xref: /titanic_41/usr/src/uts/common/fs/zfs/zfs_fuid.c (revision 489b7c4ab76ae8df137fbfcc2214f7baa52883a0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/sunddi.h>
28 #include <sys/dmu.h>
29 #include <sys/avl.h>
30 #include <sys/zap.h>
31 #include <sys/refcount.h>
32 #include <sys/nvpair.h>
33 #ifdef _KERNEL
34 #include <sys/kidmap.h>
35 #include <sys/sid.h>
36 #include <sys/zfs_vfsops.h>
37 #include <sys/zfs_znode.h>
38 #endif
39 #include <sys/zfs_fuid.h>
40 
41 /*
42  * FUID Domain table(s).
43  *
44  * The FUID table is stored as a packed nvlist of an array
45  * of nvlists which contain an index, domain string and offset
46  *
47  * During file system initialization the nvlist(s) are read and
48  * two AVL trees are created.  One tree is keyed by the index number
49  * and the other by the domain string.  Nodes are never removed from
50  * trees, but new entries may be added.  If a new entry is added then
51  * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
52  * be responsible for calling zfs_fuid_sync() to sync the changes to disk.
53  *
54  */
55 
56 #define	FUID_IDX	"fuid_idx"
57 #define	FUID_DOMAIN	"fuid_domain"
58 #define	FUID_OFFSET	"fuid_offset"
59 #define	FUID_NVP_ARRAY	"fuid_nvlist"
60 
61 typedef struct fuid_domain {
62 	avl_node_t	f_domnode;
63 	avl_node_t	f_idxnode;
64 	ksiddomain_t	*f_ksid;
65 	uint64_t	f_idx;
66 } fuid_domain_t;
67 
68 static char *nulldomain = "";
69 
70 /*
71  * Compare two indexes.
72  */
73 static int
74 idx_compare(const void *arg1, const void *arg2)
75 {
76 	const fuid_domain_t *node1 = arg1;
77 	const fuid_domain_t *node2 = arg2;
78 
79 	if (node1->f_idx < node2->f_idx)
80 		return (-1);
81 	else if (node1->f_idx > node2->f_idx)
82 		return (1);
83 	return (0);
84 }
85 
86 /*
87  * Compare two domain strings.
88  */
89 static int
90 domain_compare(const void *arg1, const void *arg2)
91 {
92 	const fuid_domain_t *node1 = arg1;
93 	const fuid_domain_t *node2 = arg2;
94 	int val;
95 
96 	val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
97 	if (val == 0)
98 		return (0);
99 	return (val > 0 ? 1 : -1);
100 }
101 
102 void
103 zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
104 {
105 	avl_create(idx_tree, idx_compare,
106 	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
107 	avl_create(domain_tree, domain_compare,
108 	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
109 }
110 
111 /*
112  * load initial fuid domain and idx trees.  This function is used by
113  * both the kernel and zdb.
114  */
115 uint64_t
116 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
117     avl_tree_t *domain_tree)
118 {
119 	dmu_buf_t *db;
120 	uint64_t fuid_size;
121 
122 	ASSERT(fuid_obj != 0);
123 	VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
124 	    FTAG, &db));
125 	fuid_size = *(uint64_t *)db->db_data;
126 	dmu_buf_rele(db, FTAG);
127 
128 	if (fuid_size)  {
129 		nvlist_t **fuidnvp;
130 		nvlist_t *nvp = NULL;
131 		uint_t count;
132 		char *packed;
133 		int i;
134 
135 		packed = kmem_alloc(fuid_size, KM_SLEEP);
136 		VERIFY(dmu_read(os, fuid_obj, 0,
137 		    fuid_size, packed, DMU_READ_PREFETCH) == 0);
138 		VERIFY(nvlist_unpack(packed, fuid_size,
139 		    &nvp, 0) == 0);
140 		VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
141 		    &fuidnvp, &count) == 0);
142 
143 		for (i = 0; i != count; i++) {
144 			fuid_domain_t *domnode;
145 			char *domain;
146 			uint64_t idx;
147 
148 			VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
149 			    &domain) == 0);
150 			VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
151 			    &idx) == 0);
152 
153 			domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
154 
155 			domnode->f_idx = idx;
156 			domnode->f_ksid = ksid_lookupdomain(domain);
157 			avl_add(idx_tree, domnode);
158 			avl_add(domain_tree, domnode);
159 		}
160 		nvlist_free(nvp);
161 		kmem_free(packed, fuid_size);
162 	}
163 	return (fuid_size);
164 }
165 
166 void
167 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
168 {
169 	fuid_domain_t *domnode;
170 	void *cookie;
171 
172 	cookie = NULL;
173 	while (domnode = avl_destroy_nodes(domain_tree, &cookie))
174 		ksiddomain_rele(domnode->f_ksid);
175 
176 	avl_destroy(domain_tree);
177 	cookie = NULL;
178 	while (domnode = avl_destroy_nodes(idx_tree, &cookie))
179 		kmem_free(domnode, sizeof (fuid_domain_t));
180 	avl_destroy(idx_tree);
181 }
182 
183 char *
184 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
185 {
186 	fuid_domain_t searchnode, *findnode;
187 	avl_index_t loc;
188 
189 	searchnode.f_idx = idx;
190 
191 	findnode = avl_find(idx_tree, &searchnode, &loc);
192 
193 	return (findnode ? findnode->f_ksid->kd_name : nulldomain);
194 }
195 
196 #ifdef _KERNEL
197 /*
198  * Load the fuid table(s) into memory.
