1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/sunddi.h> 28 #include <sys/dmu.h> 29 #include <sys/avl.h> 30 #include <sys/zap.h> 31 #include <sys/refcount.h> 32 #include <sys/nvpair.h> 33 #ifdef _KERNEL 34 #include <sys/kidmap.h> 35 #include <sys/sid.h> 36 #include <sys/zfs_vfsops.h> 37 #include <sys/zfs_znode.h> 38 #endif 39 #include <sys/zfs_fuid.h> 40 41 /* 42 * FUID Domain table(s). 43 * 44 * The FUID table is stored as a packed nvlist of an array 45 * of nvlists which contain an index, domain string and offset 46 * 47 * During file system initialization the nvlist(s) are read and 48 * two AVL trees are created. One tree is keyed by the index number 49 * and the other by the domain string. Nodes are never removed from 50 * trees, but new entries may be added. If a new entry is added then the 51 * on-disk packed nvlist will also be updated. 52 */ 53 54 #define FUID_IDX "fuid_idx" 55 #define FUID_DOMAIN "fuid_domain" 56 #define FUID_OFFSET "fuid_offset" 57 #define FUID_NVP_ARRAY "fuid_nvlist" 58 59 typedef struct fuid_domain { 60 avl_node_t f_domnode; 61 avl_node_t f_idxnode; 62 ksiddomain_t *f_ksid; 63 uint64_t f_idx; 64 } fuid_domain_t; 65 66 static char *nulldomain = ""; 67 68 /* 69 * Compare two indexes. 70 */ 71 static int 72 idx_compare(const void *arg1, const void *arg2) 73 { 74 const fuid_domain_t *node1 = arg1; 75 const fuid_domain_t *node2 = arg2; 76 77 if (node1->f_idx < node2->f_idx) 78 return (-1); 79 else if (node1->f_idx > node2->f_idx) 80 return (1); 81 return (0); 82 } 83 84 /* 85 * Compare two domain strings. 86 */ 87 static int 88 domain_compare(const void *arg1, const void *arg2) 89 { 90 const fuid_domain_t *node1 = arg1; 91 const fuid_domain_t *node2 = arg2; 92 int val; 93 94 val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name); 95 if (val == 0) 96 return (0); 97 return (val > 0 ? 1 : -1); 98 } 99 100 /* 101 * load initial fuid domain and idx trees. This function is used by 102 * both the kernel and zdb. 103 */ 104 uint64_t 105 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree, 106 avl_tree_t *domain_tree) 107 { 108 dmu_buf_t *db; 109 uint64_t fuid_size; 110 111 avl_create(idx_tree, idx_compare, 112 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode)); 113 avl_create(domain_tree, domain_compare, 114 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode)); 115 116 VERIFY(0 == dmu_bonus_hold(os, fuid_obj, FTAG, &db)); 117 fuid_size = *(uint64_t *)db->db_data; 118 dmu_buf_rele(db, FTAG); 119 120 if (fuid_size) { 121 nvlist_t **fuidnvp; 122 nvlist_t *nvp = NULL; 123 uint_t count; 124 char *packed; 125 int i; 126 127 packed = kmem_alloc(fuid_size, KM_SLEEP); 128 VERIFY(dmu_read(os, fuid_obj, 0, fuid_size, packed) == 0); 129 VERIFY(nvlist_unpack(packed, fuid_size, 130 &nvp, 0) == 0); 131 VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY, 132 &fuidnvp, &count) == 0); 133 134 for (i = 0; i != count; i++) { 135 fuid_domain_t *domnode; 136 char *domain; 137 uint64_t idx; 138 139 VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN, 140 &domain) == 0); 141 VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX, 142 &idx) == 0); 143 144 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 145 146 domnode->f_idx = idx; 147 domnode->f_ksid = ksid_lookupdomain(domain); 148 avl_add(idx_tree, domnode); 149 avl_add(domain_tree, domnode); 150 } 151 nvlist_free(nvp); 152 kmem_free(packed, fuid_size); 153 } 154 return (fuid_size); 155 } 156 157 void 158 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree) 159 { 160 fuid_domain_t *domnode; 161 void *cookie; 162 163 cookie = NULL; 164 while (domnode = avl_destroy_nodes(domain_tree, &cookie)) 165 ksiddomain_rele(domnode->f_ksid); 166 167 avl_destroy(domain_tree); 168 cookie = NULL; 169 while (domnode = avl_destroy_nodes(idx_tree, &cookie)) 170 kmem_free(domnode, sizeof (fuid_domain_t)); 171 avl_destroy(idx_tree); 172 } 173 174 char * 175 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx) 176 { 177 fuid_domain_t searchnode, *findnode; 178 avl_index_t loc; 179 180 searchnode.f_idx = idx; 181 182 findnode = avl_find(idx_tree, &searchnode, &loc); 183 184 return (findnode ? findnode->f_ksid->kd_name : nulldomain); 185 } 186 187 #ifdef _KERNEL 188 /* 189 * Load the fuid table(s) into memory. 190 */ 191 static void 192 zfs_fuid_init(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 193 { 194 int error = 0; 195 196 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 197 198 if (zfsvfs->z_fuid_loaded) { 199 rw_exit(&zfsvfs->z_fuid_lock); 200 return; 201 } 202 203 if (zfsvfs->z_fuid_obj == 0) { 204 205 /* first make sure we need to allocate object */ 206 207 error = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 208 ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj); 209 if (error == ENOENT && tx != NULL) { 210 zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os, 211 DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE, 212 sizeof (uint64_t), tx); 213 VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 214 ZFS_FUID_TABLES, sizeof (uint64_t), 1, 215 &zfsvfs->z_fuid_obj, tx) == 0); 216 } 217 } 218 219 if (zfsvfs->z_fuid_obj != 0) { 220 zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os, 221 zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx, 222 &zfsvfs->z_fuid_domain); 223 zfsvfs->z_fuid_loaded = B_TRUE; 224 } 225 226 rw_exit(&zfsvfs->z_fuid_lock); 227 } 228 229 /* 230 * Query domain table for a given domain. 231 * 232 * If domain isn't found it is added to AVL trees and 233 * the results are pushed out to disk. 234 */ 235 int 236 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain, char **retdomain, 237 dmu_tx_t *tx) 238 { 239 fuid_domain_t searchnode, *findnode; 240 avl_index_t loc; 241 krw_t rw = RW_READER; 242 243 /* 244 * If the dummy "nobody" domain then return an index of 0 245 * to cause the created FUID to be a standard POSIX id 246 * for the user nobody. 247 */ 248 if (domain[0] == '\0') { 249 *retdomain = nulldomain; 250 return (0); 251 } 252 253 searchnode.f_ksid = ksid_lookupdomain(domain); 254 if (retdomain) { 255 *retdomain = searchnode.f_ksid->kd_name; 256 } 257 if (!zfsvfs->z_fuid_loaded) 258 zfs_fuid_init(zfsvfs, tx); 259 260 retry: 261 rw_enter(&zfsvfs->z_fuid_lock, rw); 262 findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc); 263 264 if (findnode) { 265 rw_exit(&zfsvfs->z_fuid_lock); 266 ksiddomain_rele(searchnode.f_ksid); 267 return (findnode->f_idx); 268 } else { 269 fuid_domain_t *domnode; 270 nvlist_t *nvp; 271 nvlist_t **fuids; 272 uint64_t retidx; 273 size_t nvsize = 0; 274 char *packed; 275 dmu_buf_t *db; 276 int i = 0; 277 278 if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) { 279 rw_exit(&zfsvfs->z_fuid_lock); 280 rw = RW_WRITER; 281 goto retry; 282 } 283 284 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 285 domnode->f_ksid = searchnode.f_ksid; 286 287 retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1; 288 289 avl_add(&zfsvfs->z_fuid_domain, domnode); 290 avl_add(&zfsvfs->z_fuid_idx, domnode); 291 /* 292 * Now resync the on-disk nvlist. 