1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * ZFS control directory (a.k.a. ".zfs") 27 * 28 * This directory provides a common location for all ZFS meta-objects. 29 * Currently, this is only the 'snapshot' directory, but this may expand in the 30 * future. The elements are built using the GFS primitives, as the hierarchy 31 * does not actually exist on disk. 32 * 33 * For 'snapshot', we don't want to have all snapshots always mounted, because 34 * this would take up a huge amount of space in /etc/mnttab. We have three 35 * types of objects: 36 * 37 * ctldir ------> snapshotdir -------> snapshot 38 * | 39 * | 40 * V 41 * mounted fs 42 * 43 * The 'snapshot' node contains just enough information to lookup '..' and act 44 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 45 * perform an automount of the underlying filesystem and return the 46 * corresponding vnode. 47 * 48 * All mounts are handled automatically by the kernel, but unmounts are 49 * (currently) handled from user land. The main reason is that there is no 50 * reliable way to auto-unmount the filesystem when it's "no longer in use". 51 * When the user unmounts a filesystem, we call zfsctl_unmount(), which 52 * unmounts any snapshots within the snapshot directory. 53 * 54 * The '.zfs', '.zfs/snapshot', and all directories created under 55 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and 56 * share the same vfs_t as the head filesystem (what '.zfs' lives under). 57 * 58 * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>' 59 * (ie: snapshots) are ZFS nodes and have their own unique vfs_t. 60 * However, vnodes within these mounted on file systems have their v_vfsp 61 * fields set to the head filesystem to make NFS happy (see 62 * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t 63 * so that it cannot be freed until all snapshots have been unmounted. 64 */ 65 66 #include <fs/fs_subr.h> 67 #include <sys/zfs_ctldir.h> 68 #include <sys/zfs_ioctl.h> 69 #include <sys/zfs_vfsops.h> 70 #include <sys/vfs_opreg.h> 71 #include <sys/gfs.h> 72 #include <sys/stat.h> 73 #include <sys/dmu.h> 74 #include <sys/dsl_deleg.h> 75 #include <sys/mount.h> 76 #include <sys/sunddi.h> 77 78 #include "zfs_namecheck.h" 79 80 typedef struct zfsctl_node { 81 gfs_dir_t zc_gfs_private; 82 uint64_t zc_id; 83 timestruc_t zc_cmtime; /* ctime and mtime, always the same */ 84 } zfsctl_node_t; 85 86 typedef struct zfsctl_snapdir { 87 zfsctl_node_t sd_node; 88 kmutex_t sd_lock; 89 avl_tree_t sd_snaps; 90 } zfsctl_snapdir_t; 91 92 typedef struct { 93 char *se_name; 94 vnode_t *se_root; 95 avl_node_t se_node; 96 } zfs_snapentry_t; 97 98 static int 99 snapentry_compare(const void *a, const void *b) 100 { 101 const zfs_snapentry_t *sa = a; 102 const zfs_snapentry_t *sb = b; 103 int ret = strcmp(sa->se_name, sb->se_name); 104 105 if (ret < 0) 106 return (-1); 107 else if (ret > 0) 108 return (1); 109 else 110 return (0); 111 } 112 113 vnodeops_t *zfsctl_ops_root; 114 vnodeops_t *zfsctl_ops_snapdir; 115 vnodeops_t *zfsctl_ops_snapshot; 116 vnodeops_t *zfsctl_ops_shares; 117 vnodeops_t *zfsctl_ops_shares_dir; 118 119 static const fs_operation_def_t zfsctl_tops_root[]; 120 static const fs_operation_def_t zfsctl_tops_snapdir[]; 121 static const fs_operation_def_t zfsctl_tops_snapshot[]; 122 static const fs_operation_def_t zfsctl_tops_shares[]; 123 124 static vnode_t *zfsctl_mknode_snapdir(vnode_t *); 125 static vnode_t *zfsctl_mknode_shares(vnode_t *); 126 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset); 127 static int zfsctl_unmount_snap(zfs_snapentry_t *, int, cred_t *); 128 129 static gfs_opsvec_t zfsctl_opsvec[] = { 130 { ".zfs", zfsctl_tops_root, &zfsctl_ops_root }, 131 { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir }, 132 { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot }, 133 { ".zfs/shares", zfsctl_tops_shares, &zfsctl_ops_shares_dir }, 134 { ".zfs/shares/vnode", zfsctl_tops_shares, &zfsctl_ops_shares }, 135 { NULL } 136 }; 137 138 /* 139 * Root directory elements. We only have two entries 140 * snapshot and shares. 141 */ 142 static gfs_dirent_t zfsctl_root_entries[] = { 143 { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE }, 144 { "shares", zfsctl_mknode_shares, GFS_CACHE_VNODE }, 145 { NULL } 146 }; 147 148 /* include . and .. in the calculation */ 149 #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \ 150 sizeof (gfs_dirent_t)) + 1) 151 152 153 /* 154 * Initialize the various GFS pieces we'll need to create and manipulate .zfs 155 * directories. This is called from the ZFS init routine, and initializes the 156 * vnode ops vectors that we'll be using. 