1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/spa.h> 29 #include <sys/spa_impl.h> 30 #include <sys/vdev.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/zio.h> 33 34 #include <sys/fm/fs/zfs.h> 35 #include <sys/fm/protocol.h> 36 #include <sys/fm/util.h> 37 #include <sys/sysevent.h> 38 39 /* 40 * This general routine is responsible for generating all the different ZFS 41 * ereports. The payload is dependent on the class, and which arguments are 42 * supplied to the function: 43 * 44 * EREPORT POOL VDEV IO 45 * block X X X 46 * data X X 47 * device X X 48 * pool X 49 * 50 * If we are in a loading state, all errors are chained together by the same 51 * SPA-wide ENA. 52 * 53 * For isolated I/O requests, we get the ENA from the zio_t. The propagation 54 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want 55 * to chain together all ereports associated with a logical piece of data. For 56 * read I/Os, there are basically three 'types' of I/O, which form a roughly 57 * layered diagram: 58 * 59 * +---------------+ 60 * | Aggregate I/O | No associated logical data or device 61 * +---------------+ 62 * | 63 * V 64 * +---------------+ Reads associated with a piece of logical data. 65 * | Read I/O | This includes reads on behalf of RAID-Z, 66 * +---------------+ mirrors, gang blocks, retries, etc. 67 * | 68 * V 69 * +---------------+ Reads associated with a particular device, but 70 * | Physical I/O | no logical data. Issued as part of vdev caching 71 * +---------------+ and I/O aggregation. 72 * 73 * Note that 'physical I/O' here is not the same terminology as used in the rest 74 * of ZIO. Typically, 'physical I/O' simply means that there is no attached 75 * blockpointer. But I/O with no associated block pointer can still be related 76 * to a logical piece of data (i.e. RAID-Z requests). 77 * 78 * Purely physical I/O always have unique ENAs. They are not related to a 79 * particular piece of logical data, and therefore cannot be chained together. 80 * We still generate an ereport, but the DE doesn't correlate it with any 81 * logical piece of data. When such an I/O fails, the delegated I/O requests 82 * will issue a retry, which will trigger the 'real' ereport with the correct 83 * ENA. 84 * 85 * We keep track of the ENA for a ZIO chain through the 'io_logical' member. 86 * When a new logical I/O is issued, we set this to point to itself. Child I/Os 87 * then inherit this pointer, so that when it is first set subsequent failures 88 * will use the same ENA. If a physical I/O is issued (by passing the 89 * ZIO_FLAG_NOBOOKMARK flag), then this pointer is reset, guaranteeing that a 90 * unique ENA will be generated. For an aggregate I/O, this pointer is set to 91 * NULL, and no ereport will be generated (since it doesn't actually correspond 92 * to any particular device or piece of data). 93 */ 94 void 95 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio, 96 uint64_t stateoroffset, uint64_t size) 97 { 98 #ifdef _KERNEL 99 nvlist_t *ereport, *detector; 100 uint64_t ena; 101 char class[64]; 102 103 /* 104 * If we are doing a spa_tryimport(), ignore errors. 105 */ 106 if (spa->spa_load_state == SPA_LOAD_TRYIMPORT) 107 return; 108 109 /* 110 * If we are in the middle of opening a pool, and the previous attempt 111 * failed, don't bother logging any new ereports - we're just going to 112 * get the same diagnosis anyway. 113 */ 114 if (spa->spa_load_state != SPA_LOAD_NONE && 115 spa->spa_last_open_failed) 116 return; 117 118 /* 119 * Ignore any errors from I/Os that we are going to retry anyway - we 120 * only generate errors from the final failure. Checksum errors are 121 * generated after the pipeline stage responsible for retrying the I/O 122 * (VDEV_IO_ASSESS), so this only applies to standard I/O errors. 123 */ 124 if (zio && zio_should_retry(zio) && zio->io_error != ECKSUM) 125 return; 126 127 /* 128 * If this is not a read or write zio, ignore the error. This can occur 129 * if the DKIOCFLUSHWRITECACHE ioctl fails. 130 */ 131 if (zio && zio->io_type != ZIO_TYPE_READ && 132 zio->io_type != ZIO_TYPE_WRITE) 133 return; 134 135 if ((ereport = fm_nvlist_create(NULL)) == NULL) 136 return; 137 138 if ((detector = fm_nvlist_create(NULL)) == NULL) { 139 fm_nvlist_destroy(ereport, FM_NVA_FREE); 140 return; 141 } 142 143 /* 144 * Serialize ereport generation 145 */ 146 mutex_enter(&spa->spa_errlist_lock); 147 148 /* 149 * Determine the ENA to use for this event. If we are in a loading 150 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use 151 * a root zio-wide ENA. Otherwise, simply use a unique ENA. 152 */ 153 if (spa->spa_load_state != SPA_LOAD_NONE) { 154 if (spa->spa_ena == 0) 155 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1); 156 ena = spa->spa_ena; 157 } else if (zio != NULL && zio->io_logical != NULL) { 158 if (zio->io_logical->io_ena == 0) 159 zio->io_logical->io_ena = 160 fm_ena_generate(0, FM_ENA_FMT1); 161 ena = zio->io_logical->io_ena; 162 } else { 163 ena = fm_ena_generate(0, FM_ENA_FMT1); 164 } 165 166 /* 167 * Construct the full class, detector, and other standard FMA fields. 168 */ 169 (void) snprintf(class, sizeof (class), "%s.%s", 170 ZFS_ERROR_CLASS, subclass); 171 172 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa), 173 vd != NULL ? vd->vdev_guid : 0); 174 175 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL); 176 177 /* 178 * Construct the per-ereport payload, depending on which parameters are 179 * passed in. 180 */ 181 182 /* 183 * Generic payload members common to all ereports. 