1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * ZFS control directory (a.k.a. ".zfs") 30 * 31 * This directory provides a common location for all ZFS meta-objects. 32 * Currently, this is only the 'snapshot' directory, but this may expand in the 33 * future. The elements are built using the GFS primitives, as the hierarchy 34 * does not actually exist on disk. 35 * 36 * For 'snapshot', we don't want to have all snapshots always mounted, because 37 * this would take up a huge amount of space in /etc/mnttab. We have three 38 * types of objects: 39 * 40 * ctldir ------> snapshotdir -------> snapshot 41 * | 42 * | 43 * V 44 * mounted fs 45 * 46 * The 'snapshot' node contains just enough information to lookup '..' and act 47 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 48 * perform an automount of the underlying filesystem and return the 49 * corresponding vnode. 50 * 51 * All mounts are handled automatically by the kernel, but unmounts are 52 * (currently) handled from user land. The main reason is that there is no 53 * reliable way to auto-unmount the filesystem when it's "no longer in use". 54 * When the user unmounts a filesystem, we call zfsctl_unmount(), which 55 * unmounts any snapshots within the snapshot directory. 56 * 57 * The '.zfs', '.zfs/snapshot', and all directories created under 58 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and 59 * share the same vfs_t as the head filesystem (what '.zfs' lives under). 60 * 61 * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>' 62 * (ie: snapshots) are ZFS nodes and have their own unique vfs_t. 63 * However, vnodes within these mounted on file systems have their v_vfsp 64 * fields set to the head filesystem to make NFS happy (see 65 * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t 66 * so that it cannot be freed until all snapshots have been unmounted. 67 */ 68 69 #include <fs/fs_subr.h> 70 #include <sys/zfs_ctldir.h> 71 #include <sys/zfs_ioctl.h> 72 #include <sys/zfs_vfsops.h> 73 #include <sys/vfs_opreg.h> 74 #include <sys/gfs.h> 75 #include <sys/stat.h> 76 #include <sys/dmu.h> 77 #include <sys/dsl_deleg.h> 78 #include <sys/mount.h> 79 80 typedef struct zfsctl_node { 81 gfs_dir_t zc_gfs_private; 82 uint64_t zc_id; 83 timestruc_t zc_cmtime; /* ctime and mtime, always the same */ 84 } zfsctl_node_t; 85 86 typedef struct zfsctl_snapdir { 87 zfsctl_node_t sd_node; 88 kmutex_t sd_lock; 89 avl_tree_t sd_snaps; 90 } zfsctl_snapdir_t; 91 92 typedef struct { 93 char *se_name; 94 vnode_t *se_root; 95 avl_node_t se_node; 96 } zfs_snapentry_t; 97 98 static int 99 snapentry_compare(const void *a, const void *b) 100 { 101 const zfs_snapentry_t *sa = a; 102 const zfs_snapentry_t *sb = b; 103 int ret = strcmp(sa->se_name, sb->se_name); 104 105 if (ret < 0) 106 return (-1); 107 else if (ret > 0) 108 return (1); 109 else 110 return (0); 111 } 112 113 vnodeops_t *zfsctl_ops_root; 114 vnodeops_t *zfsctl_ops_snapdir; 115 vnodeops_t *zfsctl_ops_snapshot; 116 117 static const fs_operation_def_t zfsctl_tops_root[]; 118 static const fs_operation_def_t zfsctl_tops_snapdir[]; 119 static const fs_operation_def_t zfsctl_tops_snapshot[]; 120 121 static vnode_t *zfsctl_mknode_snapdir(vnode_t *); 122 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset); 123 static int zfsctl_unmount_snap(zfs_snapentry_t *, int, cred_t *); 124 125 static gfs_opsvec_t zfsctl_opsvec[] = { 126 { ".zfs", zfsctl_tops_root, &zfsctl_ops_root }, 127 { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir }, 128 { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot }, 129 { NULL } 130 }; 131 132 /* 133 * Root directory elements. We have only a single static entry, 'snapshot'. 