1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * ZFS control directory (a.k.a. ".zfs") 28 * 29 * This directory provides a common location for all ZFS meta-objects. 30 * Currently, this is only the 'snapshot' directory, but this may expand in the 31 * future. The elements are built using the GFS primitives, as the hierarchy 32 * does not actually exist on disk. 33 * 34 * For 'snapshot', we don't want to have all snapshots always mounted, because 35 * this would take up a huge amount of space in /etc/mnttab. We have three 36 * types of objects: 37 * 38 * ctldir ------> snapshotdir -------> snapshot 39 * | 40 * | 41 * V 42 * mounted fs 43 * 44 * The 'snapshot' node contains just enough information to lookup '..' and act 45 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 46 * perform an automount of the underlying filesystem and return the 47 * corresponding vnode. 48 * 49 * All mounts are handled automatically by the kernel, but unmounts are 50 * (currently) handled from user land. The main reason is that there is no 51 * reliable way to auto-unmount the filesystem when it's "no longer in use". 52 * When the user unmounts a filesystem, we call zfsctl_unmount(), which 53 * unmounts any snapshots within the snapshot directory. 54 * 55 * The '.zfs', '.zfs/snapshot', and all directories created under 56 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and 57 * share the same vfs_t as the head filesystem (what '.zfs' lives under). 58 * 59 * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>' 60 * (ie: snapshots) are ZFS nodes and have their own unique vfs_t. 61 * However, vnodes within these mounted on file systems have their v_vfsp 62 * fields set to the head filesystem to make NFS happy (see 63 * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t 64 * so that it cannot be freed until all snapshots have been unmounted. 65 */ 66 67 #include <fs/fs_subr.h> 68 #include <sys/zfs_ctldir.h> 69 #include <sys/zfs_ioctl.h> 70 #include <sys/zfs_vfsops.h> 71 #include <sys/vfs_opreg.h> 72 #include <sys/gfs.h> 73 #include <sys/stat.h> 74 #include <sys/dmu.h> 75 #include <sys/dsl_deleg.h> 76 #include <sys/mount.h> 77 #include <sys/sunddi.h> 78 79 #include "zfs_namecheck.h" 80 81 typedef struct zfsctl_node { 82 gfs_dir_t zc_gfs_private; 83 uint64_t zc_id; 84 timestruc_t zc_cmtime; /* ctime and mtime, always the same */ 85 } zfsctl_node_t; 86 87 typedef struct zfsctl_snapdir { 88 zfsctl_node_t sd_node; 89 kmutex_t sd_lock; 90 avl_tree_t sd_snaps; 91 } zfsctl_snapdir_t; 92 93 typedef struct { 94 char *se_name; 95 vnode_t *se_root; 96 avl_node_t se_node; 97 } zfs_snapentry_t; 98 99 static int 100 snapentry_compare(const void *a, const void *b) 101 { 102 const zfs_snapentry_t *sa = a; 103 const zfs_snapentry_t *sb = b; 104 int ret = strcmp(sa->se_name, sb->se_name); 105 106 if (ret < 0) 107 return (-1); 108 else if (ret > 0) 109 return (1); 110 else 111 return (0); 112 } 113 114 vnodeops_t *zfsctl_ops_root; 115 vnodeops_t *zfsctl_ops_snapdir; 116 vnodeops_t *zfsctl_ops_snapshot; 117 vnodeops_t *zfsctl_ops_shares; 118 vnodeops_t *zfsctl_ops_shares_dir; 119 120 static const fs_operation_def_t zfsctl_tops_root[]; 121 static const fs_operation_def_t zfsctl_tops_snapdir[]; 122 static const fs_operation_def_t zfsctl_tops_snapshot[]; 123 static const fs_operation_def_t zfsctl_tops_shares[]; 124 125 static vnode_t *zfsctl_mknode_snapdir(vnode_t *); 126 static vnode_t *zfsctl_mknode_shares(vnode_t *); 127 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset); 128 static int zfsctl_unmount_snap(zfs_snapentry_t *, int, cred_t *); 129 130 static gfs_opsvec_t zfsctl_opsvec[] = { 131 { ".zfs", zfsctl_tops_root, &zfsctl_ops_root }, 132 { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir }, 133 { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot }, 134 { ".zfs/shares", zfsctl_tops_shares, &zfsctl_ops_shares_dir }, 135 { ".zfs/shares/vnode", zfsctl_tops_shares, &zfsctl_ops_shares }, 136 { NULL } 137 }; 138 139 /* 140 * Root directory elements. We only have two entries 141 * snapshot and shares. 142 */ 143 static gfs_dirent_t zfsctl_root_entries[] = { 144 { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE }, 145 { "shares", zfsctl_mknode_shares, GFS_CACHE_VNODE }, 146 { NULL } 147 }; 148 149 /* include . and .. in the calculation */ 150 #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \ 151 sizeof (gfs_dirent_t)) + 1) 152 153 154 /* 155 * Initialize the various GFS pieces we'll need to create and manipulate .zfs 156 * directories. This is called from the ZFS init routine, and initializes the 157 * vnode ops vectors that we'll be using. 