1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * This file contains the code to implement file range locking in 30 * ZFS, although there isn't much specific to ZFS (all that comes to mind 31 * support for growing the blocksize). 32 * 33 * Interface 34 * --------- 35 * Defined in zfs_rlock.h but essentially: 36 * rl = zfs_range_lock(zp, off, len, lock_type); 37 * zfs_range_unlock(rl); 38 * zfs_range_reduce(rl, off, len); 39 * 40 * AVL tree 41 * -------- 42 * An AVL tree is used to maintain the state of the existing ranges 43 * that are locked for exclusive (writer) or shared (reader) use. 44 * The starting range offset is used for searching and sorting the tree. 45 * 46 * Common case 47 * ----------- 48 * The (hopefully) usual case is of no overlaps or contention for 49 * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree 50 * searched that finds no overlap, and *this* rl_t is placed in the tree. 51 * 52 * Overlaps/Reference counting/Proxy locks 53 * --------------------------------------- 54 * The avl code only allows one node at a particular offset. Also it's very 55 * inefficient to search through all previous entries looking for overlaps 56 * (because the very 1st in the ordered list might be at offset 0 but 57 * cover the whole file). 58 * So this implementation uses reference counts and proxy range locks. 59 * Firstly, only reader locks use reference counts and proxy locks, 60 * because writer locks are exclusive. 61 * When a reader lock overlaps with another then a proxy lock is created 62 * for that range and replaces the original lock. If the overlap 63 * is exact then the reference count of the proxy is simply incremented. 64 * Otherwise, the proxy lock is split into smaller lock ranges and 65 * new proxy locks created for non overlapping ranges. 66 * The reference counts are adjusted accordingly. 67 * Meanwhile, the orginal lock is kept around (this is the callers handle) 68 * and its offset and length are used when releasing the lock. 69 * 70 * Thread coordination 71 * ------------------- 72 * In order to make wakeups efficient and to ensure multiple continuous 73 * readers on a range don't starve a writer for the same range lock, 74 * two condition variables are allocated in each rl_t. 75 * If a writer (or reader) can't get a range it initialises the writer 76 * (or reader) cv; sets a flag saying there's a writer (or reader) waiting; 77 * and waits on that cv. When a thread unlocks that range it wakes up all 78 * writers then all readers before destroying the lock. 79 * 80 * Append mode writes 81 * ------------------ 82 * Append mode writes need to lock a range at the end of a file. 83 * The offset of the end of the file is determined under the 84 * range locking mutex, and the lock type converted from RL_APPEND to 85 * RL_WRITER and the range locked. 86 * 87 * Grow block handling 88 * ------------------- 89 * ZFS supports multiple block sizes currently upto 128K. The smallest 90 * block size is used for the file which is grown as needed. During this 91 * growth all other writers and readers must be excluded. 92 * So if the block size needs to be grown then the whole file is 93 * exclusively locked, then later the caller will reduce the lock 94 * range to just the range to be written using zfs_reduce_range. 95 */ 96 97 #include <sys/zfs_rlock.h> 98 99 /* 100 * Check if a write lock can be grabbed, or wait and recheck until available. 