1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * ZFS control directory (a.k.a. ".zfs") 30 * 31 * This directory provides a common location for all ZFS meta-objects. 32 * Currently, this is only the 'snapshot' directory, but this may expand in the 33 * future. The elements are built using the GFS primitives, as the hierarchy 34 * does not actually exist on disk. 35 * 36 * For 'snapshot', we don't want to have all snapshots always mounted, because 37 * this would take up a huge amount of space in /etc/mnttab. We have three 38 * types of objects: 39 * 40 * ctldir ------> snapshotdir -------> snapshot 41 * | 42 * | 43 * V 44 * mounted fs 45 * 46 * The 'snapshot' node contains just enough information to lookup '..' and act 47 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 48 * perform an automount of the underlying filesystem and return the 49 * corresponding vnode. 50 * 51 * All mounts are handled automatically by the kernel, but unmounts are 52 * (currently) handled from user land. The main reason is that there is no 53 * reliable way to auto-unmount the filesystem when it's "no longer in use". 54 * When the user unmounts a filesystem, we call zfsctl_unmount(), which 55 * unmounts any snapshots within the snapshot directory. 56 */ 57 58 #include <fs/fs_subr.h> 59 #include <sys/zfs_ctldir.h> 60 #include <sys/zfs_ioctl.h> 61 #include <sys/zfs_vfsops.h> 62 #include <sys/vfs_opreg.h> 63 #include <sys/gfs.h> 64 #include <sys/stat.h> 65 #include <sys/dmu.h> 66 #include <sys/dsl_deleg.h> 67 #include <sys/mount.h> 68 69 typedef struct { 70 char *se_name; 71 vnode_t *se_root; 72 avl_node_t se_node; 73 } zfs_snapentry_t; 74 75 static int 76 snapentry_compare(const void *a, const void *b) 77 { 78 const zfs_snapentry_t *sa = a; 79 const zfs_snapentry_t *sb = b; 80 int ret = strcmp(sa->se_name, sb->se_name); 81 82 if (ret < 0) 83 return (-1); 84 else if (ret > 0) 85 return (1); 86 else 87 return (0); 88 } 89 90 vnodeops_t *zfsctl_ops_root; 91 vnodeops_t *zfsctl_ops_snapdir; 92 vnodeops_t *zfsctl_ops_snapshot; 93 94 static const fs_operation_def_t zfsctl_tops_root[]; 95 static const fs_operation_def_t zfsctl_tops_snapdir[]; 96 static const fs_operation_def_t zfsctl_tops_snapshot[]; 97 98 static vnode_t *zfsctl_mknode_snapdir(vnode_t *); 99 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset); 100 101 static gfs_opsvec_t zfsctl_opsvec[] = { 102 { ".zfs", zfsctl_tops_root, &zfsctl_ops_root }, 103 { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir }, 104 { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot }, 105 { NULL } 106 }; 107 108 typedef struct zfsctl_node { 109 gfs_dir_t zc_gfs_private; 110 uint64_t zc_id; 111 timestruc_t zc_cmtime; /* ctime and mtime, always the same */ 112 } zfsctl_node_t; 113 114 typedef struct zfsctl_snapdir { 115 zfsctl_node_t sd_node; 116 kmutex_t sd_lock; 117 avl_tree_t sd_snaps; 118 } zfsctl_snapdir_t; 119 120 /* 121 * Root directory elements. We have only a single static entry, 'snapshot'. 122 */ 123 static gfs_dirent_t zfsctl_root_entries[] = { 124 { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE }, 125 { NULL } 126 }; 127 128 /* include . and .. in the calculation */ 129 #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \ 130 sizeof (gfs_dirent_t)) + 1) 131 132 133 /* 134 * Initialize the various GFS pieces we'll need to create and manipulate .zfs 135 * directories. This is called from the ZFS init routine, and initializes the 136 * vnode ops vectors that we'll be using. 137 */ 138 void 139 zfsctl_init(void) 140 { 141 VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0); 142 } 143 144 void 145 zfsctl_fini(void) 146 { 147 /* 148 * Remove vfsctl vnode ops 149 */ 150 if (zfsctl_ops_root) 151 vn_freevnodeops(zfsctl_ops_root); 152 if (zfsctl_ops_snapdir) 153 vn_freevnodeops(zfsctl_ops_snapdir); 154 if (zfsctl_ops_snapshot) 155 vn_freevnodeops(zfsctl_ops_snapshot); 156 157 zfsctl_ops_root = NULL; 158 zfsctl_ops_snapdir = NULL; 159 zfsctl_ops_snapshot = NULL; 160 } 161 162 /* 163 * Return the inode number associated with the 'snapshot' directory. 