277 /* XXX locking on vfs_flag? */ 278 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 279 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 280 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 281 } 282 } 283 284 static void 285 devices_changed_cb(void *arg, uint64_t newval) 286 { 287 zfsvfs_t *zfsvfs = arg; 288 289 if (newval == FALSE) { 290 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 291 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 292 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 293 } else { 294 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 295 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 296 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 297 } 298 } 299 300 static void 301 setuid_changed_cb(void *arg, uint64_t newval) 302 { 303 zfsvfs_t *zfsvfs = arg; 304 305 if (newval == FALSE) { 306 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 307 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 308 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 309 } else { 310 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 311 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 312 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 313 } 314 } 315 316 static void 317 exec_changed_cb(void *arg, uint64_t newval) 318 { 319 zfsvfs_t *zfsvfs = arg; 320 321 if (newval == FALSE) { 322 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 323 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 324 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 325 } else { 326 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 327 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 328 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 329 } 330 } 331 332 /* 333 * The nbmand mount option can be changed at mount time. 334 * We can't allow it to be toggled on live file systems or incorrect 335 * behavior may be seen from cifs clients 336 * 337 * This property isn't registered via dsl_prop_register(), but this callback 338 * will be called when a file system is first mounted 339 */ 340 static void 341 nbmand_changed_cb(void *arg, uint64_t newval) 342 { 343 zfsvfs_t *zfsvfs = arg; 344 if (newval == FALSE) { 345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 347 } else { 348 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 349 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 350 } 351 } 352 353 static void 354 snapdir_changed_cb(void *arg, uint64_t newval) 355 { 356 zfsvfs_t *zfsvfs = arg; 357 358 zfsvfs->z_show_ctldir = newval; 359 } 360 361 static void 362 vscan_changed_cb(void *arg, uint64_t newval) 363 { 364 zfsvfs_t *zfsvfs = arg; 365 366 zfsvfs->z_vscan = newval; 367 } 368 369 static void 370 acl_mode_changed_cb(void *arg, uint64_t newval) 371 { 372 zfsvfs_t *zfsvfs = arg; 373 374 zfsvfs->z_acl_mode = newval; 375 } 376 377 static void 378 acl_inherit_changed_cb(void *arg, uint64_t newval) 379 { 380 zfsvfs_t *zfsvfs = arg; 381 382 zfsvfs->z_acl_inherit = newval; 383 } 384 385 static int 386 zfs_register_callbacks(vfs_t *vfsp) 387 { 388 struct dsl_dataset *ds = NULL; 389 objset_t *os = NULL; 390 zfsvfs_t *zfsvfs = NULL; 391 uint64_t nbmand; 392 int readonly, do_readonly = B_FALSE; 393 int setuid, do_setuid = B_FALSE; 394 int exec, do_exec = B_FALSE; 395 int devices, do_devices = B_FALSE; 396 int xattr, do_xattr = B_FALSE; 397 int atime, do_atime = B_FALSE; 398 int error = 0; 399 400 ASSERT(vfsp); 401 zfsvfs = vfsp->vfs_data; 402 ASSERT(zfsvfs); 403 os = zfsvfs->z_os; 404 405 /* 406 * The act of registering our callbacks will destroy any mount 407 * options we may have. In order to enable temporary overrides 408 * of mount options, we stash away the current values and 409 * restore them after we register the callbacks. 410 */ 411 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 412 readonly = B_TRUE; 413 do_readonly = B_TRUE; 414 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 415 readonly = B_FALSE; 416 do_readonly = B_TRUE; 417 } 418 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 419 devices = B_FALSE; 420 setuid = B_FALSE; 421 do_devices = B_TRUE; 422 do_setuid = B_TRUE; 423 } else { 424 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 425 devices = B_FALSE; 426 do_devices = B_TRUE; 427 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 428 devices = B_TRUE; 429 do_devices = B_TRUE; 430 } 431 432 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 433 setuid = B_FALSE; 434 do_setuid = B_TRUE; 435 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 436 setuid = B_TRUE; 437 do_setuid = B_TRUE; 438 } 439 } 440 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 441 exec = B_FALSE; 442 do_exec = B_TRUE; 443 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 444 exec = B_TRUE; 445 do_exec = B_TRUE; 446 } 447 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 448 xattr = B_FALSE; 449 do_xattr = B_TRUE; 450 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 451 xattr = B_TRUE; 452 do_xattr = B_TRUE; 453 } 454 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 455 atime = B_FALSE; 456 do_atime = B_TRUE; 457 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 458 atime = B_TRUE; 459 do_atime = B_TRUE; 460 } 461 462 /* 463 * nbmand is a special property. It can only be changed at 464 * mount time. 465 * 466 * This is weird, but it is documented to only be changeable 467 * at mount time. 468 */ 469 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 470 nbmand = B_FALSE; 471 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 472 nbmand = B_TRUE; 473 } else { 474 char osname[MAXNAMELEN]; 475 476 dmu_objset_name(os, osname); 477 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 478 NULL)) { 479 return (error); 480 } 481 } 482 483 /* 484 * Register property callbacks. 485 * 486 * It would probably be fine to just check for i/o error from 487 * the first prop_register(), but I guess I like to go 488 * overboard... 489 */ 490 ds = dmu_objset_ds(os); 491 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 492 error = error ? error : dsl_prop_register(ds, 493 "xattr", xattr_changed_cb, zfsvfs); 494 error = error ? error : dsl_prop_register(ds, 495 "recordsize", blksz_changed_cb, zfsvfs); 496 error = error ? error : dsl_prop_register(ds, 497 "readonly", readonly_changed_cb, zfsvfs); 498 error = error ? error : dsl_prop_register(ds, 499 "devices", devices_changed_cb, zfsvfs); 500 error = error ? error : dsl_prop_register(ds, 501 "setuid", setuid_changed_cb, zfsvfs); 502 error = error ? error : dsl_prop_register(ds, 503 "exec", exec_changed_cb, zfsvfs); 504 error = error ? error : dsl_prop_register(ds, 505 "snapdir", snapdir_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "aclmode", acl_mode_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "aclinherit", acl_inherit_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "vscan", vscan_changed_cb, zfsvfs); 512 if (error) 513 goto unregister; 514 515 /* 516 * Invoke our callbacks to restore temporary mount options. 517 */ 518 if (do_readonly) 519 readonly_changed_cb(zfsvfs, readonly); 520 if (do_setuid) 521 setuid_changed_cb(zfsvfs, setuid); 522 if (do_exec) 523 exec_changed_cb(zfsvfs, exec); 524 if (do_devices) 525 devices_changed_cb(zfsvfs, devices); 526 if (do_xattr) 527 xattr_changed_cb(zfsvfs, xattr); 528 if (do_atime) 529 atime_changed_cb(zfsvfs, atime); 530 531 nbmand_changed_cb(zfsvfs, nbmand); 532 533 return (0); 534 535 unregister: 536 /* 537 * We may attempt to unregister some callbacks that are not 538 * registered, but this is OK; it will simply return ENOMSG, 539 * which we will ignore. 540 */ 541 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 542 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 543 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 544 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 545 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 546 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 547 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 548 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 549 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 550 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 551 zfsvfs); 552 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 553 return (error); 554 555 } 556 557 static int 558 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 559 { 560 int error; 561 562 error = zfs_register_callbacks(zfsvfs->z_vfs); 563 if (error) 564 return (error); 565 566 /* 567 * Set the objset user_ptr to track its zfsvfs. 568 */ 569 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 570 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 571 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 572 573 /* 574 * If we are not mounting (ie: online recv), then we don't 575 * have to worry about replaying the log as we blocked all 576 * operations out since we closed the ZIL. 577 */ 578 if (mounting) { 579 boolean_t readonly; 580 581 /* 582 * During replay we remove the read only flag to 583 * allow replays to succeed. 