1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 24 */ 25 26 /* 27 * ZFS control directory (a.k.a. ".zfs") 28 * 29 * This directory provides a common location for all ZFS meta-objects. 30 * Currently, this is only the 'snapshot' directory, but this may expand in the 31 * future. The elements are built using the GFS primitives, as the hierarchy 32 * does not actually exist on disk. 33 * 34 * For 'snapshot', we don't want to have all snapshots always mounted, because 35 * this would take up a huge amount of space in /etc/mnttab. We have three 36 * types of objects: 37 * 38 * ctldir ------> snapshotdir -------> snapshot 39 * | 40 * | 41 * V 42 * mounted fs 43 * 44 * The 'snapshot' node contains just enough information to lookup '..' and act 45 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 46 * perform an automount of the underlying filesystem and return the 47 * corresponding vnode. 48 * 49 * All mounts are handled automatically by the kernel, but unmounts are 50 * (currently) handled from user land. The main reason is that there is no 51 * reliable way to auto-unmount the filesystem when it's "no longer in use". 52 * When the user unmounts a filesystem, we call zfsctl_unmount(), which 53 * unmounts any snapshots within the snapshot directory. 54 * 55 * The '.zfs', '.zfs/snapshot', and all directories created under 56 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and 57 * share the same vfs_t as the head filesystem (what '.zfs' lives under). 58 * 59 * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>' 60 * (ie: snapshots) are ZFS nodes and have their own unique vfs_t. 61 * However, vnodes within these mounted on file systems have their v_vfsp 62 * fields set to the head filesystem to make NFS happy (see 63 * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t 64 * so that it cannot be freed until all snapshots have been unmounted. 65 */ 66 67 #include <fs/fs_subr.h> 68 #include <sys/zfs_ctldir.h> 69 #include <sys/zfs_ioctl.h> 70 #include <sys/zfs_vfsops.h> 71 #include <sys/vfs_opreg.h> 72 #include <sys/gfs.h> 73 #include <sys/stat.h> 74 #include <sys/dmu.h> 75 #include <sys/dsl_destroy.h> 76 #include <sys/dsl_deleg.h> 77 #include <sys/mount.h> 78 #include <sys/sunddi.h> 79 80 #include "zfs_namecheck.h" 81 82 typedef struct zfsctl_node { 83 gfs_dir_t zc_gfs_private; 84 uint64_t zc_id; 85 timestruc_t zc_cmtime; /* ctime and mtime, always the same */ 86 } zfsctl_node_t; 87 88 typedef struct zfsctl_snapdir { 89 zfsctl_node_t sd_node; 90 kmutex_t sd_lock; 91 avl_tree_t sd_snaps; 92 } zfsctl_snapdir_t; 93 94 typedef struct { 95 char *se_name; 96 vnode_t *se_root; 97 avl_node_t se_node; 98 } zfs_snapentry_t; 99 100 static int 101 snapentry_compare(const void *a, const void *b) 102 { 103 const zfs_snapentry_t *sa = a; 104 const zfs_snapentry_t *sb = b; 105 int ret = strcmp(sa->se_name, sb->se_name); 106 107 if (ret < 0) 108 return (-1); 109 else if (ret > 0) 110 return (1); 111 else 112 return (0); 113 } 114 115 vnodeops_t *zfsctl_ops_root; 116 vnodeops_t *zfsctl_ops_snapdir; 117 vnodeops_t *zfsctl_ops_snapshot; 118 vnodeops_t *zfsctl_ops_shares; 119 vnodeops_t *zfsctl_ops_shares_dir; 120 121 static const fs_operation_def_t zfsctl_tops_root[]; 122 static const fs_operation_def_t zfsctl_tops_snapdir[]; 123 static const fs_operation_def_t zfsctl_tops_snapshot[]; 124 static const fs_operation_def_t zfsctl_tops_shares[]; 125 126 static vnode_t *zfsctl_mknode_snapdir(vnode_t *); 127 static vnode_t *zfsctl_mknode_shares(vnode_t *); 128 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset); 129 static int zfsctl_unmount_snap(zfs_snapentry_t *, int, cred_t *); 130 131 static gfs_opsvec_t zfsctl_opsvec[] = { 132 { ".zfs", zfsctl_tops_root, &zfsctl_ops_root }, 133 { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir }, 134 { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot }, 135 { ".zfs/shares", zfsctl_tops_shares, &zfsctl_ops_shares_dir }, 136 { ".zfs/shares/vnode", zfsctl_tops_shares, &zfsctl_ops_shares }, 137 { NULL } 138 }; 139 140 /* 141 * Root directory elements. We only have two entries 142 * snapshot and shares. 143 */ 144 static gfs_dirent_t zfsctl_root_entries[] = { 145 { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE }, 146 { "shares", zfsctl_mknode_shares, GFS_CACHE_VNODE }, 147 { NULL } 148 }; 149 150 /* include . and .. in the calculation */ 151 #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \ 152 sizeof (gfs_dirent_t)) + 1) 153 154 155 /* 156 * Initialize the various GFS pieces we'll need to create and manipulate .zfs 157 * directories. This is called from the ZFS init routine, and initializes the 158 * vnode ops vectors that we'll be using. 