1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * ZFS control directory (a.k.a. ".zfs") 30 * 31 * This directory provides a common location for all ZFS meta-objects. 32 * Currently, this is only the 'snapshot' directory, but this may expand in the 33 * future. The elements are built using the GFS primitives, as the hierarchy 34 * does not actually exist on disk. 35 * 36 * For 'snapshot', we don't want to have all snapshots always mounted, because 37 * this would take up a huge amount of space in /etc/mnttab. We have three 38 * types of objects: 39 * 40 * ctldir ------> snapshotdir -------> snapshot 41 * | 42 * | 43 * V 44 * mounted fs 45 * 46 * The 'snapshot' node contains just enough information to lookup '..' and act 47 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 48 * perform an automount of the underlying filesystem and return the 49 * corresponding vnode. 50 * 51 * All mounts are handled automatically by the kernel, but unmounts are 52 * (currently) handled from user land. The main reason is that there is no 53 * reliable way to auto-unmount the filesystem when it's "no longer in use". 54 * When the user unmounts a filesystem, we call zfsctl_unmount(), which 55 * unmounts any snapshots within the snapshot directory. 56 */ 57 58 #include <fs/fs_subr.h> 59 #include <sys/zfs_ctldir.h> 60 #include <sys/zfs_ioctl.h> 61 #include <sys/zfs_vfsops.h> 62 #include <sys/gfs.h> 63 #include <sys/stat.h> 64 #include <sys/dmu.h> 65 #include <sys/mount.h> 66 67 typedef struct { 68 char *se_name; 69 vnode_t *se_root; 70 avl_node_t se_node; 71 } zfs_snapentry_t; 72 73 static int 74 snapentry_compare(const void *a, const void *b) 75 { 76 const zfs_snapentry_t *sa = a; 77 const zfs_snapentry_t *sb = b; 78 int ret = strcmp(sa->se_name, sb->se_name); 79 80 if (ret < 0) 81 return (-1); 82 else if (ret > 0) 83 return (1); 84 else 85 return (0); 86 } 87 88 vnodeops_t *zfsctl_ops_root; 89 vnodeops_t *zfsctl_ops_snapdir; 90 vnodeops_t *zfsctl_ops_snapshot; 91 92 static const fs_operation_def_t zfsctl_tops_root[]; 93 static const fs_operation_def_t zfsctl_tops_snapdir[]; 94 static const fs_operation_def_t zfsctl_tops_snapshot[]; 95 96 static vnode_t *zfsctl_mknode_snapdir(vnode_t *); 97 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset); 98 99 static gfs_opsvec_t zfsctl_opsvec[] = { 100 { ".zfs", zfsctl_tops_root, &zfsctl_ops_root }, 101 { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir }, 102 { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot }, 103 { NULL } 104 }; 105 106 typedef struct zfsctl_node { 107 gfs_dir_t zc_gfs_private; 108 uint64_t zc_id; 109 timestruc_t zc_cmtime; /* ctime and mtime, always the same */ 110 } zfsctl_node_t; 111 112 typedef struct zfsctl_snapdir { 113 zfsctl_node_t sd_node; 114 kmutex_t sd_lock; 115 avl_tree_t sd_snaps; 116 } zfsctl_snapdir_t; 117 118 /* 119 * Root directory elements. We have only a single static entry, 'snapshot'. 120 */ 121 static gfs_dirent_t zfsctl_root_entries[] = { 122 { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE }, 123 { NULL } 124 }; 125 126 /* include . and .. in the calculation */ 127 #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \ 128 sizeof (gfs_dirent_t)) + 1) 129 130 131 /* 132 * Initialize the various GFS pieces we'll need to create and manipulate .zfs 133 * directories. This is called from the ZFS init routine, and initializes the 134 * vnode ops vectors that we'll be using. 