158 */ 159 void 160 zfsctl_init(void) 161 { 162 VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0); 163 } 164 165 void 166 zfsctl_fini(void) 167 { 168 /* 169 * Remove vfsctl vnode ops 170 */ 171 if (zfsctl_ops_root) 172 vn_freevnodeops(zfsctl_ops_root); 173 if (zfsctl_ops_snapdir) 174 vn_freevnodeops(zfsctl_ops_snapdir); 175 if (zfsctl_ops_snapshot) 176 vn_freevnodeops(zfsctl_ops_snapshot); 177 if (zfsctl_ops_shares) 178 vn_freevnodeops(zfsctl_ops_shares); 179 if (zfsctl_ops_shares_dir) 180 vn_freevnodeops(zfsctl_ops_shares_dir); 181 182 zfsctl_ops_root = NULL; 183 zfsctl_ops_snapdir = NULL; 184 zfsctl_ops_snapshot = NULL; 185 zfsctl_ops_shares = NULL; 186 zfsctl_ops_shares_dir = NULL; 187 } 188 189 /* 190 * Return the inode number associated with the 'snapshot' or 191 * 'shares' directory. 192 */ 193 /* ARGSUSED */ 194 static ino64_t 195 zfsctl_root_inode_cb(vnode_t *vp, int index) 196 { 197 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 198 199 ASSERT(index <= 2); 200 201 if (index == 0) 202 return (ZFSCTL_INO_SNAPDIR); 203 204 return (zfsvfs->z_shares_dir); 205 } 206 207 /* 208 * Create the '.zfs' directory. This directory is cached as part of the VFS 209 * structure. This results in a hold on the vfs_t. The code in zfs_umount() 210 * therefore checks against a vfs_count of 2 instead of 1. This reference 211 * is removed when the ctldir is destroyed in the unmount. 212 */ 213 void 214 zfsctl_create(zfsvfs_t *zfsvfs) 215 { 216 vnode_t *vp, *rvp; 217 zfsctl_node_t *zcp; 218 219 ASSERT(zfsvfs->z_ctldir == NULL); 220 221 vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs, 222 zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries, 223 zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL); 224 zcp = vp->v_data; 225 zcp->zc_id = ZFSCTL_INO_ROOT; 226 227 VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0); 228 ZFS_TIME_DECODE(&zcp->zc_cmtime, VTOZ(rvp)->z_phys->zp_crtime); 229 VN_RELE(rvp); 230 231 /* 232 * We're only faking the fact that we have a root of a filesystem for 233 * the sake of the GFS interfaces. Undo the flag manipulation it did 234 * for us. 235 */ 236 vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT); 237 238 zfsvfs->z_ctldir = vp; 239 } 240 241 /* 242 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted. 243 * There might still be more references if we were force unmounted, but only 244 * new zfs_inactive() calls can occur and they don't reference .zfs 245 */ 246 void 247 zfsctl_destroy(zfsvfs_t *zfsvfs) 248 { 249 VN_RELE(zfsvfs->z_ctldir); 250 zfsvfs->z_ctldir = NULL; 251 } 252 253 /* 254 * Given a root znode, retrieve the associated .zfs directory. 255 * Add a hold to the vnode and return it. 256 */ 257 vnode_t * 258 zfsctl_root(znode_t *zp) 259 { 260 ASSERT(zfs_has_ctldir(zp)); 261 VN_HOLD(zp->z_zfsvfs->z_ctldir); 262 return (zp->z_zfsvfs->z_ctldir); 263 } 264 265 /* 266 * Common open routine. Disallow any write access. 267 */ 268 /* ARGSUSED */ 269 static int 270 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct) 271 { 272 if (flags & FWRITE) 273 return (EACCES); 274 275 return (0); 276 } 277 278 /* 279 * Common close routine. Nothing to do here. 280 */ 281 /* ARGSUSED */ 282 static int 283 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off, 284 cred_t *cr, caller_context_t *ct) 285 { 286 return (0); 287 } 288 289 /* 290 * Common access routine. Disallow writes. 291 */ 292 /* ARGSUSED */ 293 static int 294 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr, 295 caller_context_t *ct) 296 { 297 if (flags & V_ACE_MASK) { 298 if (mode & ACE_ALL_WRITE_PERMS) 299 return (EACCES); 300 } else { 301 if (mode & VWRITE) 302 return (EACCES); 303 } 304 305 return (0); 306 } 307 308 /* 309 * Common getattr function. Fill in basic information. 310 */ 311 static void 312 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap) 313 { 314 timestruc_t now; 315 316 vap->va_uid = 0; 317 vap->va_gid = 0; 318 vap->va_rdev = 0; 319 /* 320 * We are a purely virtual object, so we have no 321 * blocksize or allocated blocks. 322 */ 323 vap->va_blksize = 0; 324 vap->va_nblocks = 0; 325 vap->va_seq = 0; 326 vap->va_fsid = vp->v_vfsp->vfs_dev; 327 vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | 328 S_IROTH | S_IXOTH; 329 vap->va_type = VDIR; 330 /* 331 * We live in the now (for atime). 