159 */ 160 void 161 zfsctl_init(void) 162 { 163 VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0); 164 } 165 166 void 167 zfsctl_fini(void) 168 { 169 /* 170 * Remove vfsctl vnode ops 171 */ 172 if (zfsctl_ops_root) 173 vn_freevnodeops(zfsctl_ops_root); 174 if (zfsctl_ops_snapdir) 175 vn_freevnodeops(zfsctl_ops_snapdir); 176 if (zfsctl_ops_snapshot) 177 vn_freevnodeops(zfsctl_ops_snapshot); 178 if (zfsctl_ops_shares) 179 vn_freevnodeops(zfsctl_ops_shares); 180 if (zfsctl_ops_shares_dir) 181 vn_freevnodeops(zfsctl_ops_shares_dir); 182 183 zfsctl_ops_root = NULL; 184 zfsctl_ops_snapdir = NULL; 185 zfsctl_ops_snapshot = NULL; 186 zfsctl_ops_shares = NULL; 187 zfsctl_ops_shares_dir = NULL; 188 } 189 190 boolean_t 191 zfsctl_is_node(vnode_t *vp) 192 { 193 return (vn_matchops(vp, zfsctl_ops_root) || 194 vn_matchops(vp, zfsctl_ops_snapdir) || 195 vn_matchops(vp, zfsctl_ops_snapshot) || 196 vn_matchops(vp, zfsctl_ops_shares) || 197 vn_matchops(vp, zfsctl_ops_shares_dir)); 198 199 } 200 201 /* 202 * Return the inode number associated with the 'snapshot' or 203 * 'shares' directory. 204 */ 205 /* ARGSUSED */ 206 static ino64_t 207 zfsctl_root_inode_cb(vnode_t *vp, int index) 208 { 209 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 210 211 ASSERT(index <= 2); 212 213 if (index == 0) 214 return (ZFSCTL_INO_SNAPDIR); 215 216 return (zfsvfs->z_shares_dir); 217 } 218 219 /* 220 * Create the '.zfs' directory. This directory is cached as part of the VFS 221 * structure. This results in a hold on the vfs_t. The code in zfs_umount() 222 * therefore checks against a vfs_count of 2 instead of 1. This reference 223 * is removed when the ctldir is destroyed in the unmount. 224 */ 225 void 226 zfsctl_create(zfsvfs_t *zfsvfs) 227 { 228 vnode_t *vp, *rvp; 229 zfsctl_node_t *zcp; 230 uint64_t crtime[2]; 231 232 ASSERT(zfsvfs->z_ctldir == NULL); 233 234 vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs, 235 zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries, 236 zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL); 237 zcp = vp->v_data; 238 zcp->zc_id = ZFSCTL_INO_ROOT; 239 240 VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0); 241 VERIFY(0 == sa_lookup(VTOZ(rvp)->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 242 &crtime, sizeof (crtime))); 243 ZFS_TIME_DECODE(&zcp->zc_cmtime, crtime); 244 VN_RELE(rvp); 245 246 /* 247 * We're only faking the fact that we have a root of a filesystem for 248 * the sake of the GFS interfaces. Undo the flag manipulation it did 249 * for us. 250 */ 251 vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT); 252 253 zfsvfs->z_ctldir = vp; 254 } 255 256 /* 257 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted. 258 * There might still be more references if we were force unmounted, but only 259 * new zfs_inactive() calls can occur and they don't reference .zfs 260 */ 261 void 262 zfsctl_destroy(zfsvfs_t *zfsvfs) 263 { 264 VN_RELE(zfsvfs->z_ctldir); 265 zfsvfs->z_ctldir = NULL; 266 } 267 268 /* 269 * Given a root znode, retrieve the associated .zfs directory. 270 * Add a hold to the vnode and return it. 271 */ 272 vnode_t * 273 zfsctl_root(znode_t *zp) 274 { 275 ASSERT(zfs_has_ctldir(zp)); 276 VN_HOLD(zp->z_zfsvfs->z_ctldir); 277 return (zp->z_zfsvfs->z_ctldir); 278 } 279 280 /* 281 * Common open routine. Disallow any write access. 282 */ 283 /* ARGSUSED */ 284 static int 285 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct) 286 { 287 if (flags & FWRITE) 288 return (SET_ERROR(EACCES)); 289 290 return (0); 291 } 292 293 /* 294 * Common close routine. Nothing to do here. 295 */ 296 /* ARGSUSED */ 297 static int 298 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off, 299 cred_t *cr, caller_context_t *ct) 300 { 301 return (0); 302 } 303 304 /* 305 * Common access routine. Disallow writes. 306 */ 307 /* ARGSUSED */ 308 static int 309 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr, 310 caller_context_t *ct) 311 { 312 if (flags & V_ACE_MASK) { 313 if (mode & ACE_ALL_WRITE_PERMS) 314 return (SET_ERROR(EACCES)); 315 } else { 316 if (mode & VWRITE) 317 return (SET_ERROR(EACCES)); 318 } 319 320 return (0); 321 } 322 323 /* 324 * Common getattr function. Fill in basic information. 325 */ 326 static void 327 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap) 328 { 329 timestruc_t now; 330 331 vap->va_uid = 0; 332 vap->va_gid = 0; 333 vap->va_rdev = 0; 334 /* 335 * We are a purely virtual object, so we have no 336 * blocksize or allocated blocks. 337 */ 338 vap->va_blksize = 0; 339 vap->va_nblocks = 0; 340 vap->va_seq = 0; 341 vap->va_fsid = vp->v_vfsp->vfs_dev; 342 vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | 343 S_IROTH | S_IXOTH; 344 vap->va_type = VDIR; 345 /* 346 * We live in the now (for atime). 