xref: /titanic_41/usr/src/uts/common/fs/zfs/zfs_onexit.c (revision e98f46cc16b6ba1555409cb3c7e384bdb0792875)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #include <sys/types.h>
26 #include <sys/param.h>
27 #include <sys/errno.h>
28 #include <sys/open.h>
29 #include <sys/kmem.h>
30 #include <sys/conf.h>
31 #include <sys/ddi.h>
32 #include <sys/sunddi.h>
33 #include <sys/zfs_ioctl.h>
34 #include <sys/mkdev.h>
35 #include <sys/zfs_onexit.h>
36 #include <sys/zvol.h>
37 
38 /*
39  * ZFS kernel routines may add/delete callback routines to be invoked
40  * upon process exit (triggered via the close operation from the /dev/zfs
41  * driver).
42  *
43  * These cleanup callbacks are intended to allow for the accumulation
44  * of kernel state across multiple ioctls.  User processes participate
45  * by opening ZFS_DEV with O_EXCL. This causes the ZFS driver to do a
46  * clone-open, generating a unique minor number. The process then passes
47  * along that file descriptor to each ioctl that might have a cleanup operation.
48  *
49  * Consumers of the onexit routines should call zfs_onexit_fd_hold() early
50  * on to validate the given fd and add a reference to its file table entry.
51  * This allows the consumer to do its work and then add a callback, knowing
52  * that zfs_onexit_add_cb() won't fail with EBADF.  When finished, consumers
53  * should call zfs_onexit_fd_rele().
54  *
55  * A simple example is zfs_ioc_recv(), where we might create an AVL tree
56  * with dataset/GUID mappings and then reuse that tree on subsequent
57  * zfs_ioc_recv() calls.
58  *
59  * On the first zfs_ioc_recv() call, dmu_recv_stream() will kmem_alloc()
60  * the AVL tree and pass it along with a callback function to
61  * zfs_onexit_add_cb(). The zfs_onexit_add_cb() routine will register the
62  * callback and return an action handle.
63  *
64  * The action handle is then passed from user space to subsequent
65  * zfs_ioc_recv() calls, so that dmu_recv_stream() can fetch its AVL tree
66  * by calling zfs_onexit_cb_data() with the device minor number and
67  * action handle.
68  *
69  * If the user process exits abnormally, the callback is invoked implicitly
70  * as part of the driver close operation.  Once the user space process is
71  * finished with the accumulated kernel state, it can also just call close(2)
72  * on the cleanup fd to trigger the cleanup callback.
73  */
74 
75 void
76 zfs_onexit_init(zfs_onexit_t **zop)
77 {
78 	zfs_onexit_t *zo;
79 
80 	zo = *zop = kmem_zalloc(sizeof (zfs_onexit_t), KM_SLEEP);
81 	mutex_init(&zo->zo_lock, NULL, MUTEX_DEFAULT, NULL);
82 	list_create(&zo->zo_actions, sizeof (zfs_onexit_action_node_t),
83 	    offsetof(zfs_onexit_action_node_t, za_link));
84 }
85 
86 void
87 zfs_onexit_destroy(zfs_onexit_t *zo)
88 {
89 	zfs_onexit_action_node_t *ap;
90 
91 	mutex_enter(&zo->zo_lock);
92 	while ((ap = list_head(&zo->zo_actions)) != NULL) {
93 		list_remove(&zo->zo_actions, ap);
94 		mutex_exit(&zo->zo_lock);
95 		ap->za_func(ap->za_data);
96 		kmem_free(ap, sizeof (zfs_onexit_action_node_t));
97 		mutex_enter(&zo->zo_lock);
98 	}
99 	mutex_exit(&zo->zo_lock);
100 
101 	list_destroy(&zo->zo_actions);
102 	mutex_destroy(&zo->zo_lock);
103 	kmem_free(zo, sizeof (zfs_onexit_t));
104 }
105 
106 static int
107 zfs_onexit_minor_to_state(minor_t minor, zfs_onexit_t **zo)
108 {
109 	*zo = zfsdev_get_soft_state(minor, ZSST_CTLDEV);
110 	if (*zo == NULL)
111 		return (EBADF);
112 
113 	return (0);
114 }
115 
116 /*
117  * Consumers might need to operate by minor number instead of fd, since
118  * they might be running in another thread (e.g. txg_sync_thread). Callers
119  * of this function must call zfs_onexit_fd_rele() when they're finished
120  * using the minor number.