101 */ 102 static void 103 zfs_range_lock_writer(znode_t *zp, rl_t *new) 104 { 105 avl_tree_t *tree = &zp->z_range_avl; 106 rl_t *rl; 107 avl_index_t where; 108 uint64_t end_size; 109 uint64_t off = new->r_off; 110 uint64_t len = new->r_len; 111 112 for (;;) { 113 /* 114 * Range locking is also used by zvol and uses a 115 * dummied up znode. However, for zvol, we don't need to 116 * append or grow blocksize, and besides we don't have 117 * a z_phys or z_zfsvfs - so skip that processing. 118 * 119 * Yes, this is ugly, and would be solved by not handling 120 * grow or append in range lock code. If that was done then 121 * we could make the range locking code generically available 122 * to other non-zfs consumers. 123 */ 124 if (zp->z_vnode) { /* caller is ZPL */ 125 /* 126 * If in append mode pick up the current end of file. 127 * This is done under z_range_lock to avoid races. 128 */ 129 if (new->r_type == RL_APPEND) 130 new->r_off = zp->z_phys->zp_size; 131 132 /* 133 * If we need to grow the block size then grab the whole 134 * file range. This is also done under z_range_lock to 135 * avoid races. 136 */ 137 end_size = MAX(zp->z_phys->zp_size, new->r_off + len); 138 if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) || 139 zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) { 140 new->r_off = 0; 141 new->r_len = UINT64_MAX; 142 } 143 } 144 145 /* 146 * First check for the usual case of no locks 147 */ 148 if (avl_numnodes(tree) == 0) { 149 new->r_type = RL_WRITER; /* convert to writer */ 150 avl_add(tree, new); 151 return; 152 } 153 154 /* 155 * Look for any locks in the range. 156 */ 157 rl = avl_find(tree, new, &where); 158 if (rl) 159 goto wait; /* already locked at same offset */ 160 161 rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER); 162 if (rl && (rl->r_off < new->r_off + new->r_len)) 163 goto wait; 164 165 rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE); 166 if (rl && rl->r_off + rl->r_len > new->r_off) 167 goto wait; 168 169 new->r_type = RL_WRITER; /* convert possible RL_APPEND */ 170 avl_insert(tree, new, where); 171 return; 172 wait: 173 if (!rl->r_write_wanted) { 174 cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL); 175 rl->r_write_wanted = B_TRUE; 176 } 177 cv_wait(&rl->r_wr_cv, &zp->z_range_lock); 178 179 /* reset to original */ 180 new->r_off = off; 181 new->r_len = len; 182 } 183 } 184 185 /* 186 * If this is an original (non-proxy) lock then replace it by 187 * a proxy and return the proxy. 188 */ 189 static rl_t * 190 zfs_range_proxify(avl_tree_t *tree, rl_t *rl) 191 { 192 rl_t *proxy; 193 194 if (rl->r_proxy) 195 return (rl); /* already a proxy */ 196 197 ASSERT3U(rl->r_cnt, ==, 1); 198 ASSERT(rl->r_write_wanted == B_FALSE); 199 ASSERT(rl->r_read_wanted == B_FALSE); 200 avl_remove(tree, rl); 201 rl->r_cnt = 0; 202 203 /* create a proxy range lock */ 204 proxy = kmem_alloc(sizeof (rl_t), KM_SLEEP); 205 proxy->r_off = rl->r_off; 206 proxy->r_len = rl->r_len; 207 proxy->r_cnt = 1; 208 proxy->r_type = RL_READER; 209 proxy->r_proxy = B_TRUE; 210 proxy->r_write_wanted = B_FALSE; 211 proxy->r_read_wanted = B_FALSE; 212 avl_add(tree, proxy); 213 214 return (proxy); 215 } 216 217 /* 218 * Split the range lock at the supplied offset 219 * returning the *front* proxy. 