347 */ 348 gethrestime(&now); 349 vap->va_atime = now; 350 } 351 352 /*ARGSUSED*/ 353 static int 354 zfsctl_common_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 355 { 356 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 357 zfsctl_node_t *zcp = vp->v_data; 358 uint64_t object = zcp->zc_id; 359 zfid_short_t *zfid; 360 int i; 361 362 ZFS_ENTER(zfsvfs); 363 364 if (fidp->fid_len < SHORT_FID_LEN) { 365 fidp->fid_len = SHORT_FID_LEN; 366 ZFS_EXIT(zfsvfs); 367 return (SET_ERROR(ENOSPC)); 368 } 369 370 zfid = (zfid_short_t *)fidp; 371 372 zfid->zf_len = SHORT_FID_LEN; 373 374 for (i = 0; i < sizeof (zfid->zf_object); i++) 375 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 376 377 /* .zfs znodes always have a generation number of 0 */ 378 for (i = 0; i < sizeof (zfid->zf_gen); i++) 379 zfid->zf_gen[i] = 0; 380 381 ZFS_EXIT(zfsvfs); 382 return (0); 383 } 384 385 386 /*ARGSUSED*/ 387 static int 388 zfsctl_shares_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 389 { 390 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 391 znode_t *dzp; 392 int error; 393 394 ZFS_ENTER(zfsvfs); 395 396 if (zfsvfs->z_shares_dir == 0) { 397 ZFS_EXIT(zfsvfs); 398 return (SET_ERROR(ENOTSUP)); 399 } 400 401 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 402 error = VOP_FID(ZTOV(dzp), fidp, ct); 403 VN_RELE(ZTOV(dzp)); 404 } 405 406 ZFS_EXIT(zfsvfs); 407 return (error); 408 } 409 /* 410 * .zfs inode namespace 411 * 412 * We need to generate unique inode numbers for all files and directories 413 * within the .zfs pseudo-filesystem. We use the following scheme: 414 * 415 * ENTRY ZFSCTL_INODE 416 * .zfs 1 417 * .zfs/snapshot 2 418 * .zfs/snapshot/<snap> objectid(snap) 419 */ 420 421 #define ZFSCTL_INO_SNAP(id) (id) 422 423 /* 424 * Get root directory attributes. 425 */ 426 /* ARGSUSED */ 427 static int 428 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 429 caller_context_t *ct) 430 { 431 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 432 zfsctl_node_t *zcp = vp->v_data; 433 434 ZFS_ENTER(zfsvfs); 435 vap->va_nodeid = ZFSCTL_INO_ROOT; 436 vap->va_nlink = vap->va_size = NROOT_ENTRIES; 437 vap->va_mtime = vap->va_ctime = zcp->zc_cmtime; 438 439 zfsctl_common_getattr(vp, vap); 440 ZFS_EXIT(zfsvfs); 441 442 return (0); 443 } 444 445 /* 446 * Special case the handling of "..". 447 */ 448 /* ARGSUSED */ 449 int 450 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 451 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 452 int *direntflags, pathname_t *realpnp) 453 { 454 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 455 int err; 456 457 /* 458 * No extended attributes allowed under .zfs 459 */ 460 if (flags & LOOKUP_XATTR) 461 return (SET_ERROR(EINVAL)); 462 463 ZFS_ENTER(zfsvfs); 464 465 if (strcmp(nm, "..") == 0) { 466 err = VFS_ROOT(dvp->v_vfsp, vpp); 467 } else { 468 err = gfs_vop_lookup(dvp, nm, vpp, pnp, flags, rdir, 469 cr, ct, direntflags, realpnp); 470 } 471 472 ZFS_EXIT(zfsvfs); 473 474 return (err); 475 } 476 477 static int 478 zfsctl_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 479 caller_context_t *ct) 480 { 481 /* 482 * We only care about ACL_ENABLED so that libsec can 483 * display ACL correctly and not default to POSIX draft. 484 */ 485 if (cmd == _PC_ACL_ENABLED) { 486 *valp = _ACL_ACE_ENABLED; 487 return (0); 488 } 489 490 return (fs_pathconf(vp, cmd, valp, cr, ct)); 491 } 492 493 static const fs_operation_def_t zfsctl_tops_root[] = { 494 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 495 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 496 { VOPNAME_IOCTL, { .error = fs_inval } }, 497 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_root_getattr } }, 498 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 499 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 500 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_root_lookup } }, 501 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 502 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 503 { VOPNAME_PATHCONF, { .vop_pathconf = zfsctl_pathconf } }, 504 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 505 { NULL } 506 }; 507 508 /* 509 * Gets the full dataset name that corresponds to the given snapshot name 510 * Example: 511 * zfsctl_snapshot_zname("snap1") -> "mypool/myfs@snap1" 512 */ 513 static int 514 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname) 515 { 516 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; 517 518 if (zfs_component_namecheck(name, NULL, NULL) != 0) 519 return (SET_ERROR(EILSEQ)); 520 dmu_objset_name(os, zname); 521 if (strlen(zname) + 1 + strlen(name) >= len) 522 return (SET_ERROR(ENAMETOOLONG)); 523 (void) strcat(zname, "@"); 524 (void) strcat(zname, name); 525 return (0); 526 } 527 528 static int 529 zfsctl_unmount_snap(zfs_snapentry_t *sep, int fflags, cred_t *cr) 530 { 531 vnode_t *svp = sep->se_root; 532 int error; 533 534 ASSERT(vn_ismntpt(svp)); 535 536 /* this will be dropped by dounmount() */ 537 if ((error = vn_vfswlock(svp)) != 0) 538 return (error); 539 540 VN_HOLD(svp); 541 error = dounmount(vn_mountedvfs(svp), fflags, cr); 542 if (error) { 543 VN_RELE(svp); 544 return (error); 545 } 546 547 /* 548 * We can't use VN_RELE(), as that will try to invoke 549 * zfsctl_snapdir_inactive(), which would cause us to destroy 550 * the sd_lock mutex held by our caller. 