134 */ 135 static gfs_dirent_t zfsctl_root_entries[] = { 136 { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE }, 137 { NULL } 138 }; 139 140 /* include . and .. in the calculation */ 141 #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \ 142 sizeof (gfs_dirent_t)) + 1) 143 144 145 /* 146 * Initialize the various GFS pieces we'll need to create and manipulate .zfs 147 * directories. This is called from the ZFS init routine, and initializes the 148 * vnode ops vectors that we'll be using. 149 */ 150 void 151 zfsctl_init(void) 152 { 153 VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0); 154 } 155 156 void 157 zfsctl_fini(void) 158 { 159 /* 160 * Remove vfsctl vnode ops 161 */ 162 if (zfsctl_ops_root) 163 vn_freevnodeops(zfsctl_ops_root); 164 if (zfsctl_ops_snapdir) 165 vn_freevnodeops(zfsctl_ops_snapdir); 166 if (zfsctl_ops_snapshot) 167 vn_freevnodeops(zfsctl_ops_snapshot); 168 169 zfsctl_ops_root = NULL; 170 zfsctl_ops_snapdir = NULL; 171 zfsctl_ops_snapshot = NULL; 172 } 173 174 /* 175 * Return the inode number associated with the 'snapshot' directory. 176 */ 177 /* ARGSUSED */ 178 static ino64_t 179 zfsctl_root_inode_cb(vnode_t *vp, int index) 180 { 181 ASSERT(index == 0); 182 return (ZFSCTL_INO_SNAPDIR); 183 } 184 185 /* 186 * Create the '.zfs' directory. This directory is cached as part of the VFS 187 * structure. This results in a hold on the vfs_t. The code in zfs_umount() 188 * therefore checks against a vfs_count of 2 instead of 1. This reference 189 * is removed when the ctldir is destroyed in the unmount. 190 */ 191 void 192 zfsctl_create(zfsvfs_t *zfsvfs) 193 { 194 vnode_t *vp, *rvp; 195 zfsctl_node_t *zcp; 196 197 ASSERT(zfsvfs->z_ctldir == NULL); 198 199 vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs, 200 zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries, 201 zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL); 202 zcp = vp->v_data; 203 zcp->zc_id = ZFSCTL_INO_ROOT; 204 205 VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0); 206 ZFS_TIME_DECODE(&zcp->zc_cmtime, VTOZ(rvp)->z_phys->zp_crtime); 207 VN_RELE(rvp); 208 209 /* 210 * We're only faking the fact that we have a root of a filesystem for 211 * the sake of the GFS interfaces. Undo the flag manipulation it did 212 * for us. 213 */ 214 vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT); 215 216 zfsvfs->z_ctldir = vp; 217 } 218 219 /* 220 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted. 221 * There might still be more references if we were force unmounted, but only 222 * new zfs_inactive() calls can occur and they don't reference .zfs 223 */ 224 void 225 zfsctl_destroy(zfsvfs_t *zfsvfs) 226 { 227 VN_RELE(zfsvfs->z_ctldir); 228 zfsvfs->z_ctldir = NULL; 229 } 230 231 /* 232 * Given a root znode, retrieve the associated .zfs directory. 233 * Add a hold to the vnode and return it. 234 */ 235 vnode_t * 236 zfsctl_root(znode_t *zp) 237 { 238 ASSERT(zfs_has_ctldir(zp)); 239 VN_HOLD(zp->z_zfsvfs->z_ctldir); 240 return (zp->z_zfsvfs->z_ctldir); 241 } 242 243 /* 244 * Common open routine. Disallow any write access. 245 */ 246 /* ARGSUSED */ 247 static int 248 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct) 249 { 250 if (flags & FWRITE) 251 return (EACCES); 252 253 return (0); 254 } 255 256 /* 257 * Common close routine. Nothing to do here. 258 */ 259 /* ARGSUSED */ 260 static int 261 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off, 262 cred_t *cr, caller_context_t *ct) 263 { 264 return (0); 265 } 266 267 /* 268 * Common access routine. Disallow writes. 269 */ 270 /* ARGSUSED */ 271 static int 272 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr, 273 caller_context_t *ct) 274 { 275 if (mode & VWRITE) 276 return (EACCES); 277 278 return (0); 279 } 280 281 /* 282 * Common getattr function. Fill in basic information. 283 */ 284 static void 285 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap) 286 { 287 zfsctl_node_t *zcp = vp->v_data; 288 timestruc_t now; 289 290 vap->va_uid = 0; 291 vap->va_gid = 0; 292 vap->va_rdev = 0; 293 /* 294 * We are a purly virtual object, so we have no 295 * blocksize or allocated blocks. 