1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/sunddi.h> 28 #include <sys/dmu.h> 29 #include <sys/avl.h> 30 #include <sys/zap.h> 31 #include <sys/refcount.h> 32 #include <sys/nvpair.h> 33 #ifdef _KERNEL 34 #include <sys/kidmap.h> 35 #include <sys/sid.h> 36 #include <sys/zfs_vfsops.h> 37 #include <sys/zfs_znode.h> 38 #endif 39 #include <sys/zfs_fuid.h> 40 41 /* 42 * FUID Domain table(s). 43 * 44 * The FUID table is stored as a packed nvlist of an array 45 * of nvlists which contain an index, domain string and offset 46 * 47 * During file system initialization the nvlist(s) are read and 48 * two AVL trees are created. One tree is keyed by the index number 49 * and the other by the domain string. Nodes are never removed from 50 * trees, but new entries may be added. If a new entry is added then 51 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then 52 * be responsible for calling zfs_fuid_sync() to sync the changes to disk. 53 * 54 */ 55 56 #define FUID_IDX "fuid_idx" 57 #define FUID_DOMAIN "fuid_domain" 58 #define FUID_OFFSET "fuid_offset" 59 #define FUID_NVP_ARRAY "fuid_nvlist" 60 61 typedef struct fuid_domain { 62 avl_node_t f_domnode; 63 avl_node_t f_idxnode; 64 ksiddomain_t *f_ksid; 65 uint64_t f_idx; 66 } fuid_domain_t; 67 68 static char *nulldomain = ""; 69 70 /* 71 * Compare two indexes. 72 */ 73 static int 74 idx_compare(const void *arg1, const void *arg2) 75 { 76 const fuid_domain_t *node1 = arg1; 77 const fuid_domain_t *node2 = arg2; 78 79 if (node1->f_idx < node2->f_idx) 80 return (-1); 81 else if (node1->f_idx > node2->f_idx) 82 return (1); 83 return (0); 84 } 85 86 /* 87 * Compare two domain strings. 88 */ 89 static int 90 domain_compare(const void *arg1, const void *arg2) 91 { 92 const fuid_domain_t *node1 = arg1; 93 const fuid_domain_t *node2 = arg2; 94 int val; 95 96 val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name); 97 if (val == 0) 98 return (0); 99 return (val > 0 ? 1 : -1); 100 } 101 102 void 103 zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree) 104 { 105 avl_create(idx_tree, idx_compare, 106 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode)); 107 avl_create(domain_tree, domain_compare, 108 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode)); 109 } 110 111 /* 112 * load initial fuid domain and idx trees. This function is used by 113 * both the kernel and zdb. 114 */ 115 uint64_t 116 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree, 117 avl_tree_t *domain_tree) 118 { 119 dmu_buf_t *db; 120 uint64_t fuid_size; 121 122 ASSERT(fuid_obj != 0); 123 VERIFY(0 == dmu_bonus_hold(os, fuid_obj, 124 FTAG, &db)); 125 fuid_size = *(uint64_t *)db->db_data; 126 dmu_buf_rele(db, FTAG); 127 128 if (fuid_size) { 129 nvlist_t **fuidnvp; 130 nvlist_t *nvp = NULL; 131 uint_t count; 132 char *packed; 133 int i; 134 135 packed = kmem_alloc(fuid_size, KM_SLEEP); 136 VERIFY(dmu_read(os, fuid_obj, 0, 137 fuid_size, packed, DMU_READ_PREFETCH) == 0); 138 VERIFY(nvlist_unpack(packed, fuid_size, 139 &nvp, 0) == 0); 140 VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY, 141 &fuidnvp, &count) == 0); 142 143 for (i = 0; i != count; i++) { 144 fuid_domain_t *domnode; 145 char *domain; 146 uint64_t idx; 147 148 VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN, 149 &domain) == 0); 150 VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX, 151 &idx) == 0); 152 153 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 154 155 domnode->f_idx = idx; 156 domnode->f_ksid = ksid_lookupdomain(domain); 157 avl_add(idx_tree, domnode); 158 avl_add(domain_tree, domnode); 159 } 160 nvlist_free(nvp); 161 kmem_free(packed, fuid_size); 162 } 163 return (fuid_size); 164 } 165 166 void 167 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree) 168 { 169 fuid_domain_t *domnode; 170 void *cookie; 171 172 cookie = NULL; 173 while (domnode = avl_destroy_nodes(domain_tree, &cookie)) 174 