157 */ 158 void 159 zfsctl_init(void) 160 { 161 VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0); 162 } 163 164 void 165 zfsctl_fini(void) 166 { 167 /* 168 * Remove vfsctl vnode ops 169 */ 170 if (zfsctl_ops_root) 171 vn_freevnodeops(zfsctl_ops_root); 172 if (zfsctl_ops_snapdir) 173 vn_freevnodeops(zfsctl_ops_snapdir); 174 if (zfsctl_ops_snapshot) 175 vn_freevnodeops(zfsctl_ops_snapshot); 176 if (zfsctl_ops_shares) 177 vn_freevnodeops(zfsctl_ops_shares); 178 if (zfsctl_ops_shares_dir) 179 vn_freevnodeops(zfsctl_ops_shares_dir); 180 181 zfsctl_ops_root = NULL; 182 zfsctl_ops_snapdir = NULL; 183 zfsctl_ops_snapshot = NULL; 184 zfsctl_ops_shares = NULL; 185 zfsctl_ops_shares_dir = NULL; 186 } 187 188 boolean_t 189 zfsctl_is_node(vnode_t *vp) 190 { 191 return (vn_matchops(vp, zfsctl_ops_root) || 192 vn_matchops(vp, zfsctl_ops_snapdir) || 193 vn_matchops(vp, zfsctl_ops_snapshot) || 194 vn_matchops(vp, zfsctl_ops_shares) || 195 vn_matchops(vp, zfsctl_ops_shares_dir)); 196 197 } 198 199 /* 200 * Return the inode number associated with the 'snapshot' or 201 * 'shares' directory. 202 */ 203 /* ARGSUSED */ 204 static ino64_t 205 zfsctl_root_inode_cb(vnode_t *vp, int index) 206 { 207 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 208 209 ASSERT(index <= 2); 210 211 if (index == 0) 212 return (ZFSCTL_INO_SNAPDIR); 213 214 return (zfsvfs->z_shares_dir); 215 } 216 217 /* 218 * Create the '.zfs' directory. This directory is cached as part of the VFS 219 * structure. This results in a hold on the vfs_t. The code in zfs_umount() 220 * therefore checks against a vfs_count of 2 instead of 1. This reference 221 * is removed when the ctldir is destroyed in the unmount. 222 */ 223 void 224 zfsctl_create(zfsvfs_t *zfsvfs) 225 { 226 vnode_t *vp, *rvp; 227 zfsctl_node_t *zcp; 228 uint64_t crtime[2]; 229 230 ASSERT(zfsvfs->z_ctldir == NULL); 231 232 vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs, 233 zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries, 234 zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL); 235 zcp = vp->v_data; 236 zcp->zc_id = ZFSCTL_INO_ROOT; 237 238 VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0); 239 VERIFY(0 == sa_lookup(VTOZ(rvp)->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 240 &crtime, sizeof (crtime))); 241 ZFS_TIME_DECODE(&zcp->zc_cmtime, crtime); 242 VN_RELE(rvp); 243 244 /* 245 * We're only faking the fact that we have a root of a filesystem for 246 * the sake of the GFS interfaces. Undo the flag manipulation it did 247 * for us. 248 */ 249 vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT); 250 251 zfsvfs->z_ctldir = vp; 252 } 253 254 /* 255 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted. 256 * There might still be more references if we were force unmounted, but only 257 * new zfs_inactive() calls can occur and they don't reference .zfs 258 */ 259 void 260 zfsctl_destroy(zfsvfs_t *zfsvfs) 261 { 262 VN_RELE(zfsvfs->z_ctldir); 263 zfsvfs->z_ctldir = NULL; 264 } 265 266 /* 267 * Given a root znode, retrieve the associated .zfs directory. 268 * Add a hold to the vnode and return it. 269 */ 270 vnode_t * 271 zfsctl_root(znode_t *zp) 272 { 273 ASSERT(zfs_has_ctldir(zp)); 274 VN_HOLD(zp->z_zfsvfs->z_ctldir); 275 return (zp->z_zfsvfs->z_ctldir); 276 } 277 278 /* 279 * Common open routine. Disallow any write access. 280 */ 281 /* ARGSUSED */ 282 static int 283 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct) 284 { 285 if (flags & FWRITE) 286 return (EACCES); 287 288 return (0); 289 } 290 291 /* 292 * Common close routine. Nothing to do here. 293 */ 294 /* ARGSUSED */ 295 static int 296 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off, 297 cred_t *cr, caller_context_t *ct) 298 { 299 return (0); 300 } 301 302 /* 303 * Common access routine. Disallow writes. 304 */ 305 /* ARGSUSED */ 306 static int 307 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr, 308 caller_context_t *ct) 309 { 310 if (flags & V_ACE_MASK) { 311 if (mode & ACE_ALL_WRITE_PERMS) 312 return (EACCES); 313 } else { 314 if (mode & VWRITE) 315 return (EACCES); 316 } 317 318 return (0); 319 } 320 321 /* 322 * Common getattr function. Fill in basic information. 323 */ 324 static void 325 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap) 326 { 327 timestruc_t now; 328 329 vap->va_uid = 0; 330 vap->va_gid = 0; 331 vap->va_rdev = 0; 332 /* 333 * We are a purely virtual object, so we have no 334 * blocksize or allocated blocks. 