296 */ 297 vap->va_blksize = 0; 298 vap->va_nblocks = 0; 299 vap->va_seq = 0; 300 vap->va_fsid = vp->v_vfsp->vfs_dev; 301 vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | 302 S_IROTH | S_IXOTH; 303 vap->va_type = VDIR; 304 /* 305 * We live in the now (for atime). 306 */ 307 gethrestime(&now); 308 vap->va_atime = now; 309 vap->va_mtime = vap->va_ctime = zcp->zc_cmtime; 310 } 311 312 /*ARGSUSED*/ 313 static int 314 zfsctl_common_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 315 { 316 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 317 zfsctl_node_t *zcp = vp->v_data; 318 uint64_t object = zcp->zc_id; 319 zfid_short_t *zfid; 320 int i; 321 322 ZFS_ENTER(zfsvfs); 323 324 if (fidp->fid_len < SHORT_FID_LEN) { 325 fidp->fid_len = SHORT_FID_LEN; 326 ZFS_EXIT(zfsvfs); 327 return (ENOSPC); 328 } 329 330 zfid = (zfid_short_t *)fidp; 331 332 zfid->zf_len = SHORT_FID_LEN; 333 334 for (i = 0; i < sizeof (zfid->zf_object); i++) 335 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 336 337 /* .zfs znodes always have a generation number of 0 */ 338 for (i = 0; i < sizeof (zfid->zf_gen); i++) 339 zfid->zf_gen[i] = 0; 340 341 ZFS_EXIT(zfsvfs); 342 return (0); 343 } 344 345 /* 346 * .zfs inode namespace 347 * 348 * We need to generate unique inode numbers for all files and directories 349 * within the .zfs pseudo-filesystem. We use the following scheme: 350 * 351 * ENTRY ZFSCTL_INODE 352 * .zfs 1 353 * .zfs/snapshot 2 354 * .zfs/snapshot/<snap> objectid(snap) 355 */ 356 357 #define ZFSCTL_INO_SNAP(id) (id) 358 359 /* 360 * Get root directory attributes. 361 */ 362 /* ARGSUSED */ 363 static int 364 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 365 caller_context_t *ct) 366 { 367 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 368 369 ZFS_ENTER(zfsvfs); 370 vap->va_nodeid = ZFSCTL_INO_ROOT; 371 vap->va_nlink = vap->va_size = NROOT_ENTRIES; 372 373 zfsctl_common_getattr(vp, vap); 374 ZFS_EXIT(zfsvfs); 375 376 return (0); 377 } 378 379 /* 380 * Special case the handling of "..". 381 */ 382 /* ARGSUSED */ 383 int 384 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 385 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 386 int *direntflags, pathname_t *realpnp) 387 { 388 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 389 int err; 390 391 /* 392 * No extended attributes allowed under .zfs 393 */ 394 if (flags & LOOKUP_XATTR) 395 return (EINVAL); 396 397 ZFS_ENTER(zfsvfs); 398 399 if (strcmp(nm, "..") == 0) { 400 err = VFS_ROOT(dvp->v_vfsp, vpp); 401 } else { 402 err = gfs_dir_lookup(dvp, nm, vpp, cr); 403 } 404 405 ZFS_EXIT(zfsvfs); 406 407 return (err); 408 } 409 410 static const fs_operation_def_t zfsctl_tops_root[] = { 411 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 412 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 413 { VOPNAME_IOCTL, { .error = fs_inval } }, 414 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_root_getattr } }, 415 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 416 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 417 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_root_lookup } }, 418 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 419 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 420 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 421 { NULL } 422 }; 423 424 static int 425 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname) 426 { 427 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; 428 429 dmu_objset_name(os, zname); 430 if (strlen(zname) + 1 + strlen(name) >= len) 431 return (ENAMETOOLONG); 432 (void) strcat(zname, "@"); 433 (void) strcat(zname, name); 434 return (0); 435 } 436 437 static int 438 zfsctl_unmount_snap(zfs_snapentry_t *sep, int fflags, cred_t *cr) 439 { 440 vnode_t *svp = sep->se_root; 441 int error; 442 443 ASSERT(vn_ismntpt(svp)); 444 445 /* this will be dropped by dounmount() */ 446 if ((error = vn_vfswlock(svp)) != 0) 447 return (error); 448 449 VN_HOLD(svp); 450 error = dounmount(vn_mountedvfs(svp), fflags, cr); 451 if (error) { 452 VN_RELE(svp); 453 return (error); 454 } 455 VFS_RELE(svp->v_vfsp); 456 /* 457 * We can't use VN_RELE(), as that will try to invoke 458 * zfsctl_snapdir_inactive(), which would cause us to destroy 459 * the sd_lock mutex held by our caller. 