1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vnode.h> 36 #include <sys/file.h> 37 #include <sys/mode.h> 38 #include <sys/kmem.h> 39 #include <sys/uio.h> 40 #include <sys/pathname.h> 41 #include <sys/cmn_err.h> 42 #include <sys/errno.h> 43 #include <sys/stat.h> 44 #include <sys/unistd.h> 45 #include <sys/random.h> 46 #include <sys/policy.h> 47 #include <sys/zfs_dir.h> 48 #include <sys/zfs_acl.h> 49 #include <sys/fs/zfs.h> 50 #include "fs/fs_subr.h" 51 #include <sys/zap.h> 52 #include <sys/dmu.h> 53 #include <sys/atomic.h> 54 #include <sys/zfs_ctldir.h> 55 #include <sys/dnlc.h> 56 57 /* 58 * Lock a directory entry. A dirlock on <dzp, name> protects that name 59 * in dzp's directory zap object. As long as you hold a dirlock, you can 60 * assume two things: (1) dzp cannot be reaped, and (2) no other thread 61 * can change the zap entry for (i.e. link or unlink) this name. 62 * 63 * Input arguments: 64 * dzp - znode for directory 65 * name - name of entry to lock 66 * flag - ZNEW: if the entry already exists, fail with EEXIST. 67 * ZEXISTS: if the entry does not exist, fail with ENOENT. 68 * ZSHARED: allow concurrent access with other ZSHARED callers. 69 * ZXATTR: we want dzp's xattr directory 70 * 71 * Output arguments: 72 * zpp - pointer to the znode for the entry (NULL if there isn't one) 73 * dlpp - pointer to the dirlock for this entry (NULL on error) 74 * 75 * Return value: 0 on success or errno on failure. 76 * 77 * NOTE: Always checks for, and rejects, '.' and '..'. 78 */ 79 int 80 zfs_dirent_lock(zfs_dirlock_t **dlpp, znode_t *dzp, char *name, znode_t **zpp, 81 int flag) 82 { 83 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 84 zfs_dirlock_t *dl; 85 uint64_t zoid; 86 int error; 87 vnode_t *vp; 88 89 *zpp = NULL; 90 *dlpp = NULL; 91 92 /* 93 * Verify that we are not trying to lock '.', '..', or '.zfs' 94 */ 95 if (name[0] == '.' && 96 (name[1] == '\0' || (name[1] == '.' && name[2] == '\0')) || 97 zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0) 98 return (EEXIST); 99 100 /* 101 * Wait until there are no locks on this name. 102 */ 103 mutex_enter(&dzp->z_lock); 104 for (;;) { 105 if (dzp->z_reap) { 106 mutex_exit(&dzp->z_lock); 107 return (ENOENT); 108 } 109 for (dl = dzp->z_dirlocks; dl != NULL; dl = dl->dl_next) 110 if (strcmp(name, dl->dl_name) == 0) 111 break; 112 if (dl == NULL) { 113 /* 114 * Allocate a new dirlock and add it to the list. 115 */ 116 dl = kmem_alloc(sizeof (zfs_dirlock_t), KM_SLEEP); 117 cv_init(&dl->dl_cv, NULL, CV_DEFAULT, NULL); 118 dl->dl_name = name; 119 dl->dl_sharecnt = 0; 120 dl->dl_namesize = 0; 121 dl->dl_dzp = dzp; 122 dl->dl_next = dzp->z_dirlocks; 123 dzp->z_dirlocks = dl; 124 break; 125 } 126 if ((flag & ZSHARED) && dl->dl_sharecnt != 0) 127 break; 128 cv_wait(&dl->dl_cv, &dzp->z_lock); 129 } 130 131 if ((flag & ZSHARED) && ++dl->dl_sharecnt > 1 && dl->dl_namesize == 0) { 132 /* 133 * We're the second shared reference to dl. Make a copy of 134 * dl_name in case the first thread goes away before we do. 135 * Note that we initialize