332 */ 333 gethrestime(&now); 334 vap->va_atime = now; 335 } 336 337 /*ARGSUSED*/ 338 static int 339 zfsctl_common_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 340 { 341 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 342 zfsctl_node_t *zcp = vp->v_data; 343 uint64_t object = zcp->zc_id; 344 zfid_short_t *zfid; 345 int i; 346 347 ZFS_ENTER(zfsvfs); 348 349 if (fidp->fid_len < SHORT_FID_LEN) { 350 fidp->fid_len = SHORT_FID_LEN; 351 ZFS_EXIT(zfsvfs); 352 return (ENOSPC); 353 } 354 355 zfid = (zfid_short_t *)fidp; 356 357 zfid->zf_len = SHORT_FID_LEN; 358 359 for (i = 0; i < sizeof (zfid->zf_object); i++) 360 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 361 362 /* .zfs znodes always have a generation number of 0 */ 363 for (i = 0; i < sizeof (zfid->zf_gen); i++) 364 zfid->zf_gen[i] = 0; 365 366 ZFS_EXIT(zfsvfs); 367 return (0); 368 } 369 370 371 /*ARGSUSED*/ 372 static int 373 zfsctl_shares_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 374 { 375 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 376 znode_t *dzp; 377 int error; 378 379 ZFS_ENTER(zfsvfs); 380 381 if (zfsvfs->z_shares_dir == 0) { 382 ZFS_EXIT(zfsvfs); 383 return (ENOTSUP); 384 } 385 386 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 387 error = VOP_FID(ZTOV(dzp), fidp, ct); 388 VN_RELE(ZTOV(dzp)); 389 } 390 391 ZFS_EXIT(zfsvfs); 392 return (error); 393 } 394 /* 395 * .zfs inode namespace 396 * 397 * We need to generate unique inode numbers for all files and directories 398 * within the .zfs pseudo-filesystem. We use the following scheme: 399 * 400 * ENTRY ZFSCTL_INODE 401 * .zfs 1 402 * .zfs/snapshot 2 403 * .zfs/snapshot/<snap> objectid(snap) 404 */ 405 406 #define ZFSCTL_INO_SNAP(id) (id) 407 408 /* 409 * Get root directory attributes. 410 */ 411 /* ARGSUSED */ 412 static int 413 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 414 caller_context_t *ct) 415 { 416 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 417 zfsctl_node_t *zcp = vp->v_data; 418 419 ZFS_ENTER(zfsvfs); 420 vap->va_nodeid = ZFSCTL_INO_ROOT; 421 vap->va_nlink = vap->va_size = NROOT_ENTRIES; 422 vap->va_mtime = vap->va_ctime = zcp->zc_cmtime; 423 424 zfsctl_common_getattr(vp, vap); 425 ZFS_EXIT(zfsvfs); 426 427 return (0); 428 } 429 430 /* 431 * Special case the handling of "..". 432 */ 433 /* ARGSUSED */ 434 int 435 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 436 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 437 int *direntflags, pathname_t *realpnp) 438 { 439 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 440 int err; 441 442 /* 443 * No extended attributes allowed under .zfs 444 */ 445 if (flags & LOOKUP_XATTR) 446 return (EINVAL); 447 448 ZFS_ENTER(zfsvfs); 449 450 if (strcmp(nm, "..") == 0) { 451 err = VFS_ROOT(dvp->v_vfsp, vpp); 452 } else { 453 err = gfs_vop_lookup(dvp, nm, vpp, pnp, flags, rdir, 454 cr, ct, direntflags, realpnp); 455 } 456 457 ZFS_EXIT(zfsvfs); 458 459 return (err); 460 } 461 462 static int 463 zfsctl_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 464 caller_context_t *ct) 465 { 466 /* 467 * We only care about ACL_ENABLED so that libsec can 468 * display ACL correctly and not default to POSIX draft. 469 */ 470 if (cmd == _PC_ACL_ENABLED) { 471 *valp = _ACL_ACE_ENABLED; 472 return (0); 473 } 474 475 return (fs_pathconf(vp, cmd, valp, cr, ct)); 476 } 477 478 static const fs_operation_def_t zfsctl_tops_root[] = { 479 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 480 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 481 { VOPNAME_IOCTL, { .error = fs_inval } }, 482 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_root_getattr } }, 483 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 484 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 485 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_root_lookup } }, 486 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 487 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 488 { VOPNAME_PATHCONF, { .vop_pathconf = zfsctl_pathconf } }, 489 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 490 { NULL } 491 }; 492 493 static int 494 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname) 495 { 496 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; 497 498 if (snapshot_namecheck(name, NULL, NULL) != 0) 499 return (EILSEQ); 500 dmu_objset_name(os, zname); 501 if (strlen(zname) + 1 + strlen(name) >= len) 502 return (ENAMETOOLONG); 503 (void) strcat(zname, "@"); 504 (void) strcat(zname, name); 505 return (0); 506 } 507 508 static int 509 zfsctl_unmount_snap(zfs_snapentry_t *sep, int fflags, cred_t *cr) 510 { 511 vnode_t *svp = sep->se_root; 512 int error; 513 514 ASSERT(vn_ismntpt(svp)); 515 516 /* this will be dropped by dounmount() */ 517 if ((error = vn_vfswlock(svp)) != 0) 518 return (error); 519 520 VN_HOLD(svp); 521 error = dounmount(vn_mountedvfs(svp), fflags, cr); 522 if (error) { 523 VN_RELE(svp); 524 return (error); 525 } 526 527 /* 528 * We can't use VN_RELE(), as that will try to invoke 529 * zfsctl_snapdir_inactive(), which would cause us to destroy 530 * the sd_lock mutex held by our caller. 