293 */ 294 VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 295 296 domnode = avl_first(&zfsvfs->z_fuid_domain); 297 fuids = kmem_alloc(retidx * sizeof (void *), KM_SLEEP); 298 while (domnode) { 299 VERIFY(nvlist_alloc(&fuids[i], 300 NV_UNIQUE_NAME, KM_SLEEP) == 0); 301 VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX, 302 domnode->f_idx) == 0); 303 VERIFY(nvlist_add_uint64(fuids[i], 304 FUID_OFFSET, 0) == 0); 305 VERIFY(nvlist_add_string(fuids[i++], FUID_DOMAIN, 306 domnode->f_ksid->kd_name) == 0); 307 domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode); 308 } 309 VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY, 310 fuids, retidx) == 0); 311 for (i = 0; i != retidx; i++) 312 nvlist_free(fuids[i]); 313 kmem_free(fuids, retidx * sizeof (void *)); 314 VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0); 315 packed = kmem_alloc(nvsize, KM_SLEEP); 316 VERIFY(nvlist_pack(nvp, &packed, &nvsize, 317 NV_ENCODE_XDR, KM_SLEEP) == 0); 318 nvlist_free(nvp); 319 zfsvfs->z_fuid_size = nvsize; 320 dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0, 321 zfsvfs->z_fuid_size, packed, tx); 322 kmem_free(packed, zfsvfs->z_fuid_size); 323 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj, 324 FTAG, &db)); 325 dmu_buf_will_dirty(db, tx); 326 *(uint64_t *)db->db_data = zfsvfs->z_fuid_size; 327 dmu_buf_rele(db, FTAG); 328 329 rw_exit(&zfsvfs->z_fuid_lock); 330 return (retidx); 331 } 332 } 333 334 /* 335 * Query domain table by index, returning domain string 336 * 337 * Returns a pointer from an avl node of the domain string. 338 * 339 */ 340 static char * 341 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx) 342 { 343 char *domain; 344 345 if (idx == 0 || !zfsvfs->z_use_fuids) 346 return (NULL); 347 348 if (!zfsvfs->z_fuid_loaded) 349 zfs_fuid_init(zfsvfs, NULL); 350 351 rw_enter(&zfsvfs->z_fuid_lock, RW_READER); 352 353 if (zfsvfs->z_fuid_obj) 354 domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx); 355 else 356 domain = nulldomain; 357 rw_exit(&zfsvfs->z_fuid_lock); 358 359 ASSERT(domain); 360 return (domain); 361 } 362 363 void 364 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp) 365 { 366 *uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_uid, 367 cr, ZFS_OWNER); 368 *gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_gid, 369 cr, ZFS_GROUP); 370 } 371 372 uid_t 373 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid, 374 cred_t *cr, zfs_fuid_type_t type) 375 { 376 uint32_t index = FUID_INDEX(fuid); 377 char *domain; 378 uid_t id; 379 380 if (index == 0) 381 return (fuid); 382 383 domain = zfs_fuid_find_by_idx(zfsvfs, index); 384 ASSERT(domain != NULL); 385 386 if (type == ZFS_OWNER || type == ZFS_ACE_USER) { 387 (void) kidmap_getuidbysid(crgetzone(cr), domain, 388 FUID_RID(fuid), &id); 389 } else { 390 (void) kidmap_getgidbysid(crgetzone(cr), domain, 391 FUID_RID(fuid), &id); 392 } 393 return (id); 394 } 395 396 /* 397 * Add a FUID node to the list of fuid's being created for this 398 * ACL 399 * 400 * If ACL has multiple domains, then keep only one copy of each unique 401 * domain. 402 */ 403 static void 404 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid, 405 uint64_t idx, uint64_t id, zfs_fuid_type_t type) 406 { 407 zfs_fuid_t *fuid; 408 zfs_fuid_domain_t *fuid_domain; 409 zfs_fuid_info_t *fuidp; 410 uint64_t fuididx; 411 boolean_t found = B_FALSE; 412 413 if (*fuidpp == NULL) 414 *fuidpp = zfs_fuid_info_alloc(); 415 416 fuidp = *fuidpp; 417 /* 418 * First find fuid domain index in linked list 419 * 420 * If one isn't found then create an entry. 