the new name before storing its 136 * pointer into dl_name, because the first thread may load 137 * dl->dl_name at any time. He'll either see the old value, 138 * which is his, or the new shared copy; either is OK. 139 */ 140 dl->dl_namesize = strlen(dl->dl_name) + 1; 141 name = kmem_alloc(dl->dl_namesize, KM_SLEEP); 142 bcopy(dl->dl_name, name, dl->dl_namesize); 143 dl->dl_name = name; 144 } 145 146 mutex_exit(&dzp->z_lock); 147 148 /* 149 * We have a dirlock on the name. (Note that it is the dirlock, 150 * not the dzp's z_lock, that protects the name in the zap object.) 151 * See if there's an object by this name; if so, put a hold on it. 152 */ 153 if (flag & ZXATTR) { 154 zoid = dzp->z_phys->zp_xattr; 155 error = (zoid == 0 ? ENOENT : 0); 156 } else { 157 vp = dnlc_lookup(ZTOV(dzp), name); 158 if (vp == DNLC_NO_VNODE) { 159 VN_RELE(vp); 160 error = ENOENT; 161 } else if (vp) { 162 if (flag & ZNEW) { 163 zfs_dirent_unlock(dl); 164 VN_RELE(vp); 165 return (EEXIST); 166 } 167 *dlpp = dl; 168 *zpp = VTOZ(vp); 169 return (0); 170 } else { 171 error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 172 8, 1, &zoid); 173 if (error == ENOENT) 174 dnlc_update(ZTOV(dzp), name, DNLC_NO_VNODE); 175 } 176 } 177 if (error) { 178 if (error != ENOENT || (flag & ZEXISTS)) { 179 zfs_dirent_unlock(dl); 180 return (error); 181 } 182 } else { 183 if (flag & ZNEW) { 184 zfs_dirent_unlock(dl); 185 return (EEXIST); 186 } 187 error = zfs_zget(zfsvfs, zoid, zpp); 188 if (error) { 189 zfs_dirent_unlock(dl); 190 return (error); 191 } 192 if (!(flag & ZXATTR)) 193 dnlc_update(ZTOV(dzp), name, ZTOV(*zpp)); 194 } 195 196 *dlpp = dl; 197 198 return (0); 199 } 200 201 /* 202 * Unlock this directory entry and wake anyone who was waiting for it. 203 */ 204 void 205 zfs_dirent_unlock(zfs_dirlock_t *dl) 206 { 207 znode_t *dzp = dl->dl_dzp; 208 zfs_dirlock_t **prev_dl, *cur_dl; 209 210 mutex_enter(&dzp->z_lock); 211 if (dl->dl_sharecnt > 1) { 212 dl->dl_sharecnt--; 213 mutex_exit(&dzp->z_lock); 214 return; 215 } 216 prev_dl = &dzp->z_dirlocks; 217 while ((cur_dl = *prev_dl) != dl) 218 prev_dl = &cur_dl->dl_next; 219 *prev_dl = dl->dl_next; 220 cv_broadcast(&dl->dl_cv); 221 mutex_exit(&dzp->z_lock); 222 223 if (dl->dl_namesize != 0) 224 kmem_free(dl->dl_name, dl->dl_namesize); 225 cv_destroy(&dl->dl_cv); 226 kmem_free(dl, sizeof (*dl)); 227 } 228 229 /* 230 * Look up an entry in a directory. 231 * 232 * NOTE: '.' and '..' are handled as special cases because 233 * no directory entries are actually stored for them. If this is 234 * the root of a filesystem, then '.zfs' is also treated as a 235 * special pseudo-directory. 236 */ 237 int 238 zfs_dirlook(znode_t *dzp, char *name, vnode_t **vpp) 239 { 240 zfs_dirlock_t *dl; 241 znode_t *zp; 242 int error = 0; 243 244 if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) { 245 *vpp = ZTOV(dzp); 246 VN_HOLD(*vpp); 247 } else if (name[0] == '.' && name[1] == '.' && name[2] == 0) { 248 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 249 /* 250 * If we are a snapshot mounted under .zfs, return 251 * the vp for the snapshot directory. 