531 */ 532 ASSERT(svp->v_count == 1); 533 gfs_vop_inactive(svp, cr, NULL); 534 535 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 536 kmem_free(sep, sizeof (zfs_snapentry_t)); 537 538 return (0); 539 } 540 541 static void 542 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm) 543 { 544 avl_index_t where; 545 vfs_t *vfsp; 546 refstr_t *pathref; 547 char newpath[MAXNAMELEN]; 548 char *tail; 549 550 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 551 ASSERT(sep != NULL); 552 553 vfsp = vn_mountedvfs(sep->se_root); 554 ASSERT(vfsp != NULL); 555 556 vfs_lock_wait(vfsp); 557 558 /* 559 * Change the name in the AVL tree. 560 */ 561 avl_remove(&sdp->sd_snaps, sep); 562 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 563 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 564 (void) strcpy(sep->se_name, nm); 565 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL); 566 avl_insert(&sdp->sd_snaps, sep, where); 567 568 /* 569 * Change the current mountpoint info: 570 * - update the tail of the mntpoint path 571 * - update the tail of the resource path 572 */ 573 pathref = vfs_getmntpoint(vfsp); 574 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 575 VERIFY((tail = strrchr(newpath, '/')) != NULL); 576 *(tail+1) = '\0'; 577 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 578 (void) strcat(newpath, nm); 579 refstr_rele(pathref); 580 vfs_setmntpoint(vfsp, newpath); 581 582 pathref = vfs_getresource(vfsp); 583 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 584 VERIFY((tail = strrchr(newpath, '@')) != NULL); 585 *(tail+1) = '\0'; 586 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 587 (void) strcat(newpath, nm); 588 refstr_rele(pathref); 589 vfs_setresource(vfsp, newpath); 590 591 vfs_unlock(vfsp); 592 } 593 594 /*ARGSUSED*/ 595 static int 596 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, 597 cred_t *cr, caller_context_t *ct, int flags) 598 { 599 zfsctl_snapdir_t *sdp = sdvp->v_data; 600 zfs_snapentry_t search, *sep; 601 zfsvfs_t *zfsvfs; 602 avl_index_t where; 603 char from[MAXNAMELEN], to[MAXNAMELEN]; 604 char real[MAXNAMELEN]; 605 int err; 606 607 zfsvfs = sdvp->v_vfsp->vfs_data; 608 ZFS_ENTER(zfsvfs); 609 610 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 611 err = dmu_snapshot_realname(zfsvfs->z_os, snm, real, 612 MAXNAMELEN, NULL); 613 if (err == 0) { 614 snm = real; 615 } else if (err != ENOTSUP) { 616 ZFS_EXIT(zfsvfs); 617 return (err); 618 } 619 } 620 621 ZFS_EXIT(zfsvfs); 622 623 err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from); 624 if (!err) 625 err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to); 626 if (!err) 627 err = zfs_secpolicy_rename_perms(from, to, cr); 628 if (err) 629 return (err); 630 631 /* 632 * Cannot move snapshots out of the snapdir. 633 */ 634 if (sdvp != tdvp) 635 return (EINVAL); 636 637 if (strcmp(snm, tnm) == 0) 638 return (0); 639 640 mutex_enter(&sdp->sd_lock); 641 642 search.se_name = (char *)snm; 643 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) { 644 mutex_exit(&sdp->sd_lock); 645 return (ENOENT); 646 } 647 648 err = dmu_objset_rename(from, to, B_FALSE); 649 if (err == 0) 650 zfsctl_rename_snap(sdp, sep, tnm); 651 652 mutex_exit(&sdp->sd_lock); 653 654 return (err); 655 } 656 657 /* ARGSUSED */ 658 static int 659 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 660 caller_context_t *ct, int flags) 661 { 662 zfsctl_snapdir_t *sdp = dvp->v_data; 663 zfs_snapentry_t *sep; 664 zfs_snapentry_t search; 665 zfsvfs_t *zfsvfs; 666 char snapname[MAXNAMELEN]; 667 char real[MAXNAMELEN]; 668 int err; 669 670 zfsvfs = dvp->v_vfsp->vfs_data; 671 ZFS_ENTER(zfsvfs); 672 673 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 674 675 err = dmu_snapshot_realname(zfsvfs->z_os, name, real, 676 MAXNAMELEN, NULL); 677 if (err == 0) { 678 name = real; 679 } else if (err != ENOTSUP) { 680 ZFS_EXIT(zfsvfs); 681 return (err); 682 } 683 } 684 685 ZFS_EXIT(zfsvfs); 686 687 err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname); 688 if (!err) 689 err = zfs_secpolicy_destroy_perms(snapname, cr); 690 if (err) 691 return (err); 692 693 mutex_enter(&sdp->sd_lock); 694 695 search.se_name = name; 696 sep = avl_find(&sdp->sd_snaps, &search, NULL); 697 if (sep) { 698 avl_remove(&sdp->sd_snaps, sep); 699 err = zfsctl_unmount_snap(sep, MS_FORCE, cr); 700 if (err) 701 avl_add(&sdp->sd_snaps, sep); 702 else 703 err = dmu_objset_destroy(snapname, B_FALSE); 704 } else { 705 err = ENOENT; 706 } 707 708 mutex_exit(&sdp->sd_lock); 709 710 return (err); 711 } 712 713 /* 714 * This creates a snapshot under '.zfs/snapshot'. 