1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/zfs_context.h> 26 #include <sys/dmu.h> 27 #include <sys/avl.h> 28 #include <sys/zap.h> 29 #include <sys/refcount.h> 30 #include <sys/nvpair.h> 31 #ifdef _KERNEL 32 #include <sys/kidmap.h> 33 #include <sys/sid.h> 34 #include <sys/zfs_vfsops.h> 35 #include <sys/zfs_znode.h> 36 #endif 37 #include <sys/zfs_fuid.h> 38 39 /* 40 * FUID Domain table(s). 41 * 42 * The FUID table is stored as a packed nvlist of an array 43 * of nvlists which contain an index, domain string and offset 44 * 45 * During file system initialization the nvlist(s) are read and 46 * two AVL trees are created. One tree is keyed by the index number 47 * and the other by the domain string. Nodes are never removed from 48 * trees, but new entries may be added. If a new entry is added then 49 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then 50 * be responsible for calling zfs_fuid_sync() to sync the changes to disk. 51 * 52 */ 53 54 #define FUID_IDX "fuid_idx" 55 #define FUID_DOMAIN "fuid_domain" 56 #define FUID_OFFSET "fuid_offset" 57 #define FUID_NVP_ARRAY "fuid_nvlist" 58 59 typedef struct fuid_domain { 60 avl_node_t f_domnode; 61 avl_node_t f_idxnode; 62 ksiddomain_t *f_ksid; 63 uint64_t f_idx; 64 } fuid_domain_t; 65 66 static char *nulldomain = ""; 67 68 /* 69 * Compare two indexes. 70 */ 71 static int 72 idx_compare(const void *arg1, const void *arg2) 73 { 74 const fuid_domain_t *node1 = arg1; 75 const fuid_domain_t *node2 = arg2; 76 77 if (node1->f_idx < node2->f_idx) 78 return (-1); 79 else if (node1->f_idx > node2->f_idx) 80 return (1); 81 return (0); 82 } 83 84 /* 85 * Compare two domain strings. 86 */ 87 static int 88 domain_compare(const void *arg1, const void *arg2) 89 { 90 const fuid_domain_t *node1 = arg1; 91 const fuid_domain_t *node2 = arg2; 92 int val; 93 94 val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name); 95 if (val == 0) 96 return (0); 97 return (val > 0 ? 1 : -1); 98 } 99 100 void 101 zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree) 102 { 103 avl_create(idx_tree, idx_compare, 104 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode)); 105 avl_create(domain_tree, domain_compare, 106 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode)); 107 } 108 109 /* 110 * load initial fuid domain and idx trees. This function is used by 111 * both the kernel and zdb. 112 */ 113 uint64_t 114 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree, 115 avl_tree_t *domain_tree) 116 { 117 dmu_buf_t *db; 118 uint64_t fuid_size; 119 120 ASSERT(fuid_obj != 0); 121 VERIFY(0 == dmu_bonus_hold(os, fuid_obj, 122 FTAG, &db)); 123 fuid_size = *(uint64_t *)db->db_data; 124 dmu_buf_rele(db, FTAG); 125 126 if (fuid_size) { 127 nvlist_t **fuidnvp; 128 nvlist_t *nvp = NULL; 129 uint_t count; 130 char *packed; 131 int i; 132 133 packed = kmem_alloc(fuid_size, KM_SLEEP); 134 VERIFY(dmu_read(os, fuid_obj, 0, 135 fuid_size, packed, DMU_READ_PREFETCH) == 0); 136 VERIFY(nvlist_unpack(packed, fuid_size, 137 &nvp, 0) == 0); 138 VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY, 139 &fuidnvp, &count) == 0); 140 141 for (i = 0; i != count; i++) { 142 fuid_domain_t *domnode; 143 char *domain; 144 uint64_t idx; 145 146 VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN, 147 &domain) == 0); 148 VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX, 149 &idx) == 0); 150 151 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 152 153 domnode->f_idx = idx; 154 domnode->f_ksid = ksid_lookupdomain(domain); 155 avl_add(idx_tree, domnode); 156 avl_add(domain_tree, domnode); 157 } 158 nvlist_free(nvp); 159 kmem_free(packed, fuid_size); 160 } 161 return (fuid_size); 162 } 163 164 void 165 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree) 166 { 167 fuid_domain_t *domnode; 168 void *cookie; 169 170 cookie = NULL; 171 while (domnode = avl_destroy_nodes(domain_tree, &cookie)) 172 ksiddomain_rele(domnode->f_ksid); 173 174 avl_destroy(domain_tree); 175 cookie = NULL; 176 while (domnode = avl_destroy_nodes(idx_tree, &cookie)) 177 kmem_free(domnode, sizeof (fuid_domain_t)); 178 avl_destroy(idx_tree); 179 } 180 181 char * 182 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx) 183 { 184 fuid_domain_t searchnode, *findnode; 185 avl_index_t loc; 186 187 searchnode.f_idx = idx; 188 189 findnode = avl_find(idx_tree, &searchnode, &loc); 190 191 return (findnode ? findnode->f_ksid->kd_name : nulldomain); 192 } 193 194 #ifdef _KERNEL 195 /* 196 * Load the fuid table(s) into memory. 