252 */ 253 if (dzp->z_phys->zp_parent == dzp->z_id && 254 zfsvfs->z_parent != zfsvfs) { 255 error = zfsctl_root_lookup(zfsvfs->z_parent->z_ctldir, 256 "snapshot", vpp, NULL, 0, NULL, kcred); 257 return (error); 258 } 259 rw_enter(&dzp->z_parent_lock, RW_READER); 260 error = zfs_zget(zfsvfs, dzp->z_phys->zp_parent, &zp); 261 if (error == 0) 262 *vpp = ZTOV(zp); 263 rw_exit(&dzp->z_parent_lock); 264 } else if (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0) { 265 *vpp = zfsctl_root(dzp); 266 } else { 267 error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS | ZSHARED); 268 if (error == 0) { 269 *vpp = ZTOV(zp); 270 zfs_dirent_unlock(dl); 271 dzp->z_zn_prefetch = B_TRUE; /* enable prefetching */ 272 } 273 } 274 275 return (error); 276 } 277 278 static char * 279 zfs_dq_hexname(char namebuf[17], uint64_t x) 280 { 281 char *name = &namebuf[16]; 282 const char digits[16] = "0123456789abcdef"; 283 284 *name = '\0'; 285 do { 286 *--name = digits[x & 0xf]; 287 x >>= 4; 288 } while (x != 0); 289 290 return (name); 291 } 292 293 /* 294 * Delete Queue Error Handling 295 * 296 * When dealing with the delete queue, we dmu_tx_hold_zap(), but we 297 * don't specify the name of the entry that we will be manipulating. We 298 * also fib and say that we won't be adding any new entries to the 299 * delete queue, even though we might (this is to lower the minimum file 300 * size that can be deleted in a full filesystem). So on the small 301 * chance that the delete queue is using a fat zap (ie. has more than 302 * 2000 entries), we *may* not pre-read a block that's needed. 303 * Therefore it is remotely possible for some of the assertions 304 * regarding the delete queue below to fail due to i/o error. On a 305 * nondebug system, this will result in the space being leaked. 306 */ 307 308 void 309 zfs_dq_add(znode_t *zp, dmu_tx_t *tx) 310 { 311 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 312 char obj_name[17]; 313 int error; 314 315 ASSERT(zp->z_reap); 316 ASSERT3U(zp->z_phys->zp_links, ==, 0); 317 318 error = zap_add(zfsvfs->z_os, zfsvfs->z_dqueue, 319 zfs_dq_hexname(obj_name, zp->z_id), 8, 1, &zp->z_id, tx); 320 ASSERT3U(error, ==, 0); 321 } 322 323 /* 324 * Delete the entire contents of a directory. Return a count 325 * of the number of entries that could not be deleted. 326 * 327 * NOTE: this function assumes that the directory is inactive, 328 * so there is no need to lock its entries before deletion. 329 * Also, it assumes the directory contents is *only* regular 330 * files. 