715 */ 716 /* ARGSUSED */ 717 static int 718 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, 719 cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp) 720 { 721 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 722 char name[MAXNAMELEN]; 723 int err; 724 static enum symfollow follow = NO_FOLLOW; 725 static enum uio_seg seg = UIO_SYSSPACE; 726 727 if (snapshot_namecheck(dirname, NULL, NULL) != 0) 728 return (EILSEQ); 729 730 dmu_objset_name(zfsvfs->z_os, name); 731 732 *vpp = NULL; 733 734 err = zfs_secpolicy_snapshot_perms(name, cr); 735 if (err) 736 return (err); 737 738 if (err == 0) { 739 err = dmu_objset_snapshot(name, dirname, NULL, B_FALSE); 740 if (err) 741 return (err); 742 err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp); 743 } 744 745 return (err); 746 } 747 748 /* 749 * Lookup entry point for the 'snapshot' directory. Try to open the 750 * snapshot if it exist, creating the pseudo filesystem vnode as necessary. 751 * Perform a mount of the associated dataset on top of the vnode. 752 */ 753 /* ARGSUSED */ 754 static int 755 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 756 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 757 int *direntflags, pathname_t *realpnp) 758 { 759 zfsctl_snapdir_t *sdp = dvp->v_data; 760 objset_t *snap; 761 char snapname[MAXNAMELEN]; 762 char real[MAXNAMELEN]; 763 char *mountpoint; 764 zfs_snapentry_t *sep, search; 765 struct mounta margs; 766 vfs_t *vfsp; 767 size_t mountpoint_len; 768 avl_index_t where; 769 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 770 int err; 771 772 /* 773 * No extended attributes allowed under .zfs 774 */ 775 if (flags & LOOKUP_XATTR) 776 return (EINVAL); 777 778 ASSERT(dvp->v_type == VDIR); 779 780 /* 781 * If we get a recursive call, that means we got called 782 * from the domount() code while it was trying to look up the 783 * spec (which looks like a local path for zfs). We need to 784 * add some flag to domount() to tell it not to do this lookup. 785 */ 786 if (MUTEX_HELD(&sdp->sd_lock)) 787 return (ENOENT); 788 789 ZFS_ENTER(zfsvfs); 790 791 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) { 792 ZFS_EXIT(zfsvfs); 793 return (0); 794 } 795 796 if (flags & FIGNORECASE) { 797 boolean_t conflict = B_FALSE; 798 799 err = dmu_snapshot_realname(zfsvfs->z_os, nm, real, 800 MAXNAMELEN, &conflict); 801 if (err == 0) { 802 nm = real; 803 } else if (err != ENOTSUP) { 804 ZFS_EXIT(zfsvfs); 805 return (err); 806 } 807 if (realpnp) 808 (void) strlcpy(realpnp->pn_buf, nm, 809 realpnp->pn_bufsize); 810 if (conflict && direntflags) 811 *direntflags = ED_CASE_CONFLICT; 812 } 813 814 mutex_enter(&sdp->sd_lock); 815 search.se_name = (char *)nm; 816 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { 817 *vpp = sep->se_root; 818 VN_HOLD(*vpp); 819 err = traverse(vpp); 820 if (err) { 821 VN_RELE(*vpp); 822 *vpp = NULL; 823 } else if (*vpp == sep->se_root) { 824 /* 825 * The snapshot was unmounted behind our backs, 826 * try to remount it. 827 */ 828 goto domount; 829 } else { 830 /* 831 * VROOT was set during the traverse call. We need 832 * to clear it since we're pretending to be part 833 * of our parent's vfs. 834 */ 835 (*vpp)->v_flag &= ~VROOT; 836 } 837 mutex_exit(&sdp->sd_lock); 838 ZFS_EXIT(zfsvfs); 839 return (err); 840 } 841 842 /* 843 * The requested snapshot is not currently mounted, look it up. 844 */ 845 err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname); 846 if (err) { 847 mutex_exit(&sdp->sd_lock); 848 ZFS_EXIT(zfsvfs); 849 /* 850 * handle "ls *" or "?" in a graceful manner, 851 * forcing EILSEQ to ENOENT. 