584 */ 585 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 586 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 587 588 /* 589 * Parse and replay the intent log. 590 */ 591 zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, 592 zfs_replay_vector, zfs_unlinked_drain); 593 594 zfs_unlinked_drain(zfsvfs); 595 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 596 } 597 598 if (!zil_disable) 599 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 600 601 return (0); 602 } 603 604 static void 605 zfs_freezfsvfs(zfsvfs_t *zfsvfs) 606 { 607 mutex_destroy(&zfsvfs->z_znodes_lock); 608 mutex_destroy(&zfsvfs->z_online_recv_lock); 609 list_destroy(&zfsvfs->z_all_znodes); 610 rrw_destroy(&zfsvfs->z_teardown_lock); 611 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 612 rw_destroy(&zfsvfs->z_fuid_lock); 613 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 614 } 615 616 static int 617 zfs_domount(vfs_t *vfsp, char *osname) 618 { 619 dev_t mount_dev; 620 uint64_t recordsize, readonly; 621 int error = 0; 622 int mode; 623 zfsvfs_t *zfsvfs; 624 znode_t *zp = NULL; 625 626 ASSERT(vfsp); 627 ASSERT(osname); 628 629 /* 630 * Initialize the zfs-specific filesystem structure. 631 * Should probably make this a kmem cache, shuffle fields, 632 * and just bzero up to z_hold_mtx[]. 633 */ 634 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 635 zfsvfs->z_vfs = vfsp; 636 zfsvfs->z_parent = zfsvfs; 637 zfsvfs->z_assign = TXG_NOWAIT; 638 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 639 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 640 641 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 642 mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL); 643 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 644 offsetof(znode_t, z_link_node)); 645 rrw_init(&zfsvfs->z_teardown_lock); 646 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 647 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 648 649 /* Initialize the generic filesystem structure. */ 650 vfsp->vfs_bcount = 0; 651 vfsp->vfs_data = NULL; 652 653 if (zfs_create_unique_device(&mount_dev) == -1) { 654 error = ENODEV; 655 goto out; 656 } 657 ASSERT(vfs_devismounted(mount_dev) == 0); 658 659 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 660 NULL)) 661 goto out; 662 663 vfsp->vfs_dev = mount_dev; 664 vfsp->vfs_fstype = zfsfstype; 665 vfsp->vfs_bsize = recordsize; 666 vfsp->vfs_flag |= VFS_NOTRUNC; 667 vfsp->vfs_data = zfsvfs; 668 669 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 670 goto out; 671 672 mode = DS_MODE_OWNER; 673 if (readonly) 674 mode |= DS_MODE_READONLY; 675 676 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 677 if (error == EROFS) { 678 mode = DS_MODE_OWNER | DS_MODE_READONLY; 679 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 680 &zfsvfs->z_os); 681 } 682 683 if (error) 684 goto out; 685 686 if (error = zfs_init_fs(zfsvfs, &zp)) 687 goto out; 688 689 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 690 VN_RELE(ZTOV(zp)); 691 692 /* 693 * Set features for file system. 694 */ 695 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 696 if (zfsvfs->z_use_fuids) { 697 vfs_set_feature(vfsp, VFSFT_XVATTR); 698 vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS); 699 vfs_set_feature(vfsp, VFSFT_ACLONCREATE); 700 } 701 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 702 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 703 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 704 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 705 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 706 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 707 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 708 } 709 710 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 711 uint64_t pval; 712 713 ASSERT(mode & DS_MODE_READONLY); 714 atime_changed_cb(zfsvfs, B_FALSE); 715 readonly_changed_cb(zfsvfs, B_TRUE); 716 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 717 goto out; 718 xattr_changed_cb(zfsvfs, pval); 719 zfsvfs->z_issnap = B_TRUE; 720 } else { 721 error = zfsvfs_setup(zfsvfs, B_TRUE); 722 } 723 724 if (!zfsvfs->z_issnap) 725 zfsctl_create(zfsvfs); 726 out: 727 if (error) { 728 if (zfsvfs->z_os) 729 dmu_objset_close(zfsvfs->z_os); 730 zfs_freezfsvfs(zfsvfs); 731 } else { 732 atomic_add_32(&zfs_active_fs_count, 1); 733 } 734 735 return (error); 736 } 737 738 void 739 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 740 { 741 objset_t *os = zfsvfs->z_os; 742 struct dsl_dataset *ds; 743 744 /* 745 * Unregister properties. 