331 */ 332 static int 333 zfs_purgedir(znode_t *dzp) 334 { 335 zap_cursor_t zc; 336 zap_attribute_t zap; 337 znode_t *xzp; 338 dmu_tx_t *tx; 339 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 340 zfs_dirlock_t dl; 341 int skipped = 0; 342 int error; 343 344 ASSERT(dzp->z_active == 0); 345 346 for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id); 347 (error = zap_cursor_retrieve(&zc, &zap)) == 0; 348 zap_cursor_advance(&zc)) { 349 error = zfs_zget(zfsvfs, zap.za_first_integer, &xzp); 350 ASSERT3U(error, ==, 0); 351 352 ASSERT((ZTOV(xzp)->v_type == VREG) || 353 (ZTOV(xzp)->v_type == VLNK)); 354 355 tx = dmu_tx_create(zfsvfs->z_os); 356 dmu_tx_hold_bonus(tx, dzp->z_id); 357 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, zap.za_name); 358 dmu_tx_hold_bonus(tx, xzp->z_id); 359 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 360 error = dmu_tx_assign(tx, TXG_WAIT); 361 if (error) { 362 dmu_tx_abort(tx); 363 VN_RELE(ZTOV(xzp)); 364 skipped += 1; 365 continue; 366 } 367 bzero(&dl, sizeof (dl)); 368 dl.dl_dzp = dzp; 369 dl.dl_name = zap.za_name; 370 371 error = zfs_link_destroy(&dl, xzp, tx, 0, NULL); 372 ASSERT3U(error, ==, 0); 373 dmu_tx_commit(tx); 374 375 VN_RELE(ZTOV(xzp)); 376 } 377 zap_cursor_fini(&zc); 378 ASSERT(error == ENOENT); 379 return (skipped); 380 } 381 382 /* 383 * Special function to requeue the znodes for deletion that were 384 * in progress when we either crashed or umounted the file system. 385 * 386 * returns 1 if queue was drained. 387 */ 388 static int 389 zfs_drain_dq(zfsvfs_t *zfsvfs) 390 { 391 zap_cursor_t zc; 392 zap_attribute_t zap; 393 dmu_object_info_t doi; 394 znode_t *zp; 395 int error; 396 397 /* 398 * Interate over the contents of the delete queue. 399 */ 400 for (zap_cursor_init(&zc, zfsvfs->z_os, zfsvfs->z_dqueue); 401 zap_cursor_retrieve(&zc, &zap) == 0; 402 zap_cursor_advance(&zc)) { 403 404 /* 405 * Create more threads if necessary to balance the load. 406 * quit if the delete threads have been shut down. 407 */ 408 if (zfs_delete_thread_target(zfsvfs, -1) != 0) 409 return (0); 410 411 /* 412 * See what kind of object we have in queue 413 */ 414 415 error = dmu_object_info(zfsvfs->z_os, 416 zap.za_first_integer, &doi); 417 if (error != 0) 418 continue; 419 420 ASSERT((doi.doi_type == DMU_OT_PLAIN_FILE_CONTENTS) || 421 (doi.doi_type == DMU_OT_DIRECTORY_CONTENTS)); 422 /* 423 * We need to re-mark these queue entries for reaping, 424 * so we pull them back into core and set zp->z_reap. 425 */ 426 error = zfs_zget(zfsvfs, zap.za_first_integer, &zp); 427 428 /* 429 * We may pick up znodes that are already marked for reaping. 430 * This could happen during the purge of an extended attribute 431 * directory. All we need to do is skip over them, since they 432 * are already in the system to be processed by the delete 433 * thread(s). 434 */ 435 if (error != 0) { 436 continue; 437 } 438 439 zp->z_reap = 1; 440 VN_RELE(ZTOV(zp)); 441 } 442 zap_cursor_fini(&zc); 443 return (1); 444 } 445 446 void 447 zfs_delete_thread(void *arg) 448 { 449 zfsvfs_t *zfsvfs = arg; 450 zfs_delete_t *zd = &zfsvfs->z_delete_head; 451 znode_t *zp; 452 callb_cpr_t cprinfo; 453 int drained; 454 455 CALLB_CPR_INIT(&cprinfo, &zd->z_mutex, callb_generic_cpr, "zfs_delete"); 456 457 mutex_enter(&zd->z_mutex); 458 459 if (!zd->z_drained && !zd->z_draining) { 460 zd->z_draining = B_TRUE; 461 mutex_exit(&zd->z_mutex); 462 drained = zfs_drain_dq(zfsvfs); 463 mutex_enter(&zd->z_mutex); 464 zd->z_draining = B_FALSE; 465 