852 * Since shell ultimately passes "*" or "?" as name to lookup 853 */ 854 return (err == EILSEQ ? ENOENT : err); 855 } 856 if (dmu_objset_hold(snapname, FTAG, &snap) != 0) { 857 mutex_exit(&sdp->sd_lock); 858 ZFS_EXIT(zfsvfs); 859 return (ENOENT); 860 } 861 862 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP); 863 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 864 (void) strcpy(sep->se_name, nm); 865 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap)); 866 avl_insert(&sdp->sd_snaps, sep, where); 867 868 dmu_objset_rele(snap, FTAG); 869 domount: 870 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) + 871 strlen("/.zfs/snapshot/") + strlen(nm) + 1; 872 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP); 873 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s", 874 refstr_value(dvp->v_vfsp->vfs_mntpt), nm); 875 876 margs.spec = snapname; 877 margs.dir = mountpoint; 878 margs.flags = MS_SYSSPACE | MS_NOMNTTAB; 879 margs.fstype = "zfs"; 880 margs.dataptr = NULL; 881 margs.datalen = 0; 882 margs.optptr = NULL; 883 margs.optlen = 0; 884 885 err = domount("zfs", &margs, *vpp, kcred, &vfsp); 886 kmem_free(mountpoint, mountpoint_len); 887 888 if (err == 0) { 889 /* 890 * Return the mounted root rather than the covered mount point. 891 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns 892 * the ZFS vnode mounted on top of the GFS node. This ZFS 893 * vnode is the root of the newly created vfsp. 894 */ 895 VFS_RELE(vfsp); 896 err = traverse(vpp); 897 } 898 899 if (err == 0) { 900 /* 901 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>. 902 * 903 * This is where we lie about our v_vfsp in order to 904 * make .zfs/snapshot/<snapname> accessible over NFS 905 * without requiring manual mounts of <snapname>. 906 */ 907 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs); 908 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs; 909 (*vpp)->v_vfsp = zfsvfs->z_vfs; 910 (*vpp)->v_flag &= ~VROOT; 911 } 912 mutex_exit(&sdp->sd_lock); 913 ZFS_EXIT(zfsvfs); 914 915 /* 916 * If we had an error, drop our hold on the vnode and 917 * zfsctl_snapshot_inactive() will clean up. 918 */ 919 if (err) { 920 VN_RELE(*vpp); 921 *vpp = NULL; 922 } 923 return (err); 924 } 925 926 /* ARGSUSED */ 927 static int 928 zfsctl_shares_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 929 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 930 int *direntflags, pathname_t *realpnp) 931 { 932 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 933 znode_t *dzp; 934 int error; 935 936 ZFS_ENTER(zfsvfs); 937 938 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) { 939 ZFS_EXIT(zfsvfs); 940 return (0); 941 } 942 943 if (zfsvfs->z_shares_dir == 0) { 944 ZFS_EXIT(zfsvfs); 945 return (ENOTSUP); 946 } 947 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) 948 error = VOP_LOOKUP(ZTOV(dzp), nm, vpp, pnp, 949 flags, rdir, cr, ct, direntflags, realpnp); 950 951 VN_RELE(ZTOV(dzp)); 952 ZFS_EXIT(zfsvfs); 953 954 return (error); 955 } 956 957 /* ARGSUSED */ 958 static int 959 zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp, 960 offset_t *offp, offset_t *nextp, void *data, int flags) 961 { 962 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 963 char snapname[MAXNAMELEN]; 964 uint64_t id, cookie; 965 boolean_t case_conflict; 966 int error; 967 968 ZFS_ENTER(zfsvfs); 969 970 cookie = *offp; 971 error = dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id, 972 &cookie, &case_conflict); 973 if (error) { 974 ZFS_EXIT(zfsvfs); 975 if (error == ENOENT) { 976 *eofp = 1; 977 return (0); 978 } 979 return (error); 980 } 981 982 if (flags & V_RDDIR_ENTFLAGS) { 983 edirent_t *eodp = dp; 984 985 (void) strcpy(eodp->ed_name, snapname); 986 eodp->ed_ino = ZFSCTL_INO_SNAP(id); 987 eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0; 988 } else { 989 struct dirent64 *odp = dp; 990 991 (void) strcpy(odp->d_name, snapname); 992 odp->d_ino = ZFSCTL_INO_SNAP(id); 993 } 994 *nextp = cookie; 995 996 ZFS_EXIT(zfsvfs); 997 998 return (0); 999 } 1000 1001 /* ARGSUSED */ 1002 static int 1003 zfsctl_shares_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp, 1004 caller_context_t *ct, int flags) 1005 { 1006 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1007 znode_t *dzp; 1008 int error; 1009 1010 ZFS_ENTER(zfsvfs); 1011 1012 if (zfsvfs->z_shares_dir == 0) { 1013 ZFS_EXIT(zfsvfs); 1014 return (ENOTSUP); 1015 } 1016 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 1017 error = VOP_READDIR(ZTOV(dzp), uiop, cr, eofp, ct, flags); 1018 VN_RELE(ZTOV(dzp)); 1019 } else { 1020 *eofp = 1; 1021 error = ENOENT; 1022 } 1023 1024 ZFS_EXIT(zfsvfs); 1025 return (error); 1026 } 1027 1028 /* 1029 * pvp is the '.zfs' directory (zfsctl_node_t). 1030 * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t). 