164 */ 165 /* ARGSUSED */ 166 static ino64_t 167 zfsctl_root_inode_cb(vnode_t *vp, int index) 168 { 169 ASSERT(index == 0); 170 return (ZFSCTL_INO_SNAPDIR); 171 } 172 173 /* 174 * Create the '.zfs' directory. This directory is cached as part of the VFS 175 * structure. This results in a hold on the vfs_t. The code in zfs_umount() 176 * therefore checks against a vfs_count of 2 instead of 1. This reference 177 * is removed when the ctldir is destroyed in the unmount. 178 */ 179 void 180 zfsctl_create(zfsvfs_t *zfsvfs) 181 { 182 vnode_t *vp, *rvp; 183 zfsctl_node_t *zcp; 184 185 ASSERT(zfsvfs->z_ctldir == NULL); 186 187 vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs, 188 zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries, 189 zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL); 190 zcp = vp->v_data; 191 zcp->zc_id = ZFSCTL_INO_ROOT; 192 193 VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0); 194 ZFS_TIME_DECODE(&zcp->zc_cmtime, VTOZ(rvp)->z_phys->zp_crtime); 195 VN_RELE(rvp); 196 197 /* 198 * We're only faking the fact that we have a root of a filesystem for 199 * the sake of the GFS interfaces. Undo the flag manipulation it did 200 * for us. 201 */ 202 vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT); 203 204 zfsvfs->z_ctldir = vp; 205 } 206 207 /* 208 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted. 209 * There might still be more references if we were force unmounted, but only 210 * new zfs_inactive() calls can occur and they don't reference .zfs 211 */ 212 void 213 zfsctl_destroy(zfsvfs_t *zfsvfs) 214 { 215 VN_RELE(zfsvfs->z_ctldir); 216 zfsvfs->z_ctldir = NULL; 217 } 218 219 /* 220 * Given a root znode, retrieve the associated .zfs directory. 221 * Add a hold to the vnode and return it. 222 */ 223 vnode_t * 224 zfsctl_root(znode_t *zp) 225 { 226 ASSERT(zfs_has_ctldir(zp)); 227 VN_HOLD(zp->z_zfsvfs->z_ctldir); 228 return (zp->z_zfsvfs->z_ctldir); 229 } 230 231 /* 232 * Common open routine. Disallow any write access. 233 */ 234 /* ARGSUSED */ 235 static int 236 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr) 237 { 238 if (flags & FWRITE) 239 return (EACCES); 240 241 return (0); 242 } 243 244 /* 245 * Common close routine. Nothing to do here. 246 */ 247 /* ARGSUSED */ 248 static int 249 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off, 250 cred_t *cr) 251 { 252 return (0); 253 } 254 255 /* 256 * Common access routine. Disallow writes. 257 */ 258 /* ARGSUSED */ 259 static int 260 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr) 261 { 262 if (mode & VWRITE) 263 return (EACCES); 264 265 return (0); 266 } 267 268 /* 269 * Common getattr function. Fill in basic information. 270 */ 271 static void 272 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap) 273 { 274 zfsctl_node_t *zcp = vp->v_data; 275 timestruc_t now; 276 277 vap->va_uid = 0; 278 vap->va_gid = 0; 279 vap->va_rdev = 0; 280 /* 281 * We are a purly virtual object, so we have no 282 * blocksize or allocated blocks. 283 */ 284 vap->va_blksize = 0; 285 vap->va_nblocks = 0; 286 vap->va_seq = 0; 287 vap->va_fsid = vp->v_vfsp->vfs_dev; 288 vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | 289 S_IROTH | S_IXOTH; 290 vap->va_type = VDIR; 291 /* 292 * We live in the now (for atime). 