197 */ 198 static void 199 zfs_fuid_init(zfsvfs_t *zfsvfs) 200 { 201 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 202 203 if (zfsvfs->z_fuid_loaded) { 204 rw_exit(&zfsvfs->z_fuid_lock); 205 return; 206 } 207 208 zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain); 209 210 (void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 211 ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj); 212 if (zfsvfs->z_fuid_obj != 0) { 213 zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os, 214 zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx, 215 &zfsvfs->z_fuid_domain); 216 } 217 218 zfsvfs->z_fuid_loaded = B_TRUE; 219 rw_exit(&zfsvfs->z_fuid_lock); 220 } 221 222 /* 223 * sync out AVL trees to persistent storage. 224 */ 225 void 226 zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 227 { 228 nvlist_t *nvp; 229 nvlist_t **fuids; 230 size_t nvsize = 0; 231 char *packed; 232 dmu_buf_t *db; 233 fuid_domain_t *domnode; 234 int numnodes; 235 int i; 236 237 if (!zfsvfs->z_fuid_dirty) { 238 return; 239 } 240 241 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 242 243 /* 244 * First see if table needs to be created? 245 */ 246 if (zfsvfs->z_fuid_obj == 0) { 247 zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os, 248 DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE, 249 sizeof (uint64_t), tx); 250 VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 251 ZFS_FUID_TABLES, sizeof (uint64_t), 1, 252 &zfsvfs->z_fuid_obj, tx) == 0); 253 } 254 255 VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 256 257 numnodes = avl_numnodes(&zfsvfs->z_fuid_idx); 258 fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP); 259 for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++, 260 domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) { 261 VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0); 262 VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX, 263 domnode->f_idx) == 0); 264 VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0); 265 VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN, 266 domnode->f_ksid->kd_name) == 0); 267 } 268 VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY, 269 fuids, numnodes) == 0); 270 for (i = 0; i != numnodes; i++) 271 nvlist_free(fuids[i]); 272 kmem_free(fuids, numnodes * sizeof (void *)); 273 VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0); 274 packed = kmem_alloc(nvsize, KM_SLEEP); 275 VERIFY(nvlist_pack(nvp, &packed, &nvsize, 276 NV_ENCODE_XDR, KM_SLEEP) == 0); 277 nvlist_free(nvp); 278 zfsvfs->z_fuid_size = nvsize; 279 dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0, 280 zfsvfs->z_fuid_size, packed, tx); 281 kmem_free(packed, zfsvfs->z_fuid_size); 282 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj, 283 FTAG, &db)); 284 dmu_buf_will_dirty(db, tx); 285 *(uint64_t *)db->db_data = zfsvfs->z_fuid_size; 286 dmu_buf_rele(db, FTAG); 287 288 zfsvfs->z_fuid_dirty = B_FALSE; 289 rw_exit(&zfsvfs->z_fuid_lock); 290 } 291 292 /* 293 * Query domain table for a given domain. 294 * 295 * If domain isn't found and addok is set, it is added to AVL trees and 296 * the zfsvfs->z_fuid_dirty flag will be set to TRUE. It will then be 297 * necessary for the caller or another thread to detect the dirty table 298 * and sync out the changes. 299 */ 300 int 301 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain, 302 char **retdomain, boolean_t addok) 303 { 304 fuid_domain_t searchnode, *findnode; 305 avl_index_t loc; 306 krw_t rw = RW_READER; 307 308 /* 309 * If the dummy "nobody" domain then return an index of 0 310 * to cause the created FUID to be a standard POSIX id 311 * for the user nobody. 