335 */ 336 vap->va_blksize = 0; 337 vap->va_nblocks = 0; 338 vap->va_seq = 0; 339 vap->va_fsid = vp->v_vfsp->vfs_dev; 340 vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | 341 S_IROTH | S_IXOTH; 342 vap->va_type = VDIR; 343 /* 344 * We live in the now (for atime). 345 */ 346 gethrestime(&now); 347 vap->va_atime = now; 348 } 349 350 /*ARGSUSED*/ 351 static int 352 zfsctl_common_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 353 { 354 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 355 zfsctl_node_t *zcp = vp->v_data; 356 uint64_t object = zcp->zc_id; 357 zfid_short_t *zfid; 358 int i; 359 360 ZFS_ENTER(zfsvfs); 361 362 if (fidp->fid_len < SHORT_FID_LEN) { 363 fidp->fid_len = SHORT_FID_LEN; 364 ZFS_EXIT(zfsvfs); 365 return (ENOSPC); 366 } 367 368 zfid = (zfid_short_t *)fidp; 369 370 zfid->zf_len = SHORT_FID_LEN; 371 372 for (i = 0; i < sizeof (zfid->zf_object); i++) 373 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 374 375 /* .zfs znodes always have a generation number of 0 */ 376 for (i = 0; i < sizeof (zfid->zf_gen); i++) 377 zfid->zf_gen[i] = 0; 378 379 ZFS_EXIT(zfsvfs); 380 return (0); 381 } 382 383 384 /*ARGSUSED*/ 385 static int 386 zfsctl_shares_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 387 { 388 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 389 znode_t *dzp; 390 int error; 391 392 ZFS_ENTER(zfsvfs); 393 394 if (zfsvfs->z_shares_dir == 0) { 395 ZFS_EXIT(zfsvfs); 396 return (ENOTSUP); 397 } 398 399 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 400 error = VOP_FID(ZTOV(dzp), fidp, ct); 401 VN_RELE(ZTOV(dzp)); 402 } 403 404 ZFS_EXIT(zfsvfs); 405 return (error); 406 } 407 /* 408 * .zfs inode namespace 409 * 410 * We need to generate unique inode numbers for all files and directories 411 * within the .zfs pseudo-filesystem. We use the following scheme: 412 * 413 * ENTRY ZFSCTL_INODE 414 * .zfs 1 415 * .zfs/snapshot 2 416 * .zfs/snapshot/<snap> objectid(snap) 417 */ 418 419 #define ZFSCTL_INO_SNAP(id) (id) 420 421 /* 422 * Get root directory attributes. 423 */ 424 /* ARGSUSED */ 425 static int 426 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 427 caller_context_t *ct) 428 { 429 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 430 zfsctl_node_t *zcp = vp->v_data; 431 432 ZFS_ENTER(zfsvfs); 433 vap->va_nodeid = ZFSCTL_INO_ROOT; 434 vap->va_nlink = vap->va_size = NROOT_ENTRIES; 435 vap->va_mtime = vap->va_ctime = zcp->zc_cmtime; 436 437 zfsctl_common_getattr(vp, vap); 438 ZFS_EXIT(zfsvfs); 439 440 return (0); 441 } 442 443 /* 444 * Special case the handling of "..". 445 */ 446 /* ARGSUSED */ 447 int 448 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 449 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 450 int *direntflags, pathname_t *realpnp) 451 { 452 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 453 int err; 454 455 /* 456 * No extended attributes allowed under .zfs 457 */ 458 if (flags & LOOKUP_XATTR) 459 return (EINVAL); 460 461 ZFS_ENTER(zfsvfs); 462 463 if (strcmp(nm, "..") == 0) { 464 err = VFS_ROOT(dvp->v_vfsp, vpp); 465 } else { 466 err = gfs_vop_lookup(dvp, nm, vpp, pnp, flags, rdir, 467 cr, ct, direntflags, realpnp); 468 } 469 470 ZFS_EXIT(zfsvfs); 471 472 return (err); 473 } 474 475 static int 476 zfsctl_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 477 caller_context_t *ct) 478 { 479 /* 480 * We only care about ACL_ENABLED so that libsec can 481 * display ACL correctly and not default to POSIX draft. 482 */ 483 if (cmd == _PC_ACL_ENABLED) { 484 *valp = _ACL_ACE_ENABLED; 485 return (0); 486 } 487 488 return (fs_pathconf(vp, cmd, valp, cr, ct)); 489 } 490 491 static const fs_operation_def_t zfsctl_tops_root[] = { 492 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 493 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 494 { VOPNAME_IOCTL, { .error = fs_inval } }, 495 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_root_getattr } }, 496 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 497 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 498 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_root_lookup } }, 499 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 500 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 501 { VOPNAME_PATHCONF, { .vop_pathconf = zfsctl_pathconf } }, 502 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 503 { NULL } 504 }; 505 506 static int 507 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname) 508 { 509 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; 510 511 if (snapshot_namecheck(name, NULL, NULL) != 0) 512 return (EILSEQ); 513 