551 */ 552 ASSERT(svp->v_count == 1); 553 gfs_vop_inactive(svp, cr, NULL); 554 555 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 556 kmem_free(sep, sizeof (zfs_snapentry_t)); 557 558 return (0); 559 } 560 561 static void 562 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm) 563 { 564 avl_index_t where; 565 vfs_t *vfsp; 566 refstr_t *pathref; 567 char newpath[MAXNAMELEN]; 568 char *tail; 569 570 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 571 ASSERT(sep != NULL); 572 573 vfsp = vn_mountedvfs(sep->se_root); 574 ASSERT(vfsp != NULL); 575 576 vfs_lock_wait(vfsp); 577 578 /* 579 * Change the name in the AVL tree. 580 */ 581 avl_remove(&sdp->sd_snaps, sep); 582 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 583 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 584 (void) strcpy(sep->se_name, nm); 585 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL); 586 avl_insert(&sdp->sd_snaps, sep, where); 587 588 /* 589 * Change the current mountpoint info: 590 * - update the tail of the mntpoint path 591 * - update the tail of the resource path 592 */ 593 pathref = vfs_getmntpoint(vfsp); 594 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 595 VERIFY((tail = strrchr(newpath, '/')) != NULL); 596 *(tail+1) = '\0'; 597 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 598 (void) strcat(newpath, nm); 599 refstr_rele(pathref); 600 vfs_setmntpoint(vfsp, newpath, 0); 601 602 pathref = vfs_getresource(vfsp); 603 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 604 VERIFY((tail = strrchr(newpath, '@')) != NULL); 605 *(tail+1) = '\0'; 606 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 607 (void) strcat(newpath, nm); 608 refstr_rele(pathref); 609 vfs_setresource(vfsp, newpath, 0); 610 611 vfs_unlock(vfsp); 612 } 613 614 /*ARGSUSED*/ 615 static int 616 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, 617 cred_t *cr, caller_context_t *ct, int flags) 618 { 619 zfsctl_snapdir_t *sdp = sdvp->v_data; 620 zfs_snapentry_t search, *sep; 621 zfsvfs_t *zfsvfs; 622 avl_index_t where; 623 char from[ZFS_MAX_DATASET_NAME_LEN], to[ZFS_MAX_DATASET_NAME_LEN]; 624 char real[ZFS_MAX_DATASET_NAME_LEN], fsname[ZFS_MAX_DATASET_NAME_LEN]; 625 int err; 626 627 zfsvfs = sdvp->v_vfsp->vfs_data; 628 ZFS_ENTER(zfsvfs); 629 630 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 631 err = dmu_snapshot_realname(zfsvfs->z_os, snm, real, 632 sizeof (real), NULL); 633 if (err == 0) { 634 snm = real; 635 } else if (err != ENOTSUP) { 636 ZFS_EXIT(zfsvfs); 637 return (err); 638 } 639 } 640 641 ZFS_EXIT(zfsvfs); 642 643 dmu_objset_name(zfsvfs->z_os, fsname); 644 645 err = zfsctl_snapshot_zname(sdvp, snm, sizeof (from), from); 646 if (err == 0) 647 err = zfsctl_snapshot_zname(tdvp, tnm, sizeof (to), to); 648 if (err == 0) 649 err = zfs_secpolicy_rename_perms(from, to, cr); 650 if (err != 0) 651 return (err); 652 653 /* 654 * Cannot move snapshots out of the snapdir. 655 */ 656 if (sdvp != tdvp) 657 return (SET_ERROR(EINVAL)); 658 659 if (strcmp(snm, tnm) == 0) 660 return (0); 661 662 mutex_enter(&sdp->sd_lock); 663 664 search.se_name = (char *)snm; 665 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) { 666 mutex_exit(&sdp->sd_lock); 667 return (SET_ERROR(ENOENT)); 668 } 669 670 err = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE); 671 if (err == 0) 672 zfsctl_rename_snap(sdp, sep, tnm); 673 674 mutex_exit(&sdp->sd_lock); 675 676 return (err); 677 } 678 679 /* ARGSUSED */ 680 static int 681 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 682 caller_context_t *ct, int flags) 683 { 684 zfsctl_snapdir_t *sdp = dvp->v_data; 685 zfs_snapentry_t *sep; 686 zfs_snapentry_t search; 687 zfsvfs_t *zfsvfs; 688 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 689 char real[ZFS_MAX_DATASET_NAME_LEN]; 690 int err; 691 692 zfsvfs = dvp->v_vfsp->vfs_data; 693 ZFS_ENTER(zfsvfs); 694 695 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 696 697 err = dmu_snapshot_realname(zfsvfs->z_os, name, real, 698 sizeof (real), NULL); 699 if (err == 0) { 700 name = real; 701 } else if (err != ENOTSUP) { 702 ZFS_EXIT(zfsvfs); 703 return (err); 704 } 705 } 706 707 ZFS_EXIT(zfsvfs); 708 709 err = zfsctl_snapshot_zname(dvp, name, sizeof (snapname), snapname); 710 if (err == 0) 711 err = zfs_secpolicy_destroy_perms(snapname, cr); 712 if (err != 0) 713 return (err); 714 715 mutex_enter(&sdp->sd_lock); 716 717 search.se_name = name; 718 sep = avl_find(&sdp->sd_snaps, &search, NULL); 719 if (sep) { 720 avl_remove(&sdp->sd_snaps, sep); 721 err = zfsctl_unmount_snap(sep, MS_FORCE, cr); 722 if (err != 0) 723 avl_add(&sdp->sd_snaps, sep); 724 else 725 err = dsl_destroy_snapshot(snapname, B_FALSE); 726 } else { 727 err = SET_ERROR(ENOENT); 728 } 729 730 mutex_exit(&sdp->sd_lock); 731 732 return (err); 733 } 734 735 /* 736 * This creates a snapshot under '.zfs/snapshot'. 737 */ 738 /* ARGSUSED */ 739 static int 740 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, 741 cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp) 742 { 743 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 744 char name[ZFS_MAX_DATASET_NAME_LEN]; 745 int err; 746 static enum symfollow follow = NO_FOLLOW; 747 static enum uio_seg seg = UIO_SYSSPACE; 748 749 if (zfs_component_namecheck(dirname, NULL, NULL) != 0) 750 return (SET_ERROR(EILSEQ)); 751 752 dmu_objset_name(zfsvfs->z_os, name); 753 754 *vpp = NULL; 755 756 err = zfs_secpolicy_snapshot_perms(name, cr); 757 if (err != 0) 758 return (err); 759 760 if (err == 0) { 761 err = dmu_objset_snapshot_one(name, dirname); 762 if (err != 0) 763 return (err); 764 err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp); 765 } 766 767 return (err); 768 } 769 770 /* 771 * Lookup entry point for the 'snapshot' directory. Try to open the 772 * snapshot if it exist, creating the pseudo filesystem vnode as necessary. 773 * Perform a mount of the associated dataset on top of the vnode. 774 */ 775 /* ARGSUSED */ 776 static int 777 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 778 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 779 int *direntflags, pathname_t *realpnp) 780 { 781 zfsctl_snapdir_t *sdp = dvp->v_data; 782 objset_t *snap; 783 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 784 char real[ZFS_MAX_DATASET_NAME_LEN]; 785 char *mountpoint; 786 zfs_snapentry_t *sep, search; 787 struct mounta margs; 788 vfs_t *vfsp; 789 size_t mountpoint_len; 790 avl_index_t where; 791 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 792 int err; 793 794 /* 795 * No extended attributes allowed under .zfs 796 */ 797 if (flags & LOOKUP_XATTR) 798 return (SET_ERROR(EINVAL)); 799 800 ASSERT(dvp->v_type == VDIR); 801 802 /* 803 * If we get a recursive call, that means we got called 804 * from the domount() code while it was trying to look up the 805 * spec (which looks like a local path for zfs). We need to 806 * add some flag to domount() to tell it not to do this lookup. 807 */ 808 if (MUTEX_HELD(&sdp->sd_lock)) 809 return (SET_ERROR(ENOENT)); 810 811 ZFS_ENTER(zfsvfs); 812 813 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) { 814 ZFS_EXIT(zfsvfs); 815 return (0); 816 } 817 818 if (flags & FIGNORECASE) { 819 boolean_t conflict = B_FALSE; 820 821 err = dmu_snapshot_realname(zfsvfs->z_os, nm, real, 822 sizeof (real), &conflict); 823 if (err == 0) { 824 nm = real; 825 } else if (err != ENOTSUP) { 826 ZFS_EXIT(zfsvfs); 827 return (err); 828 } 829 if (realpnp) 830 (void) strlcpy(realpnp->pn_buf, nm, 831 realpnp->pn_bufsize); 832 if (conflict && direntflags) 833 *direntflags = ED_CASE_CONFLICT; 834 } 835 836 mutex_enter(&sdp->sd_lock); 837 search.se_name = (char *)nm; 838 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { 839 *vpp = sep->se_root; 840 VN_HOLD(*vpp); 841 err = traverse(vpp); 842 if (err != 0) { 843 VN_RELE(*vpp); 844 *vpp = NULL; 845 } else if (*vpp == sep->se_root) { 846 /* 847 * The snapshot was unmounted behind our backs, 848 * try to remount it. 849 */ 850 goto domount; 851 } else { 852 /* 853 * VROOT was set during the traverse call. We need 854 * to clear it since we're pretending to be part 855 * of our parent's vfs. 856 */ 857 (*vpp)->v_flag &= ~VROOT; 858 } 859 mutex_exit(&sdp->sd_lock); 860 ZFS_EXIT(zfsvfs); 861 return (err); 862 } 863 864 /* 865 * The requested snapshot is not currently mounted, look it up. 866 */ 867 err = zfsctl_snapshot_zname(dvp, nm, sizeof (snapname), snapname); 868 if (err != 0) { 869 mutex_exit(&sdp->sd_lock); 870 ZFS_EXIT(zfsvfs); 871 /* 872 * handle "ls *" or "?" in a graceful manner, 873 * forcing EILSEQ to ENOENT. 