199  */
200 static void
201 zfs_fuid_init(zfsvfs_t *zfsvfs)
202 {
203 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
204 
205 	if (zfsvfs->z_fuid_loaded) {
206 		rw_exit(&zfsvfs->z_fuid_lock);
207 		return;
208 	}
209 
210 	zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
211 
212 	(void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
213 	    ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
214 	if (zfsvfs->z_fuid_obj != 0) {
215 		zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
216 		    zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
217 		    &zfsvfs->z_fuid_domain);
218 	}
219 
220 	zfsvfs->z_fuid_loaded = B_TRUE;
221 	rw_exit(&zfsvfs->z_fuid_lock);
222 }
223 
224 /*
225  * sync out AVL trees to persistent storage.
226  */
227 void
228 zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
229 {
230 	nvlist_t *nvp;
231 	nvlist_t **fuids;
232 	size_t nvsize = 0;
233 	char *packed;
234 	dmu_buf_t *db;
235 	fuid_domain_t *domnode;
236 	int numnodes;
237 	int i;
238 
239 	if (!zfsvfs->z_fuid_dirty) {
240 		return;
241 	}
242 
243 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
244 
245 	/*
246 	 * First see if table needs to be created?
247 	 */
248 	if (zfsvfs->z_fuid_obj == 0) {
249 		zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
250 		    DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
251 		    sizeof (uint64_t), tx);
252 		VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
253 		    ZFS_FUID_TABLES, sizeof (uint64_t), 1,
254 		    &zfsvfs->z_fuid_obj, tx) == 0);
255 	}
256 
257 	VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
258 
259 	numnodes = avl_numnodes(&zfsvfs->z_fuid_idx);
260 	fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
261 	for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++,
262 	    domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) {
263 		VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
264 		VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
265 		    domnode->f_idx) == 0);
266 		VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
267 		VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
268 		    domnode->f_ksid->kd_name) == 0);
269 	}
270 	VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
271 	    fuids, numnodes) == 0);
272 	for (i = 0; i != numnodes; i++)
273 		nvlist_free(fuids[i]);
274 	kmem_free(fuids, numnodes * sizeof (void *));
275 	VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
276 	packed = kmem_alloc(nvsize, KM_SLEEP);
277 	VERIFY(nvlist_pack(nvp, &packed, &nvsize,
278 	    NV_ENCODE_XDR, KM_SLEEP) == 0);
279 	nvlist_free(nvp);
280 	zfsvfs->z_fuid_size = nvsize;
281 	dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
282 	    zfsvfs->z_fuid_size, packed, tx);
283 	kmem_free(packed, zfsvfs->z_fuid_size);
284 	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
285 	    FTAG, &db));
286 	dmu_buf_will_dirty(db, tx);
287 	*(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
288 	dmu_buf_rele(db, FTAG);
289 
290 	zfsvfs->z_fuid_dirty = B_FALSE;
291 	rw_exit(&zfsvfs->z_fuid_lock);
292 }
293 
294 /*
295  * Query domain table for a given domain.
296  *
297  * If domain isn't found and addok is set, it is added to AVL trees and
298  * the zfsvfs->z_fuid_dirty flag will be set to TRUE.  It will then be
299  * necessary for the caller or another thread to detect the dirty table
300  * and sync out the changes.