ksiddomain_rele(domnode->f_ksid); 175 176 avl_destroy(domain_tree); 177 cookie = NULL; 178 while (domnode = avl_destroy_nodes(idx_tree, &cookie)) 179 kmem_free(domnode, sizeof (fuid_domain_t)); 180 avl_destroy(idx_tree); 181 } 182 183 char * 184 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx) 185 { 186 fuid_domain_t searchnode, *findnode; 187 avl_index_t loc; 188 189 searchnode.f_idx = idx; 190 191 findnode = avl_find(idx_tree, &searchnode, &loc); 192 193 return (findnode ? findnode->f_ksid->kd_name : nulldomain); 194 } 195 196 #ifdef _KERNEL 197 /* 198 * Load the fuid table(s) into memory. 199 */ 200 static void 201 zfs_fuid_init(zfsvfs_t *zfsvfs) 202 { 203 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 204 205 if (zfsvfs->z_fuid_loaded) { 206 rw_exit(&zfsvfs->z_fuid_lock); 207 return; 208 } 209 210 zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain); 211 212 (void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 213 ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj); 214 if (zfsvfs->z_fuid_obj != 0) { 215 zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os, 216 zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx, 217 &zfsvfs->z_fuid_domain); 218 } 219 220 zfsvfs->z_fuid_loaded = B_TRUE; 221 rw_exit(&zfsvfs->z_fuid_lock); 222 } 223 224 /* 225 * sync out AVL trees to persistent storage. 226 */ 227 void 228 zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 229 { 230 nvlist_t *nvp; 231 nvlist_t **fuids; 232 size_t nvsize = 0; 233 char *packed; 234 dmu_buf_t *db; 235 fuid_domain_t *domnode; 236 int numnodes; 237 int i; 238 239 if (!zfsvfs->z_fuid_dirty) { 240 return; 241 } 242 243 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 244 245 /* 246 * First see if table needs to be created? 247 */ 248 if (zfsvfs->z_fuid_obj == 0) { 249 zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os, 250 DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE, 251 sizeof (uint64_t), tx); 252 VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 253 ZFS_FUID_TABLES, sizeof (uint64_t), 1, 254 &zfsvfs->z_fuid_obj, tx) == 0); 255 } 256 257 VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 258 259 numnodes = avl_numnodes(&zfsvfs->z_fuid_idx); 260 fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP); 261 for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++, 262 domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) { 263 VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0); 264 VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX, 265 domnode->f_idx) == 0); 266 VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0); 267 VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN, 268 domnode->f_ksid->kd_name) == 0); 269 } 270 VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY, 271 fuids, numnodes) == 0); 272 for (i = 0; i != numnodes; i++) 273 nvlist_free(fuids[i]); 274 kmem_free(fuids, numnodes * sizeof (void *)); 275 VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0); 276 packed = kmem_alloc(nvsize, KM_SLEEP); 277 VERIFY(nvlist_pack(nvp, &packed, &nvsize, 278 NV_ENCODE_XDR, KM_SLEEP) == 0); 279 nvlist_free(nvp); 280 zfsvfs->z_fuid_size = nvsize; 281 dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0, 282 zfsvfs->z_fuid_size, packed, tx); 283 kmem_free(packed, zfsvfs->z_fuid_size); 284 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj, 285 FTAG, &db)); 286 dmu_buf_will_dirty(db, tx); 287 *(uint64_t *)db->db_data = zfsvfs->z_fuid_size; 288 dmu_buf_rele(db, FTAG); 289 290 zfsvfs->z_fuid_dirty = B_FALSE; 291 rw_exit(&zfsvfs->z_fuid_lock); 292 } 293 294 /* 295 * Query domain table for a given domain. 296 * 297 * If domain isn't found and addok is set, it is added to AVL trees and 298 * the zfsvfs->z_fuid_dirty flag will be set to TRUE. It will then be 299 * necessary for the caller or another thread to detect the dirty table 300 * and sync out the changes. 