dmu_objset_name(os, zname); 514 if (strlen(zname) + 1 + strlen(name) >= len) 515 return (ENAMETOOLONG); 516 (void) strcat(zname, "@"); 517 (void) strcat(zname, name); 518 return (0); 519 } 520 521 static int 522 zfsctl_unmount_snap(zfs_snapentry_t *sep, int fflags, cred_t *cr) 523 { 524 vnode_t *svp = sep->se_root; 525 int error; 526 527 ASSERT(vn_ismntpt(svp)); 528 529 /* this will be dropped by dounmount() */ 530 if ((error = vn_vfswlock(svp)) != 0) 531 return (error); 532 533 VN_HOLD(svp); 534 error = dounmount(vn_mountedvfs(svp), fflags, cr); 535 if (error) { 536 VN_RELE(svp); 537 return (error); 538 } 539 540 /* 541 * We can't use VN_RELE(), as that will try to invoke 542 * zfsctl_snapdir_inactive(), which would cause us to destroy 543 * the sd_lock mutex held by our caller. 544 */ 545 ASSERT(svp->v_count == 1); 546 gfs_vop_inactive(svp, cr, NULL); 547 548 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 549 kmem_free(sep, sizeof (zfs_snapentry_t)); 550 551 return (0); 552 } 553 554 static void 555 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm) 556 { 557 avl_index_t where; 558 vfs_t *vfsp; 559 refstr_t *pathref; 560 char newpath[MAXNAMELEN]; 561 char *tail; 562 563 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 564 ASSERT(sep != NULL); 565 566 vfsp = vn_mountedvfs(sep->se_root); 567 ASSERT(vfsp != NULL); 568 569 vfs_lock_wait(vfsp); 570 571 /* 572 * Change the name in the AVL tree. 573 */ 574 avl_remove(&sdp->sd_snaps, sep); 575 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 576 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 577 (void) strcpy(sep->se_name, nm); 578 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL); 579 avl_insert(&sdp->sd_snaps, sep, where); 580 581 /* 582 * Change the current mountpoint info: 583 * - update the tail of the mntpoint path 584 * - update the tail of the resource path 585 */ 586 pathref = vfs_getmntpoint(vfsp); 587 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 588 VERIFY((tail = strrchr(newpath, '/')) != NULL); 589 *(tail+1) = '\0'; 590 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 591 (void) strcat(newpath, nm); 592 refstr_rele(pathref); 593 vfs_setmntpoint(vfsp, newpath); 594 595 pathref = vfs_getresource(vfsp); 596 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 597 VERIFY((tail = strrchr(newpath, '@')) != NULL); 598 *(tail+1) = '\0'; 599 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 600 (void) strcat(newpath, nm); 601 refstr_rele(pathref); 602 vfs_setresource(vfsp, newpath); 603 604 vfs_unlock(vfsp); 605 } 606 607 /*ARGSUSED*/ 608 static int 609 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, 610 cred_t *cr, caller_context_t *ct, int flags) 611 { 612 zfsctl_snapdir_t *sdp = sdvp->v_data; 613 zfs_snapentry_t search, *sep; 614 zfsvfs_t *zfsvfs; 615 avl_index_t where; 616 char from[MAXNAMELEN], to[MAXNAMELEN]; 617 char real[MAXNAMELEN]; 618 int err; 619 620 zfsvfs = sdvp->v_vfsp->vfs_data; 621 ZFS_ENTER(zfsvfs); 622 623 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 624 err = dmu_snapshot_realname(zfsvfs->z_os, snm, real, 625 MAXNAMELEN, NULL); 626 if (err == 0) { 627 snm = real; 628 } else if (err != ENOTSUP) { 629 ZFS_EXIT(zfsvfs); 630 return (err); 631 } 632 } 633 634 ZFS_EXIT(zfsvfs); 635 636 err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from); 637 if (!err) 638 err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to); 639 if (!err) 640 err = zfs_secpolicy_rename_perms(from, to, cr); 641 if (err) 642 return (err); 643 644 /* 645 * Cannot move snapshots out of the snapdir. 646 */ 647 if (sdvp != tdvp) 648 return (EINVAL); 649 650 if (strcmp(snm, tnm) == 0) 651 return (0); 652 653 mutex_enter(&sdp->sd_lock); 654 655 search.se_name = (char *)snm; 656 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) { 657 mutex_exit(&sdp->sd_lock); 658 return (ENOENT); 659 } 660 661 err = dmu_objset_rename(from, to, B_FALSE); 662 if (err == 0) 663 zfsctl_rename_snap(sdp, sep, tnm); 664 665 mutex_exit(&sdp->sd_lock); 666 667 return (err); 668 } 669 670 /* ARGSUSED */ 671 static int 672 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 673 caller_context_t *ct, int flags) 674 { 675 zfsctl_snapdir_t *sdp = dvp->v_data; 676 zfs_snapentry_t *sep; 677 zfs_snapentry_t search; 678 zfsvfs_t *zfsvfs; 679 char snapname[MAXNAMELEN]; 680 char real[MAXNAMELEN]; 681 int err; 682 683 zfsvfs = dvp->v_vfsp->vfs_data; 684 ZFS_ENTER(zfsvfs); 685 686 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 687 688 err = dmu_snapshot_realname(zfsvfs->z_os, name, real, 689 