293 */ 294 gethrestime(&now); 295 vap->va_atime = now; 296 vap->va_mtime = vap->va_ctime = zcp->zc_cmtime; 297 } 298 299 static int 300 zfsctl_common_fid(vnode_t *vp, fid_t *fidp) 301 { 302 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 303 zfsctl_node_t *zcp = vp->v_data; 304 uint64_t object = zcp->zc_id; 305 zfid_short_t *zfid; 306 int i; 307 308 ZFS_ENTER(zfsvfs); 309 310 if (fidp->fid_len < SHORT_FID_LEN) { 311 fidp->fid_len = SHORT_FID_LEN; 312 ZFS_EXIT(zfsvfs); 313 return (ENOSPC); 314 } 315 316 zfid = (zfid_short_t *)fidp; 317 318 zfid->zf_len = SHORT_FID_LEN; 319 320 for (i = 0; i < sizeof (zfid->zf_object); i++) 321 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 322 323 /* .zfs znodes always have a generation number of 0 */ 324 for (i = 0; i < sizeof (zfid->zf_gen); i++) 325 zfid->zf_gen[i] = 0; 326 327 ZFS_EXIT(zfsvfs); 328 return (0); 329 } 330 331 /* 332 * .zfs inode namespace 333 * 334 * We need to generate unique inode numbers for all files and directories 335 * within the .zfs pseudo-filesystem. We use the following scheme: 336 * 337 * ENTRY ZFSCTL_INODE 338 * .zfs 1 339 * .zfs/snapshot 2 340 * .zfs/snapshot/<snap> objectid(snap) 341 */ 342 343 #define ZFSCTL_INO_SNAP(id) (id) 344 345 /* 346 * Get root directory attributes. 347 */ 348 /* ARGSUSED */ 349 static int 350 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 351 { 352 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 353 354 ZFS_ENTER(zfsvfs); 355 vap->va_nodeid = ZFSCTL_INO_ROOT; 356 vap->va_nlink = vap->va_size = NROOT_ENTRIES; 357 358 zfsctl_common_getattr(vp, vap); 359 ZFS_EXIT(zfsvfs); 360 361 return (0); 362 } 363 364 /* 365 * Special case the handling of "..". 366 */ 367 /* ARGSUSED */ 368 int 369 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 370 int flags, vnode_t *rdir, cred_t *cr) 371 { 372 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 373 int err; 374 375 ZFS_ENTER(zfsvfs); 376 377 if (strcmp(nm, "..") == 0) { 378 err = VFS_ROOT(dvp->v_vfsp, vpp); 379 } else { 380 err = gfs_dir_lookup(dvp, nm, vpp); 381 } 382 383 ZFS_EXIT(zfsvfs); 384 385 return (err); 386 } 387 388 static const fs_operation_def_t zfsctl_tops_root[] = { 389 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 390 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 391 { VOPNAME_IOCTL, { .error = fs_inval } }, 392 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_root_getattr } }, 393 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 394 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 395 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_root_lookup } }, 396 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 397 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 398 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 399 { NULL } 400 }; 401 402 static int 403 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname) 404 { 405 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; 406 407 dmu_objset_name(os, zname); 408 if (strlen(zname) + 1 + strlen(name) >= len) 409 return (ENAMETOOLONG); 410 (void) strcat(zname, "@"); 411 (void) strcat(zname, name); 412 return (0); 413 } 414 415 int 416 zfsctl_unmount_snap(vnode_t *dvp, const char *name, int force, cred_t *cr) 417 { 418 zfsctl_snapdir_t *sdp = dvp->v_data; 419 zfs_snapentry_t search, *sep; 420 avl_index_t where; 421 int err; 422 423 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 424 425 search.se_name = (char *)name; 426 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) 427 return (ENOENT); 428 429 ASSERT(vn_ismntpt(sep->se_root)); 430 431 /* this will be dropped by dounmount() */ 432 if ((err = vn_vfswlock(sep->se_root)) != 0) 433 return (err); 434 435 VN_HOLD(sep->se_root); 436 err = dounmount(vn_mountedvfs(sep->se_root), force, kcred); 437 if (err) { 438 VN_RELE(sep->se_root); 439 return (err); 440 } 441 ASSERT(sep->se_root->v_count == 1); 442 gfs_vop_inactive(sep->se_root, cr); 443 444 avl_remove(&sdp->sd_snaps, sep); 445 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 446 kmem_free(sep, sizeof (zfs_snapentry_t)); 447 448 return (0); 449 } 450 451 452 static void 453 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm) 454 { 455 avl_index_t where; 456 vfs_t *vfsp; 457 refstr_t *pathref; 458 char newpath[MAXNAMELEN]; 459 char *tail; 460 461 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 462 ASSERT(sep != NULL); 463 464 vfsp = vn_mountedvfs(sep->se_root); 465 ASSERT(vfsp != NULL); 466 467 vfs_lock_wait(vfsp); 468 469 /* 470 * Change the name in the AVL tree. 471 */ 472 avl_remove(&sdp->sd_snaps, sep); 473 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 474 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 475 (void) strcpy(sep->se_name, nm); 476 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL); 477 avl_insert(&sdp->sd_snaps, sep, where); 478 479 /* 480 * Change the current mountpoint info: 481 * - update the tail of the mntpoint path 482 * - update the tail of the resource path 483 */ 484 pathref = vfs_getmntpoint(vfsp); 485 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 486 VERIFY((tail = strrchr(newpath, '/')) != NULL); 487 *(tail+1) = '\0'; 488 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 489 (void) strcat(newpath, nm); 490 refstr_rele(pathref); 491 vfs_setmntpoint(vfsp, newpath); 492 493 pathref = vfs_getresource(vfsp); 494 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 495 VERIFY((tail = strrchr(newpath, '@')) != NULL); 496 *(tail+1) = '\0'; 497 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 498 (void) strcat(newpath, nm); 499 refstr_rele(pathref); 500 vfs_setresource(vfsp, newpath); 501 502 vfs_unlock(vfsp); 503 } 504 505 static int 506 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, 507 cred_t *cr) 508 { 509 zfsctl_snapdir_t *sdp = sdvp->v_data; 510 zfs_snapentry_t search, *sep; 511 avl_index_t where; 512 char from[MAXNAMELEN], to[MAXNAMELEN]; 513 int err; 514 515 err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from); 516 if (err) 517 return (err); 518 519 err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to); 520 if (err) 521 return (err); 522 523 if (err = zfs_secpolicy_rename_perms(from, to, cr)) 524 return (err); 525 /* 526 * Cannot move snapshots out of the snapdir. 527 */ 528 if (sdvp != tdvp) 529 return (EINVAL); 530 531 if (strcmp(snm, tnm) == 0) 532 return (0); 533 534 mutex_enter(&sdp->sd_lock); 535 536 search.se_name = (char *)snm; 537 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) { 538 mutex_exit(&sdp->sd_lock); 539 return (ENOENT); 540 } 541 542 err = dmu_objset_rename(from, to, B_FALSE); 543 if (err == 0) 544 zfsctl_rename_snap(sdp, sep, tnm); 545 546 mutex_exit(&sdp->sd_lock); 547 548 return (err); 549 } 550 551 /* ARGSUSED */ 552 static int 553 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 554 { 555 zfsctl_snapdir_t *sdp = dvp->v_data; 556 char snapname[MAXNAMELEN]; 557 int err; 558 559 err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname); 560 if (err) 561 return (err); 562 563 if (err = zfs_secpolicy_destroy_perms(snapname, cr)) 564 return (err); 565 566 mutex_enter(&sdp->sd_lock); 567 568 err = zfsctl_unmount_snap(dvp, name, MS_FORCE, cr); 569 if (err) { 570 mutex_exit(&sdp->sd_lock); 571 return (err); 572 } 573 574 err = dmu_objset_destroy(snapname); 575 576 mutex_exit(&sdp->sd_lock); 577 578 return (err); 579 } 580 581 /* ARGSUSED */ 582 static int 583 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, 584 cred_t *cr) 585 { 586 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 587 char name[MAXNAMELEN]; 588 int err; 589 static enum symfollow follow = NO_FOLLOW; 590 static enum uio_seg seg = UIO_SYSSPACE; 591 592 dmu_objset_name(zfsvfs->z_os, name); 593 594 *vpp = NULL; 595 596 err = zfs_secpolicy_snapshot_perms(name, cr); 597 if (err) 598 return (err); 599 600 if (err == 0) { 601 err = dmu_objset_snapshot(name, dirname, B_FALSE); 602 if (err) 603 return (err); 604 err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp); 605 } 606 607 return (err); 608 } 609 610 /* 611 * Lookup entry point for the 'snapshot' directory. Try to open the 612 * snapshot if it exist, creating the pseudo filesystem vnode as necessary. 