1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/spa.h> 27 #include <sys/spa_impl.h> 28 #include <sys/vdev.h> 29 #include <sys/vdev_impl.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/fm/protocol.h> 35 #include <sys/fm/util.h> 36 #include <sys/sysevent.h> 37 38 /* 39 * This general routine is responsible for generating all the different ZFS 40 * ereports. The payload is dependent on the class, and which arguments are 41 * supplied to the function: 42 * 43 * EREPORT POOL VDEV IO 44 * block X X X 45 * data X X 46 * device X X 47 * pool X 48 * 49 * If we are in a loading state, all errors are chained together by the same 50 * SPA-wide ENA (Error Numeric Association). 51 * 52 * For isolated I/O requests, we get the ENA from the zio_t. The propagation 53 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want 54 * to chain together all ereports associated with a logical piece of data. For 55 * read I/Os, there are basically three 'types' of I/O, which form a roughly 56 * layered diagram: 57 * 58 * +---------------+ 59 * | Aggregate I/O | No associated logical data or device 60 * +---------------+ 61 * | 62 * V 63 * +---------------+ Reads associated with a piece of logical data. 64 * | Read I/O | This includes reads on behalf of RAID-Z, 65 * +---------------+ mirrors, gang blocks, retries, etc. 66 * | 67 * V 68 * +---------------+ Reads associated with a particular device, but 69 * | Physical I/O | no logical data. Issued as part of vdev caching 70 * +---------------+ and I/O aggregation. 71 * 72 * Note that 'physical I/O' here is not the same terminology as used in the rest 73 * of ZIO. Typically, 'physical I/O' simply means that there is no attached 74 * blockpointer. But I/O with no associated block pointer can still be related 75 * to a logical piece of data (i.e. RAID-Z requests). 76 * 77 * Purely physical I/O always have unique ENAs. They are not related to a 78 * particular piece of logical data, and therefore cannot be chained together. 79 * We still generate an ereport, but the DE doesn't correlate it with any 80 * logical piece of data. When such an I/O fails, the delegated I/O requests 81 * will issue a retry, which will trigger the 'real' ereport with the correct 82 * ENA. 83 * 84 * We keep track of the ENA for a ZIO chain through the 'io_logical' member. 85 * When a new logical I/O is issued, we set this to point to itself. Child I/Os 86 * then inherit this pointer, so that when it is first set subsequent failures 87 * will use the same ENA. For vdev cache fill and queue aggregation I/O, 88 * this pointer is set to NULL, and no ereport will be generated (since it 89 * doesn't actually correspond to any particular device or piece of data, 90 * and the caller will always retry without caching or queueing anyway). 91 * 92 * For checksum errors, we want to include more information about the actual 93 * error which occurs. Accordingly, we build an ereport when the error is 94 * noticed, but instead of sending it in immediately, we hang it off of the 95 * io_cksum_report field of the logical IO. When the logical IO completes 96 * (successfully or not), zfs_ereport_finish_checksum() is called with the 97 * good and bad versions of the buffer (if available), and we annotate the 98 * ereport with information about the differences. 99 */ 100 #ifdef _KERNEL 101 static void 102 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out, 103 const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio, 104 uint64_t stateoroffset, uint64_t size) 105 { 106 nvlist_t *ereport, *detector; 107 108 uint64_t ena; 109 char class[64]; 110 111 /* 112 * If we are doing a spa_tryimport() or in recovery mode, 113 * ignore errors. 