312 */ 313 if (domain[0] == '\0') { 314 if (retdomain) 315 *retdomain = nulldomain; 316 return (0); 317 } 318 319 searchnode.f_ksid = ksid_lookupdomain(domain); 320 if (retdomain) 321 *retdomain = searchnode.f_ksid->kd_name; 322 if (!zfsvfs->z_fuid_loaded) 323 zfs_fuid_init(zfsvfs); 324 325 retry: 326 rw_enter(&zfsvfs->z_fuid_lock, rw); 327 findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc); 328 329 if (findnode) { 330 rw_exit(&zfsvfs->z_fuid_lock); 331 ksiddomain_rele(searchnode.f_ksid); 332 return (findnode->f_idx); 333 } else if (addok) { 334 fuid_domain_t *domnode; 335 uint64_t retidx; 336 337 if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) { 338 rw_exit(&zfsvfs->z_fuid_lock); 339 rw = RW_WRITER; 340 goto retry; 341 } 342 343 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 344 domnode->f_ksid = searchnode.f_ksid; 345 346 retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1; 347 348 avl_add(&zfsvfs->z_fuid_domain, domnode); 349 avl_add(&zfsvfs->z_fuid_idx, domnode); 350 zfsvfs->z_fuid_dirty = B_TRUE; 351 rw_exit(&zfsvfs->z_fuid_lock); 352 return (retidx); 353 } else { 354 rw_exit(&zfsvfs->z_fuid_lock); 355 return (-1); 356 } 357 } 358 359 /* 360 * Query domain table by index, returning domain string 361 * 362 * Returns a pointer from an avl node of the domain string. 363 * 364 */ 365 const char * 366 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx) 367 { 368 char *domain; 369 370 if (idx == 0 || !zfsvfs->z_use_fuids) 371 return (NULL); 372 373 if (!zfsvfs->z_fuid_loaded) 374 zfs_fuid_init(zfsvfs); 375 376 rw_enter(&zfsvfs->z_fuid_lock, RW_READER); 377 378 if (zfsvfs->z_fuid_obj || zfsvfs->z_fuid_dirty) 379 domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx); 380 else 381 domain = nulldomain; 382 rw_exit(&zfsvfs->z_fuid_lock); 383 384 ASSERT(domain); 385 return (domain); 386 } 387 388 void 389 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp) 390 { 391 *uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER); 392 *gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_gid, cr, ZFS_GROUP); 393 } 394 395 uid_t 396 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid, 397 cred_t *cr, zfs_fuid_type_t type) 398 { 399 uint32_t index = FUID_INDEX(fuid); 400 const char *domain; 401 uid_t id; 402 403 if (index == 0) 404 return (fuid); 405 406 domain = zfs_fuid_find_by_idx(zfsvfs, index); 407 ASSERT(domain != NULL); 408 409 if (type == ZFS_OWNER || type == ZFS_ACE_USER) { 410 (void) kidmap_getuidbysid(crgetzone(cr), domain, 411 FUID_RID(fuid), &id); 412 } else { 413 (void) kidmap_getgidbysid(crgetzone(cr), domain, 414 FUID_RID(fuid), &id); 415 } 416 return (id); 417 } 418 419 /* 420 * Add a FUID node to the list of fuid's being created for this 421 * ACL 422 * 423 * If ACL has multiple domains, then keep only one copy of each unique 424 * domain. 425 */ 426 void 427 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid, 428 uint64_t idx, uint64_t id, zfs_fuid_type_t type) 429 { 430 zfs_fuid_t *fuid; 431 zfs_fuid_domain_t *fuid_domain; 432 zfs_fuid_info_t *fuidp; 433 uint64_t fuididx; 434 boolean_t found = B_FALSE; 435 436 if (*fuidpp == NULL) 437 *fuidpp = zfs_fuid_info_alloc(); 438 439 fuidp = *fuidpp; 440 /* 441 * First find fuid domain index in linked list 442 * 443 * If one isn't found then create an entry. 