1031 * 1032 * This function is the callback to create a GFS vnode for '.zfs/snapshot' 1033 * when a lookup is performed on .zfs for "snapshot". 1034 */ 1035 vnode_t * 1036 zfsctl_mknode_snapdir(vnode_t *pvp) 1037 { 1038 vnode_t *vp; 1039 zfsctl_snapdir_t *sdp; 1040 1041 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 1042 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN, 1043 zfsctl_snapdir_readdir_cb, NULL); 1044 sdp = vp->v_data; 1045 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR; 1046 sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 1047 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 1048 avl_create(&sdp->sd_snaps, snapentry_compare, 1049 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 1050 return (vp); 1051 } 1052 1053 vnode_t * 1054 zfsctl_mknode_shares(vnode_t *pvp) 1055 { 1056 vnode_t *vp; 1057 zfsctl_node_t *sdp; 1058 1059 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 1060 zfsctl_ops_shares, NULL, NULL, MAXNAMELEN, 1061 NULL, NULL); 1062 sdp = vp->v_data; 1063 sdp->zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 1064 return (vp); 1065 1066 } 1067 1068 /* ARGSUSED */ 1069 static int 1070 zfsctl_shares_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1071 caller_context_t *ct) 1072 { 1073 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1074 znode_t *dzp; 1075 int error; 1076 1077 ZFS_ENTER(zfsvfs); 1078 if (zfsvfs->z_shares_dir == 0) { 1079 ZFS_EXIT(zfsvfs); 1080 return (ENOTSUP); 1081 } 1082 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 1083 error = VOP_GETATTR(ZTOV(dzp), vap, flags, cr, ct); 1084 VN_RELE(ZTOV(dzp)); 1085 } 1086 ZFS_EXIT(zfsvfs); 1087 return (error); 1088 1089 1090 } 1091 1092 /* ARGSUSED */ 1093 static int 1094 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1095 caller_context_t *ct) 1096 { 1097 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1098 zfsctl_snapdir_t *sdp = vp->v_data; 1099 1100 ZFS_ENTER(zfsvfs); 1101 zfsctl_common_getattr(vp, vap); 1102 vap->va_nodeid = gfs_file_inode(vp); 1103 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2; 1104 vap->va_ctime = vap->va_mtime = dmu_objset_snap_cmtime(zfsvfs->z_os); 1105 ZFS_EXIT(zfsvfs); 1106 1107 return (0); 1108 } 1109 1110 /* ARGSUSED */ 1111 static void 1112 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1113 { 1114 zfsctl_snapdir_t *sdp = vp->v_data; 1115 void *private; 1116 1117 private = gfs_dir_inactive(vp); 1118 if (private != NULL) { 1119 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0); 1120 mutex_destroy(&sdp->sd_lock); 1121 avl_destroy(&sdp->sd_snaps); 1122 kmem_free(private, sizeof (zfsctl_snapdir_t)); 1123 } 1124 } 1125 1126 static const fs_operation_def_t zfsctl_tops_snapdir[] = { 1127 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 1128 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 1129 { VOPNAME_IOCTL, { .error = fs_inval } }, 1130 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_snapdir_getattr } }, 1131 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 1132 { VOPNAME_RENAME, { .vop_rename = zfsctl_snapdir_rename } }, 1133 { VOPNAME_RMDIR, { .vop_rmdir = zfsctl_snapdir_remove } }, 1134 { VOPNAME_MKDIR, { .vop_mkdir = zfsctl_snapdir_mkdir } }, 1135 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 1136 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_snapdir_lookup } }, 1137 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 1138 { VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapdir_inactive } }, 1139 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 1140 { NULL } 1141 }; 1142 1143 static const fs_operation_def_t zfsctl_tops_shares[] = { 1144 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 1145 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 1146 { VOPNAME_IOCTL, { .error = fs_inval } }, 1147 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_shares_getattr } }, 1148 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 1149 { VOPNAME_READDIR, { .vop_readdir = zfsctl_shares_readdir } }, 1150 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_shares_lookup } }, 1151 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 1152 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 1153 { VOPNAME_FID, { .vop_fid = zfsctl_shares_fid } }, 1154 { NULL } 1155 }; 1156 1157 /* 1158 * pvp is the GFS vnode '.zfs/snapshot'. 