MAXNAMELEN, NULL); 690 if (err == 0) { 691 name = real; 692 } else if (err != ENOTSUP) { 693 ZFS_EXIT(zfsvfs); 694 return (err); 695 } 696 } 697 698 ZFS_EXIT(zfsvfs); 699 700 err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname); 701 if (!err) 702 err = zfs_secpolicy_destroy_perms(snapname, cr); 703 if (err) 704 return (err); 705 706 mutex_enter(&sdp->sd_lock); 707 708 search.se_name = name; 709 sep = avl_find(&sdp->sd_snaps, &search, NULL); 710 if (sep) { 711 avl_remove(&sdp->sd_snaps, sep); 712 err = zfsctl_unmount_snap(sep, MS_FORCE, cr); 713 if (err) 714 avl_add(&sdp->sd_snaps, sep); 715 else 716 err = dmu_objset_destroy(snapname, B_FALSE); 717 } else { 718 err = ENOENT; 719 } 720 721 mutex_exit(&sdp->sd_lock); 722 723 return (err); 724 } 725 726 /* 727 * This creates a snapshot under '.zfs/snapshot'. 728 */ 729 /* ARGSUSED */ 730 static int 731 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, 732 cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp) 733 { 734 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 735 char name[MAXNAMELEN]; 736 int err; 737 static enum symfollow follow = NO_FOLLOW; 738 static enum uio_seg seg = UIO_SYSSPACE; 739 740 if (snapshot_namecheck(dirname, NULL, NULL) != 0) 741 return (EILSEQ); 742 743 dmu_objset_name(zfsvfs->z_os, name); 744 745 *vpp = NULL; 746 747 err = zfs_secpolicy_snapshot_perms(name, cr); 748 if (err) 749 return (err); 750 751 if (err == 0) { 752 err = dmu_objset_snapshot(name, dirname, NULL, B_FALSE); 753 if (err) 754 return (err); 755 err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp); 756 } 757 758 return (err); 759 } 760 761 /* 762 * Lookup entry point for the 'snapshot' directory. Try to open the 763 * snapshot if it exist, creating the pseudo filesystem vnode as necessary. 764 * Perform a mount of the associated dataset on top of the vnode. 765 */ 766 /* ARGSUSED */ 767 static int 768 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 769 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 770 int *direntflags, pathname_t *realpnp) 771 { 772 zfsctl_snapdir_t *sdp = dvp->v_data; 773 objset_t *snap; 774 char snapname[MAXNAMELEN]; 775 char real[MAXNAMELEN]; 776 char *mountpoint; 777 zfs_snapentry_t *sep, search; 778 struct mounta margs; 779 vfs_t *vfsp; 780 size_t mountpoint_len; 781 avl_index_t where; 782 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 783 int err; 784 785 /* 786 * No extended attributes allowed under .zfs 787 */ 788 if (flags & LOOKUP_XATTR) 789 return (EINVAL); 790 791 ASSERT(dvp->v_type == VDIR); 792 793 /* 794 * If we get a recursive call, that means we got called 795 * from the domount() code while it was trying to look up the 796 * spec (which looks like a local path for zfs). We need to 797 * add some flag to domount() to tell it not to do this lookup. 798 */ 799 if (MUTEX_HELD(&sdp->sd_lock)) 800 return (ENOENT); 801 802 ZFS_ENTER(zfsvfs); 803 804 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) { 805 ZFS_EXIT(zfsvfs); 806 return (0); 807 } 808 809 if (flags & FIGNORECASE) { 810 boolean_t conflict = B_FALSE; 811 812 err = dmu_snapshot_realname(zfsvfs->z_os, nm, real, 813 MAXNAMELEN, &conflict); 814 if (err == 0) { 815 nm = real; 816 } else if (err != ENOTSUP) { 817 ZFS_EXIT(zfsvfs); 818 return (err); 819 } 820 if (realpnp) 821 (void) strlcpy(realpnp->pn_buf, nm, 822 realpnp->pn_bufsize); 823 if (conflict && direntflags) 824 *direntflags = ED_CASE_CONFLICT; 825 } 826 827 mutex_enter(&sdp->sd_lock); 828 search.se_name = (char *)nm; 829 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { 830 *vpp = sep->se_root; 831 VN_HOLD(*vpp); 832 err = traverse(vpp); 833 if (err) { 834 VN_RELE(*vpp); 835 *vpp = NULL; 836 } else if (*vpp == sep->se_root) { 837 /* 838 * The snapshot was unmounted behind our backs, 839 * try to remount it. 840 */ 841 goto domount; 842 } else { 843 /* 844 * VROOT was set during the traverse call. We need 845 * to clear it since we're pretending to be part 846 * of our parent's vfs. 847 */ 848 (*vpp)->v_flag &= ~VROOT; 849 } 850 mutex_exit(&sdp->sd_lock); 851 ZFS_EXIT(zfsvfs); 852 return (err); 853 } 854 855 /* 856 * The requested snapshot is not currently mounted, look it up. 857 */ 858 err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname); 859 if (err) { 860 mutex_exit(&sdp->sd_lock); 861 ZFS_EXIT(zfsvfs); 862 /* 863 * handle "ls *" or "?" in a graceful manner, 864 * forcing EILSEQ to ENOENT. 