114 */ 115 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT || 116 spa_load_state(spa) == SPA_LOAD_RECOVER) 117 return; 118 119 /* 120 * If we are in the middle of opening a pool, and the previous attempt 121 * failed, don't bother logging any new ereports - we're just going to 122 * get the same diagnosis anyway. 123 */ 124 if (spa_load_state(spa) != SPA_LOAD_NONE && 125 spa->spa_last_open_failed) 126 return; 127 128 if (zio != NULL) { 129 /* 130 * If this is not a read or write zio, ignore the error. This 131 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails. 132 */ 133 if (zio->io_type != ZIO_TYPE_READ && 134 zio->io_type != ZIO_TYPE_WRITE) 135 return; 136 137 /* 138 * Ignore any errors from speculative I/Os, as failure is an 139 * expected result. 140 */ 141 if (zio->io_flags & ZIO_FLAG_SPECULATIVE) 142 return; 143 144 /* 145 * If this I/O is not a retry I/O, don't post an ereport. 146 * Otherwise, we risk making bad diagnoses based on B_FAILFAST 147 * I/Os. 148 */ 149 if (zio->io_error == EIO && 150 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 151 return; 152 153 if (vd != NULL) { 154 /* 155 * If the vdev has already been marked as failing due 156 * to a failed probe, then ignore any subsequent I/O 157 * errors, as the DE will automatically fault the vdev 158 * on the first such failure. This also catches cases 159 * where vdev_remove_wanted is set and the device has 160 * not yet been asynchronously placed into the REMOVED 161 * state. 162 */ 163 if (zio->io_vd == vd && !vdev_accessible(vd, zio)) 164 return; 165 166 /* 167 * Ignore checksum errors for reads from DTL regions of 168 * leaf vdevs. 169 */ 170 if (zio->io_type == ZIO_TYPE_READ && 171 zio->io_error == ECKSUM && 172 vd->vdev_ops->vdev_op_leaf && 173 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1)) 174 return; 175 } 176 } 177 178 /* 179 * For probe failure, we want to avoid posting ereports if we've 180 * already removed the device in the meantime. 181 */ 182 if (vd != NULL && 183 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 && 184 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED)) 185 return; 186 187 if ((ereport = fm_nvlist_create(NULL)) == NULL) 188 return; 189 190 if ((detector = fm_nvlist_create(NULL)) == NULL) { 191 fm_nvlist_destroy(ereport, FM_NVA_FREE); 192 return; 193 } 194 195 /* 196 * Serialize ereport generation 197 */ 198 mutex_enter(&spa->spa_errlist_lock); 199 200 /* 201 * Determine the ENA to use for this event. If we are in a loading 202 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use 203 * a root zio-wide ENA. Otherwise, simply use a unique ENA. 204 */ 205 if (spa_load_state(spa) != SPA_LOAD_NONE) { 206 if (spa->spa_ena == 0) 207 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1); 208 ena = spa->spa_ena; 209 } else if (zio != NULL && zio->io_logical != NULL) { 210 if (zio->io_logical->io_ena == 0) 211 zio->io_logical->io_ena = 212 fm_ena_generate(0, FM_ENA_FMT1); 213 ena = zio->io_logical->io_ena; 214 } else { 215 ena = fm_ena_generate(0, FM_ENA_FMT1); 216 } 217 218 /* 219 * Construct the full class, detector, and other standard FMA fields. 220 */ 221 (void) snprintf(class, sizeof (class), "%s.%s", 222 ZFS_ERROR_CLASS, subclass); 223 224 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa), 225 vd != NULL ? vd->vdev_guid : 0); 226 227 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL); 228 229 /* 230 * Construct the per-ereport payload, depending on which parameters are 231 * passed in. 232 */ 233 234 /* 235 * Generic payload members common to all ereports. 