135 */ 136 void 137 zfsctl_init(void) 138 { 139 VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0); 140 } 141 142 void 143 zfsctl_fini(void) 144 { 145 /* 146 * Remove vfsctl vnode ops 147 */ 148 if (zfsctl_ops_root) 149 vn_freevnodeops(zfsctl_ops_root); 150 if (zfsctl_ops_snapdir) 151 vn_freevnodeops(zfsctl_ops_snapdir); 152 if (zfsctl_ops_snapshot) 153 vn_freevnodeops(zfsctl_ops_snapshot); 154 155 zfsctl_ops_root = NULL; 156 zfsctl_ops_snapdir = NULL; 157 zfsctl_ops_snapshot = NULL; 158 } 159 160 /* 161 * Return the inode number associated with the 'snapshot' directory. 162 */ 163 /* ARGSUSED */ 164 static ino64_t 165 zfsctl_root_inode_cb(vnode_t *vp, int index) 166 { 167 ASSERT(index == 0); 168 return (ZFSCTL_INO_SNAPDIR); 169 } 170 171 /* 172 * Create the '.zfs' directory. This directory is cached as part of the VFS 173 * structure. This results in a hold on the vfs_t. The code in zfs_umount() 174 * therefore checks against a vfs_count of 2 instead of 1. This reference 175 * is removed when the ctldir is destroyed in the unmount. 176 */ 177 void 178 zfsctl_create(zfsvfs_t *zfsvfs) 179 { 180 vnode_t *vp, *rvp; 181 zfsctl_node_t *zcp; 182 183 ASSERT(zfsvfs->z_ctldir == NULL); 184 185 vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs, 186 zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries, 187 zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL); 188 zcp = vp->v_data; 189 zcp->zc_id = ZFSCTL_INO_ROOT; 190 191 VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0); 192 ZFS_TIME_DECODE(&zcp->zc_cmtime, VTOZ(rvp)->z_phys->zp_crtime); 193 VN_RELE(rvp); 194 195 /* 196 * We're only faking the fact that we have a root of a filesystem for 197 * the sake of the GFS interfaces. Undo the flag manipulation it did 198 * for us. 199 */ 200 vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT); 201 202 zfsvfs->z_ctldir = vp; 203 } 204 205 /* 206 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted. 207 * There might still be more references if we were force unmounted, but only 208 * new zfs_inactive() calls can occur and they don't reference .zfs 209 */ 210 void 211 zfsctl_destroy(zfsvfs_t *zfsvfs) 212 { 213 VN_RELE(zfsvfs->z_ctldir); 214 zfsvfs->z_ctldir = NULL; 215 } 216 217 /* 218 * Given a root znode, retrieve the associated .zfs directory. 219 * Add a hold to the vnode and return it. 220 */ 221 vnode_t * 222 zfsctl_root(znode_t *zp) 223 { 224 ASSERT(zfs_has_ctldir(zp)); 225 VN_HOLD(zp->z_zfsvfs->z_ctldir); 226 return (zp->z_zfsvfs->z_ctldir); 227 } 228 229 /* 230 * Common open routine. Disallow any write access. 231 */ 232 /* ARGSUSED */ 233 static int 234 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr) 235 { 236 if (flags & FWRITE) 237 return (EACCES); 238 239 return (0); 240 } 241 242 /* 243 * Common close routine. Nothing to do here. 244 */ 245 /* ARGSUSED */ 246 static int 247 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off, 248 cred_t *cr) 249 { 250 return (0); 251 } 252 253 /* 254 * Common access routine. Disallow writes. 255 */ 256 /* ARGSUSED */ 257 static int 258 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr) 259 { 260 if (mode & VWRITE) 261 return (EACCES); 262 263 return (0); 264 } 265 266 /* 267 * Common getattr function. Fill in basic information. 268 */ 269 static void 270 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap) 271 { 272 zfsctl_node_t *zcp = vp->v_data; 273 timestruc_t now; 274 275 vap->va_uid = 0; 276 vap->va_gid = 0; 277 vap->va_rdev = 0; 278 /* 279 * We are a purly virtual object, so we have no 280 * blocksize or allocated blocks. 281 */ 282 vap->va_blksize = 0; 283 vap->va_nblocks = 0; 284 vap->va_seq = 0; 285 vap->va_fsid = vp->v_vfsp->vfs_dev; 286 vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | 287 S_IROTH | S_IXOTH; 288 vap->va_type = VDIR; 289 /* 290 * We live in the now (for atime). 