874 * Since shell ultimately passes "*" or "?" as name to lookup 875 */ 876 return (err == EILSEQ ? ENOENT : err); 877 } 878 if (dmu_objset_hold(snapname, FTAG, &snap) != 0) { 879 mutex_exit(&sdp->sd_lock); 880 ZFS_EXIT(zfsvfs); 881 return (SET_ERROR(ENOENT)); 882 } 883 884 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP); 885 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 886 (void) strcpy(sep->se_name, nm); 887 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap)); 888 avl_insert(&sdp->sd_snaps, sep, where); 889 890 dmu_objset_rele(snap, FTAG); 891 domount: 892 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) + 893 strlen("/.zfs/snapshot/") + strlen(nm) + 1; 894 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP); 895 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s", 896 refstr_value(dvp->v_vfsp->vfs_mntpt), nm); 897 898 margs.spec = snapname; 899 margs.dir = mountpoint; 900 margs.flags = MS_SYSSPACE | MS_NOMNTTAB; 901 margs.fstype = "zfs"; 902 margs.dataptr = NULL; 903 margs.datalen = 0; 904 margs.optptr = NULL; 905 margs.optlen = 0; 906 907 err = domount("zfs", &margs, *vpp, kcred, &vfsp); 908 kmem_free(mountpoint, mountpoint_len); 909 910 if (err == 0) { 911 /* 912 * Return the mounted root rather than the covered mount point. 913 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns 914 * the ZFS vnode mounted on top of the GFS node. This ZFS 915 * vnode is the root of the newly created vfsp. 916 */ 917 VFS_RELE(vfsp); 918 err = traverse(vpp); 919 } 920 921 if (err == 0) { 922 /* 923 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>. 924 * 925 * This is where we lie about our v_vfsp in order to 926 * make .zfs/snapshot/<snapname> accessible over NFS 927 * without requiring manual mounts of <snapname>. 928 */ 929 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs); 930 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs; 931 (*vpp)->v_vfsp = zfsvfs->z_vfs; 932 (*vpp)->v_flag &= ~VROOT; 933 } 934 mutex_exit(&sdp->sd_lock); 935 ZFS_EXIT(zfsvfs); 936 937 /* 938 * If we had an error, drop our hold on the vnode and 939 * zfsctl_snapshot_inactive() will clean up. 940 */ 941 if (err != 0) { 942 VN_RELE(*vpp); 943 *vpp = NULL; 944 } 945 return (err); 946 } 947 948 /* ARGSUSED */ 949 static int 950 zfsctl_shares_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 951 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 952 int *direntflags, pathname_t *realpnp) 953 { 954 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 955 znode_t *dzp; 956 int error; 957 958 ZFS_ENTER(zfsvfs); 959 960 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) { 961 ZFS_EXIT(zfsvfs); 962 return (0); 963 } 964 965 if (zfsvfs->z_shares_dir == 0) { 966 ZFS_EXIT(zfsvfs); 967 return (SET_ERROR(ENOTSUP)); 968 } 969 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) 970 error = VOP_LOOKUP(ZTOV(dzp), nm, vpp, pnp, 971 flags, rdir, cr, ct, direntflags, realpnp); 972 973 VN_RELE(ZTOV(dzp)); 974 ZFS_EXIT(zfsvfs); 975 976 return (error); 977 } 978 979 /* ARGSUSED */ 980 static int 981 zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp, 982 offset_t *offp, offset_t *nextp, void *data, int flags) 983 { 984 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 985 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 986 uint64_t id, cookie; 987 boolean_t case_conflict; 988 int error; 989 990 ZFS_ENTER(zfsvfs); 991 992 cookie = *offp; 993 dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG); 994 error = dmu_snapshot_list_next(zfsvfs->z_os, 995 sizeof (snapname), snapname, &id, &cookie, &case_conflict); 996 dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG); 997 if (error) { 998 ZFS_EXIT(zfsvfs); 999 if (error == ENOENT) { 1000 *eofp = 1; 1001 return (0); 1002 } 1003 return (error); 1004 } 1005 1006 if (flags & V_RDDIR_ENTFLAGS) { 1007 edirent_t *eodp = dp; 1008 1009 (void) strcpy(eodp->ed_name, snapname); 1010 eodp->ed_ino = ZFSCTL_INO_SNAP(id); 1011 eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0; 1012 } else { 1013 struct dirent64 *odp = dp; 1014 1015 (void) strcpy(odp->d_name, snapname); 1016 odp->d_ino = ZFSCTL_INO_SNAP(id); 1017 } 1018 *nextp = cookie; 1019 1020 ZFS_EXIT(zfsvfs); 1021 1022 return (0); 1023 } 1024 1025 /* ARGSUSED */ 1026 static int 1027 zfsctl_shares_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp, 1028 caller_context_t *ct, int flags) 1029 { 1030 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1031 znode_t *dzp; 1032 int error; 1033 1034 ZFS_ENTER(zfsvfs); 1035 1036 if (zfsvfs->z_shares_dir == 0) { 1037 ZFS_EXIT(zfsvfs); 1038 return (SET_ERROR(ENOTSUP)); 1039 } 1040 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 1041 error = VOP_READDIR(ZTOV(dzp), uiop, cr, eofp, ct, flags); 1042 VN_RELE(ZTOV(dzp)); 1043 } else { 1044 *eofp = 1; 1045 error = SET_ERROR(ENOENT); 1046 } 1047 1048 ZFS_EXIT(zfsvfs); 1049 return (error); 1050 } 1051 1052 /* 1053 * pvp is the '.zfs' directory (zfsctl_node_t). 