236 */ 237 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL, 238 DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, 239 DATA_TYPE_UINT64, spa_guid(spa), 240 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32, 241 spa_load_state(spa), NULL); 242 243 if (spa != NULL) { 244 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, 245 DATA_TYPE_STRING, 246 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ? 247 FM_EREPORT_FAILMODE_WAIT : 248 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ? 249 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC, 250 NULL); 251 } 252 253 if (vd != NULL) { 254 vdev_t *pvd = vd->vdev_parent; 255 256 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 257 DATA_TYPE_UINT64, vd->vdev_guid, 258 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 259 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL); 260 if (vd->vdev_path != NULL) 261 fm_payload_set(ereport, 262 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, 263 DATA_TYPE_STRING, vd->vdev_path, NULL); 264 if (vd->vdev_devid != NULL) 265 fm_payload_set(ereport, 266 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, 267 DATA_TYPE_STRING, vd->vdev_devid, NULL); 268 if (vd->vdev_fru != NULL) 269 fm_payload_set(ereport, 270 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, 271 DATA_TYPE_STRING, vd->vdev_fru, NULL); 272 273 if (pvd != NULL) { 274 fm_payload_set(ereport, 275 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID, 276 DATA_TYPE_UINT64, pvd->vdev_guid, 277 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE, 278 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type, 279 NULL); 280 if (pvd->vdev_path) 281 fm_payload_set(ereport, 282 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH, 283 DATA_TYPE_STRING, pvd->vdev_path, NULL); 284 if (pvd->vdev_devid) 285 fm_payload_set(ereport, 286 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID, 287 DATA_TYPE_STRING, pvd->vdev_devid, NULL); 288 } 289 } 290 291 if (zio != NULL) { 292 /* 293 * Payload common to all I/Os. 294 */ 295 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR, 296 DATA_TYPE_INT32, zio->io_error, NULL); 297 298 /* 299 * If the 'size' parameter is non-zero, it indicates this is a 300 * RAID-Z or other I/O where the physical offset and length are 301 * provided for us, instead of within the zio_t. 302 */ 303 if (vd != NULL) { 304 if (size) 305 fm_payload_set(ereport, 306 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 307 DATA_TYPE_UINT64, stateoroffset, 308 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 309 DATA_TYPE_UINT64, size, NULL); 310 else 311 fm_payload_set(ereport, 312 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 313 DATA_TYPE_UINT64, zio->io_offset, 314 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 315 DATA_TYPE_UINT64, zio->io_size, NULL); 316 } 317 318 /* 319 * Payload for I/Os with corresponding logical information. 320 */ 321 if (zio->io_logical != NULL) 322 fm_payload_set(ereport, 323 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET, 324 DATA_TYPE_UINT64, 325 zio->io_logical->io_bookmark.zb_objset, 326 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT, 327 DATA_TYPE_UINT64, 328 zio->io_logical->io_bookmark.zb_object, 329 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL, 330 DATA_TYPE_INT64, 331 zio->io_logical->io_bookmark.zb_level, 332 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID, 333 DATA_TYPE_UINT64, 334 zio->io_logical->io_bookmark.zb_blkid, NULL); 335 } else if (vd != NULL) { 336 /* 337 * If we have a vdev but no zio, this is a device fault, and the 338 * 'stateoroffset' parameter indicates the previous state of the 339 * vdev. 340 */ 341 fm_payload_set(ereport, 342 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE, 343 DATA_TYPE_UINT64, stateoroffset, NULL); 344 } 345 346 mutex_exit(&spa->spa_errlist_lock); 