301  */
302 int
303 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain,
304     char **retdomain, boolean_t addok)
305 {
306 	fuid_domain_t searchnode, *findnode;
307 	avl_index_t loc;
308 	krw_t rw = RW_READER;
309 
310 	/*
311 	 * If the dummy "nobody" domain then return an index of 0
312 	 * to cause the created FUID to be a standard POSIX id
313 	 * for the user nobody.
314 	 */
315 	if (domain[0] == '\0') {
316 		if (retdomain)
317 			*retdomain = nulldomain;
318 		return (0);
319 	}
320 
321 	searchnode.f_ksid = ksid_lookupdomain(domain);
322 	if (retdomain)
323 		*retdomain = searchnode.f_ksid->kd_name;
324 	if (!zfsvfs->z_fuid_loaded)
325 		zfs_fuid_init(zfsvfs);
326 
327 retry:
328 	rw_enter(&zfsvfs->z_fuid_lock, rw);
329 	findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
330 
331 	if (findnode) {
332 		rw_exit(&zfsvfs->z_fuid_lock);
333 		ksiddomain_rele(searchnode.f_ksid);
334 		return (findnode->f_idx);
335 	} else if (addok) {
336 		fuid_domain_t *domnode;
337 		uint64_t retidx;
338 
339 		if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
340 			rw_exit(&zfsvfs->z_fuid_lock);
341 			rw = RW_WRITER;
342 			goto retry;
343 		}
344 
345 		domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
346 		domnode->f_ksid = searchnode.f_ksid;
347 
348 		retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
349 
350 		avl_add(&zfsvfs->z_fuid_domain, domnode);
351 		avl_add(&zfsvfs->z_fuid_idx, domnode);
352 		zfsvfs->z_fuid_dirty = B_TRUE;
353 		rw_exit(&zfsvfs->z_fuid_lock);
354 		return (retidx);
355 	} else {
356 		return (-1);
357 	}
358 }
359 
360 /*
361  * Query domain table by index, returning domain string
362  *
363  * Returns a pointer from an avl node of the domain string.
364  *
365  */
366 const char *
367 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
368 {
369 	char *domain;
370 
371 	if (idx == 0 || !zfsvfs->z_use_fuids)
372 		return (NULL);
373 
374 	if (!zfsvfs->z_fuid_loaded)
375 		zfs_fuid_init(zfsvfs);
376 
377 	rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
378 
379 	if (zfsvfs->z_fuid_obj)
380 		domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
381 	else
382 		domain = nulldomain;
383 	rw_exit(&zfsvfs->z_fuid_lock);
384 
385 	ASSERT(domain);
386 	return (domain);
387 }
388 
389 void
390 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
391 {
392 	*uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_uid,
393 	    cr, ZFS_OWNER);
394 	*gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_gid,
395 	    cr, ZFS_GROUP);
396 }
397 
398 uid_t
399 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
400     cred_t *cr, zfs_fuid_type_t type)
401 {
402 	uint32_t index = FUID_INDEX(fuid);
403 	const char *domain;
404 	uid_t id;
405 
406 	if (index == 0)
407 		return (fuid);
408 
409 	domain = zfs_fuid_find_by_idx(zfsvfs, index);
410 	ASSERT(domain != NULL);
411 
412 	if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
413 		(void) kidmap_getuidbysid(crgetzone(cr), domain,
414 		    FUID_RID(fuid), &id);
415 	} else {
416 		(void) kidmap_getgidbysid(crgetzone(cr), domain,
417 		    FUID_RID(fuid), &id);
418 	}
419 	return (id);
420 }
421 
422 /*
423  * Add a FUID node to the list of fuid's being created for this
424  * ACL
425  *
426  * If ACL has multiple domains, then keep only one copy of each unique
427  * domain.
428  */
429 static void
430 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
431     uint64_t idx, uint64_t id, zfs_fuid_type_t type)
432 {
433 	zfs_fuid_t *fuid;
434 	zfs_fuid_domain_t *fuid_domain;
435 	zfs_fuid_info_t *fuidp;
436 	uint64_t fuididx;
437 	boolean_t found = B_FALSE;
438 
439 	if (*fuidpp == NULL)
440 		*fuidpp = zfs_fuid_info_alloc();
441 
442 	fuidp = *fuidpp;
443 	/*
444 	 * First find fuid domain index in linked list
445 	 *
446 	 * If one isn't found then create an entry.