865 * Since shell ultimately passes "*" or "?" as name to lookup 866 */ 867 return (err == EILSEQ ? ENOENT : err); 868 } 869 if (dmu_objset_hold(snapname, FTAG, &snap) != 0) { 870 mutex_exit(&sdp->sd_lock); 871 ZFS_EXIT(zfsvfs); 872 return (ENOENT); 873 } 874 875 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP); 876 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 877 (void) strcpy(sep->se_name, nm); 878 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap)); 879 avl_insert(&sdp->sd_snaps, sep, where); 880 881 dmu_objset_rele(snap, FTAG); 882 domount: 883 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) + 884 strlen("/.zfs/snapshot/") + strlen(nm) + 1; 885 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP); 886 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s", 887 refstr_value(dvp->v_vfsp->vfs_mntpt), nm); 888 889 margs.spec = snapname; 890 margs.dir = mountpoint; 891 margs.flags = MS_SYSSPACE | MS_NOMNTTAB; 892 margs.fstype = "zfs"; 893 margs.dataptr = NULL; 894 margs.datalen = 0; 895 margs.optptr = NULL; 896 margs.optlen = 0; 897 898 err = domount("zfs", &margs, *vpp, kcred, &vfsp); 899 kmem_free(mountpoint, mountpoint_len); 900 901 if (err == 0) { 902 /* 903 * Return the mounted root rather than the covered mount point. 904 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns 905 * the ZFS vnode mounted on top of the GFS node. This ZFS 906 * vnode is the root of the newly created vfsp. 907 */ 908 VFS_RELE(vfsp); 909 err = traverse(vpp); 910 } 911 912 if (err == 0) { 913 /* 914 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>. 915 * 916 * This is where we lie about our v_vfsp in order to 917 * make .zfs/snapshot/<snapname> accessible over NFS 918 * without requiring manual mounts of <snapname>. 919 */ 920 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs); 921 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs; 922 (*vpp)->v_vfsp = zfsvfs->z_vfs; 923 (*vpp)->v_flag &= ~VROOT; 924 } 925 mutex_exit(&sdp->sd_lock); 926 ZFS_EXIT(zfsvfs); 927 928 /* 929 * If we had an error, drop our hold on the vnode and 930 * zfsctl_snapshot_inactive() will clean up. 931 */ 932 if (err) { 933 VN_RELE(*vpp); 934 *vpp = NULL; 935 } 936 return (err); 937 } 938 939 /* ARGSUSED */ 940 static int 941 zfsctl_shares_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 942 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 943 int *direntflags, pathname_t *realpnp) 944 { 945 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 946 znode_t *dzp; 947 int error; 948 949 ZFS_ENTER(zfsvfs); 950 951 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) { 952 ZFS_EXIT(zfsvfs); 953 return (0); 954 } 955 956 if (zfsvfs->z_shares_dir == 0) { 957 ZFS_EXIT(zfsvfs); 958 return (ENOTSUP); 959 } 960 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) 961 error = VOP_LOOKUP(ZTOV(dzp), nm, vpp, pnp, 962 flags, rdir, cr, ct, direntflags, realpnp); 963 964 VN_RELE(ZTOV(dzp)); 965 ZFS_EXIT(zfsvfs); 966 967 return (error); 968 } 969 970 /* ARGSUSED */ 971 static int 972 zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp, 973 offset_t *offp, offset_t *nextp, void *data, int flags) 974 { 975 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 976 char snapname[MAXNAMELEN]; 977 uint64_t id, cookie; 978 boolean_t case_conflict; 979 int error; 980 981 ZFS_ENTER(zfsvfs); 982 983 cookie = *offp; 984 error = dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id, 985 &cookie, &case_conflict); 986 if (error) { 987 ZFS_EXIT(zfsvfs); 988 if (error == ENOENT) { 989 *eofp = 1; 990 return (0); 991 } 992 return (error); 993 } 994 995 if (flags & V_RDDIR_ENTFLAGS) { 996 edirent_t *eodp = dp; 997 998 (void) strcpy(eodp->ed_name, snapname); 999 eodp->ed_ino = ZFSCTL_INO_SNAP(id); 1000 eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0; 1001 } else { 1002 struct dirent64 *odp = dp; 1003 1004 (void) strcpy(odp->d_name, snapname); 1005 odp->d_ino = ZFSCTL_INO_SNAP(id); 1006 } 1007 *nextp = cookie; 1008 1009 ZFS_EXIT(zfsvfs); 1010 1011 return (0); 1012 } 1013 1014 /* ARGSUSED */ 1015 static int 1016 zfsctl_shares_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp, 1017 caller_context_t *ct, int flags) 1018 { 1019 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1020 znode_t *dzp; 1021 int error; 1022 1023 ZFS_ENTER(zfsvfs); 1024 1025 if (zfsvfs->z_shares_dir == 0) { 1026 ZFS_EXIT(zfsvfs); 1027 return (ENOTSUP); 1028 } 1029 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 1030 error = VOP_READDIR(ZTOV(dzp), uiop, cr, eofp, ct, flags); 1031 VN_RELE(ZTOV(dzp)); 1032 } else { 1033 *eofp = 1; 1034 error = ENOENT; 1035 } 1036 1037 ZFS_EXIT(zfsvfs); 1038 return (error); 1039 } 1040 1041 /* 1042 * pvp is the '.zfs' directory (zfsctl_node_t). 