1159 * 1160 * This creates a GFS node under '.zfs/snapshot' representing each 1161 * snapshot. This newly created GFS node is what we mount snapshot 1162 * vfs_t's ontop of. 1163 */ 1164 static vnode_t * 1165 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset) 1166 { 1167 vnode_t *vp; 1168 zfsctl_node_t *zcp; 1169 1170 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 1171 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 1172 zcp = vp->v_data; 1173 zcp->zc_id = objset; 1174 1175 return (vp); 1176 } 1177 1178 static void 1179 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1180 { 1181 zfsctl_snapdir_t *sdp; 1182 zfs_snapentry_t *sep, *next; 1183 vnode_t *dvp; 1184 1185 VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr, 0, NULL, NULL) == 0); 1186 sdp = dvp->v_data; 1187 1188 mutex_enter(&sdp->sd_lock); 1189 1190 if (vp->v_count > 1) { 1191 mutex_exit(&sdp->sd_lock); 1192 return; 1193 } 1194 ASSERT(!vn_ismntpt(vp)); 1195 1196 sep = avl_first(&sdp->sd_snaps); 1197 while (sep != NULL) { 1198 next = AVL_NEXT(&sdp->sd_snaps, sep); 1199 1200 if (sep->se_root == vp) { 1201 avl_remove(&sdp->sd_snaps, sep); 1202 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 1203 kmem_free(sep, sizeof (zfs_snapentry_t)); 1204 break; 1205 } 1206 sep = next; 1207 } 1208 ASSERT(sep != NULL); 1209 1210 mutex_exit(&sdp->sd_lock); 1211 VN_RELE(dvp); 1212 1213 /* 1214 * Dispose of the vnode for the snapshot mount point. 1215 * This is safe to do because once this entry has been removed 1216 * from the AVL tree, it can't be found again, so cannot become 1217 * "active". If we lookup the same name again we will end up 1218 * creating a new vnode. 1219 */ 1220 gfs_vop_inactive(vp, cr, ct); 1221 } 1222 1223 1224 /* 1225 * These VP's should never see the light of day. They should always 1226 * be covered. 1227 */ 1228 static const fs_operation_def_t zfsctl_tops_snapshot[] = { 1229 VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapshot_inactive }, 1230 NULL, NULL 1231 }; 1232 1233 int 1234 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp) 1235 { 1236 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1237 vnode_t *dvp, *vp; 1238 zfsctl_snapdir_t *sdp; 1239 zfsctl_node_t *zcp; 1240 zfs_snapentry_t *sep; 1241 int error; 1242 1243 ASSERT(zfsvfs->z_ctldir != NULL); 1244 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1245 NULL, 0, NULL, kcred, NULL, NULL, NULL); 1246 if (error != 0) 1247 return (error); 1248 sdp = dvp->v_data; 1249 1250 mutex_enter(&sdp->sd_lock); 1251 sep = avl_first(&sdp->sd_snaps); 1252 while (sep != NULL) { 1253 vp = sep->se_root; 1254 zcp = vp->v_data; 1255 if (zcp->zc_id == objsetid) 1256 break; 1257 1258 sep = AVL_NEXT(&sdp->sd_snaps, sep); 1259 } 1260 1261 if (sep != NULL) { 1262 VN_HOLD(vp); 1263 /* 1264 * Return the mounted root rather than the covered mount point. 1265 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid> 1266 * and returns the ZFS vnode mounted on top of the GFS node. 1267 * This ZFS vnode is the root of the vfs for objset 'objsetid'. 1268 */ 1269 error = traverse(&vp); 1270 if (error == 0) { 1271 if (vp == sep->se_root) 1272 error = EINVAL; 1273 else 1274 *zfsvfsp = VTOZ(vp)->z_zfsvfs; 1275 } 1276 mutex_exit(&sdp->sd_lock); 1277 VN_RELE(vp); 1278 } else { 1279 error = EINVAL; 1280 mutex_exit(&sdp->sd_lock); 1281 } 1282 1283 VN_RELE(dvp); 1284 1285 return (error); 1286 } 1287 1288 /* 1289 * Unmount any snapshots for the given filesystem. This is called from 1290 * zfs_umount() - if we have a ctldir, then go through and unmount all the 1291 * snapshots. 1292 */ 1293 int 1294 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr) 1295 { 1296 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1297 vnode_t *dvp; 1298 zfsctl_snapdir_t *sdp; 1299 zfs_snapentry_t *sep, *next; 1300 int error; 1301 1302 ASSERT(zfsvfs->z_ctldir != NULL); 1303 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1304 NULL, 0, NULL, cr, NULL, NULL, NULL); 1305 if (error != 0) 1306 return (error); 1307 sdp = dvp->v_data; 1308 1309 mutex_enter(&sdp->sd_lock); 1310 1311 sep = avl_first(&sdp->sd_snaps); 1312 while (sep != NULL) { 1313 next = AVL_NEXT(&sdp->sd_snaps, sep); 1314 1315 /* 1316 * If this snapshot is not mounted, then it must 1317 * have just been unmounted by somebody else, and 1318 * will be cleaned up by zfsctl_snapdir_inactive(). 1319 */ 1320 if (vn_ismntpt(sep->se_root)) { 1321 avl_remove(&sdp->sd_snaps, sep); 1322 error = zfsctl_unmount_snap(sep, fflags, cr); 1323 if (error) { 1324 avl_add(&sdp->sd_snaps, sep); 1325 break; 1326 } 1327 } 1328 sep = next; 1329 } 1330 1331 mutex_exit(&sdp->sd_lock); 1332 VN_RELE(dvp); 1333 1334 return (error); 1335 } 1336