zd->z_drained = drained; 466 cv_broadcast(&zd->z_quiesce_cv); 467 } 468 469 while (zd->z_thread_count <= zd->z_thread_target) { 470 zp = list_head(&zd->z_znodes); 471 if (zp == NULL) { 472 ASSERT(zd->z_znode_count == 0); 473 CALLB_CPR_SAFE_BEGIN(&cprinfo); 474 cv_wait(&zd->z_cv, &zd->z_mutex); 475 CALLB_CPR_SAFE_END(&cprinfo, &zd->z_mutex); 476 continue; 477 } 478 ASSERT(zd->z_znode_count != 0); 479 list_remove(&zd->z_znodes, zp); 480 if (--zd->z_znode_count == 0) 481 cv_broadcast(&zd->z_quiesce_cv); 482 mutex_exit(&zd->z_mutex); 483 zfs_rmnode(zp); 484 (void) zfs_delete_thread_target(zfsvfs, -1); 485 mutex_enter(&zd->z_mutex); 486 } 487 488 ASSERT(zd->z_thread_count != 0); 489 if (--zd->z_thread_count == 0) 490 cv_broadcast(&zd->z_cv); 491 492 CALLB_CPR_EXIT(&cprinfo); /* NB: drops z_mutex */ 493 thread_exit(); 494 } 495 496 static int zfs_work_per_thread_shift = 11; /* 2048 (2^11) per thread */ 497 498 /* 499 * Set the target number of delete threads to 'nthreads'. 500 * If nthreads == -1, choose a number based on current workload. 501 * If nthreads == 0, don't return until the threads have exited. 502 */ 503 int 504 zfs_delete_thread_target(zfsvfs_t *zfsvfs, int nthreads) 505 { 506 zfs_delete_t *zd = &zfsvfs->z_delete_head; 507 508 mutex_enter(&zd->z_mutex); 509 510 if (nthreads == -1) { 511 if (zd->z_thread_target == 0) { 512 mutex_exit(&zd->z_mutex); 513 return (EBUSY); 514 } 515 nthreads = zd->z_znode_count >> zfs_work_per_thread_shift; 516 nthreads = MIN(nthreads, ncpus << 1); 517 nthreads = MAX(nthreads, 1); 518 nthreads += !!zd->z_draining; 519 } 520 521 zd->z_thread_target = nthreads; 522 523 while (zd->z_thread_count < zd->z_thread_target) { 524 (void) thread_create(NULL, 0, zfs_delete_thread, zfsvfs, 525 0, &p0, TS_RUN, minclsyspri); 526 zd->z_thread_count++; 527 } 528 529 while (zd->z_thread_count > zd->z_thread_target && nthreads == 0) { 530 cv_broadcast(&zd->z_cv); 531 cv_wait(&zd->z_cv, &zd->z_mutex); 532 } 533 534 mutex_exit(&zd->z_mutex); 535 536 return (0); 537 } 538 539 /* 540 * Wait until everything that's been queued has been deleted. 541 */ 542 void 543 zfs_delete_wait_empty(zfsvfs_t *zfsvfs) 544 { 545 zfs_delete_t *zd = &zfsvfs->z_delete_head; 546 547 mutex_enter(&zd->z_mutex); 548 ASSERT(zd->z_thread_target != 0); 549 while (!zd->z_drained || zd->z_znode_count != 0) { 550 ASSERT(zd->z_thread_target != 0); 551 cv_wait(&zd->z_quiesce_cv, &zd->z_mutex); 552 } 553 mutex_exit(&zd->z_mutex); 554 } 555 556 void 557 zfs_rmnode(znode_t *zp) 558 { 559 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 560 objset_t *os = zfsvfs->z_os; 561 znode_t *xzp = NULL; 562 char obj_name[17]; 563 dmu_tx_t *tx; 564 uint64_t acl_obj; 565 int error; 566 567 ASSERT(zp->z_active == 0); 568 ASSERT(ZTOV(zp)->v_count == 0); 569 ASSERT(zp->z_phys->zp_links == 0); 570 571 /* 572 * If this is an attribute directory, purge its contents. 573 */ 574 if (ZTOV(zp)->v_type == VDIR && (zp->z_phys->zp_flags & ZFS_XATTR)) 575 if (zfs_purgedir(zp) != 0) { 576 zfs_delete_t *delq = &zfsvfs->z_delete_head; 577 /* 578 * Add this back to the delete list to be retried later. 