291 */ 292 gethrestime(&now); 293 vap->va_atime = now; 294 vap->va_mtime = vap->va_ctime = zcp->zc_cmtime; 295 } 296 297 static int 298 zfsctl_common_fid(vnode_t *vp, fid_t *fidp) 299 { 300 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 301 zfsctl_node_t *zcp = vp->v_data; 302 uint64_t object = zcp->zc_id; 303 zfid_short_t *zfid; 304 int i; 305 306 ZFS_ENTER(zfsvfs); 307 308 if (fidp->fid_len < SHORT_FID_LEN) { 309 fidp->fid_len = SHORT_FID_LEN; 310 ZFS_EXIT(zfsvfs); 311 return (ENOSPC); 312 } 313 314 zfid = (zfid_short_t *)fidp; 315 316 zfid->zf_len = SHORT_FID_LEN; 317 318 for (i = 0; i < sizeof (zfid->zf_object); i++) 319 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 320 321 /* .zfs znodes always have a generation number of 0 */ 322 for (i = 0; i < sizeof (zfid->zf_gen); i++) 323 zfid->zf_gen[i] = 0; 324 325 ZFS_EXIT(zfsvfs); 326 return (0); 327 } 328 329 /* 330 * .zfs inode namespace 331 * 332 * We need to generate unique inode numbers for all files and directories 333 * within the .zfs pseudo-filesystem. We use the following scheme: 334 * 335 * ENTRY ZFSCTL_INODE 336 * .zfs 1 337 * .zfs/snapshot 2 338 * .zfs/snapshot/<snap> objectid(snap) 339 */ 340 341 #define ZFSCTL_INO_SNAP(id) (id) 342 343 /* 344 * Get root directory attributes. 345 */ 346 /* ARGSUSED */ 347 static int 348 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 349 { 350 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 351 352 ZFS_ENTER(zfsvfs); 353 vap->va_nodeid = ZFSCTL_INO_ROOT; 354 vap->va_nlink = vap->va_size = NROOT_ENTRIES; 355 356 zfsctl_common_getattr(vp, vap); 357 ZFS_EXIT(zfsvfs); 358 359 return (0); 360 } 361 362 /* 363 * Special case the handling of "..". 364 */ 365 /* ARGSUSED */ 366 int 367 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 368 int flags, vnode_t *rdir, cred_t *cr) 369 { 370 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 371 int err; 372 373 ZFS_ENTER(zfsvfs); 374 375 if (strcmp(nm, "..") == 0) { 376 err = VFS_ROOT(dvp->v_vfsp, vpp); 377 } else { 378 err = gfs_dir_lookup(dvp, nm, vpp); 379 } 380 381 ZFS_EXIT(zfsvfs); 382 383 return (err); 384 } 385 386 static const fs_operation_def_t zfsctl_tops_root[] = { 387 { VOPNAME_OPEN, zfsctl_common_open }, 388 { VOPNAME_CLOSE, zfsctl_common_close }, 389 { VOPNAME_IOCTL, fs_inval }, 390 { VOPNAME_GETATTR, zfsctl_root_getattr }, 391 { VOPNAME_ACCESS, zfsctl_common_access }, 392 { VOPNAME_READDIR, gfs_vop_readdir }, 393 { VOPNAME_LOOKUP, zfsctl_root_lookup }, 394 { VOPNAME_SEEK, fs_seek }, 395 { VOPNAME_INACTIVE, (fs_generic_func_p) gfs_vop_inactive }, 396 { VOPNAME_FID, zfsctl_common_fid }, 397 { NULL } 398 }; 399 400 static int 401 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname) 402 { 403 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; 404 405 dmu_objset_name(os, zname); 406 if (strlen(zname) + 1 + strlen(name) >= len) 407 return (ENAMETOOLONG); 408 (void) strcat(zname, "@"); 409 (void) strcat(zname, name); 410 return (0); 411 } 412 413 static int 414 zfsctl_unmount_snap(vnode_t *dvp, const char *name, int force, cred_t *cr) 415 { 416 zfsctl_snapdir_t *sdp = dvp->v_data; 417 zfs_snapentry_t search, *sep; 418 avl_index_t where; 419 int err; 420 421 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 422 423 search.se_name = (char *)name; 424 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) 425 return (ENOENT); 426 427 ASSERT(vn_ismntpt(sep->se_root)); 428 429 /* this will be dropped by dounmount() */ 430 if ((err = vn_vfswlock(sep->se_root)) != 0) 431 return (err); 432 433 VN_HOLD(sep->se_root); 