421 */ 422 423 for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains); 424 fuid_domain; fuid_domain = list_next(&fuidp->z_domains, 425 fuid_domain), fuididx++) { 426 if (idx == fuid_domain->z_domidx) { 427 found = B_TRUE; 428 break; 429 } 430 } 431 432 if (!found) { 433 fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP); 434 fuid_domain->z_domain = domain; 435 fuid_domain->z_domidx = idx; 436 list_insert_tail(&fuidp->z_domains, fuid_domain); 437 fuidp->z_domain_str_sz += strlen(domain) + 1; 438 fuidp->z_domain_cnt++; 439 } 440 441 if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) { 442 /* 443 * Now allocate fuid entry and add it on the end of the list 444 */ 445 446 fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP); 447 fuid->z_id = id; 448 fuid->z_domidx = idx; 449 fuid->z_logfuid = FUID_ENCODE(fuididx, rid); 450 451 list_insert_tail(&fuidp->z_fuids, fuid); 452 fuidp->z_fuid_cnt++; 453 } else { 454 if (type == ZFS_OWNER) 455 fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid); 456 else 457 fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid); 458 } 459 } 460 461 /* 462 * Create a file system FUID, based on information in the users cred 463 */ 464 uint64_t 465 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type, 466 dmu_tx_t *tx, cred_t *cr, zfs_fuid_info_t **fuidp) 467 { 468 uint64_t idx; 469 ksid_t *ksid; 470 uint32_t rid; 471 char *kdomain; 472 const char *domain; 473 uid_t id; 474 475 VERIFY(type == ZFS_OWNER || type == ZFS_GROUP); 476 477 if (type == ZFS_OWNER) 478 id = crgetuid(cr); 479 else 480 id = crgetgid(cr); 481 482 if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id)) 483 return ((uint64_t)id); 484 485 ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP); 486 487 VERIFY(ksid != NULL); 488 rid = ksid_getrid(ksid); 489 domain = ksid_getdomain(ksid); 490 491 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx); 492 493 zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type); 494 495 return (FUID_ENCODE(idx, rid)); 496 } 497 498 /* 499 * Create a file system FUID for an ACL ace 500 * or a chown/chgrp of the file. 501 * This is similar to zfs_fuid_create_cred, except that 502 * we can't find the domain + rid information in the 503 * cred. Instead we have to query Winchester for the 504 * domain and rid. 505 * 506 * During replay operations the domain+rid information is 507 * found in the zfs_fuid_info_t that the replay code has 508 * attached to the zfsvfs of the file system. 509 */ 510 uint64_t 511 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr, 512 zfs_fuid_type_t type, dmu_tx_t *tx, zfs_fuid_info_t **fuidpp) 513 { 514 const char *domain; 515 char *kdomain; 516 uint32_t fuid_idx = FUID_INDEX(id); 517 uint32_t rid; 518 idmap_stat status; 519 uint64_t idx; 520 boolean_t is_replay = (zfsvfs->z_assign >= TXG_INITIAL); 521 zfs_fuid_t *zfuid = NULL; 522 zfs_fuid_info_t *fuidp; 523 524 /* 525 * If POSIX ID, or entry is already a FUID then 526 * just return the id 527 * 528 * We may also be handed an already FUID'ized id via 529 * chmod. 530 */ 531 532 if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0) 533 return (id); 534 535 if (is_replay) { 536 fuidp = zfsvfs->z_fuid_replay; 537 538 /* 539 * If we are passed an ephemeral id, but no 540 * fuid_info was logged then return NOBODY. 541 * This is most likely a result of idmap service 542 * not being available. 543 */ 544 if (fuidp == NULL) 545 return (UID_NOBODY); 546 547 switch (type) { 548 case ZFS_ACE_USER: 549 case ZFS_ACE_GROUP: 550 zfuid = list_head(&fuidp->z_fuids); 551 rid = FUID_RID(zfuid->z_logfuid); 552 idx = FUID_INDEX(zfuid->z_logfuid); 553 break; 554 case ZFS_OWNER: 555 rid = FUID_RID(fuidp->z_fuid_owner); 556 idx = FUID_INDEX(fuidp->z_fuid_owner); 557 break; 558 case ZFS_GROUP: 559 rid = FUID_RID(fuidp->z_fuid_group); 560 idx = FUID_INDEX(fuidp->z_fuid_group); 561 break; 562 }; 563 domain = fuidp->z_domain_table[idx -1]; 564 } else { 565 if (type == ZFS_OWNER || type == ZFS_ACE_USER) 566 status = kidmap_getsidbyuid(crgetzone(cr), id, 567 &domain, &rid); 568 else 569 status = kidmap_getsidbygid(crgetzone(cr), id, 570 &domain, &rid); 571 572 if (status != 0) { 573 /* 574 * When returning nobody we will need to 575 * make a dummy fuid table entry for logging 576 * purposes. 