444 */ 445 446 for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains); 447 fuid_domain; fuid_domain = list_next(&fuidp->z_domains, 448 fuid_domain), fuididx++) { 449 if (idx == fuid_domain->z_domidx) { 450 found = B_TRUE; 451 break; 452 } 453 } 454 455 if (!found) { 456 fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP); 457 fuid_domain->z_domain = domain; 458 fuid_domain->z_domidx = idx; 459 list_insert_tail(&fuidp->z_domains, fuid_domain); 460 fuidp->z_domain_str_sz += strlen(domain) + 1; 461 fuidp->z_domain_cnt++; 462 } 463 464 if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) { 465 466 /* 467 * Now allocate fuid entry and add it on the end of the list 468 */ 469 470 fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP); 471 fuid->z_id = id; 472 fuid->z_domidx = idx; 473 fuid->z_logfuid = FUID_ENCODE(fuididx, rid); 474 475 list_insert_tail(&fuidp->z_fuids, fuid); 476 fuidp->z_fuid_cnt++; 477 } else { 478 if (type == ZFS_OWNER) 479 fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid); 480 else 481 fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid); 482 } 483 } 484 485 /* 486 * Create a file system FUID, based on information in the users cred 487 * 488 * If cred contains KSID_OWNER then it should be used to determine 489 * the uid otherwise cred's uid will be used. By default cred's gid 490 * is used unless it's an ephemeral ID in which case KSID_GROUP will 491 * be used if it exists. 492 */ 493 uint64_t 494 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type, 495 cred_t *cr, zfs_fuid_info_t **fuidp) 496 { 497 uint64_t idx; 498 ksid_t *ksid; 499 uint32_t rid; 500 char *kdomain; 501 const char *domain; 502 uid_t id; 503 504 VERIFY(type == ZFS_OWNER || type == ZFS_GROUP); 505 506 ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP); 507 508 if (!zfsvfs->z_use_fuids || (ksid == NULL)) { 509 id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr); 510 511 if (IS_EPHEMERAL(id)) 512 return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY); 513 514 return ((uint64_t)id); 515 } 516 517 /* 518 * ksid is present and FUID is supported 519 */ 520 id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr); 521 522 if (!IS_EPHEMERAL(id)) 523 return ((uint64_t)id); 524 525 if (type == ZFS_GROUP) 526 id = ksid_getid(ksid); 527 528 rid = ksid_getrid(ksid); 529 domain = ksid_getdomain(ksid); 530 531 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE); 532 533 zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type); 534 535 return (FUID_ENCODE(idx, rid)); 536 } 537 538 /* 539 * Create a file system FUID for an ACL ace 540 * or a chown/chgrp of the file. 541 * This is similar to zfs_fuid_create_cred, except that 542 * we can't find the domain + rid information in the 543 * cred. Instead we have to query Winchester for the 544 * domain and rid. 545 * 546 * During replay operations the domain+rid information is 547 * found in the zfs_fuid_info_t that the replay code has 548 * attached to the zfsvfs of the file system. 549 */ 550 uint64_t 551 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr, 552 zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp) 553 { 554 const char *domain; 555 char *kdomain; 556 uint32_t fuid_idx = FUID_INDEX(id); 557 uint32_t rid; 558 idmap_stat status; 559 uint64_t idx = 0; 560 zfs_fuid_t *zfuid = NULL; 561 zfs_fuid_info_t *fuidp = NULL; 562 563 /* 564 * If POSIX ID, or entry is already a FUID then 565 * just return the id 566 * 567 * We may also be handed an already FUID'ized id via 568 * chmod. 569 */ 570 571 if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0) 572 return (id); 573 574 if (zfsvfs->z_replay) { 575 fuidp = zfsvfs->z_fuid_replay; 576 577 /* 578 * If we are passed an ephemeral id, but no 579 * fuid_info was logged then return NOBODY. 580 * This is most likely a result of idmap service 581 * not being available. 582 */ 583 if (fuidp == NULL) 584 return (UID_NOBODY); 585 586 VERIFY3U(type, >=, ZFS_OWNER); 587 VERIFY3U(type, <=, ZFS_ACE_GROUP); 588 589 switch (type) { 590 case ZFS_ACE_USER: 591 case ZFS_ACE_GROUP: 592 zfuid = list_head(&fuidp->z_fuids); 593 rid = FUID_RID(zfuid->z_logfuid); 594 idx = FUID_INDEX(zfuid->z_logfuid); 595 break; 596 case ZFS_OWNER: 597 rid = FUID_RID(fuidp->z_fuid_owner); 598 idx = FUID_INDEX(fuidp->z_fuid_owner); 599 break; 600 case ZFS_GROUP: 601 rid = FUID_RID(fuidp->z_fuid_group); 602 idx = FUID_INDEX(fuidp->z_fuid_group); 603 break; 604 }; 605 domain = fuidp->z_domain_table[idx - 1]; 606 } else { 607 if (type == ZFS_OWNER || type == ZFS_ACE_USER) 608 status = kidmap_getsidbyuid(crgetzone(cr), id, 609 &domain, &rid); 610 else 611 status = kidmap_getsidbygid(crgetzone(cr), id, 612 &domain, &rid); 613 614 if (status != 0) { 615 /* 616 * When returning nobody we will need to 617 * make a dummy fuid table entry for logging 618 * purposes. 