184 * 185 * The direct reference to spa_name is used rather than spa_name() 186 * because of the asynchronous nature of the zio pipeline. spa_name() 187 * asserts that the config lock is held in some form. This is always 188 * the case in I/O context, but because the check for RW_WRITER compares 189 * against 'curthread', we may be in an asynchronous context and blow 190 * this assert. Rather than loosen this assert, we acknowledge that all 191 * contexts in which this function is called (pool open, I/O) are safe, 192 * and dereference the name directly. 193 */ 194 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL, 195 DATA_TYPE_STRING, spa->spa_name, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, 196 DATA_TYPE_UINT64, spa_guid(spa), 197 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32, 198 spa->spa_load_state, NULL); 199 200 if (vd != NULL) { 201 vdev_t *pvd = vd->vdev_parent; 202 203 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 204 DATA_TYPE_UINT64, vd->vdev_guid, 205 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 206 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL); 207 if (vd->vdev_path) 208 fm_payload_set(ereport, 209 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, 210 DATA_TYPE_STRING, vd->vdev_path, NULL); 211 if (vd->vdev_devid) 212 fm_payload_set(ereport, 213 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, 214 DATA_TYPE_STRING, vd->vdev_devid, NULL); 215 216 if (pvd != NULL) { 217 fm_payload_set(ereport, 218 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID, 219 DATA_TYPE_UINT64, pvd->vdev_guid, 220 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE, 221 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type, 222 NULL); 223 if (pvd->vdev_path) 224 fm_payload_set(ereport, 225 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH, 226 DATA_TYPE_STRING, pvd->vdev_path, NULL); 227 if (pvd->vdev_devid) 228 fm_payload_set(ereport, 229 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID, 230 DATA_TYPE_STRING, pvd->vdev_devid, NULL); 231 } 232 } 233 234 if (zio != NULL) { 235 /* 236 * Payload common to all I/Os. 237 */ 238 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR, 239 DATA_TYPE_INT32, zio->io_error, NULL); 240 241 /* 242 * If the 'size' parameter is non-zero, it indicates this is a 243 * RAID-Z or other I/O where the physical offset and length are 244 * provided for us, instead of within the zio_t. 245 */ 246 if (vd != NULL) { 247 if (size) 248 fm_payload_set(ereport, 249 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 250 DATA_TYPE_UINT64, stateoroffset, 251 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 252 DATA_TYPE_UINT64, size, NULL); 253 else 254 fm_payload_set(ereport, 255 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 256 DATA_TYPE_UINT64, zio->io_offset, 257 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 258 DATA_TYPE_UINT64, zio->io_size, NULL); 259 } 260 261 /* 262 * Payload for I/Os with corresponding logical information. 263 */ 264 if (zio->io_logical != NULL) 265 fm_payload_set(ereport, 266 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT, 267 DATA_TYPE_UINT64, 268 zio->io_logical->io_bookmark.zb_object, 269 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL, 270 DATA_TYPE_INT64, 271 zio->io_logical->io_bookmark.zb_level, 272 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID, 273 DATA_TYPE_UINT64, 274 zio->io_logical->io_bookmark.zb_blkid, NULL); 275 } else if (vd != NULL) { 276 /* 277 * If we have a vdev but no zio, this is a device fault, and the 278 * 'stateoroffset' parameter indicates the previous state of the 279 * vdev. 280 */ 281 fm_payload_set(ereport, 282 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE, 283 DATA_TYPE_UINT64, stateoroffset, NULL); 284 } 285 mutex_exit(&spa->spa_errlist_lock); 286 287 fm_ereport_post(ereport, EVCH_SLEEP); 288 289 fm_nvlist_destroy(ereport, FM_NVA_FREE); 290 fm_nvlist_destroy(detector, FM_NVA_FREE); 291 #endif 292 } 293 294 static void 295 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name) 296 { 297 #ifdef _KERNEL 298 nvlist_t *resource; 299 char class[64]; 300 301 if ((resource = fm_nvlist_create(NULL)) == NULL) 302 return; 303 304 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE, 305 ZFS_ERROR_CLASS, name); 306 VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0); 307 VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0); 308 VERIFY(nvlist_add_uint64(resource, 309 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0); 310 if (vd) 311 VERIFY(nvlist_add_uint64(resource, 312 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0); 313 314 fm_ereport_post(resource, EVCH_SLEEP); 315 316 fm_nvlist_destroy(resource, FM_NVA_FREE); 317 #endif 318 } 319 320 /* 321 * The 'resource.fs.zfs.ok' event is an internal signal that the associated 322 * resource (pool or disk) has been identified by ZFS as healthy. This will 323 * then trigger the DE to close the associated case, if any. 324 */ 325 void 326 zfs_post_ok(spa_t *spa, vdev_t *vd) 327 { 328 zfs_post_common(spa, vd, FM_RESOURCE_OK); 329 } 330 331 /* 332 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev 333 * has been removed from the system. This will cause the DE to ignore any 334 * recent I/O errors, inferring that they are due to the asynchronous device 335 * removal. 336 */ 337 void 338 zfs_post_remove(spa_t *spa, vdev_t *vd) 339 { 340 zfs_post_common(spa, vd, FM_RESOURCE_REMOVED); 341 } 342 343 /* 344 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool 345 * has the 'autoreplace' property set, and therefore any broken vdevs will be 346 * handled by higher level logic, and no vdev fault should be generated. 347 */ 348 void 349 zfs_post_autoreplace(spa_t *spa, vdev_t *vd) 350 { 351 zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE); 352 } 353