613 * Perform a mount of the associated dataset on top of the vnode. 614 */ 615 /* ARGSUSED */ 616 static int 617 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 618 int flags, vnode_t *rdir, cred_t *cr) 619 { 620 zfsctl_snapdir_t *sdp = dvp->v_data; 621 objset_t *snap; 622 char snapname[MAXNAMELEN]; 623 char *mountpoint; 624 zfs_snapentry_t *sep, search; 625 struct mounta margs; 626 vfs_t *vfsp; 627 size_t mountpoint_len; 628 avl_index_t where; 629 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 630 int err; 631 632 ASSERT(dvp->v_type == VDIR); 633 634 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) 635 return (0); 636 637 /* 638 * If we get a recursive call, that means we got called 639 * from the domount() code while it was trying to look up the 640 * spec (which looks like a local path for zfs). We need to 641 * add some flag to domount() to tell it not to do this lookup. 642 */ 643 if (MUTEX_HELD(&sdp->sd_lock)) 644 return (ENOENT); 645 646 ZFS_ENTER(zfsvfs); 647 648 mutex_enter(&sdp->sd_lock); 649 search.se_name = (char *)nm; 650 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { 651 *vpp = sep->se_root; 652 VN_HOLD(*vpp); 653 err = traverse(vpp); 654 if (err) { 655 VN_RELE(*vpp); 656 *vpp = NULL; 657 } else if (*vpp == sep->se_root) { 658 /* 659 * The snapshot was unmounted behind our backs, 660 * try to remount it. 661 */ 662 goto domount; 663 } 664 mutex_exit(&sdp->sd_lock); 665 ZFS_EXIT(zfsvfs); 666 return (err); 667 } 668 669 /* 670 * The requested snapshot is not currently mounted, look it up. 671 */ 672 err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname); 673 if (err) { 674 mutex_exit(&sdp->sd_lock); 675 ZFS_EXIT(zfsvfs); 676 return (err); 677 } 678 if (dmu_objset_open(snapname, DMU_OST_ZFS, 679 DS_MODE_STANDARD | DS_MODE_READONLY, &snap) != 0) { 680 mutex_exit(&sdp->sd_lock); 681 ZFS_EXIT(zfsvfs); 682 return (ENOENT); 683 } 684 685 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP); 686 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 687 (void) strcpy(sep->se_name, nm); 688 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap)); 689 avl_insert(&sdp->sd_snaps, sep, where); 690 691 dmu_objset_close(snap); 692 domount: 693 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) + 694 strlen("/.zfs/snapshot/") + strlen(nm) + 1; 695 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP); 696 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s", 697 refstr_value(dvp->v_vfsp->vfs_mntpt), nm); 698 699 margs.spec = snapname; 700 margs.dir = mountpoint; 701 margs.flags = MS_SYSSPACE | MS_NOMNTTAB; 702 margs.fstype = "zfs"; 703 margs.dataptr = NULL; 704 margs.datalen = 0; 705 margs.optptr = NULL; 706 margs.optlen = 0; 707 708 err = domount("zfs", &margs, *vpp, kcred, &vfsp); 709 kmem_free(mountpoint, mountpoint_len); 710 711 if (err == 0) { 712 /* 713 * Return the mounted root rather than the covered mount point. 714 */ 715 VFS_RELE(vfsp); 716 err = traverse(vpp); 717 } 718 719 if (err == 0) { 720 /* 721 * Fix up the root vnode. 722 * 723 * This is where we lie about our v_vfsp in order to 724 * make .zfs/snapshot/<snapdir> accessible over NFS 725 * without requiring manual mounts of <snapdir>. 