434 err = dounmount(vn_mountedvfs(sep->se_root), force, kcred); 435 if (err) { 436 VN_RELE(sep->se_root); 437 return (err); 438 } 439 ASSERT(sep->se_root->v_count == 1); 440 gfs_vop_inactive(sep->se_root, cr); 441 442 avl_remove(&sdp->sd_snaps, sep); 443 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 444 kmem_free(sep, sizeof (zfs_snapentry_t)); 445 446 return (0); 447 } 448 449 450 static void 451 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm) 452 { 453 avl_index_t where; 454 vfs_t *vfsp; 455 refstr_t *pathref; 456 char newpath[MAXNAMELEN]; 457 const char *oldpath; 458 char *tail; 459 460 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 461 ASSERT(sep != NULL); 462 463 vfsp = vn_mountedvfs(sep->se_root); 464 ASSERT(vfsp != NULL); 465 466 vfs_lock_wait(vfsp); 467 468 /* 469 * Change the name in the AVL tree. 470 */ 471 avl_remove(&sdp->sd_snaps, sep); 472 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 473 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 474 (void) strcpy(sep->se_name, nm); 475 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL); 476 avl_insert(&sdp->sd_snaps, sep, where); 477 478 /* 479 * Change the current mountpoint info: 480 * - update the tail of the mntpoint path 481 * - update the tail of the resource path 482 */ 483 pathref = vfs_getmntpoint(vfsp); 484 oldpath = refstr_value(pathref); 485 VERIFY((tail = strrchr(oldpath, '/')) != NULL); 486 ASSERT((tail - oldpath) + strlen(nm) + 2 < MAXNAMELEN); 487 (void) strncpy(newpath, oldpath, tail - oldpath + 1); 488 (void) strcat(newpath, nm); 489 refstr_rele(pathref); 490 vfs_setmntpoint(vfsp, newpath); 491 492 pathref = vfs_getresource(vfsp); 493 oldpath = refstr_value(pathref); 494 VERIFY((tail = strrchr(oldpath, '@')) != NULL); 495 ASSERT((tail - oldpath) + strlen(nm) + 2 < MAXNAMELEN); 496 (void) strncpy(newpath, oldpath, tail - oldpath + 1); 497 (void) strcat(newpath, nm); 498 refstr_rele(pathref); 499 vfs_setresource(vfsp, newpath); 500 501 vfs_unlock(vfsp); 502 } 503 504 static int 505 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, 506 cred_t *cr) 507 { 508 zfsctl_snapdir_t *sdp = sdvp->v_data; 509 zfs_snapentry_t search, *sep; 510 avl_index_t where; 511 char from[MAXNAMELEN], to[MAXNAMELEN]; 512 int err; 513 514 err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from); 515 if (err) 516 return (err); 517 err = zfs_secpolicy_write(from, NULL, cr); 518 if (err) 519 return (err); 520 521 /* 522 * Cannot move snapshots out of the snapdir. 523 */ 524 if (sdvp != tdvp) 525 return (EINVAL); 526 527 if (strcmp(snm, tnm) == 0) 528 return (0); 529 530 err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to); 531 if (err) 532 return (err); 533 534 mutex_enter(&sdp->sd_lock); 535 536 search.se_name = (char *)snm; 537 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) { 538 mutex_exit(&sdp->sd_lock); 539 return (ENOENT); 540 } 541 542 err = dmu_objset_rename(from, to); 543 if (err == 0) 544 zfsctl_rename_snap(sdp, sep, tnm); 545 546 mutex_exit(&sdp->sd_lock); 547 548 return (err); 549 } 550 551 /* ARGSUSED */ 552 static int 553 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 554 { 555 zfsctl_snapdir_t *sdp = dvp->v_data; 556 char snapname[MAXNAMELEN]; 557 int err; 558 559 err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname); 560 if (err) 561 return (err); 562 err = zfs_secpolicy_write(snapname, NULL, cr); 563 if (err) 564 return (err); 565 566 mutex_enter(&sdp->sd_lock); 567 568 err = zfsctl_unmount_snap(dvp, name, 0, cr); 569 if (err) { 570 mutex_exit(&sdp->sd_lock); 571 return (err); 572 } 573 574 err = dmu_objset_destroy(snapname); 575 576 mutex_exit(&sdp->sd_lock); 577 578 return (err); 579 } 580 581 /* 582 * Lookup entry point for the 'snapshot' directory. Try to open the 583 * snapshot if it exist, creating the pseudo filesystem vnode as necessary. 