447 	 */
448 
449 	for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
450 	    fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
451 	    fuid_domain), fuididx++) {
452 		if (idx == fuid_domain->z_domidx) {
453 			found = B_TRUE;
454 			break;
455 		}
456 	}
457 
458 	if (!found) {
459 		fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
460 		fuid_domain->z_domain = domain;
461 		fuid_domain->z_domidx = idx;
462 		list_insert_tail(&fuidp->z_domains, fuid_domain);
463 		fuidp->z_domain_str_sz += strlen(domain) + 1;
464 		fuidp->z_domain_cnt++;
465 	}
466 
467 	if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
468 
469 		/*
470 		 * Now allocate fuid entry and add it on the end of the list
471 		 */
472 
473 		fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
474 		fuid->z_id = id;
475 		fuid->z_domidx = idx;
476 		fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
477 
478 		list_insert_tail(&fuidp->z_fuids, fuid);
479 		fuidp->z_fuid_cnt++;
480 	} else {
481 		if (type == ZFS_OWNER)
482 			fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
483 		else
484 			fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
485 	}
486 }
487 
488 /*
489  * Create a file system FUID, based on information in the users cred
490  */
491 uint64_t
492 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
493     cred_t *cr, zfs_fuid_info_t **fuidp)
494 {
495 	uint64_t	idx;
496 	ksid_t		*ksid;
497 	uint32_t	rid;
498 	char 		*kdomain;
499 	const char	*domain;
500 	uid_t		id;
501 
502 	VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
503 
504 	ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
505 	if (ksid) {
506 		id = ksid_getid(ksid);
507 	} else {
508 		if (type == ZFS_OWNER)
509 			id = crgetuid(cr);
510 		else
511 			id = crgetgid(cr);
512 	}
513 
514 	if (!zfsvfs->z_use_fuids || (!IS_EPHEMERAL(id)))
515 		return ((uint64_t)id);
516 
517 	rid = ksid_getrid(ksid);
518 	domain = ksid_getdomain(ksid);
519 
520 	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
521 
522 	zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
523 
524 	return (FUID_ENCODE(idx, rid));
525 }
526 
527 /*
528  * Create a file system FUID for an ACL ace
529  * or a chown/chgrp of the file.
530  * This is similar to zfs_fuid_create_cred, except that
531  * we can't find the domain + rid information in the
532  * cred.  Instead we have to query Winchester for the
533  * domain and rid.
534  *
535  * During replay operations the domain+rid information is
536  * found in the zfs_fuid_info_t that the replay code has
537  * attached to the zfsvfs of the file system.
538  */
539 uint64_t
540 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
541     zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
542 {
543 	const char *domain;
544 	char *kdomain;
545 	uint32_t fuid_idx = FUID_INDEX(id);
546 	uint32_t rid;
547 	idmap_stat status;
548 	uint64_t idx;
549 	zfs_fuid_t *zfuid = NULL;
550 	zfs_fuid_info_t *fuidp;
551 
552 	/*
553 	 * If POSIX ID, or entry is already a FUID then
554 	 * just return the id
555 	 *
556 	 * We may also be handed an already FUID'ized id via
557 	 * chmod.
558 	 */
559 
560 	if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
561 		return (id);
562 
563 	if (zfsvfs->z_replay) {
564 		fuidp = zfsvfs->z_fuid_replay;
565 
566 		/*
567 		 * If we are passed an ephemeral id, but no
568 		 * fuid_info was logged then return NOBODY.
569 		 * This is most likely a result of idmap service
570 		 * not being available.
571 		 */
572 		if (fuidp == NULL)
573 			return (UID_NOBODY);
574 
575 		switch (type) {
576 		case ZFS_ACE_USER:
577 		case ZFS_ACE_GROUP:
578 			zfuid = list_head(&fuidp->z_fuids);
579 			rid = FUID_RID(zfuid->z_logfuid);
580 			idx = FUID_INDEX(zfuid->z_logfuid);
581 			break;
582 		case ZFS_OWNER:
583 			rid = FUID_RID(fuidp->z_fuid_owner);
584 			idx = FUID_INDEX(fuidp->z_fuid_owner);
585 			break;
586 		case ZFS_GROUP:
587 			rid = FUID_RID(fuidp->z_fuid_group);
588 			idx = FUID_INDEX(fuidp->z_fuid_group);
589 			break;
590 		};
591 		domain = fuidp->z_domain_table[idx -1];
592 	} else {
593 		if (type == ZFS_OWNER || type == ZFS_ACE_USER)
594 			status = kidmap_getsidbyuid(crgetzone(cr), id,
595 			    &domain, &rid);
596 		else
597 			status = kidmap_getsidbygid(crgetzone(cr), id,
598 			    &domain, &rid);
599 
600 		if (status != 0) {
601 			/*
602 			 * When returning nobody we will need to
603 			 * make a dummy fuid table entry for logging
604 			 * purposes.