347 348 *ereport_out = ereport; 349 *detector_out = detector; 350 } 351 352 /* if it's <= 128 bytes, save the corruption directly */ 353 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t)) 354 355 #define MAX_RANGES 16 356 357 typedef struct zfs_ecksum_info { 358 /* histograms of set and cleared bits by bit number in a 64-bit word */ 359 uint16_t zei_histogram_set[sizeof (uint64_t) * NBBY]; 360 uint16_t zei_histogram_cleared[sizeof (uint64_t) * NBBY]; 361 362 /* inline arrays of bits set and cleared. */ 363 uint64_t zei_bits_set[ZFM_MAX_INLINE]; 364 uint64_t zei_bits_cleared[ZFM_MAX_INLINE]; 365 366 /* 367 * for each range, the number of bits set and cleared. The Hamming 368 * distance between the good and bad buffers is the sum of them all. 369 */ 370 uint32_t zei_range_sets[MAX_RANGES]; 371 uint32_t zei_range_clears[MAX_RANGES]; 372 373 struct zei_ranges { 374 uint32_t zr_start; 375 uint32_t zr_end; 376 } zei_ranges[MAX_RANGES]; 377 378 size_t zei_range_count; 379 uint32_t zei_mingap; 380 uint32_t zei_allowed_mingap; 381 382 } zfs_ecksum_info_t; 383 384 static void 385 update_histogram(uint64_t value_arg, uint16_t *hist, uint32_t *count) 386 { 387 size_t i; 388 size_t bits = 0; 389 uint64_t value = BE_64(value_arg); 390 391 /* We store the bits in big-endian (largest-first) order */ 392 for (i = 0; i < 64; i++) { 393 if (value & (1ull << i)) { 394 hist[63 - i]++; 395 ++bits; 396 } 397 } 398 /* update the count of bits changed */ 399 *count += bits; 400 } 401 402 /* 403 * We've now filled up the range array, and need to increase "mingap" and 404 * shrink the range list accordingly. zei_mingap is always the smallest 405 * distance between array entries, so we set the new_allowed_gap to be 406 * one greater than that. We then go through the list, joining together 407 * any ranges which are closer than the new_allowed_gap. 408 * 409 * By construction, there will be at least one. We also update zei_mingap 410 * to the new smallest gap, to prepare for our next invocation. 411 */ 412 static void 413 shrink_ranges(zfs_ecksum_info_t *eip) 414 { 415 uint32_t mingap = UINT32_MAX; 416 uint32_t new_allowed_gap = eip->zei_mingap + 1; 417 418 size_t idx, output; 419 size_t max = eip->zei_range_count; 420 421 struct zei_ranges *r = eip->zei_ranges; 422 423 ASSERT3U(eip->zei_range_count, >, 0); 424 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES); 425 426 output = idx = 0; 427 while (idx < max - 1) { 428 uint32_t start = r[idx].zr_start; 429 uint32_t end = r[idx].zr_end; 430 431 while (idx < max - 1) { 432 idx++; 433 434 uint32_t nstart = r[idx].zr_start; 435 uint32_t nend = r[idx].zr_end; 436 437 uint32_t gap = nstart - end; 438 if (gap < new_allowed_gap) { 439 end = nend; 440 continue; 441 } 442 if (gap < mingap) 443 mingap = gap; 444 break; 445 } 446 r[output].zr_start = start; 447 r[output].zr_end = end; 448 output++; 449 } 450 ASSERT3U(output, <, eip->zei_range_count); 451 eip->zei_range_count = output; 452 eip->zei_mingap = mingap; 453 eip->zei_allowed_mingap = new_allowed_gap; 454 } 455 456 static void 457 add_range(zfs_ecksum_info_t *eip, int start, int end) 458 { 459 struct zei_ranges *r = eip->zei_ranges; 460 size_t count = eip->zei_range_count; 461 462 if (count >= MAX_RANGES) { 463 shrink_ranges(eip); 464 count = eip->zei_range_count; 465 } 466 if (count == 0) { 467 eip->zei_mingap = UINT32_MAX; 468 eip->zei_allowed_mingap = 1; 469 } else { 470 int gap = start - r[count - 1].zr_end; 471 472 if (gap < eip->zei_allowed_mingap) { 473 r[count - 1].zr_end = end; 474 return; 475 } 476 if (gap < eip->zei_mingap) 477 eip->zei_mingap = gap; 478 } 479 r[count].zr_start = start; 480 r[count].zr_end = end; 481 eip->zei_range_count++; 482 } 483 