220 */ 221 static rl_t * 222 zfs_range_split(avl_tree_t *tree, rl_t *rl, uint64_t off) 223 { 224 rl_t *front, *rear; 225 226 ASSERT3U(rl->r_len, >, 1); 227 ASSERT3U(off, >, rl->r_off); 228 ASSERT3U(off, <, rl->r_off + rl->r_len); 229 ASSERT(rl->r_write_wanted == B_FALSE); 230 ASSERT(rl->r_read_wanted == B_FALSE); 231 232 /* create the rear proxy range lock */ 233 rear = kmem_alloc(sizeof (rl_t), KM_SLEEP); 234 rear->r_off = off; 235 rear->r_len = rl->r_off + rl->r_len - off; 236 rear->r_cnt = rl->r_cnt; 237 rear->r_type = RL_READER; 238 rear->r_proxy = B_TRUE; 239 rear->r_write_wanted = B_FALSE; 240 rear->r_read_wanted = B_FALSE; 241 242 front = zfs_range_proxify(tree, rl); 243 front->r_len = off - rl->r_off; 244 245 avl_insert_here(tree, rear, front, AVL_AFTER); 246 return (front); 247 } 248 249 /* 250 * Create and add a new proxy range lock for the supplied range. 251 */ 252 static void 253 zfs_range_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len) 254 { 255 rl_t *rl; 256 257 ASSERT(len); 258 rl = kmem_alloc(sizeof (rl_t), KM_SLEEP); 259 rl->r_off = off; 260 rl->r_len = len; 261 rl->r_cnt = 1; 262 rl->r_type = RL_READER; 263 rl->r_proxy = B_TRUE; 264 rl->r_write_wanted = B_FALSE; 265 rl->r_read_wanted = B_FALSE; 266 avl_add(tree, rl); 267 } 268 269 static void 270 zfs_range_add_reader(avl_tree_t *tree, rl_t *new, rl_t *prev, avl_index_t where) 271 { 272 rl_t *next; 273 uint64_t off = new->r_off; 274 uint64_t len = new->r_len; 275 276 /* 277 * prev arrives either: 278 * - pointing to an entry at the same offset 279 * - pointing to the entry with the closest previous offset whose 280 * range may overlap with the new range 281 * - null, if there were no ranges starting before the new one 282 */ 283 if (prev) { 284 if (prev->r_off + prev->r_len <= off) { 285 prev = NULL; 286 } else if (prev->r_off != off) { 287 /* 288 * convert to proxy if needed then 289 * split this entry and bump ref count 290 */ 291 prev = zfs_range_split(tree, prev, off); 292 prev = AVL_NEXT(tree, prev); /* move to rear range */ 293 } 294 } 295 ASSERT((prev == NULL) || (prev->r_off == off)); 296 297 if (prev) 298 next = prev; 299 else 300 next = (rl_t *)avl_nearest(tree, where, AVL_AFTER); 301 302 if (next == NULL || off + len <= next->r_off) { 303 /* no overlaps, use the original new rl_t in the tree */ 304 avl_insert(tree, new, where); 305 return; 306 } 307 308 if (off < next->r_off) { 309 /* Add a proxy for initial range before the overlap */ 310 zfs_range_new_proxy(tree, off, next->r_off - off); 311 } 312 313 new->r_cnt = 0; /* will use proxies in tree */ 314 /* 315 * We now search forward through the ranges, until we go past the end 316 * of the new range. For each entry we make it a proxy if it 317 * isn't already, then bump its reference count. If there's any 318 * gaps between the ranges then we create a new proxy range. 319 */ 320 for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) { 321 if (off + len <= next->r_off) 322 break; 323 if (prev && prev->r_off + prev->r_len < next->r_off) { 324 /* there's a gap */ 325 ASSERT3U(next->r_off, >, prev->r_off + prev->r_len); 326 zfs_range_new_proxy(tree, prev->r_off + prev->r_len, 327 next->r_off - (prev->r_off + prev->r_len)); 328 } 329 if (off + len == next->r_off + next->r_len) { 330 /* exact overlap with end */ 331 next = zfs_range_proxify(tree, next); 332 next->r_cnt++; 333 return; 334 } 335 if (off + len < next->r_off + next->r_len) { 336 /* new range ends in the middle of this block */ 337 next = zfs_range_split(tree, next, off + len); 338 next->r_cnt++; 339 return; 340 } 341 ASSERT3U(off + len, >, next->r_off + next->r_len); 342 next = zfs_range_proxify(tree, next); 343 next->r_cnt++; 344 } 345 346 /* Add the remaining end range. */ 347 zfs_range_new_proxy(tree, prev->r_off + prev->r_len, 348 (off + len) - (prev->r_off + prev->r_len)); 349 } 350 351 /* 352 * Check if a reader lock can be grabbed, or wait and recheck until available. 