726 */ 727 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs); 728 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs; 729 (*vpp)->v_vfsp = zfsvfs->z_vfs; 730 (*vpp)->v_flag &= ~VROOT; 731 } 732 mutex_exit(&sdp->sd_lock); 733 ZFS_EXIT(zfsvfs); 734 735 /* 736 * If we had an error, drop our hold on the vnode and 737 * zfsctl_snapshot_inactive() will clean up. 738 */ 739 if (err) { 740 VN_RELE(*vpp); 741 *vpp = NULL; 742 } 743 return (err); 744 } 745 746 /* ARGSUSED */ 747 static int 748 zfsctl_snapdir_readdir_cb(vnode_t *vp, struct dirent64 *dp, int *eofp, 749 offset_t *offp, offset_t *nextp, void *data) 750 { 751 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 752 char snapname[MAXNAMELEN]; 753 uint64_t id, cookie; 754 755 ZFS_ENTER(zfsvfs); 756 757 cookie = *offp; 758 if (dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id, 759 &cookie) == ENOENT) { 760 *eofp = 1; 761 ZFS_EXIT(zfsvfs); 762 return (0); 763 } 764 765 (void) strcpy(dp->d_name, snapname); 766 dp->d_ino = ZFSCTL_INO_SNAP(id); 767 *nextp = cookie; 768 769 ZFS_EXIT(zfsvfs); 770 771 return (0); 772 } 773 774 vnode_t * 775 zfsctl_mknode_snapdir(vnode_t *pvp) 776 { 777 vnode_t *vp; 778 zfsctl_snapdir_t *sdp; 779 780 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 781 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN, 782 zfsctl_snapdir_readdir_cb, NULL); 783 sdp = vp->v_data; 784 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR; 785 sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 786 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 787 avl_create(&sdp->sd_snaps, snapentry_compare, 788 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 789 return (vp); 790 } 791 792 /* ARGSUSED */ 793 static int 794 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 795 { 796 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 797 zfsctl_snapdir_t *sdp = vp->v_data; 798 799 ZFS_ENTER(zfsvfs); 800 zfsctl_common_getattr(vp, vap); 801 vap->va_nodeid = gfs_file_inode(vp); 802 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2; 803 ZFS_EXIT(zfsvfs); 804 805 return (0); 806 } 807 808 /* ARGSUSED */ 809 static void 810 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr) 811 { 812 zfsctl_snapdir_t *sdp = vp->v_data; 813 void *private; 814 815 private = gfs_dir_inactive(vp); 816 if (private != NULL) { 817 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0); 818 mutex_destroy(&sdp->sd_lock); 819 avl_destroy(&sdp->sd_snaps); 820 kmem_free(private, sizeof (zfsctl_snapdir_t)); 821 } 822 } 823 824 static const fs_operation_def_t zfsctl_tops_snapdir[] = { 825 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 826 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 827 { VOPNAME_IOCTL, { .error = fs_inval } }, 828 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_snapdir_getattr } }, 829 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 830 { VOPNAME_RENAME, { .vop_rename = zfsctl_snapdir_rename } }, 831 { VOPNAME_RMDIR, { .vop_rmdir = zfsctl_snapdir_remove } }, 832 { VOPNAME_MKDIR, { .vop_mkdir = zfsctl_snapdir_mkdir } }, 833 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 834 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_snapdir_lookup } }, 835 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 836 { VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapdir_inactive } }, 837 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 838 { NULL } 839 }; 840 841 static vnode_t * 842 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset) 843 { 844 vnode_t *vp; 845 zfsctl_node_t *zcp; 846 847 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 848 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 849 zcp = vp->v_data; 850 zcp->zc_id = objset; 851 852 return (vp); 853 } 854 855 static void 856 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr) 857 { 858 zfsctl_snapdir_t *sdp; 859 zfs_snapentry_t *sep, *next; 860 vnode_t *dvp; 861 862 VERIFY(gfs_dir_lookup(vp, "..", &dvp) == 0); 863 sdp = dvp->v_data; 864 865 mutex_enter(&sdp->sd_lock); 866 867 if (vp->v_count > 1) { 868 mutex_exit(&sdp->sd_lock); 869 return; 870 } 871 ASSERT(!vn_ismntpt(vp)); 872 873 sep = avl_first(&sdp->sd_snaps); 874 while (sep != NULL) { 875 next = AVL_NEXT(&sdp->sd_snaps, sep); 876 877 if (sep->se_root == vp) { 878 avl_remove(&sdp->sd_snaps, sep); 879 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 880 kmem_free(sep, sizeof (zfs_snapentry_t)); 881 break; 882 } 883 sep = next; 884 } 885 ASSERT(sep != NULL); 886 887 mutex_exit(&sdp->sd_lock); 888 VN_RELE(dvp); 889 890 /* 891 * Dispose of the vnode for the snapshot mount point. 