484 static size_t 485 range_total_size(zfs_ecksum_info_t *eip) 486 { 487 struct zei_ranges *r = eip->zei_ranges; 488 size_t count = eip->zei_range_count; 489 size_t result = 0; 490 size_t idx; 491 492 for (idx = 0; idx < count; idx++) 493 result += (r[idx].zr_end - r[idx].zr_start); 494 495 return (result); 496 } 497 498 static zfs_ecksum_info_t * 499 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info, 500 const uint8_t *goodbuf, const uint8_t *badbuf, size_t size, 501 boolean_t drop_if_identical) 502 { 503 const uint64_t *good = (const uint64_t *)goodbuf; 504 const uint64_t *bad = (const uint64_t *)badbuf; 505 506 uint64_t allset = 0; 507 uint64_t allcleared = 0; 508 509 size_t nui64s = size / sizeof (uint64_t); 510 511 size_t inline_size; 512 int no_inline = 0; 513 size_t idx; 514 size_t range; 515 516 size_t offset = 0; 517 ssize_t start = -1; 518 519 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP); 520 521 /* don't do any annotation for injected checksum errors */ 522 if (info != NULL && info->zbc_injected) 523 return (eip); 524 525 if (info != NULL && info->zbc_has_cksum) { 526 fm_payload_set(ereport, 527 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED, 528 DATA_TYPE_UINT64_ARRAY, 529 sizeof (info->zbc_expected) / sizeof (uint64_t), 530 (uint64_t *)&info->zbc_expected, 531 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL, 532 DATA_TYPE_UINT64_ARRAY, 533 sizeof (info->zbc_actual) / sizeof (uint64_t), 534 (uint64_t *)&info->zbc_actual, 535 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO, 536 DATA_TYPE_STRING, 537 info->zbc_checksum_name, 538 NULL); 539 540 if (info->zbc_byteswapped) { 541 fm_payload_set(ereport, 542 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP, 543 DATA_TYPE_BOOLEAN, 1, 544 NULL); 545 } 546 } 547 548 if (badbuf == NULL || goodbuf == NULL) 549 return (eip); 550 551 ASSERT3U(nui64s, <=, UINT16_MAX); 552 ASSERT3U(size, ==, nui64s * sizeof (uint64_t)); 553 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 554 ASSERT3U(size, <=, UINT32_MAX); 555 556 /* build up the range list by comparing the two buffers. */ 557 for (idx = 0; idx < nui64s; idx++) { 558 if (good[idx] == bad[idx]) { 559 if (start == -1) 560 continue; 561 562 add_range(eip, start, idx); 563 start = -1; 564 } else { 565 if (start != -1) 566 continue; 567 568 start = idx; 569 } 570 } 571 if (start != -1) 572 add_range(eip, start, idx); 573 574 /* See if it will fit in our inline buffers */ 575 inline_size = range_total_size(eip); 576 if (inline_size > ZFM_MAX_INLINE) 577 no_inline = 1; 578 579 /* 580 * If there is no change and we want to drop if the buffers are 581 * identical, do so. 582 */ 583 if (inline_size == 0 && drop_if_identical) { 584 kmem_free(eip, sizeof (*eip)); 585 return (NULL); 586 } 587 588 /* 589 * Now walk through the ranges, filling in the details of the 590 * differences. Also convert our uint64_t-array offsets to byte 591 * offsets. 592 */ 593 for (range = 0; range < eip->zei_range_count; range++) { 594 size_t start = eip->zei_ranges[range].zr_start; 595 size_t end = eip->zei_ranges[range].zr_end; 596 597 for (idx = start; idx < end; idx++) { 598 uint64_t set, cleared; 599 600 // bits set in bad, but not in good 601 set = ((~good[idx]) & bad[idx]); 602 // bits set in good, but not in bad 603 cleared = (good[idx] & (~bad[idx])); 604 605 allset |= set; 606 allcleared |= cleared; 607 608 if (!no_inline) { 609 ASSERT3U(offset, <, inline_size); 610 eip->zei_bits_set[offset] = set; 611 eip->zei_bits_cleared[offset] = cleared; 612 offset++; 613 } 614 615 update_histogram(set, eip->zei_histogram_set, 616 &eip->zei_range_sets[range]); 617 update_histogram(cleared, eip->zei_histogram_cleared, 618 &eip->zei_range_clears[range]); 619 } 620 621 /* convert to byte offsets */ 622 eip->zei_ranges[range].zr_start *= sizeof (uint64_t); 623 eip->zei_ranges[range].zr_end *= sizeof (uint64_t); 624 } 625 eip->zei_allowed_mingap *= sizeof (uint64_t); 626 inline_size *= sizeof (uint64_t); 627 628 /* fill in ereport */ 629 fm_payload_set(ereport, 630 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES, 631 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count, 632 (uint32_t *)eip->zei_ranges, 633 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP, 634 DATA_TYPE_UINT32, eip->zei_allowed_mingap, 635 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS, 636 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets, 637 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS, 638 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears, 639 NULL); 640 641 if (!no_inline) { 642 fm_payload_set(ereport, 643 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS, 644 DATA_TYPE_UINT8_ARRAY, 645 inline_size, (uint8_t *)eip->zei_bits_set, 646 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS, 647 DATA_TYPE_UINT8_ARRAY, 648 inline_size, (uint8_t *)eip->zei_bits_cleared, 649 NULL); 650 } else { 651 fm_payload_set(ereport, 652 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM, 653 DATA_TYPE_UINT16_ARRAY, 654 NBBY * sizeof (uint64_t), eip->zei_histogram_set, 655 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM, 656 DATA_TYPE_UINT16_ARRAY, 657 NBBY * sizeof (uint64_t), eip->zei_histogram_cleared, 658 NULL); 659 } 660 return (eip); 661 } 662 #endif 663 664 void 665 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio, 666 uint64_t stateoroffset, uint64_t size) 667 { 668 #ifdef _KERNEL 669 nvlist_t *ereport = NULL; 670 nvlist_t *detector = NULL; 671 672 zfs_ereport_start(&ereport, &detector, 673 subclass, spa, vd, zio, stateoroffset, size); 674 675 if (ereport == NULL) 676 return; 677 678 fm_ereport_post(ereport, EVCH_SLEEP); 679 680 fm_nvlist_destroy(ereport, FM_NVA_FREE); 681 fm_nvlist_destroy(detector, FM_NVA_FREE); 682 #endif 683 } 684 685 void 686 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, 687 struct zio *zio, uint64_t offset, uint64_t length, void *arg, 688 zio_bad_cksum_t *info) 689 { 690 zio_cksum_report_t *report = kmem_zalloc(sizeof (*report), KM_SLEEP); 691 692 if (zio->io_vsd != NULL) 693 zio->io_vsd_ops->vsd_cksum_report(zio, report, arg); 694 else 695 zio_vsd_default_cksum_report(zio, report, arg); 696 697 /* copy the checksum failure information if it was provided */ 698 if (info != NULL) { 699 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP); 700 bcopy(info, report->zcr_ckinfo, sizeof (*info)); 701 } 702 703 report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift; 704 report->zcr_length = length; 705 706 #ifdef _KERNEL 707 zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector, 708 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length); 709 710 if (report->zcr_ereport == NULL) { 711 report->zcr_free(report->zcr_cbdata, report->zcr_cbinfo); 712 kmem_free(report, sizeof (*report)); 713 return; 714 } 715 #endif 716 717 mutex_enter(&spa->spa_errlist_lock); 718 report->zcr_next = zio->io_logical->io_cksum_report; 719 zio->io_logical->io_cksum_report = report; 720 mutex_exit(&spa->spa_errlist_lock); 721 } 722 723 void 724 zfs_ereport_finish_checksum(zio_cksum_report_t *report, 725 const void *good_data, const void *bad_data, boolean_t drop_if_identical) 726 { 727 #ifdef _KERNEL 728 zfs_ecksum_info_t *info = NULL; 729 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo, 730 good_data, bad_data, report->zcr_length, drop_if_identical); 731 732 if (info != NULL) 733 fm_ereport_post(report->zcr_ereport, EVCH_SLEEP); 