1054 * 1055 * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t). 1056 * 1057 * This function is the callback to create a GFS vnode for '.zfs/snapshot' 1058 * when a lookup is performed on .zfs for "snapshot". 1059 */ 1060 vnode_t * 1061 zfsctl_mknode_snapdir(vnode_t *pvp) 1062 { 1063 vnode_t *vp; 1064 zfsctl_snapdir_t *sdp; 1065 1066 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 1067 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN, 1068 zfsctl_snapdir_readdir_cb, NULL); 1069 sdp = vp->v_data; 1070 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR; 1071 sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 1072 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 1073 avl_create(&sdp->sd_snaps, snapentry_compare, 1074 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 1075 return (vp); 1076 } 1077 1078 vnode_t * 1079 zfsctl_mknode_shares(vnode_t *pvp) 1080 { 1081 vnode_t *vp; 1082 zfsctl_node_t *sdp; 1083 1084 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 1085 zfsctl_ops_shares, NULL, NULL, MAXNAMELEN, 1086 NULL, NULL); 1087 sdp = vp->v_data; 1088 sdp->zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 1089 return (vp); 1090 1091 } 1092 1093 /* ARGSUSED */ 1094 static int 1095 zfsctl_shares_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1096 caller_context_t *ct) 1097 { 1098 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1099 znode_t *dzp; 1100 int error; 1101 1102 ZFS_ENTER(zfsvfs); 1103 if (zfsvfs->z_shares_dir == 0) { 1104 ZFS_EXIT(zfsvfs); 1105 return (SET_ERROR(ENOTSUP)); 1106 } 1107 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 1108 error = VOP_GETATTR(ZTOV(dzp), vap, flags, cr, ct); 1109 VN_RELE(ZTOV(dzp)); 1110 } 1111 ZFS_EXIT(zfsvfs); 1112 return (error); 1113 1114 1115 } 1116 1117 /* ARGSUSED */ 1118 static int 1119 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1120 caller_context_t *ct) 1121 { 1122 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1123 zfsctl_snapdir_t *sdp = vp->v_data; 1124 1125 ZFS_ENTER(zfsvfs); 1126 zfsctl_common_getattr(vp, vap); 1127 vap->va_nodeid = gfs_file_inode(vp); 1128 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2; 1129 vap->va_ctime = vap->va_mtime = dmu_objset_snap_cmtime(zfsvfs->z_os); 1130 ZFS_EXIT(zfsvfs); 1131 1132 return (0); 1133 } 1134 1135 /* ARGSUSED */ 1136 static void 1137 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1138 { 1139 zfsctl_snapdir_t *sdp = vp->v_data; 1140 void *private; 1141 1142 private = gfs_dir_inactive(vp); 1143 if (private != NULL) { 1144 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0); 1145 mutex_destroy(&sdp->sd_lock); 1146 avl_destroy(&sdp->sd_snaps); 1147 kmem_free(private, sizeof (zfsctl_snapdir_t)); 1148 } 1149 } 1150 1151 static const fs_operation_def_t zfsctl_tops_snapdir[] = { 1152 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 1153 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 1154 { VOPNAME_IOCTL, { .error = fs_inval } }, 1155 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_snapdir_getattr } }, 1156 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 1157 { VOPNAME_RENAME, { .vop_rename = zfsctl_snapdir_rename } }, 1158 { VOPNAME_RMDIR, { .vop_rmdir = zfsctl_snapdir_remove } }, 1159 { VOPNAME_MKDIR, { .vop_mkdir = zfsctl_snapdir_mkdir } }, 1160 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 1161 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_snapdir_lookup } }, 1162 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 1163 { VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapdir_inactive } }, 1164 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 1165 { NULL } 1166 }; 1167 1168 static const fs_operation_def_t zfsctl_tops_shares[] = { 1169 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 1170 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 1171 { VOPNAME_IOCTL, { .error = fs_inval } }, 1172 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_shares_getattr } }, 1173 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 1174 { VOPNAME_READDIR, { .vop_readdir = zfsctl_shares_readdir } }, 1175 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_shares_lookup } }, 1176 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 1177 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 1178 { VOPNAME_FID, { .vop_fid = zfsctl_shares_fid } }, 1179 { NULL } 1180 }; 1181 1182 /* 1183 * pvp is the GFS vnode '.zfs/snapshot'. 