301 */ 302 int 303 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain, 304 char **retdomain, boolean_t addok) 305 { 306 fuid_domain_t searchnode, *findnode; 307 avl_index_t loc; 308 krw_t rw = RW_READER; 309 310 /* 311 * If the dummy "nobody" domain then return an index of 0 312 * to cause the created FUID to be a standard POSIX id 313 * for the user nobody. 314 */ 315 if (domain[0] == '\0') { 316 if (retdomain) 317 *retdomain = nulldomain; 318 return (0); 319 } 320 321 searchnode.f_ksid = ksid_lookupdomain(domain); 322 if (retdomain) 323 *retdomain = searchnode.f_ksid->kd_name; 324 if (!zfsvfs->z_fuid_loaded) 325 zfs_fuid_init(zfsvfs); 326 327 retry: 328 rw_enter(&zfsvfs->z_fuid_lock, rw); 329 findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc); 330 331 if (findnode) { 332 rw_exit(&zfsvfs->z_fuid_lock); 333 ksiddomain_rele(searchnode.f_ksid); 334 return (findnode->f_idx); 335 } else if (addok) { 336 fuid_domain_t *domnode; 337 uint64_t retidx; 338 339 if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) { 340 rw_exit(&zfsvfs->z_fuid_lock); 341 rw = RW_WRITER; 342 goto retry; 343 } 344 345 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 346 domnode->f_ksid = searchnode.f_ksid; 347 348 retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1; 349 350 avl_add(&zfsvfs->z_fuid_domain, domnode); 351 avl_add(&zfsvfs->z_fuid_idx, domnode); 352 zfsvfs->z_fuid_dirty = B_TRUE; 353 rw_exit(&zfsvfs->z_fuid_lock); 354 return (retidx); 355 } else { 356 rw_exit(&zfsvfs->z_fuid_lock); 357 return (-1); 358 } 359 } 360 361 /* 362 * Query domain table by index, returning domain string 363 * 364 * Returns a pointer from an avl node of the domain string. 365 * 366 */ 367 const char * 368 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx) 369 { 370 char *domain; 371 372 if (idx == 0 || !zfsvfs->z_use_fuids) 373 return (NULL); 374 375 if (!zfsvfs->z_fuid_loaded) 376 zfs_fuid_init(zfsvfs); 377 378 rw_enter(&zfsvfs->z_fuid_lock, RW_READER); 379 380 if (zfsvfs->z_fuid_obj) 381 domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx); 382 else 383 domain = nulldomain; 384 rw_exit(&zfsvfs->z_fuid_lock); 385 386 ASSERT(domain); 387 return (domain); 388 } 389 390 void 391 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp) 392 { 393 *uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_uid, 394 cr, ZFS_OWNER); 395 *gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_gid, 396 cr, ZFS_GROUP); 397 } 398 399 uid_t 400 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid, 401 cred_t *cr, zfs_fuid_type_t type) 402 { 403 uint32_t index = FUID_INDEX(fuid); 404 const char *domain; 405 uid_t id; 406 407 if (index == 0) 408 return (fuid); 409 410 domain = zfs_fuid_find_by_idx(zfsvfs, index); 411 ASSERT(domain != NULL); 412 413 if (type == ZFS_OWNER || type == ZFS_ACE_USER) { 414 (void) kidmap_getuidbysid(crgetzone(cr), domain, 415 FUID_RID(fuid), &id); 416 } else { 417 (void) kidmap_getgidbysid(crgetzone(cr), domain, 418 FUID_RID(fuid), &id); 419 } 420 return (id); 421 } 422 423 /* 424 * Add a FUID node to the list of fuid's being created for this 425 * ACL 426 * 427 * If ACL has multiple domains, then keep only one copy of each unique 428 * domain. 429 */ 430 static void 431 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid, 432 uint64_t idx, uint64_t id, zfs_fuid_type_t type) 433 { 434 zfs_fuid_t *fuid; 435 zfs_fuid_domain_t *fuid_domain; 436 zfs_fuid_info_t *fuidp; 437 uint64_t fuididx; 438 boolean_t found = B_FALSE; 439 440 if (*fuidpp == NULL) 441 *fuidpp = zfs_fuid_info_alloc(); 442 443 fuidp = *fuidpp; 444 /* 445 * First find fuid domain index in linked list 446 * 447 * If one isn't found then create an entry. 