577 */ 578 rid = UID_NOBODY; 579 domain = nulldomain; 580 } 581 } 582 583 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx); 584 585 if (!is_replay) 586 zfs_fuid_node_add(fuidpp, kdomain, rid, idx, id, type); 587 else if (zfuid != NULL) { 588 list_remove(&fuidp->z_fuids, zfuid); 589 kmem_free(zfuid, sizeof (zfs_fuid_t)); 590 } 591 return (FUID_ENCODE(idx, rid)); 592 } 593 594 void 595 zfs_fuid_destroy(zfsvfs_t *zfsvfs) 596 { 597 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 598 if (!zfsvfs->z_fuid_loaded) { 599 rw_exit(&zfsvfs->z_fuid_lock); 600 return; 601 } 602 zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain); 603 rw_exit(&zfsvfs->z_fuid_lock); 604 } 605 606 /* 607 * Allocate zfs_fuid_info for tracking FUIDs created during 608 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR() 609 */ 610 zfs_fuid_info_t * 611 zfs_fuid_info_alloc(void) 612 { 613 zfs_fuid_info_t *fuidp; 614 615 fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP); 616 list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t), 617 offsetof(zfs_fuid_domain_t, z_next)); 618 list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t), 619 offsetof(zfs_fuid_t, z_next)); 620 return (fuidp); 621 } 622 623 /* 624 * Release all memory associated with zfs_fuid_info_t 625 */ 626 void 627 zfs_fuid_info_free(zfs_fuid_info_t *fuidp) 628 { 629 zfs_fuid_t *zfuid; 630 zfs_fuid_domain_t *zdomain; 631 632 while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) { 633 list_remove(&fuidp->z_fuids, zfuid); 634 kmem_free(zfuid, sizeof (zfs_fuid_t)); 635 } 636 637 if (fuidp->z_domain_table != NULL) 638 kmem_free(fuidp->z_domain_table, 639 (sizeof (char **)) * fuidp->z_domain_cnt); 640 641 while ((zdomain = list_head(&fuidp->z_domains)) != NULL) { 642 list_remove(&fuidp->z_domains, zdomain); 643 kmem_free(zdomain, sizeof (zfs_fuid_domain_t)); 644 } 645 646 kmem_free(fuidp, sizeof (zfs_fuid_info_t)); 647 } 648 649 /* 650 * Check to see if id is a groupmember. If cred 651 * has ksid info then sidlist is checked first 652 * and if still not found then POSIX groups are checked 653 * 654 * Will use a straight FUID compare when possible. 655 */ 656 boolean_t 657 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr) 658 { 659 ksid_t *ksid = crgetsid(cr, KSID_GROUP); 660 uid_t gid; 661 662 if (ksid) { 663 int i; 664 ksid_t *ksid_groups; 665 ksidlist_t *ksidlist = crgetsidlist(cr); 666 uint32_t idx = FUID_INDEX(id); 667 uint32_t rid = FUID_RID(id); 668 669 ASSERT(ksidlist); 670 ksid_groups = ksidlist->ksl_sids; 671 672 for (i = 0; i != ksidlist->ksl_nsid; i++) { 673 if (idx == 0) { 674 if (id != IDMAP_WK_CREATOR_GROUP_GID && 675 id == ksid_groups[i].ks_id) { 676 return (B_TRUE); 677 } 678 } else { 679 char *domain; 680 681 domain = zfs_fuid_find_by_idx(zfsvfs, idx); 682 ASSERT(domain != NULL); 683 684 if (strcmp(domain, 685 IDMAP_WK_CREATOR_SID_AUTHORITY) == 0) 686 return (B_FALSE); 687 688 if ((strcmp(domain, 689 ksid_groups[i].ks_domain->kd_name) == 0) && 690 rid == ksid_groups[i].ks_rid) 691 return (B_TRUE); 692 } 693 } 694 } 695 696 /* 697 * Not found in ksidlist, check posix groups 698 */ 699 gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP); 700 return (groupmember(gid, cr)); 701 } 702 #endif 703