746 */ 747 if (!dmu_objset_is_snapshot(os)) { 748 ds = dmu_objset_ds(os); 749 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 750 zfsvfs) == 0); 751 752 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 753 zfsvfs) == 0); 754 755 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 756 zfsvfs) == 0); 757 758 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 759 zfsvfs) == 0); 760 761 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 762 zfsvfs) == 0); 763 764 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 765 zfsvfs) == 0); 766 767 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 768 zfsvfs) == 0); 769 770 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 771 zfsvfs) == 0); 772 773 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 774 zfsvfs) == 0); 775 776 VERIFY(dsl_prop_unregister(ds, "aclinherit", 777 acl_inherit_changed_cb, zfsvfs) == 0); 778 779 VERIFY(dsl_prop_unregister(ds, "vscan", 780 vscan_changed_cb, zfsvfs) == 0); 781 } 782 } 783 784 /* 785 * Convert a decimal digit string to a uint64_t integer. 786 */ 787 static int 788 str_to_uint64(char *str, uint64_t *objnum) 789 { 790 uint64_t num = 0; 791 792 while (*str) { 793 if (*str < '0' || *str > '9') 794 return (EINVAL); 795 796 num = num*10 + *str++ - '0'; 797 } 798 799 *objnum = num; 800 return (0); 801 } 802 803 /* 804 * The boot path passed from the boot loader is in the form of 805 * "rootpool-name/root-filesystem-object-number'. Convert this 806 * string to a dataset name: "rootpool-name/root-filesystem-name". 807 */ 808 static int 809 zfs_parse_bootfs(char *bpath, char *outpath) 810 { 811 char *slashp; 812 uint64_t objnum; 813 int error; 814 815 if (*bpath == 0 || *bpath == '/') 816 return (EINVAL); 817 818 (void) strcpy(outpath, bpath); 819 820 slashp = strchr(bpath, '/'); 821 822 /* if no '/', just return the pool name */ 823 if (slashp == NULL) { 824 return (0); 825 } 826 827 /* if not a number, just return the root dataset name */ 828 if (str_to_uint64(slashp+1, &objnum)) { 829 return (0); 830 } 831 832 *slashp = '\0'; 833 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 834 *slashp = '/'; 835 836 return (error); 837 } 838 839 static int 840 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 841 { 842 int error = 0; 843 static int zfsrootdone = 0; 844 zfsvfs_t *zfsvfs = NULL; 845 znode_t *zp = NULL; 846 vnode_t *vp = NULL; 847 char *zfs_bootfs; 848 char *zfs_devid; 849 850 ASSERT(vfsp); 851 852 /* 853 * The filesystem that we mount as root is defined in the 854 * boot property "zfs-bootfs" with a format of 855 * "poolname/root-dataset-objnum". 856 */ 857 if (why == ROOT_INIT) { 858 if (zfsrootdone++) 859 return (EBUSY); 860 /* 861 * the process of doing a spa_load will require the 862 * clock to be set before we could (for example) do 863 * something better by looking at the timestamp on 864 * an uberblock, so just set it to -1. 865 */ 866 clkset(-1); 867 868 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 869 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 870 "bootfs name"); 871 return (EINVAL); 872 } 873 zfs_devid = spa_get_bootprop("diskdevid"); 874 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 875 if (zfs_devid) 876 spa_free_bootprop(zfs_devid); 877 if (error) { 878 spa_free_bootprop(zfs_bootfs); 879 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 880 error); 881 return (error); 882 } 883 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 884 spa_free_bootprop(zfs_bootfs); 885 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 886 error); 887 return (error); 888 } 889 890 spa_free_bootprop(zfs_bootfs); 891 892 if (error = vfs_lock(vfsp)) 893 return (error); 894 895 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 896 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 897 goto out; 898 } 899 900 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 901 ASSERT(zfsvfs); 902 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 903 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 904 goto out; 905 } 906 907 vp = ZTOV(zp); 908 mutex_enter(&vp->v_lock); 909 vp->v_flag |= VROOT; 910 mutex_exit(&vp->v_lock); 911 rootvp = vp; 912 913 /* 914 * Leave rootvp held. The root file system is never unmounted. 915 */ 916 917 vfs_add((struct vnode *)0, vfsp, 918 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 919 out: 920 vfs_unlock(vfsp); 921 return (error); 922 } else if (why == ROOT_REMOUNT) { 923 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 924 vfsp->vfs_flag |= VFS_REMOUNT; 925 926 /* refresh mount options */ 927 zfs_unregister_callbacks(vfsp->vfs_data); 928 return (zfs_register_callbacks(vfsp)); 929 930 } else if (why == ROOT_UNMOUNT) { 931 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 932 (void) zfs_sync(vfsp, 0, 0); 933 return (0); 934 } 935 936 /* 937 * if "why" is equal to anything else other than ROOT_INIT, 938 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 939 */ 940 return (ENOTSUP); 941 } 942 943 /*ARGSUSED*/ 944 static int 945 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 946 { 947 char *osname; 948 pathname_t spn; 949 int error = 0; 950 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 951 UIO_SYSSPACE : UIO_USERSPACE; 952 int canwrite; 953 954 if (mvp->v_type != VDIR) 955 return (ENOTDIR); 956 957 mutex_enter(&mvp->v_lock); 958 if ((uap->flags & MS_REMOUNT) == 0 && 959 (uap->flags & MS_OVERLAY) == 0 && 960 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 961 mutex_exit(&mvp->v_lock); 962 return (EBUSY); 963 } 964 mutex_exit(&mvp->v_lock); 965 966 /* 967 * ZFS does not support passing unparsed data in via MS_DATA. 968 * Users should use the MS_OPTIONSTR interface; this means 969 * that all option parsing is already done and the options struct 970 * can be interrogated. 