1184 * 1185 * This creates a GFS node under '.zfs/snapshot' representing each 1186 * snapshot. This newly created GFS node is what we mount snapshot 1187 * vfs_t's ontop of. 1188 */ 1189 static vnode_t * 1190 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset) 1191 { 1192 vnode_t *vp; 1193 zfsctl_node_t *zcp; 1194 1195 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 1196 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 1197 zcp = vp->v_data; 1198 zcp->zc_id = objset; 1199 1200 return (vp); 1201 } 1202 1203 static void 1204 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1205 { 1206 zfsctl_snapdir_t *sdp; 1207 zfs_snapentry_t *sep, *next; 1208 vnode_t *dvp; 1209 1210 VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr, 0, NULL, NULL) == 0); 1211 sdp = dvp->v_data; 1212 1213 mutex_enter(&sdp->sd_lock); 1214 1215 mutex_enter(&vp->v_lock); 1216 if (vp->v_count > 1) { 1217 vp->v_count--; 1218 mutex_exit(&vp->v_lock); 1219 mutex_exit(&sdp->sd_lock); 1220 VN_RELE(dvp); 1221 return; 1222 } 1223 mutex_exit(&vp->v_lock); 1224 ASSERT(!vn_ismntpt(vp)); 1225 1226 sep = avl_first(&sdp->sd_snaps); 1227 while (sep != NULL) { 1228 next = AVL_NEXT(&sdp->sd_snaps, sep); 1229 1230 if (sep->se_root == vp) { 1231 avl_remove(&sdp->sd_snaps, sep); 1232 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 1233 kmem_free(sep, sizeof (zfs_snapentry_t)); 1234 break; 1235 } 1236 sep = next; 1237 } 1238 ASSERT(sep != NULL); 1239 1240 mutex_exit(&sdp->sd_lock); 1241 VN_RELE(dvp); 1242 1243 /* 1244 * Dispose of the vnode for the snapshot mount point. 1245 * This is safe to do because once this entry has been removed 1246 * from the AVL tree, it can't be found again, so cannot become 1247 * "active". If we lookup the same name again we will end up 1248 * creating a new vnode. 1249 */ 1250 gfs_vop_inactive(vp, cr, ct); 1251 } 1252 1253 1254 /* 1255 * These VP's should never see the light of day. They should always 1256 * be covered. 1257 */ 1258 static const fs_operation_def_t zfsctl_tops_snapshot[] = { 1259 VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapshot_inactive }, 1260 NULL, NULL 1261 }; 1262 1263 int 1264 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp) 1265 { 1266 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1267 vnode_t *dvp, *vp; 1268 zfsctl_snapdir_t *sdp; 1269 zfsctl_node_t *zcp; 1270 zfs_snapentry_t *sep; 1271 int error; 1272 1273 ASSERT(zfsvfs->z_ctldir != NULL); 1274 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1275 NULL, 0, NULL, kcred, NULL, NULL, NULL); 1276 if (error != 0) 1277 return (error); 1278 sdp = dvp->v_data; 1279 1280 mutex_enter(&sdp->sd_lock); 1281 sep = avl_first(&sdp->sd_snaps); 1282 while (sep != NULL) { 1283 vp = sep->se_root; 1284 zcp = vp->v_data; 1285 if (zcp->zc_id == objsetid) 1286 break; 1287 1288 sep = AVL_NEXT(&sdp->sd_snaps, sep); 1289 } 1290 1291 if (sep != NULL) { 1292 VN_HOLD(vp); 1293 /* 1294 * Return the mounted root rather than the covered mount point. 1295 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid> 1296 * and returns the ZFS vnode mounted on top of the GFS node. 1297 * This ZFS vnode is the root of the vfs for objset 'objsetid'. 1298 */ 1299 error = traverse(&vp); 1300 if (error == 0) { 1301 if (vp == sep->se_root) 1302 error = SET_ERROR(EINVAL); 1303 else 1304 *zfsvfsp = VTOZ(vp)->z_zfsvfs; 1305 } 1306 mutex_exit(&sdp->sd_lock); 1307 VN_RELE(vp); 1308 } else { 1309 error = SET_ERROR(EINVAL); 1310 mutex_exit(&sdp->sd_lock); 1311 } 1312 1313 VN_RELE(dvp); 1314 1315 return (error); 1316 } 1317 1318 /* 1319 * Unmount any snapshots for the given filesystem. This is called from 1320 * zfs_umount() - if we have a ctldir, then go through and unmount all the 1321 * snapshots. 1322 */ 1323 int 1324 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr) 1325 { 1326 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1327 vnode_t *dvp; 1328 zfsctl_snapdir_t *sdp; 1329 zfs_snapentry_t *sep, *next; 1330 int error; 1331 1332 ASSERT(zfsvfs->z_ctldir != NULL); 1333 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1334 NULL, 0, NULL, cr, NULL, NULL, NULL); 1335 if (error != 0) 1336 return (error); 1337 sdp = dvp->v_data; 1338 1339 mutex_enter(&sdp->sd_lock); 1340 1341 sep = avl_first(&sdp->sd_snaps); 1342 while (sep != NULL) { 1343 next = AVL_NEXT(&sdp->sd_snaps, sep); 1344 1345 /* 1346 * If this snapshot is not mounted, then it must 1347 * have just been unmounted by somebody else, and 1348 * will be cleaned up by zfsctl_snapdir_inactive(). 1349 */ 1350 if (vn_ismntpt(sep->se_root)) { 1351 avl_remove(&sdp->sd_snaps, sep); 1352 error = zfsctl_unmount_snap(sep, fflags, cr); 1353 if (error) { 1354 avl_add(&sdp->sd_snaps, sep); 1355 break; 1356 } 1357 } 1358 sep = next; 1359 } 1360 1361 mutex_exit(&sdp->sd_lock); 1362 VN_RELE(dvp); 1363 1364 return (error); 1365 } 1366