353 */ 354 static void 355 zfs_range_lock_reader(znode_t *zp, rl_t *new) 356 { 357 avl_tree_t *tree = &zp->z_range_avl; 358 rl_t *prev, *next; 359 avl_index_t where; 360 uint64_t off = new->r_off; 361 uint64_t len = new->r_len; 362 363 /* 364 * Look for any writer locks in the range. 365 */ 366 retry: 367 prev = avl_find(tree, new, &where); 368 if (prev == NULL) 369 prev = (rl_t *)avl_nearest(tree, where, AVL_BEFORE); 370 371 /* 372 * Check the previous range for a writer lock overlap. 373 */ 374 if (prev && (off < prev->r_off + prev->r_len)) { 375 if ((prev->r_type == RL_WRITER) || (prev->r_write_wanted)) { 376 if (!prev->r_read_wanted) { 377 cv_init(&prev->r_rd_cv, NULL, CV_DEFAULT, NULL); 378 prev->r_read_wanted = B_TRUE; 379 } 380 cv_wait(&prev->r_rd_cv, &zp->z_range_lock); 381 goto retry; 382 } 383 if (off + len < prev->r_off + prev->r_len) 384 goto got_lock; 385 } 386 387 /* 388 * Search through the following ranges to see if there's 389 * write lock any overlap. 390 */ 391 if (prev) 392 next = AVL_NEXT(tree, prev); 393 else 394 next = (rl_t *)avl_nearest(tree, where, AVL_AFTER); 395 for (; next; next = AVL_NEXT(tree, next)) { 396 if (off + len <= next->r_off) 397 goto got_lock; 398 if ((next->r_type == RL_WRITER) || (next->r_write_wanted)) { 399 if (!next->r_read_wanted) { 400 cv_init(&next->r_rd_cv, NULL, CV_DEFAULT, NULL); 401 next->r_read_wanted = B_TRUE; 402 } 403 cv_wait(&next->r_rd_cv, &zp->z_range_lock); 404 goto retry; 405 } 406 if (off + len <= next->r_off + next->r_len) 407 goto got_lock; 408 } 409 410 got_lock: 411 /* 412 * Add the read lock, which may involve splitting existing 413 * locks and bumping ref counts (r_cnt). 414 */ 415 zfs_range_add_reader(tree, new, prev, where); 416 } 417 418 /* 419 * Lock a range (offset, length) as either shared (RL_READER) 420 * or exclusive (RL_WRITER). Returns the range lock structure 421 * for later unlocking or reduce range (if entire file 422 * previously locked as RL_WRITER). 423 */ 424 rl_t * 425 zfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type) 426 { 427 rl_t *new; 428 429 ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND); 430 431 new = kmem_alloc(sizeof (rl_t), KM_SLEEP); 432 new->r_zp = zp; 433 new->r_off = off; 434 new->r_len = len; 435 new->r_cnt = 1; /* assume it's going to be in the tree */ 436 new->r_type = type; 437 new->r_proxy = B_FALSE; 438 new->r_write_wanted = B_FALSE; 439 new->r_read_wanted = B_FALSE; 440 441 mutex_enter(&zp->z_range_lock); 442 if (type == RL_READER) { 443 /* 444 * First check for the usual case of no locks 445 */ 446 if (avl_numnodes(&zp->z_range_avl) == 0) 447 avl_add(&zp->z_range_avl, new); 448 else 449 zfs_range_lock_reader(zp, new); 450 } else 451 zfs_range_lock_writer(zp, new); /* RL_WRITER or RL_APPEND */ 452 mutex_exit(&zp->z_range_lock); 453 return (new); 454 } 455 456 /* 457 * Unlock a reader lock 458 */ 459 static void 460 zfs_range_unlock_reader(znode_t *zp, rl_t *remove) 461 { 462 avl_tree_t *tree = &zp->z_range_avl; 463 rl_t *rl, *next; 464 uint64_t len; 465 466 /* 467 * The common case is when the remove entry is in the tree 468 * (cnt == 1) meaning there's been no other reader locks overlapping 469 * with this one. Otherwise the remove entry will have been 470 * removed from the tree and replaced by proxies (one or 471 * more ranges mapping to the entire range). 