971 */ 972 if ((uap->flags & MS_DATA) && uap->datalen > 0) 973 return (EINVAL); 974 975 /* 976 * Get the objset name (the "special" mount argument). 977 */ 978 if (error = pn_get(uap->spec, fromspace, &spn)) 979 return (error); 980 981 osname = spn.pn_path; 982 983 /* 984 * Check for mount privilege? 985 * 986 * If we don't have privilege then see if 987 * we have local permission to allow it 988 */ 989 error = secpolicy_fs_mount(cr, mvp, vfsp); 990 if (error) { 991 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 992 if (error == 0) { 993 vattr_t vattr; 994 995 /* 996 * Make sure user is the owner of the mount point 997 * or has sufficient privileges. 998 */ 999 1000 vattr.va_mask = AT_UID; 1001 1002 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1003 goto out; 1004 } 1005 1006 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1007 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1008 error = EPERM; 1009 goto out; 1010 } 1011 1012 secpolicy_fs_mount_clearopts(cr, vfsp); 1013 } else { 1014 goto out; 1015 } 1016 } 1017 1018 /* 1019 * Refuse to mount a filesystem if we are in a local zone and the 1020 * dataset is not visible. 1021 */ 1022 if (!INGLOBALZONE(curproc) && 1023 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1024 error = EPERM; 1025 goto out; 1026 } 1027 1028 /* 1029 * When doing a remount, we simply refresh our temporary properties 1030 * according to those options set in the current VFS options. 1031 */ 1032 if (uap->flags & MS_REMOUNT) { 1033 /* refresh mount options */ 1034 zfs_unregister_callbacks(vfsp->vfs_data); 1035 error = zfs_register_callbacks(vfsp); 1036 goto out; 1037 } 1038 1039 error = zfs_domount(vfsp, osname); 1040 1041 out: 1042 pn_free(&spn); 1043 return (error); 1044 } 1045 1046 static int 1047 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1048 { 1049 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1050 dev32_t d32; 1051 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1052 1053 ZFS_ENTER(zfsvfs); 1054 1055 dmu_objset_space(zfsvfs->z_os, 1056 &refdbytes, &availbytes, &usedobjs, &availobjs); 1057 1058 /* 1059 * The underlying storage pool actually uses multiple block sizes. 1060 * We report the fragsize as the smallest block size we support, 1061 * and we report our blocksize as the filesystem's maximum blocksize. 1062 */ 1063 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1064 statp->f_bsize = zfsvfs->z_max_blksz; 1065 1066 /* 1067 * The following report "total" blocks of various kinds in the 1068 * file system, but reported in terms of f_frsize - the 1069 * "fragment" size. 1070 */ 1071 1072 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1073 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1074 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1075 1076 /* 1077 * statvfs() should really be called statufs(), because it assumes 1078 * static metadata. ZFS doesn't preallocate files, so the best 1079 * we can do is report the max that could possibly fit in f_files, 1080 * and that minus the number actually used in f_ffree. 1081 * For f_ffree, report the smaller of the number of object available 1082 * and the number of blocks (each object will take at least a block). 1083 */ 1084 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1085 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1086 statp->f_files = statp->f_ffree + usedobjs; 1087 1088 (void) cmpldev(&d32, vfsp->vfs_dev); 1089 statp->f_fsid = d32; 1090 1091 /* 1092 * We're a zfs filesystem. 1093 */ 1094 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1095 1096 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1097 1098 statp->f_namemax = ZFS_MAXNAMELEN; 1099 1100 /* 1101 * We have all of 32 characters to stuff a string here. 1102 * Is there anything useful we could/should provide? 