121  */
122 int
123 zfs_onexit_fd_hold(int fd, minor_t *minorp)
124 {
125 	file_t *fp;
126 	zfs_onexit_t *zo;
127 
128 	fp = getf(fd);
129 	if (fp == NULL)
130 		return (EBADF);
131 
132 	*minorp = getminor(fp->f_vnode->v_rdev);
133 	return (zfs_onexit_minor_to_state(*minorp, &zo));
134 }
135 
136 void
137 zfs_onexit_fd_rele(int fd)
138 {
139 	releasef(fd);
140 }
141 
142 /*
143  * Add a callback to be invoked when the calling process exits.
144  */
145 int
146 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
147     uint64_t *action_handle)
148 {
149 	zfs_onexit_t *zo;
150 	zfs_onexit_action_node_t *ap;
151 	int error;
152 
153 	error = zfs_onexit_minor_to_state(minor, &zo);
154 	if (error)
155 		return (error);
156 
157 	ap = kmem_alloc(sizeof (zfs_onexit_action_node_t), KM_SLEEP);
158 	list_link_init(&ap->za_link);
159 	ap->za_func = func;
160 	ap->za_data = data;
161 
162 	mutex_enter(&zo->zo_lock);
163 	list_insert_tail(&zo->zo_actions, ap);
164 	mutex_exit(&zo->zo_lock);
165 	if (action_handle)
166 		*action_handle = (uint64_t)(uintptr_t)ap;
167 
168 	return (0);
169 }
170 
171 static zfs_onexit_action_node_t *
172 zfs_onexit_find_cb(zfs_onexit_t *zo, uint64_t action_handle)
173 {
174 	zfs_onexit_action_node_t *match;
175 	zfs_onexit_action_node_t *ap;
176 	list_t *l;
177 
178 	ASSERT(MUTEX_HELD(&zo->zo_lock));
179 
180 	match = (zfs_onexit_action_node_t *)(uintptr_t)action_handle;
181 	l = &zo->zo_actions;
182 	for (ap = list_head(l); ap != NULL; ap = list_next(l, ap)) {
183 		if (match == ap)
184 			break;
185 	}
186 	return (ap);
187 }
188 
189 /*
190  * Delete the callback, triggering it first if 'fire' is set.
191  */
192 int
193 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
194 {
195 	zfs_onexit_t *zo;
196 	zfs_onexit_action_node_t *ap;
197 	int error;
198 
199 	error = zfs_onexit_minor_to_state(minor, &zo);
200 	if (error)
201 		return (error);
202 
203 	mutex_enter(&zo->zo_lock);
204 	ap = zfs_onexit_find_cb(zo, action_handle);
205 	if (ap != NULL) {
206 		list_remove(&zo->zo_actions, ap);
207 		mutex_exit(&zo->zo_lock);
208 		if (fire)
209 			ap->za_func(ap->za_data);
210 		kmem_free(ap, sizeof (zfs_onexit_action_node_t));
211 	} else {
212 		mutex_exit(&zo->zo_lock);
213 		error = ENOENT;
214 	}
215 
216 	return (error);
217 }
218 
219 /*
220  * Return the data associated with this callback.  This allows consumers
221  * of the cleanup-on-exit interfaces to stash kernel data across system
222  * calls, knowing that it will be cleaned up if the calling process exits.
223  */
224 int
225 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
226 {
227 	zfs_onexit_t *zo;
228 	zfs_onexit_action_node_t *ap;
229 	int error;
230 
231 	*data = NULL;
232 
233 	error = zfs_onexit_minor_to_state(minor, &zo);
234 	if (error)
235 		return (error);
236 
237 	mutex_enter(&zo->zo_lock);
238 	ap = zfs_onexit_find_cb(zo, action_handle);
239 	if (ap != NULL)
240 		*data = ap->za_data;
241 	else
242 		error = ENOENT;
243 	mutex_exit(&zo->zo_lock);
244 
245 	return (error);
246 }
247