584 * Perform a mount of the associated dataset on top of the vnode. 585 */ 586 /* ARGSUSED */ 587 static int 588 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 589 int flags, vnode_t *rdir, cred_t *cr) 590 { 591 zfsctl_snapdir_t *sdp = dvp->v_data; 592 objset_t *snap; 593 char snapname[MAXNAMELEN]; 594 char *mountpoint; 595 zfs_snapentry_t *sep, search; 596 struct mounta margs; 597 vfs_t *vfsp; 598 size_t mountpoint_len; 599 avl_index_t where; 600 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 601 int err; 602 603 ASSERT(dvp->v_type == VDIR); 604 605 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) 606 return (0); 607 608 /* 609 * If we get a recursive call, that means we got called 610 * from the domount() code while it was trying to look up the 611 * spec (which looks like a local path for zfs). We need to 612 * add some flag to domount() to tell it not to do this lookup. 613 */ 614 if (MUTEX_HELD(&sdp->sd_lock)) 615 return (ENOENT); 616 617 ZFS_ENTER(zfsvfs); 618 619 mutex_enter(&sdp->sd_lock); 620 search.se_name = (char *)nm; 621 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { 622 *vpp = sep->se_root; 623 VN_HOLD(*vpp); 624 err = traverse(vpp); 625 if (err) { 626 VN_RELE(*vpp); 627 *vpp = NULL; 628 } else if (*vpp == sep->se_root) { 629 /* 630 * The snapshot was unmounted behind our backs, 631 * try to remount it. 632 */ 633 goto domount; 634 } 635 mutex_exit(&sdp->sd_lock); 636 ZFS_EXIT(zfsvfs); 637 return (err); 638 } 639 640 /* 641 * The requested snapshot is not currently mounted, look it up. 642 */ 643 err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname); 644 if (err) { 645 mutex_exit(&sdp->sd_lock); 646 ZFS_EXIT(zfsvfs); 647 return (err); 648 } 649 if (dmu_objset_open(snapname, DMU_OST_ZFS, 650 DS_MODE_STANDARD | DS_MODE_READONLY, &snap) != 0) { 651 mutex_exit(&sdp->sd_lock); 652 ZFS_EXIT(zfsvfs); 653 return (ENOENT); 654 } 655 656 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP); 657 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 658 (void) strcpy(sep->se_name, nm); 659 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap)); 660 avl_insert(&sdp->sd_snaps, sep, where); 661 662 dmu_objset_close(snap); 663 domount: 664 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) + 665 strlen("/.zfs/snapshot/") + strlen(nm) + 1; 666 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP); 667 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s", 668 refstr_value(dvp->v_vfsp->vfs_mntpt), nm); 669 670 margs.spec = snapname; 671 margs.dir = mountpoint; 672 margs.flags = MS_SYSSPACE | MS_NOMNTTAB; 673 margs.fstype = "zfs"; 674 margs.dataptr = NULL; 675 margs.datalen = 0; 676 margs.optptr = NULL; 677 margs.optlen = 0; 678 679 err = domount("zfs", &margs, *vpp, kcred, &vfsp); 680 kmem_free(mountpoint, mountpoint_len); 681 682 if (err == 0) { 683 /* 684 * Return the mounted root rather than the covered mount point. 685 */ 686 VFS_RELE(vfsp); 687 err = traverse(vpp); 688 } 689 690 if (err == 0) { 691 /* 692 * Fix up the root vnode. 