1103 */ 1104 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1105 1106 ZFS_EXIT(zfsvfs); 1107 return (0); 1108 } 1109 1110 static int 1111 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1112 { 1113 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1114 znode_t *rootzp; 1115 int error; 1116 1117 ZFS_ENTER(zfsvfs); 1118 1119 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1120 if (error == 0) 1121 *vpp = ZTOV(rootzp); 1122 1123 ZFS_EXIT(zfsvfs); 1124 return (error); 1125 } 1126 1127 /* 1128 * Teardown the zfsvfs::z_os. 1129 * 1130 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1131 * and 'z_teardown_inactive_lock' held. 1132 */ 1133 static int 1134 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1135 { 1136 znode_t *zp; 1137 1138 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1139 1140 if (!unmounting) { 1141 /* 1142 * We purge the parent filesystem's vfsp as the parent 1143 * filesystem and all of its snapshots have their vnode's 1144 * v_vfsp set to the parent's filesystem's vfsp. Note, 1145 * 'z_parent' is self referential for non-snapshots. 1146 */ 1147 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1148 } 1149 1150 /* 1151 * Close the zil. NB: Can't close the zil while zfs_inactive 1152 * threads are blocked as zil_close can call zfs_inactive. 1153 */ 1154 if (zfsvfs->z_log) { 1155 zil_close(zfsvfs->z_log); 1156 zfsvfs->z_log = NULL; 1157 } 1158 1159 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1160 1161 /* 1162 * If we are not unmounting (ie: online recv) and someone already 1163 * unmounted this file system while we were doing the switcheroo, 1164 * or a reopen of z_os failed then just bail out now. 1165 */ 1166 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1167 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1168 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1169 return (EIO); 1170 } 1171 1172 /* 1173 * At this point there are no vops active, and any new vops will 1174 * fail with EIO since we have z_teardown_lock for writer (only 1175 * relavent for forced unmount). 1176 * 1177 * Release all holds on dbufs. 1178 */ 1179 mutex_enter(&zfsvfs->z_znodes_lock); 1180 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1181 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1182 if (zp->z_dbuf) { 1183 ASSERT(ZTOV(zp)->v_count > 0); 1184 zfs_znode_dmu_fini(zp); 1185 } 1186 mutex_exit(&zfsvfs->z_znodes_lock); 1187 1188 /* 1189 * If we are unmounting, set the unmounted flag and let new vops 1190 * unblock. zfs_inactive will have the unmounted behavior, and all 1191 * other vops will fail with EIO. 1192 */ 1193 if (unmounting) { 1194 zfsvfs->z_unmounted = B_TRUE; 1195 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1196 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1197 } 1198 1199 /* 1200 * z_os will be NULL if there was an error in attempting to reopen 1201 * zfsvfs, so just return as the properties had already been 1202 * unregistered and cached data had been evicted before. 1203 */ 1204 if (zfsvfs->z_os == NULL) 1205 return (0); 1206 1207 /* 1208 * Unregister properties. 1209 */ 1210 zfs_unregister_callbacks(zfsvfs); 1211 1212 /* 1213 * Evict cached data 1214 */ 1215 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1216 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1217 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1218 } 1219 1220 return (0); 1221 } 1222 1223 /*ARGSUSED*/ 1224 static int 1225 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1226 { 1227 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1228 objset_t *os; 1229 int ret; 1230 1231 ret = secpolicy_fs_unmount(cr, vfsp); 1232 if (ret) { 1233 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1234 ZFS_DELEG_PERM_MOUNT, cr); 1235 if (ret) 1236 return (ret); 1237 } 1238 1239 /* 1240 * We purge the parent filesystem's vfsp as the parent filesystem 1241 * and all of its snapshots have their vnode's v_vfsp set to the 1242 * parent's filesystem's vfsp. Note, 'z_parent' is self 1243 * referential for non-snapshots. 1244 */ 1245 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1246 1247 /* 1248 * Unmount any snapshots mounted under .zfs before unmounting the 1249 * dataset itself. 1250 */ 1251 if (zfsvfs->z_ctldir != NULL && 1252 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1253 return (ret); 1254 } 1255 1256 if (!(fflag & MS_FORCE)) { 1257 /* 1258 * Check the number of active vnodes in the file system. 1259 * Our count is maintained in the vfs structure, but the 1260 * number is off by 1 to indicate a hold on the vfs 1261 * structure itself. 1262 * 1263 * The '.zfs' directory maintains a reference of its 1264 * own, and any active references underneath are 1265 * reflected in the vnode count. 