579 * 580 * XXX - this could just busy loop on us... 581 */ 582 mutex_enter(&delq->z_mutex); 583 list_insert_tail(&delq->z_znodes, zp); 584 delq->z_znode_count++; 585 mutex_exit(&delq->z_mutex); 586 return; 587 } 588 589 /* 590 * If the file has extended attributes, unlink the xattr dir. 591 */ 592 if (zp->z_phys->zp_xattr) { 593 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 594 ASSERT(error == 0); 595 } 596 597 acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj; 598 599 /* 600 * Set up the transaction. 601 */ 602 tx = dmu_tx_create(os); 603 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 604 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 605 if (xzp) { 606 dmu_tx_hold_bonus(tx, xzp->z_id); 607 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, TRUE, NULL); 608 } 609 if (acl_obj) 610 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 611 error = dmu_tx_assign(tx, TXG_WAIT); 612 if (error) { 613 zfs_delete_t *delq = &zfsvfs->z_delete_head; 614 615 dmu_tx_abort(tx); 616 /* 617 * Add this back to the delete list to be retried later. 618 * 619 * XXX - this could just busy loop on us... 620 */ 621 mutex_enter(&delq->z_mutex); 622 list_insert_tail(&delq->z_znodes, zp); 623 delq->z_znode_count++; 624 mutex_exit(&delq->z_mutex); 625 return; 626 } 627 628 if (xzp) { 629 dmu_buf_will_dirty(xzp->z_dbuf, tx); 630 mutex_enter(&xzp->z_lock); 631 xzp->z_reap = 1; /* mark xzp for deletion */ 632 xzp->z_phys->zp_links = 0; /* no more links to it */ 633 mutex_exit(&xzp->z_lock); 634 zfs_dq_add(xzp, tx); /* add xzp to delete queue */ 635 } 636 637 /* 638 * Remove this znode from delete queue 639 */ 640 error = zap_remove(os, zfsvfs->z_dqueue, 641 zfs_dq_hexname(obj_name, zp->z_id), tx); 642 ASSERT3U(error, ==, 0); 643 644 zfs_znode_delete(zp, tx); 645 646 dmu_tx_commit(tx); 647 648 if (xzp) 649 VN_RELE(ZTOV(xzp)); 650 } 651 652 /* 653 * Link zp into dl. Can only fail if zp has been reaped. 654 */ 655 int 656 zfs_link_create(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag) 657 { 658 znode_t *dzp = dl->dl_dzp; 659 vnode_t *vp = ZTOV(zp); 660 int zp_is_dir = (vp->v_type == VDIR); 661 int error; 662 663 dmu_buf_will_dirty(zp->z_dbuf, tx); 664 mutex_enter(&zp->z_lock); 665 666 if (!(flag & ZRENAMING)) { 667 if (zp->z_reap) { /* no new links to reaped zp */ 668 ASSERT(!(flag & (ZNEW | ZEXISTS))); 669 mutex_exit(&zp->z_lock); 670 return (ENOENT); 671 } 672 zp->z_phys->zp_links++; 673 } 674 zp->z_phys->zp_parent = dzp->z_id; /* dzp is now zp's parent */ 675 676 if (!(flag & ZNEW)) 677 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 678 mutex_exit(&zp->z_lock); 679 680 dmu_buf_will_dirty(dzp->z_dbuf, tx); 681 mutex_enter(&dzp->z_lock); 682 dzp->z_phys->zp_size++; /* one dirent added */ 683 dzp->z_phys->zp_links += zp_is_dir; /* ".." link from zp */ 684 zfs_time_stamper_locked(dzp, CONTENT_MODIFIED, tx); 685 mutex_exit(&dzp->z_lock); 686 687 error = zap_add(zp->z_zfsvfs->z_os, dzp->z_id, dl->dl_name, 688 8, 1, &zp->z_id, tx); 689 ASSERT(error == 0); 690 691 dnlc_update(ZTOV(dzp), dl->dl_name, vp); 692 693 return (0); 694 } 695 696 /* 697 * Unlink zp from dl, and mark zp for reaping if this was the last link. 698 * Can fail if zp is a mount point (EBUSY) or a non-empty directory (EEXIST). 