1043 * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t). 1044 * 1045 * This function is the callback to create a GFS vnode for '.zfs/snapshot' 1046 * when a lookup is performed on .zfs for "snapshot". 1047 */ 1048 vnode_t * 1049 zfsctl_mknode_snapdir(vnode_t *pvp) 1050 { 1051 vnode_t *vp; 1052 zfsctl_snapdir_t *sdp; 1053 1054 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 1055 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN, 1056 zfsctl_snapdir_readdir_cb, NULL); 1057 sdp = vp->v_data; 1058 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR; 1059 sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 1060 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 1061 avl_create(&sdp->sd_snaps, snapentry_compare, 1062 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 1063 return (vp); 1064 } 1065 1066 vnode_t * 1067 zfsctl_mknode_shares(vnode_t *pvp) 1068 { 1069 vnode_t *vp; 1070 zfsctl_node_t *sdp; 1071 1072 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 1073 zfsctl_ops_shares, NULL, NULL, MAXNAMELEN, 1074 NULL, NULL); 1075 sdp = vp->v_data; 1076 sdp->zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 1077 return (vp); 1078 1079 } 1080 1081 /* ARGSUSED */ 1082 static int 1083 zfsctl_shares_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1084 caller_context_t *ct) 1085 { 1086 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1087 znode_t *dzp; 1088 int error; 1089 1090 ZFS_ENTER(zfsvfs); 1091 if (zfsvfs->z_shares_dir == 0) { 1092 ZFS_EXIT(zfsvfs); 1093 return (ENOTSUP); 1094 } 1095 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 1096 error = VOP_GETATTR(ZTOV(dzp), vap, flags, cr, ct); 1097 VN_RELE(ZTOV(dzp)); 1098 } 1099 ZFS_EXIT(zfsvfs); 1100 return (error); 1101 1102 1103 } 1104 1105 /* ARGSUSED */ 1106 static int 1107 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1108 caller_context_t *ct) 1109 { 1110 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1111 zfsctl_snapdir_t *sdp = vp->v_data; 1112 1113 ZFS_ENTER(zfsvfs); 1114 zfsctl_common_getattr(vp, vap); 1115 vap->va_nodeid = gfs_file_inode(vp); 1116 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2; 1117 vap->va_ctime = vap->va_mtime = dmu_objset_snap_cmtime(zfsvfs->z_os); 1118 ZFS_EXIT(zfsvfs); 1119 1120 return (0); 1121 } 1122 1123 /* ARGSUSED */ 1124 static void 1125 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1126 { 1127 zfsctl_snapdir_t *sdp = vp->v_data; 1128 void *private; 1129 1130 private = gfs_dir_inactive(vp); 1131 if (private != NULL) { 1132 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0); 1133 mutex_destroy(&sdp->sd_lock); 1134 avl_destroy(&sdp->sd_snaps); 1135 kmem_free(private, sizeof (zfsctl_snapdir_t)); 1136 } 1137 } 1138 1139 static const fs_operation_def_t zfsctl_tops_snapdir[] = { 1140 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 1141 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 1142 { VOPNAME_IOCTL, { .error = fs_inval } }, 1143 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_snapdir_getattr } }, 1144 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 1145 { VOPNAME_RENAME, { .vop_rename = zfsctl_snapdir_rename } }, 1146 { VOPNAME_RMDIR, { .vop_rmdir = zfsctl_snapdir_remove } }, 1147 { VOPNAME_MKDIR, { .vop_mkdir = zfsctl_snapdir_mkdir } }, 1148 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 1149 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_snapdir_lookup } }, 1150 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 1151 { VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapdir_inactive } }, 1152 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 1153 { NULL } 1154 }; 1155 1156 static const fs_operation_def_t zfsctl_tops_shares[] = { 1157 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 1158 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 1159 { VOPNAME_IOCTL, { .error = fs_inval } }, 1160 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_shares_getattr } }, 1161 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 1162 { VOPNAME_READDIR, { .vop_readdir = zfsctl_shares_readdir } }, 1163 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_shares_lookup } }, 1164 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 1165 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 1166 { VOPNAME_FID, { .vop_fid = zfsctl_shares_fid } }, 1167 { NULL } 1168 }; 1169 1170 /* 1171 * pvp is the GFS vnode '.zfs/snapshot'. 