693 */ 694 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs); 695 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs; 696 (*vpp)->v_vfsp = zfsvfs->z_vfs; 697 (*vpp)->v_flag &= ~VROOT; 698 } 699 mutex_exit(&sdp->sd_lock); 700 ZFS_EXIT(zfsvfs); 701 702 /* 703 * If we had an error, drop our hold on the vnode and 704 * zfsctl_snapshot_inactive() will clean up. 705 */ 706 if (err) { 707 VN_RELE(*vpp); 708 *vpp = NULL; 709 } 710 return (err); 711 } 712 713 /* ARGSUSED */ 714 static int 715 zfsctl_snapdir_readdir_cb(vnode_t *vp, struct dirent64 *dp, int *eofp, 716 offset_t *offp, offset_t *nextp, void *data) 717 { 718 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 719 char snapname[MAXNAMELEN]; 720 uint64_t id, cookie; 721 722 ZFS_ENTER(zfsvfs); 723 724 cookie = *offp; 725 if (dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id, 726 &cookie) == ENOENT) { 727 *eofp = 1; 728 ZFS_EXIT(zfsvfs); 729 return (0); 730 } 731 732 (void) strcpy(dp->d_name, snapname); 733 dp->d_ino = ZFSCTL_INO_SNAP(id); 734 *nextp = cookie; 735 736 ZFS_EXIT(zfsvfs); 737 738 return (0); 739 } 740 741 vnode_t * 742 zfsctl_mknode_snapdir(vnode_t *pvp) 743 { 744 vnode_t *vp; 745 zfsctl_snapdir_t *sdp; 746 747 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 748 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN, 749 zfsctl_snapdir_readdir_cb, NULL); 750 sdp = vp->v_data; 751 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR; 752 sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 753 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 754 avl_create(&sdp->sd_snaps, snapentry_compare, 755 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 756 return (vp); 757 } 758 759 /* ARGSUSED */ 760 static int 761 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 762 { 763 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 764 zfsctl_snapdir_t *sdp = vp->v_data; 765 766 ZFS_ENTER(zfsvfs); 767 zfsctl_common_getattr(vp, vap); 768 vap->va_nodeid = gfs_file_inode(vp); 769 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2; 770 ZFS_EXIT(zfsvfs); 771 772 return (0); 773 } 774 775 /* ARGSUSED */ 776 static void 777 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr) 778 { 779 zfsctl_snapdir_t *sdp = vp->v_data; 780 void *private; 781 782 private = gfs_dir_inactive(vp); 783 if (private != NULL) { 784 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0); 785 mutex_destroy(&sdp->sd_lock); 786 avl_destroy(&sdp->sd_snaps); 787 kmem_free(private, sizeof (zfsctl_snapdir_t)); 788 } 789 } 790 791 static const fs_operation_def_t zfsctl_tops_snapdir[] = { 792 { VOPNAME_OPEN, zfsctl_common_open }, 793 { VOPNAME_CLOSE, zfsctl_common_close }, 794 { VOPNAME_IOCTL, fs_inval }, 795 { VOPNAME_GETATTR, zfsctl_snapdir_getattr }, 796 { VOPNAME_ACCESS, zfsctl_common_access }, 797 { VOPNAME_RENAME, zfsctl_snapdir_rename }, 798 { VOPNAME_RMDIR, zfsctl_snapdir_remove }, 799 { VOPNAME_READDIR, gfs_vop_readdir }, 800 { VOPNAME_LOOKUP, zfsctl_snapdir_lookup }, 801 { VOPNAME_SEEK, fs_seek }, 802 { VOPNAME_INACTIVE, (fs_generic_func_p) zfsctl_snapdir_inactive }, 803 { VOPNAME_FID, zfsctl_common_fid }, 804 { NULL } 805 }; 806 807 static vnode_t * 808 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset) 809 { 810 vnode_t *vp; 811 zfsctl_node_t *zcp; 812 813 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 814 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 815 zcp = vp->v_data; 816 zcp->zc_id = objset; 817 818 return (vp); 819 } 820 821 static void 822 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr) 823 { 824 zfsctl_snapdir_t *sdp; 825 zfs_snapentry_t *sep, *next; 826 vnode_t *dvp; 827 828 VERIFY(gfs_dir_lookup(vp, "..", &dvp) == 0); 829 sdp = dvp->v_data; 830 831 mutex_enter(&sdp->sd_lock); 832 833 if (vp->v_count > 1) { 834 mutex_exit(&sdp->sd_lock); 835 return; 836 } 837 ASSERT(!vn_ismntpt(vp)); 838 839 sep = avl_first(&sdp->sd_snaps); 840 while (sep != NULL) { 841 next = AVL_NEXT(&sdp->sd_snaps, sep); 842 843 if (sep->se_root == vp) { 844 avl_remove(&sdp->sd_snaps, sep); 845 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 846 kmem_free(sep, sizeof (zfs_snapentry_t)); 847 break; 848 } 849 sep = next; 850 } 851 ASSERT(sep != NULL); 852 853 mutex_exit(&sdp->sd_lock); 854 VN_RELE(dvp); 855 856 /* 857 * Dispose of the vnode for the snapshot mount point. 