892 * This is safe to do because once this entry has been removed 893 * from the AVL tree, it can't be found again, so cannot become 894 * "active". If we lookup the same name again we will end up 895 * creating a new vnode. 896 */ 897 gfs_vop_inactive(vp, cr); 898 } 899 900 901 /* 902 * These VP's should never see the light of day. They should always 903 * be covered. 904 */ 905 static const fs_operation_def_t zfsctl_tops_snapshot[] = { 906 VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapshot_inactive }, 907 NULL, NULL 908 }; 909 910 int 911 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp) 912 { 913 zfsvfs_t *zfsvfs = vfsp->vfs_data; 914 vnode_t *dvp, *vp; 915 zfsctl_snapdir_t *sdp; 916 zfsctl_node_t *zcp; 917 zfs_snapentry_t *sep; 918 int error; 919 920 ASSERT(zfsvfs->z_ctldir != NULL); 921 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 922 NULL, 0, NULL, kcred); 923 if (error != 0) 924 return (error); 925 sdp = dvp->v_data; 926 927 mutex_enter(&sdp->sd_lock); 928 sep = avl_first(&sdp->sd_snaps); 929 while (sep != NULL) { 930 vp = sep->se_root; 931 zcp = vp->v_data; 932 if (zcp->zc_id == objsetid) 933 break; 934 935 sep = AVL_NEXT(&sdp->sd_snaps, sep); 936 } 937 938 if (sep != NULL) { 939 VN_HOLD(vp); 940 error = traverse(&vp); 941 if (error == 0) { 942 if (vp == sep->se_root) 943 error = EINVAL; 944 else 945 *zfsvfsp = VTOZ(vp)->z_zfsvfs; 946 } 947 mutex_exit(&sdp->sd_lock); 948 VN_RELE(vp); 949 } else { 950 error = EINVAL; 951 mutex_exit(&sdp->sd_lock); 952 } 953 954 VN_RELE(dvp); 955 956 return (error); 957 } 958 959 /* 960 * Unmount any snapshots for the given filesystem. This is called from 961 * zfs_umount() - if we have a ctldir, then go through and unmount all the 962 * snapshots. 963 */ 964 int 965 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr) 966 { 967 zfsvfs_t *zfsvfs = vfsp->vfs_data; 968 vnode_t *dvp, *svp; 969 zfsctl_snapdir_t *sdp; 970 zfs_snapentry_t *sep, *next; 971 int error; 972 973 ASSERT(zfsvfs->z_ctldir != NULL); 974 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 975 NULL, 0, NULL, cr); 976 if (error != 0) 977 return (error); 978 sdp = dvp->v_data; 979 980 mutex_enter(&sdp->sd_lock); 981 982 sep = avl_first(&sdp->sd_snaps); 983 while (sep != NULL) { 984 svp = sep->se_root; 985 next = AVL_NEXT(&sdp->sd_snaps, sep); 986 987 /* 988 * If this snapshot is not mounted, then it must 989 * have just been unmounted by somebody else, and 990 * will be cleaned up by zfsctl_snapdir_inactive(). 991 */ 992 if (vn_ismntpt(svp)) { 993 if ((error = vn_vfswlock(svp)) != 0) 994 goto out; 995 996 VN_HOLD(svp); 997 error = dounmount(vn_mountedvfs(svp), fflags, cr); 998 if (error) { 999 VN_RELE(svp); 1000 goto out; 1001 } 1002 1003 avl_remove(&sdp->sd_snaps, sep); 1004 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 1005 kmem_free(sep, sizeof (zfs_snapentry_t)); 1006 1007 /* 1008 * We can't use VN_RELE(), as that will try to 1009 * invoke zfsctl_snapdir_inactive(), and that 1010 * would lead to an attempt to re-grab the sd_lock. 1011 */ 1012 ASSERT3U(svp->v_count, ==, 1); 1013 gfs_vop_inactive(svp, cr); 1014 } 1015 sep = next; 1016 } 1017 out: 1018 mutex_exit(&sdp->sd_lock); 1019 VN_RELE(dvp); 1020 1021 return (error); 1022 } 1023