1172 * 1173 * This creates a GFS node under '.zfs/snapshot' representing each 1174 * snapshot. This newly created GFS node is what we mount snapshot 1175 * vfs_t's ontop of. 1176 */ 1177 static vnode_t * 1178 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset) 1179 { 1180 vnode_t *vp; 1181 zfsctl_node_t *zcp; 1182 1183 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 1184 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 1185 zcp = vp->v_data; 1186 zcp->zc_id = objset; 1187 1188 return (vp); 1189 } 1190 1191 static void 1192 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1193 { 1194 zfsctl_snapdir_t *sdp; 1195 zfs_snapentry_t *sep, *next; 1196 vnode_t *dvp; 1197 1198 VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr, 0, NULL, NULL) == 0); 1199 sdp = dvp->v_data; 1200 1201 mutex_enter(&sdp->sd_lock); 1202 1203 if (vp->v_count > 1) { 1204 mutex_exit(&sdp->sd_lock); 1205 return; 1206 } 1207 ASSERT(!vn_ismntpt(vp)); 1208 1209 sep = avl_first(&sdp->sd_snaps); 1210 while (sep != NULL) { 1211 next = AVL_NEXT(&sdp->sd_snaps, sep); 1212 1213 if (sep->se_root == vp) { 1214 avl_remove(&sdp->sd_snaps, sep); 1215 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 1216 kmem_free(sep, sizeof (zfs_snapentry_t)); 1217 break; 1218 } 1219 sep = next; 1220 } 1221 ASSERT(sep != NULL); 1222 1223 mutex_exit(&sdp->sd_lock); 1224 VN_RELE(dvp); 1225 1226 /* 1227 * Dispose of the vnode for the snapshot mount point. 1228 * This is safe to do because once this entry has been removed 1229 * from the AVL tree, it can't be found again, so cannot become 1230 * "active". If we lookup the same name again we will end up 1231 * creating a new vnode. 1232 */ 1233 gfs_vop_inactive(vp, cr, ct); 1234 } 1235 1236 1237 /* 1238 * These VP's should never see the light of day. They should always 1239 * be covered. 1240 */ 1241 static const fs_operation_def_t zfsctl_tops_snapshot[] = { 1242 VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapshot_inactive }, 1243 NULL, NULL 1244 }; 1245 1246 int 1247 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp) 1248 { 1249 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1250 vnode_t *dvp, *vp; 1251 zfsctl_snapdir_t *sdp; 1252 zfsctl_node_t *zcp; 1253 zfs_snapentry_t *sep; 1254 int error; 1255 1256 ASSERT(zfsvfs->z_ctldir != NULL); 1257 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1258 NULL, 0, NULL, kcred, NULL, NULL, NULL); 1259 if (error != 0) 1260 return (error); 1261 sdp = dvp->v_data; 1262 1263 mutex_enter(&sdp->sd_lock); 1264 sep = avl_first(&sdp->sd_snaps); 1265 while (sep != NULL) { 1266 vp = sep->se_root; 1267 zcp = vp->v_data; 1268 if (zcp->zc_id == objsetid) 1269 break; 1270 1271 sep = AVL_NEXT(&sdp->sd_snaps, sep); 1272 } 1273 1274 if (sep != NULL) { 1275 VN_HOLD(vp); 1276 /* 1277 * Return the mounted root rather than the covered mount point. 1278 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid> 1279 * and returns the ZFS vnode mounted on top of the GFS node. 1280 * This ZFS vnode is the root of the vfs for objset 'objsetid'. 1281 */ 1282 error = traverse(&vp); 1283 if (error == 0) { 1284 if (vp == sep->se_root) 1285 error = EINVAL; 1286 else 1287 *zfsvfsp = VTOZ(vp)->z_zfsvfs; 1288 } 1289 mutex_exit(&sdp->sd_lock); 1290 VN_RELE(vp); 1291 } else { 1292 error = EINVAL; 1293 mutex_exit(&sdp->sd_lock); 1294 } 1295 1296 VN_RELE(dvp); 1297 1298 return (error); 1299 } 1300 1301 /* 1302 * Unmount any snapshots for the given filesystem. This is called from 1303 * zfs_umount() - if we have a ctldir, then go through and unmount all the 1304 * snapshots. 1305 */ 1306 int 1307 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr) 1308 { 1309 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1310 vnode_t *dvp; 1311 zfsctl_snapdir_t *sdp; 1312 zfs_snapentry_t *sep, *next; 1313 int error; 1314 1315 ASSERT(zfsvfs->z_ctldir != NULL); 1316 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1317 NULL, 0, NULL, cr, NULL, NULL, NULL); 1318 if (error != 0) 1319 return (error); 1320 sdp = dvp->v_data; 1321 1322 mutex_enter(&sdp->sd_lock); 1323 1324 sep = avl_first(&sdp->sd_snaps); 1325 while (sep != NULL) { 1326 next = AVL_NEXT(&sdp->sd_snaps, sep); 1327 1328 /* 1329 * If this snapshot is not mounted, then it must 1330 * have just been unmounted by somebody else, and 1331 * will be cleaned up by zfsctl_snapdir_inactive(). 1332 */ 1333 if (vn_ismntpt(sep->se_root)) { 1334 avl_remove(&sdp->sd_snaps, sep); 1335 error = zfsctl_unmount_snap(sep, fflags, cr); 1336 if (error) { 1337 avl_add(&sdp->sd_snaps, sep); 1338 break; 1339 } 1340 } 1341 sep = next; 1342 } 1343 1344 mutex_exit(&sdp->sd_lock); 1345 VN_RELE(dvp); 1346 1347 return (error); 1348 } 1349