858 * This is safe to do because once this entry has been removed 859 * from the AVL tree, it can't be found again, so cannot become 860 * "active". If we lookup the same name again we will end up 861 * creating a new vnode. 862 */ 863 gfs_vop_inactive(vp, cr); 864 } 865 866 867 /* 868 * These VP's should never see the light of day. They should always 869 * be covered. 870 */ 871 static const fs_operation_def_t zfsctl_tops_snapshot[] = { 872 VOPNAME_INACTIVE, (fs_generic_func_p) zfsctl_snapshot_inactive, 873 NULL, NULL 874 }; 875 876 int 877 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp) 878 { 879 zfsvfs_t *zfsvfs = vfsp->vfs_data; 880 vnode_t *dvp, *vp; 881 zfsctl_snapdir_t *sdp; 882 zfsctl_node_t *zcp; 883 zfs_snapentry_t *sep; 884 int error; 885 886 ASSERT(zfsvfs->z_ctldir != NULL); 887 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 888 NULL, 0, NULL, kcred); 889 if (error != 0) 890 return (error); 891 sdp = dvp->v_data; 892 893 mutex_enter(&sdp->sd_lock); 894 sep = avl_first(&sdp->sd_snaps); 895 while (sep != NULL) { 896 vp = sep->se_root; 897 zcp = vp->v_data; 898 if (zcp->zc_id == objsetid) 899 break; 900 901 sep = AVL_NEXT(&sdp->sd_snaps, sep); 902 } 903 904 if (sep != NULL) { 905 VN_HOLD(vp); 906 error = traverse(&vp); 907 if (error == 0) { 908 if (vp == sep->se_root) 909 error = EINVAL; 910 else 911 *zfsvfsp = VTOZ(vp)->z_zfsvfs; 912 } 913 mutex_exit(&sdp->sd_lock); 914 VN_RELE(vp); 915 } else { 916 error = EINVAL; 917 mutex_exit(&sdp->sd_lock); 918 } 919 920 VN_RELE(dvp); 921 922 return (error); 923 } 924 925 /* 926 * Unmount any snapshots for the given filesystem. This is called from 927 * zfs_umount() - if we have a ctldir, then go through and unmount all the 928 * snapshots. 929 */ 930 int 931 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr) 932 { 933 zfsvfs_t *zfsvfs = vfsp->vfs_data; 934 vnode_t *dvp, *svp; 935 zfsctl_snapdir_t *sdp; 936 zfs_snapentry_t *sep, *next; 937 int error; 938 939 ASSERT(zfsvfs->z_ctldir != NULL); 940 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 941 NULL, 0, NULL, cr); 942 if (error != 0) 943 return (error); 944 sdp = dvp->v_data; 945 946 mutex_enter(&sdp->sd_lock); 947 948 sep = avl_first(&sdp->sd_snaps); 949 while (sep != NULL) { 950 svp = sep->se_root; 951 next = AVL_NEXT(&sdp->sd_snaps, sep); 952 953 /* 954 * If this snapshot is not mounted, then it must 955 * have just been unmounted by somebody else, and 956 * will be cleaned up by zfsctl_snapdir_inactive(). 957 */ 958 if (vn_ismntpt(svp)) { 959 if ((error = vn_vfswlock(svp)) != 0) 960 goto out; 961 962 VN_HOLD(svp); 963 error = dounmount(vn_mountedvfs(svp), fflags, cr); 964 if (error) { 965 VN_RELE(svp); 966 goto out; 967 } 968 969 avl_remove(&sdp->sd_snaps, sep); 970 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 971 kmem_free(sep, sizeof (zfs_snapentry_t)); 972 973 /* 974 * We can't use VN_RELE(), as that will try to 975 * invoke zfsctl_snapdir_inactive(), and that 976 * would lead to an attempt to re-grab the sd_lock. 977 */ 978 ASSERT3U(svp->v_count, ==, 1); 979 gfs_vop_inactive(svp, cr); 980 } 981 sep = next; 982 } 983 out: 984 mutex_exit(&sdp->sd_lock); 985 VN_RELE(dvp); 986 987 return (error); 988 } 989