734 735 fm_nvlist_destroy(report->zcr_ereport, FM_NVA_FREE); 736 fm_nvlist_destroy(report->zcr_detector, FM_NVA_FREE); 737 report->zcr_ereport = report->zcr_detector = NULL; 738 739 if (info != NULL) 740 kmem_free(info, sizeof (*info)); 741 #endif 742 } 743 744 void 745 zfs_ereport_free_checksum(zio_cksum_report_t *rpt) 746 { 747 #ifdef _KERNEL 748 if (rpt->zcr_ereport != NULL) { 749 fm_nvlist_destroy(rpt->zcr_ereport, 750 FM_NVA_FREE); 751 fm_nvlist_destroy(rpt->zcr_detector, 752 FM_NVA_FREE); 753 } 754 #endif 755 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo); 756 757 if (rpt->zcr_ckinfo != NULL) 758 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo)); 759 760 kmem_free(rpt, sizeof (*rpt)); 761 } 762 763 void 764 zfs_ereport_send_interim_checksum(zio_cksum_report_t *report) 765 { 766 #ifdef _KERNEL 767 fm_ereport_post(report->zcr_ereport, EVCH_SLEEP); 768 #endif 769 } 770 771 void 772 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, 773 struct zio *zio, uint64_t offset, uint64_t length, 774 const void *good_data, const void *bad_data, zio_bad_cksum_t *zbc) 775 { 776 #ifdef _KERNEL 777 nvlist_t *ereport = NULL; 778 nvlist_t *detector = NULL; 779 zfs_ecksum_info_t *info; 780 781 zfs_ereport_start(&ereport, &detector, 782 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length); 783 784 if (ereport == NULL) 785 return; 786 787 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length, 788 B_FALSE); 789 790 if (info != NULL) 791 fm_ereport_post(ereport, EVCH_SLEEP); 792 793 fm_nvlist_destroy(ereport, FM_NVA_FREE); 794 fm_nvlist_destroy(detector, FM_NVA_FREE); 795 796 if (info != NULL) 797 kmem_free(info, sizeof (*info)); 798 #endif 799 } 800 801 static void 802 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name) 803 { 804 #ifdef _KERNEL 805 nvlist_t *resource; 806 char class[64]; 807 808 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT) 809 return; 810 811 if ((resource = fm_nvlist_create(NULL)) == NULL) 812 return; 813 814 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE, 815 ZFS_ERROR_CLASS, name); 816 VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0); 817 VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0); 818 VERIFY(nvlist_add_uint64(resource, 819 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0); 820 if (vd) 821 VERIFY(nvlist_add_uint64(resource, 822 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0); 823 824 fm_ereport_post(resource, EVCH_SLEEP); 825 826 fm_nvlist_destroy(resource, FM_NVA_FREE); 827 #endif 828 } 829 830 /* 831 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev 832 * has been removed from the system. This will cause the DE to ignore any 833 * recent I/O errors, inferring that they are due to the asynchronous device 834 * removal. 835 */ 836 void 837 zfs_post_remove(spa_t *spa, vdev_t *vd) 838 { 839 zfs_post_common(spa, vd, FM_RESOURCE_REMOVED); 840 } 841 842 /* 843 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool 844 * has the 'autoreplace' property set, and therefore any broken vdevs will be 845 * handled by higher level logic, and no vdev fault should be generated. 846 */ 847 void 848 zfs_post_autoreplace(spa_t *spa, vdev_t *vd) 849 { 850 zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE); 851 } 852 853 /* 854 * The 'resource.fs.zfs.statechange' event is an internal signal that the 855 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will 856 * cause the retire agent to repair any outstanding fault management cases 857 * open because the device was not found (fault.fs.zfs.device). 858 */ 859 void 860 zfs_post_state_change(spa_t *spa, vdev_t *vd) 861 { 862 zfs_post_common(spa, vd, FM_RESOURCE_STATECHANGE); 863 } 864