1266 */ 1267 if (zfsvfs->z_ctldir == NULL) { 1268 if (vfsp->vfs_count > 1) 1269 return (EBUSY); 1270 } else { 1271 if (vfsp->vfs_count > 2 || 1272 zfsvfs->z_ctldir->v_count > 1) 1273 return (EBUSY); 1274 } 1275 } 1276 1277 vfsp->vfs_flag |= VFS_UNMOUNTED; 1278 1279 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1280 os = zfsvfs->z_os; 1281 1282 /* 1283 * z_os will be NULL if there was an error in 1284 * attempting to reopen zfsvfs. 1285 */ 1286 if (os != NULL) { 1287 /* 1288 * Unset the objset user_ptr. 1289 */ 1290 mutex_enter(&os->os->os_user_ptr_lock); 1291 dmu_objset_set_user(os, NULL); 1292 mutex_exit(&os->os->os_user_ptr_lock); 1293 1294 /* 1295 * Finally release the objset 1296 */ 1297 dmu_objset_close(os); 1298 } 1299 1300 /* 1301 * We can now safely destroy the '.zfs' directory node. 1302 */ 1303 if (zfsvfs->z_ctldir != NULL) 1304 zfsctl_destroy(zfsvfs); 1305 1306 return (0); 1307 } 1308 1309 static int 1310 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1311 { 1312 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1313 znode_t *zp; 1314 uint64_t object = 0; 1315 uint64_t fid_gen = 0; 1316 uint64_t gen_mask; 1317 uint64_t zp_gen; 1318 int i, err; 1319 1320 *vpp = NULL; 1321 1322 ZFS_ENTER(zfsvfs); 1323 1324 if (fidp->fid_len == LONG_FID_LEN) { 1325 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1326 uint64_t objsetid = 0; 1327 uint64_t setgen = 0; 1328 1329 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1330 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1331 1332 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1333 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1334 1335 ZFS_EXIT(zfsvfs); 1336 1337 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1338 if (err) 1339 return (EINVAL); 1340 ZFS_ENTER(zfsvfs); 1341 } 1342 1343 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1344 zfid_short_t *zfid = (zfid_short_t *)fidp; 1345 1346 for (i = 0; i < sizeof (zfid->zf_object); i++) 1347 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1348 1349 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1350 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1351 } else { 1352 ZFS_EXIT(zfsvfs); 1353 return (EINVAL); 1354 } 1355 1356 /* A zero fid_gen means we are in the .zfs control directories */ 1357 if (fid_gen == 0 && 1358 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1359 *vpp = zfsvfs->z_ctldir; 1360 ASSERT(*vpp != NULL); 1361 if (object == ZFSCTL_INO_SNAPDIR) { 1362 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1363 0, NULL, NULL, NULL, NULL, NULL) == 0); 1364 } else { 1365 VN_HOLD(*vpp); 1366 } 1367 ZFS_EXIT(zfsvfs); 1368 return (0); 1369 } 1370 1371 gen_mask = -1ULL >> (64 - 8 * i); 1372 1373 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1374 if (err = zfs_zget(zfsvfs, object, &zp)) { 1375 ZFS_EXIT(zfsvfs); 1376 return (err); 1377 } 1378 zp_gen = zp->z_phys->zp_gen & gen_mask; 1379 if (zp_gen == 0) 1380 zp_gen = 1; 1381 if (zp->z_unlinked || zp_gen != fid_gen) { 1382 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1383 VN_RELE(ZTOV(zp)); 1384 ZFS_EXIT(zfsvfs); 1385 return (EINVAL); 1386 } 1387 1388 *vpp = ZTOV(zp); 1389 ZFS_EXIT(zfsvfs); 1390 return (0); 1391 } 1392 1393 /* 1394 * Block out VOPs and close zfsvfs_t::z_os 1395 * 1396 * Note, if successful, then we return with the 'z_teardown_lock' and 1397 * 'z_teardown_inactive_lock' write held. 1398 */ 1399 int 1400 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode) 1401 { 1402 int error; 1403 1404 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1405 return (error); 1406 1407 *mode = zfsvfs->z_os->os_mode; 1408 dmu_objset_name(zfsvfs->z_os, name); 1409 dmu_objset_close(zfsvfs->z_os); 1410 1411 return (0); 1412 } 1413 1414 /* 1415 * Reopen zfsvfs_t::z_os and release VOPs. 1416 */ 1417 int 1418 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode) 1419 { 1420 int err; 1421 1422 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1423 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1424 1425 err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 1426 if (err) { 1427 zfsvfs->z_os = NULL; 1428 } else { 1429 znode_t *zp; 1430 1431 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1432 1433 /* 1434 * Attempt to re-establish all the active znodes with 1435 * their dbufs. If a zfs_rezget() fails, then we'll let 1436 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1437 * when they try to use their znode. 1438 */ 1439 mutex_enter(&zfsvfs->z_znodes_lock); 1440 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1441 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1442 (void) zfs_rezget(zp); 1443 } 1444 mutex_exit(&zfsvfs->z_znodes_lock); 1445 1446 } 1447 1448 /* release the VOPs */ 1449 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1450 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1451 1452 if (err) { 1453 /* 1454 * Since we couldn't reopen zfsvfs::z_os, force 1455 * unmount this file system. 