699 * If 'reaped_ptr' is NULL, we put reaped znodes on the delete queue. 700 * If it's non-NULL, we use it to indicate whether the znode needs reaping, 701 * and it's the caller's job to do it. 702 */ 703 int 704 zfs_link_destroy(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag, 705 int *reaped_ptr) 706 { 707 znode_t *dzp = dl->dl_dzp; 708 vnode_t *vp = ZTOV(zp); 709 int zp_is_dir = (vp->v_type == VDIR); 710 int reaped = 0; 711 int error; 712 713 dnlc_remove(ZTOV(dzp), dl->dl_name); 714 715 if (!(flag & ZRENAMING)) { 716 dmu_buf_will_dirty(zp->z_dbuf, tx); 717 718 if (vn_vfswlock(vp)) /* prevent new mounts on zp */ 719 return (EBUSY); 720 721 if (vn_ismntpt(vp)) { /* don't remove mount point */ 722 vn_vfsunlock(vp); 723 return (EBUSY); 724 } 725 726 mutex_enter(&zp->z_lock); 727 if (zp_is_dir && !zfs_dirempty(zp)) { /* dir not empty */ 728 mutex_exit(&zp->z_lock); 729 vn_vfsunlock(vp); 730 return (EEXIST); 731 } 732 ASSERT(zp->z_phys->zp_links > zp_is_dir); 733 if (--zp->z_phys->zp_links == zp_is_dir) { 734 zp->z_reap = 1; 735 zp->z_phys->zp_links = 0; 736 reaped = 1; 737 } else { 738 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 739 } 740 mutex_exit(&zp->z_lock); 741 vn_vfsunlock(vp); 742 } 743 744 dmu_buf_will_dirty(dzp->z_dbuf, tx); 745 mutex_enter(&dzp->z_lock); 746 dzp->z_phys->zp_size--; /* one dirent removed */ 747 dzp->z_phys->zp_links -= zp_is_dir; /* ".." link from zp */ 748 zfs_time_stamper_locked(dzp, CONTENT_MODIFIED, tx); 749 mutex_exit(&dzp->z_lock); 750 751 error = zap_remove(zp->z_zfsvfs->z_os, dzp->z_id, dl->dl_name, tx); 752 ASSERT(error == 0); 753 754 if (reaped_ptr != NULL) 755 *reaped_ptr = reaped; 756 else if (reaped) 757 zfs_dq_add(zp, tx); 758 759 return (0); 760 } 761 762 /* 763 * Indicate whether the directory is empty. Works with or without z_lock 764 * held, but can only be consider a hint in the latter case. Returns true 765 * if only "." and ".." remain and there's no work in progress. 766 */ 767 boolean_t 768 zfs_dirempty(znode_t *dzp) 769 { 770 return (dzp->z_phys->zp_size == 2 && dzp->z_dirlocks == 0); 771 } 772 773 int 774 zfs_make_xattrdir(znode_t *zp, vattr_t *vap, vnode_t **xvpp, cred_t *cr) 775 { 776 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 777 znode_t *xzp; 778 dmu_tx_t *tx; 779 uint64_t xoid; 780 int error; 781 782 *xvpp = NULL; 783 784 if (error = zfs_zaccess(zp, ACE_WRITE_NAMED_ATTRS, cr)) 785 return (error); 786 787 tx = dmu_tx_create(zfsvfs->z_os); 788 dmu_tx_hold_bonus(tx, zp->z_id); 789 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 790 error = dmu_tx_assign(tx, zfsvfs->z_assign); 791 if (error) { 792 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) 793 dmu_tx_wait(tx); 794 dmu_tx_abort(tx); 795 return (error); 796 } 797 