448 */ 449 450 for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains); 451 fuid_domain; fuid_domain = list_next(&fuidp->z_domains, 452 fuid_domain), fuididx++) { 453 if (idx == fuid_domain->z_domidx) { 454 found = B_TRUE; 455 break; 456 } 457 } 458 459 if (!found) { 460 fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP); 461 fuid_domain->z_domain = domain; 462 fuid_domain->z_domidx = idx; 463 list_insert_tail(&fuidp->z_domains, fuid_domain); 464 fuidp->z_domain_str_sz += strlen(domain) + 1; 465 fuidp->z_domain_cnt++; 466 } 467 468 if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) { 469 470 /* 471 * Now allocate fuid entry and add it on the end of the list 472 */ 473 474 fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP); 475 fuid->z_id = id; 476 fuid->z_domidx = idx; 477 fuid->z_logfuid = FUID_ENCODE(fuididx, rid); 478 479 list_insert_tail(&fuidp->z_fuids, fuid); 480 fuidp->z_fuid_cnt++; 481 } else { 482 if (type == ZFS_OWNER) 483 fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid); 484 else 485 fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid); 486 } 487 } 488 489 /* 490 * Create a file system FUID, based on information in the users cred 491 */ 492 uint64_t 493 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type, 494 cred_t *cr, zfs_fuid_info_t **fuidp) 495 { 496 uint64_t idx; 497 ksid_t *ksid; 498 uint32_t rid; 499 char *kdomain; 500 const char *domain; 501 uid_t id; 502 503 VERIFY(type == ZFS_OWNER || type == ZFS_GROUP); 504 505 ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP); 506 if (ksid) { 507 id = ksid_getid(ksid); 508 } else { 509 if (type == ZFS_OWNER) 510 id = crgetuid(cr); 511 else 512 id = crgetgid(cr); 513 } 514 515 if (!zfsvfs->z_use_fuids || (!IS_EPHEMERAL(id))) 516 return ((uint64_t)id); 517 518 rid = ksid_getrid(ksid); 519 domain = ksid_getdomain(ksid); 520 521 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE); 522 523 zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type); 524 525 return (FUID_ENCODE(idx, rid)); 526 } 527 528 /* 529 * Create a file system FUID for an ACL ace 530 * or a chown/chgrp of the file. 531 * This is similar to zfs_fuid_create_cred, except that 532 * we can't find the domain + rid information in the 533 * cred. Instead we have to query Winchester for the 534 * domain and rid. 535 * 536 * During replay operations the domain+rid information is 537 * found in the zfs_fuid_info_t that the replay code has 538 * attached to the zfsvfs of the file system. 539 */ 540 uint64_t 541 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr, 542 zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp) 543 { 544 const char *domain; 545 char *kdomain; 546 uint32_t fuid_idx = FUID_INDEX(id); 547 uint32_t rid; 548 idmap_stat status; 549 uint64_t idx; 550 zfs_fuid_t *zfuid = NULL; 551 zfs_fuid_info_t *fuidp; 552 553 /* 554 * If POSIX ID, or entry is already a FUID then 555 * just return the id 556 * 557 * We may also be handed an already FUID'ized id via 558 * chmod. 559 */ 560 561 if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0) 562 return (id); 563 564 if (zfsvfs->z_replay) { 565 fuidp = zfsvfs->z_fuid_replay; 566 567 /* 568 * If we are passed an ephemeral id, but no 569 * fuid_info was logged then return NOBODY. 570 * This is most likely a result of idmap service 571 * not being available. 572 */ 573 if (fuidp == NULL) 574 return (UID_NOBODY); 575 576 switch (type) { 577 case ZFS_ACE_USER: 578 case ZFS_ACE_GROUP: 579 zfuid = list_head(&fuidp->z_fuids); 580 rid = FUID_RID(zfuid->z_logfuid); 581 idx = FUID_INDEX(zfuid->z_logfuid); 582 break; 583 case ZFS_OWNER: 584 rid = FUID_RID(fuidp->z_fuid_owner); 585 idx = FUID_INDEX(fuidp->z_fuid_owner); 586 break; 587 case ZFS_GROUP: 588 rid = FUID_RID(fuidp->z_fuid_group); 589 idx = FUID_INDEX(fuidp->z_fuid_group); 590 break; 591 }; 592 domain = fuidp->z_domain_table[idx -1]; 593 } else { 594 if (type == ZFS_OWNER || type == ZFS_ACE_USER) 595 status = kidmap_getsidbyuid(crgetzone(cr), id, 596 &domain, &rid); 597 else 598 status = kidmap_getsidbygid(crgetzone(cr), id, 599 &domain, &rid); 600 601 if (status != 0) { 602 /* 603 * When returning nobody we will need to 604 * make a dummy fuid table entry for logging 605 * purposes. 