1456 */ 1457 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1458 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1459 } 1460 return (err); 1461 } 1462 1463 static void 1464 zfs_freevfs(vfs_t *vfsp) 1465 { 1466 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1467 int i; 1468 1469 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1470 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1471 1472 zfs_fuid_destroy(zfsvfs); 1473 zfs_freezfsvfs(zfsvfs); 1474 1475 atomic_add_32(&zfs_active_fs_count, -1); 1476 } 1477 1478 /* 1479 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1480 * so we can't safely do any non-idempotent initialization here. 1481 * Leave that to zfs_init() and zfs_fini(), which are called 1482 * from the module's _init() and _fini() entry points. 1483 */ 1484 /*ARGSUSED*/ 1485 static int 1486 zfs_vfsinit(int fstype, char *name) 1487 { 1488 int error; 1489 1490 zfsfstype = fstype; 1491 1492 /* 1493 * Setup vfsops and vnodeops tables. 1494 */ 1495 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1496 if (error != 0) { 1497 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1498 } 1499 1500 error = zfs_create_op_tables(); 1501 if (error) { 1502 zfs_remove_op_tables(); 1503 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1504 (void) vfs_freevfsops_by_type(zfsfstype); 1505 return (error); 1506 } 1507 1508 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1509 1510 /* 1511 * Unique major number for all zfs mounts. 1512 * If we run out of 32-bit minors, we'll getudev() another major. 1513 */ 1514 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1515 zfs_minor = ZFS_MIN_MINOR; 1516 1517 return (0); 1518 } 1519 1520 void 1521 zfs_init(void) 1522 { 1523 /* 1524 * Initialize .zfs directory structures 1525 */ 1526 zfsctl_init(); 1527 1528 /* 1529 * Initialize znode cache, vnode ops, etc... 1530 */ 1531 zfs_znode_init(); 1532 } 1533 1534 void 1535 zfs_fini(void) 1536 { 1537 zfsctl_fini(); 1538 zfs_znode_fini(); 1539 } 1540 1541 int 1542 zfs_busy(void) 1543 { 1544 return (zfs_active_fs_count != 0); 1545 } 1546 1547 int 1548 zfs_set_version(const char *name, uint64_t newvers) 1549 { 1550 int error; 1551 objset_t *os; 1552 dmu_tx_t *tx; 1553 uint64_t curvers; 1554 1555 /* 1556 * XXX for now, require that the filesystem be unmounted. Would 1557 * be nice to find the zfsvfs_t and just update that if 1558 * possible. 1559 */ 1560 1561 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1562 return (EINVAL); 1563 1564 error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_OWNER, &os); 1565 if (error) 1566 return (error); 1567 1568 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1569 8, 1, &curvers); 1570 if (error) 1571 goto out; 1572 if (newvers < curvers) { 1573 error = EINVAL; 1574 goto out; 1575 } 1576 1577 tx = dmu_tx_create(os); 1578 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); 1579 error = dmu_tx_assign(tx, TXG_WAIT); 1580 if (error) { 1581 dmu_tx_abort(tx); 1582 goto out; 1583 } 1584 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 1585 &newvers, tx); 1586 1587 spa_history_internal_log(LOG_DS_UPGRADE, 1588 dmu_objset_spa(os), tx, CRED(), 1589 "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, 1590 dmu_objset_id(os)); 1591 dmu_tx_commit(tx); 1592 1593 out: 1594 dmu_objset_close(os); 1595 return (error); 1596 } 1597 1598 /* 1599 * Read a property stored within the master node. 1600 */ 1601 int 1602 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 1603 { 1604 const char *pname; 1605 int error = ENOENT; 1606 1607 /* 1608 * Look up the file system's value for the property. For the 1609 * version property, we look up a slightly different string. 1610 */ 1611 if (prop == ZFS_PROP_VERSION) 1612 pname = ZPL_VERSION_STR; 1613 else 1614 pname = zfs_prop_to_name(prop); 1615 1616 if (os != NULL) 1617 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 1618 1619 if (error == ENOENT) { 1620 /* No value set, use the default value */ 1621 switch (prop) { 1622 case ZFS_PROP_VERSION: 1623 *value = ZPL_VERSION; 1624 break; 1625 case ZFS_PROP_NORMALIZE: 1626 case ZFS_PROP_UTF8ONLY: 1627 *value = 0; 1628 break; 1629 case ZFS_PROP_CASE: 1630 *value = ZFS_CASE_SENSITIVE; 1631 break; 1632 default: 1633 return (error); 1634 } 1635 error = 0; 1636 } 1637 return (error); 1638 } 1639 1640 static vfsdef_t vfw = { 1641 VFSDEF_VERSION, 1642 MNTTYPE_ZFS, 1643 zfs_vfsinit, 1644 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 1645 VSW_XID, 1646 &zfs_mntopts 1647 }; 1648 1649 struct modlfs zfs_modlfs = { 1650 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 1651 }; 1652