605 			 */
606 			rid = UID_NOBODY;
607 			domain = nulldomain;
608 		}
609 	}
610 
611 	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
612 
613 	if (!zfsvfs->z_replay)
614 		zfs_fuid_node_add(fuidpp, kdomain,
615 		    rid, idx, id, type);
616 	else if (zfuid != NULL) {
617 		list_remove(&fuidp->z_fuids, zfuid);
618 		kmem_free(zfuid, sizeof (zfs_fuid_t));
619 	}
620 	return (FUID_ENCODE(idx, rid));
621 }
622 
623 void
624 zfs_fuid_destroy(zfsvfs_t *zfsvfs)
625 {
626 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
627 	if (!zfsvfs->z_fuid_loaded) {
628 		rw_exit(&zfsvfs->z_fuid_lock);
629 		return;
630 	}
631 	zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
632 	rw_exit(&zfsvfs->z_fuid_lock);
633 }
634 
635 /*
636  * Allocate zfs_fuid_info for tracking FUIDs created during
637  * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
638  */
639 zfs_fuid_info_t *
640 zfs_fuid_info_alloc(void)
641 {
642 	zfs_fuid_info_t *fuidp;
643 
644 	fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
645 	list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
646 	    offsetof(zfs_fuid_domain_t, z_next));
647 	list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
648 	    offsetof(zfs_fuid_t, z_next));
649 	return (fuidp);
650 }
651 
652 /*
653  * Release all memory associated with zfs_fuid_info_t
654  */
655 void
656 zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
657 {
658 	zfs_fuid_t *zfuid;
659 	zfs_fuid_domain_t *zdomain;
660 
661 	while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
662 		list_remove(&fuidp->z_fuids, zfuid);
663 		kmem_free(zfuid, sizeof (zfs_fuid_t));
664 	}
665 
666 	if (fuidp->z_domain_table != NULL)
667 		kmem_free(fuidp->z_domain_table,
668 		    (sizeof (char **)) * fuidp->z_domain_cnt);
669 
670 	while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
671 		list_remove(&fuidp->z_domains, zdomain);
672 		kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
673 	}
674 
675 	kmem_free(fuidp, sizeof (zfs_fuid_info_t));
676 }
677 
678 /*
679  * Check to see if id is a groupmember.  If cred
680  * has ksid info then sidlist is checked first
681  * and if still not found then POSIX groups are checked
682  *
683  * Will use a straight FUID compare when possible.
684  */
685 boolean_t
686 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
687 {
688 	ksid_t		*ksid = crgetsid(cr, KSID_GROUP);
689 	ksidlist_t	*ksidlist = crgetsidlist(cr);
690 	uid_t		gid;
691 
692 	if (ksid && ksidlist) {
693 		int 		i;
694 		ksid_t		*ksid_groups;
695 		uint32_t	idx = FUID_INDEX(id);
696 		uint32_t	rid = FUID_RID(id);
697 
698 		ksid_groups = ksidlist->ksl_sids;
699 
700 		for (i = 0; i != ksidlist->ksl_nsid; i++) {
701 			if (idx == 0) {
702 				if (id != IDMAP_WK_CREATOR_GROUP_GID &&
703 				    id == ksid_groups[i].ks_id) {
704 					return (B_TRUE);
705 				}
706 			} else {
707 				const char *domain;
708 
709 				domain = zfs_fuid_find_by_idx(zfsvfs, idx);
710 				ASSERT(domain != NULL);
711 
712 				if (strcmp(domain,
713 				    IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
714 					return (B_FALSE);
715 
716 				if ((strcmp(domain,
717 				    ksid_groups[i].ks_domain->kd_name) == 0) &&
718 				    rid == ksid_groups[i].ks_rid)
719 					return (B_TRUE);
720 			}
721 		}
722 	}
723 
724 	/*
725 	 * Not found in ksidlist, check posix groups
726 	 */
727 	gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
728 	return (groupmember(gid, cr));
729 }
730 
731 void
732 zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
733 {
734 	if (zfsvfs->z_fuid_obj == 0) {
735 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
736 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
737 		    FUID_SIZE_ESTIMATE(zfsvfs));
738 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
739 	} else {
740 		dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
741 		dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
742 		    FUID_SIZE_ESTIMATE(zfsvfs));
743 	}
744 }
745 #endif
746