619 */ 620 rid = UID_NOBODY; 621 domain = nulldomain; 622 } 623 } 624 625 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE); 626 627 if (!zfsvfs->z_replay) 628 zfs_fuid_node_add(fuidpp, kdomain, 629 rid, idx, id, type); 630 else if (zfuid != NULL) { 631 list_remove(&fuidp->z_fuids, zfuid); 632 kmem_free(zfuid, sizeof (zfs_fuid_t)); 633 } 634 return (FUID_ENCODE(idx, rid)); 635 } 636 637 void 638 zfs_fuid_destroy(zfsvfs_t *zfsvfs) 639 { 640 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 641 if (!zfsvfs->z_fuid_loaded) { 642 rw_exit(&zfsvfs->z_fuid_lock); 643 return; 644 } 645 zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain); 646 rw_exit(&zfsvfs->z_fuid_lock); 647 } 648 649 /* 650 * Allocate zfs_fuid_info for tracking FUIDs created during 651 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR() 652 */ 653 zfs_fuid_info_t * 654 zfs_fuid_info_alloc(void) 655 { 656 zfs_fuid_info_t *fuidp; 657 658 fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP); 659 list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t), 660 offsetof(zfs_fuid_domain_t, z_next)); 661 list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t), 662 offsetof(zfs_fuid_t, z_next)); 663 return (fuidp); 664 } 665 666 /* 667 * Release all memory associated with zfs_fuid_info_t 668 */ 669 void 670 zfs_fuid_info_free(zfs_fuid_info_t *fuidp) 671 { 672 zfs_fuid_t *zfuid; 673 zfs_fuid_domain_t *zdomain; 674 675 while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) { 676 list_remove(&fuidp->z_fuids, zfuid); 677 kmem_free(zfuid, sizeof (zfs_fuid_t)); 678 } 679 680 if (fuidp->z_domain_table != NULL) 681 kmem_free(fuidp->z_domain_table, 682 (sizeof (char **)) * fuidp->z_domain_cnt); 683 684 while ((zdomain = list_head(&fuidp->z_domains)) != NULL) { 685 list_remove(&fuidp->z_domains, zdomain); 686 kmem_free(zdomain, sizeof (zfs_fuid_domain_t)); 687 } 688 689 kmem_free(fuidp, sizeof (zfs_fuid_info_t)); 690 } 691 692 /* 693 * Check to see if id is a groupmember. If cred 694 * has ksid info then sidlist is checked first 695 * and if still not found then POSIX groups are checked 696 * 697 * Will use a straight FUID compare when possible. 698 */ 699 boolean_t 700 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr) 701 { 702 ksid_t *ksid = crgetsid(cr, KSID_GROUP); 703 ksidlist_t *ksidlist = crgetsidlist(cr); 704 uid_t gid; 705 706 if (ksid && ksidlist) { 707 int i; 708 ksid_t *ksid_groups; 709 uint32_t idx = FUID_INDEX(id); 710 uint32_t rid = FUID_RID(id); 711 712 ksid_groups = ksidlist->ksl_sids; 713 714 for (i = 0; i != ksidlist->ksl_nsid; i++) { 715 if (idx == 0) { 716 if (id != IDMAP_WK_CREATOR_GROUP_GID && 717 id == ksid_groups[i].ks_id) { 718 return (B_TRUE); 719 } 720 } else { 721 const char *domain; 722 723 domain = zfs_fuid_find_by_idx(zfsvfs, idx); 724 ASSERT(domain != NULL); 725 726 if (strcmp(domain, 727 IDMAP_WK_CREATOR_SID_AUTHORITY) == 0) 728 return (B_FALSE); 729 730 if ((strcmp(domain, 731 ksid_groups[i].ks_domain->kd_name) == 0) && 732 rid == ksid_groups[i].ks_rid) 733 return (B_TRUE); 734 } 735 } 736 } 737 738 /* 739 * Not found in ksidlist, check posix groups 740 */ 741 gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP); 742 return (groupmember(gid, cr)); 743 } 744 745 void 746 zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 747 { 748 if (zfsvfs->z_fuid_obj == 0) { 749 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 750 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 751 FUID_SIZE_ESTIMATE(zfsvfs)); 752 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 753 } else { 754 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 755 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 756 FUID_SIZE_ESTIMATE(zfsvfs)); 757 } 758 } 759 #endif 760