472 */ 473 if (remove->r_cnt == 1) { 474 avl_remove(tree, remove); 475 if (remove->r_write_wanted) { 476 cv_broadcast(&remove->r_wr_cv); 477 cv_destroy(&remove->r_wr_cv); 478 } 479 if (remove->r_read_wanted) { 480 cv_broadcast(&remove->r_rd_cv); 481 cv_destroy(&remove->r_rd_cv); 482 } 483 } else { 484 ASSERT3U(remove->r_cnt, ==, 0); 485 ASSERT3U(remove->r_write_wanted, ==, 0); 486 ASSERT3U(remove->r_read_wanted, ==, 0); 487 /* 488 * Find start proxy representing this reader lock, 489 * then decrement ref count on all proxies 490 * that make up this range, freeing them as needed. 491 */ 492 rl = avl_find(tree, remove, NULL); 493 ASSERT(rl); 494 ASSERT(rl->r_cnt); 495 ASSERT(rl->r_type == RL_READER); 496 for (len = remove->r_len; len != 0; rl = next) { 497 len -= rl->r_len; 498 if (len) { 499 next = AVL_NEXT(tree, rl); 500 ASSERT(next); 501 ASSERT(rl->r_off + rl->r_len == next->r_off); 502 ASSERT(next->r_cnt); 503 ASSERT(next->r_type == RL_READER); 504 } 505 rl->r_cnt--; 506 if (rl->r_cnt == 0) { 507 avl_remove(tree, rl); 508 if (rl->r_write_wanted) { 509 cv_broadcast(&rl->r_wr_cv); 510 cv_destroy(&rl->r_wr_cv); 511 } 512 if (rl->r_read_wanted) { 513 cv_broadcast(&rl->r_rd_cv); 514 cv_destroy(&rl->r_rd_cv); 515 } 516 kmem_free(rl, sizeof (rl_t)); 517 } 518 } 519 } 520 kmem_free(remove, sizeof (rl_t)); 521 } 522 523 /* 524 * Unlock range and destroy range lock structure. 525 */ 526 void 527 zfs_range_unlock(rl_t *rl) 528 { 529 znode_t *zp = rl->r_zp; 530 531 ASSERT(rl->r_type == RL_WRITER || rl->r_type == RL_READER); 532 ASSERT(rl->r_cnt == 1 || rl->r_cnt == 0); 533 ASSERT(!rl->r_proxy); 534 535 mutex_enter(&zp->z_range_lock); 536 if (rl->r_type == RL_WRITER) { 537 /* writer locks can't be shared or split */ 538 avl_remove(&zp->z_range_avl, rl); 539 mutex_exit(&zp->z_range_lock); 540 if (rl->r_write_wanted) { 541 cv_broadcast(&rl->r_wr_cv); 542 cv_destroy(&rl->r_wr_cv); 543 } 544 if (rl->r_read_wanted) { 545 cv_broadcast(&rl->r_rd_cv); 546 cv_destroy(&rl->r_rd_cv); 547 } 548 kmem_free(rl, sizeof (rl_t)); 549 } else { 550 /* 551 * lock may be shared, let zfs_range_unlock_reader() 552 * release the lock and free the rl_t 553 */ 554 zfs_range_unlock_reader(zp, rl); 555 mutex_exit(&zp->z_range_lock); 556 } 557 } 558 559 /* 560 * Reduce range locked as RL_WRITER from whole file to specified range. 561 * Asserts the whole file is exclusivly locked and so there's only one 562 * entry in the tree. 563 */ 564 void 565 zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len) 566 { 567 znode_t *zp = rl->r_zp; 568 569 /* Ensure there are no other locks */ 570 ASSERT(avl_numnodes(&zp->z_range_avl) == 1); 571 ASSERT(rl->r_off == 0); 572 ASSERT(rl->r_type == RL_WRITER); 573 ASSERT(!rl->r_proxy); 574 ASSERT3U(rl->r_len, ==, UINT64_MAX); 575 ASSERT3U(rl->r_cnt, ==, 1); 576 577 mutex_enter(&zp->z_range_lock); 578 rl->r_off = off; 579 rl->r_len = len; 580 mutex_exit(&zp->z_range_lock); 581 if (rl->r_write_wanted) 582 cv_broadcast(&rl->r_wr_cv); 583 if (rl->r_read_wanted) 584 cv_broadcast(&rl->r_rd_cv); 585 } 586 587 /* 588 * AVL comparison function used to order range locks 589 * Locks are ordered on the start offset of the range. 590 */ 591 int 592 zfs_range_compare(const void *arg1, const void *arg2) 593 { 594 const rl_t *rl1 = arg1; 595 const rl_t *rl2 = arg2; 596 597 if (rl1->r_off > rl2->r_off) 598 return (1); 599 if (rl1->r_off < rl2->r_off) 600 return (-1); 601 return (0); 602 } 603