606 */ 607 rid = UID_NOBODY; 608 domain = nulldomain; 609 } 610 } 611 612 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE); 613 614 if (!zfsvfs->z_replay) 615 zfs_fuid_node_add(fuidpp, kdomain, 616 rid, idx, id, type); 617 else if (zfuid != NULL) { 618 list_remove(&fuidp->z_fuids, zfuid); 619 kmem_free(zfuid, sizeof (zfs_fuid_t)); 620 } 621 return (FUID_ENCODE(idx, rid)); 622 } 623 624 void 625 zfs_fuid_destroy(zfsvfs_t *zfsvfs) 626 { 627 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 628 if (!zfsvfs->z_fuid_loaded) { 629 rw_exit(&zfsvfs->z_fuid_lock); 630 return; 631 } 632 zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain); 633 rw_exit(&zfsvfs->z_fuid_lock); 634 } 635 636 /* 637 * Allocate zfs_fuid_info for tracking FUIDs created during 638 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR() 639 */ 640 zfs_fuid_info_t * 641 zfs_fuid_info_alloc(void) 642 { 643 zfs_fuid_info_t *fuidp; 644 645 fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP); 646 list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t), 647 offsetof(zfs_fuid_domain_t, z_next)); 648 list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t), 649 offsetof(zfs_fuid_t, z_next)); 650 return (fuidp); 651 } 652 653 /* 654 * Release all memory associated with zfs_fuid_info_t 655 */ 656 void 657 zfs_fuid_info_free(zfs_fuid_info_t *fuidp) 658 { 659 zfs_fuid_t *zfuid; 660 zfs_fuid_domain_t *zdomain; 661 662 while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) { 663 list_remove(&fuidp->z_fuids, zfuid); 664 kmem_free(zfuid, sizeof (zfs_fuid_t)); 665 } 666 667 if (fuidp->z_domain_table != NULL) 668 kmem_free(fuidp->z_domain_table, 669 (sizeof (char **)) * fuidp->z_domain_cnt); 670 671 while ((zdomain = list_head(&fuidp->z_domains)) != NULL) { 672 list_remove(&fuidp->z_domains, zdomain); 673 kmem_free(zdomain, sizeof (zfs_fuid_domain_t)); 674 } 675 676 kmem_free(fuidp, sizeof (zfs_fuid_info_t)); 677 } 678 679 /* 680 * Check to see if id is a groupmember. If cred 681 * has ksid info then sidlist is checked first 682 * and if still not found then POSIX groups are checked 683 * 684 * Will use a straight FUID compare when possible. 685 */ 686 boolean_t 687 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr) 688 { 689 ksid_t *ksid = crgetsid(cr, KSID_GROUP); 690 ksidlist_t *ksidlist = crgetsidlist(cr); 691 uid_t gid; 692 693 if (ksid && ksidlist) { 694 int i; 695 ksid_t *ksid_groups; 696 uint32_t idx = FUID_INDEX(id); 697 uint32_t rid = FUID_RID(id); 698 699 ksid_groups = ksidlist->ksl_sids; 700 701 for (i = 0; i != ksidlist->ksl_nsid; i++) { 702 if (idx == 0) { 703 if (id != IDMAP_WK_CREATOR_GROUP_GID && 704 id == ksid_groups[i].ks_id) { 705 return (B_TRUE); 706 } 707 } else { 708 const char *domain; 709 710 domain = zfs_fuid_find_by_idx(zfsvfs, idx); 711 ASSERT(domain != NULL); 712 713 if (strcmp(domain, 714 IDMAP_WK_CREATOR_SID_AUTHORITY) == 0) 715 return (B_FALSE); 716 717 if ((strcmp(domain, 718 ksid_groups[i].ks_domain->kd_name) == 0) && 719 rid == ksid_groups[i].ks_rid) 720 return (B_TRUE); 721 } 722 } 723 } 724 725 /* 726 * Not found in ksidlist, check posix groups 727 */ 728 gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP); 729 return (groupmember(gid, cr)); 730 } 731 732 void 733 zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 734 { 735 if (zfsvfs->z_fuid_obj == 0) { 736 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 737 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 738 FUID_SIZE_ESTIMATE(zfsvfs)); 739 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 740 } else { 741 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 742 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 743 FUID_SIZE_ESTIMATE(zfsvfs)); 744 } 745 } 746 #endif 747