zfs_mknode(zp, vap, &xoid, tx, cr, IS_XATTR, &xzp, 0); 798 ASSERT(xzp->z_id == xoid); 799 ASSERT(xzp->z_phys->zp_parent == zp->z_id); 800 dmu_buf_will_dirty(zp->z_dbuf, tx); 801 zp->z_phys->zp_xattr = xoid; 802 803 (void) zfs_log_create(zfsvfs->z_log, tx, TX_MKXATTR, zp, xzp, ""); 804 dmu_tx_commit(tx); 805 806 *xvpp = ZTOV(xzp); 807 808 return (0); 809 } 810 811 /* 812 * Return a znode for the extended attribute directory for zp. 813 * ** If the directory does not already exist, it is created ** 814 * 815 * IN: zp - znode to obtain attribute directory from 816 * cr - credentials of caller 817 * 818 * OUT: xzpp - pointer to extended attribute znode 819 * 820 * RETURN: 0 on success 821 * error number on failure 822 */ 823 int 824 zfs_get_xattrdir(znode_t *zp, vnode_t **xvpp, cred_t *cr) 825 { 826 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 827 znode_t *xzp; 828 zfs_dirlock_t *dl; 829 vattr_t va; 830 int error; 831 top: 832 error = zfs_dirent_lock(&dl, zp, "", &xzp, ZXATTR); 833 if (error) 834 return (error); 835 836 if (xzp != NULL) { 837 *xvpp = ZTOV(xzp); 838 zfs_dirent_unlock(dl); 839 return (0); 840 } 841 842 ASSERT(zp->z_phys->zp_xattr == 0); 843 844 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 845 zfs_dirent_unlock(dl); 846 return (EROFS); 847 } 848 849 /* 850 * The ability to 'create' files in an attribute 851 * directory comes from the write_xattr permission on the base file. 852 * 853 * The ability to 'search' an attribute directory requires 854 * read_xattr permission on the base file. 855 * 856 * Once in a directory the ability to read/write attributes 857 * is controlled by the permissions on the attribute file. 858 */ 859 va.va_mask = AT_TYPE | AT_MODE | AT_UID | AT_GID; 860 va.va_type = VDIR; 861 va.va_mode = S_IFDIR | S_ISVTX | 0777; 862 va.va_uid = (uid_t)zp->z_phys->zp_uid; 863 va.va_gid = (gid_t)zp->z_phys->zp_gid; 864 865 error = zfs_make_xattrdir(zp, &va, xvpp, cr); 866 zfs_dirent_unlock(dl); 867 868 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 869 /* NB: we already did dmu_tx_wait() if necessary */ 870 goto top; 871 } 872 873 return (error); 874 } 875 876 /* 877 * Decide whether it is okay to remove within a sticky directory. 878 * 879 * In sticky directories, write access is not sufficient; 880 * you can remove entries from a directory only if: 881 * 882 * you own the directory, 883 * you own the entry, 884 * the entry is a plain file and you have write access, 885 * or you are privileged (checked in secpolicy...). 886 * 887 * The function returns 0 if remove access is granted. 888 */ 889 int 890 zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr) 891 { 892 uid_t uid; 893 894 if (zdp->z_zfsvfs->z_assign >= TXG_INITIAL) /* ZIL replay */ 895 return (0); 896 897 if ((zdp->z_phys->zp_mode & S_ISVTX) == 0 || 898 (uid = crgetuid(cr)) == zdp->z_phys->zp_uid || 899 uid == zp->z_phys->zp_uid || 900 (ZTOV(zp)->v_type == VREG && 901 zfs_zaccess(zp, ACE_WRITE_DATA, cr) == 0)) 902 return (0); 903 else 904 return (secpolicy_vnode_remove(cr)); 905 } 906