460 */ 461 ASSERT(svp->v_count == 1); 462 gfs_vop_inactive(svp, cr, NULL); 463 464 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 465 kmem_free(sep, sizeof (zfs_snapentry_t)); 466 467 return (0); 468 } 469 470 static void 471 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm) 472 { 473 avl_index_t where; 474 vfs_t *vfsp; 475 refstr_t *pathref; 476 char newpath[MAXNAMELEN]; 477 char *tail; 478 479 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 480 ASSERT(sep != NULL); 481 482 vfsp = vn_mountedvfs(sep->se_root); 483 ASSERT(vfsp != NULL); 484 485 vfs_lock_wait(vfsp); 486 487 /* 488 * Change the name in the AVL tree. 489 */ 490 avl_remove(&sdp->sd_snaps, sep); 491 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 492 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 493 (void) strcpy(sep->se_name, nm); 494 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL); 495 avl_insert(&sdp->sd_snaps, sep, where); 496 497 /* 498 * Change the current mountpoint info: 499 * - update the tail of the mntpoint path 500 * - update the tail of the resource path 501 */ 502 pathref = vfs_getmntpoint(vfsp); 503 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 504 VERIFY((tail = strrchr(newpath, '/')) != NULL); 505 *(tail+1) = '\0'; 506 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 507 (void) strcat(newpath, nm); 508 refstr_rele(pathref); 509 vfs_setmntpoint(vfsp, newpath); 510 511 pathref = vfs_getresource(vfsp); 512 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 513 VERIFY((tail = strrchr(newpath, '@')) != NULL); 514 *(tail+1) = '\0'; 515 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 516 (void) strcat(newpath, nm); 517 refstr_rele(pathref); 518 vfs_setresource(vfsp, newpath); 519 520 vfs_unlock(vfsp); 521 } 522 523 /*ARGSUSED*/ 524 static int 525 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, 526 cred_t *cr, caller_context_t *ct, int flags) 527 { 528 zfsctl_snapdir_t *sdp = sdvp->v_data; 529 zfs_snapentry_t search, *sep; 530 avl_index_t where; 531 char from[MAXNAMELEN], to[MAXNAMELEN]; 532 int err; 533 534 err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from); 535 if (err) 536 return (err); 537 538 err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to); 539 if (err) 540 return (err); 541 542 if (err = zfs_secpolicy_rename_perms(from, to, cr)) 543 return (err); 544 /* 545 * Cannot move snapshots out of the snapdir. 546 */ 547 if (sdvp != tdvp) 548 return (EINVAL); 549 550 if (strcmp(snm, tnm) == 0) 551 return (0); 552 553 mutex_enter(&sdp->sd_lock); 554 555 search.se_name = (char *)snm; 556 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) { 557 mutex_exit(&sdp->sd_lock); 558 return (ENOENT); 559 } 560 561 err = dmu_objset_rename(from, to, B_FALSE); 562 if (err == 0) 563 zfsctl_rename_snap(sdp, sep, tnm); 564 565 mutex_exit(&sdp->sd_lock); 566 567 return (err); 568 } 569 570 /* ARGSUSED */ 571 static int 572 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 573 caller_context_t *ct, int flags) 574 { 575 zfsctl_snapdir_t *sdp = dvp->v_data; 576 zfs_snapentry_t *sep; 577 zfs_snapentry_t search; 578 char snapname[MAXNAMELEN]; 579 int err; 580 581 err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname); 582 if (err) 583 return (err); 584 585 if (err = zfs_secpolicy_destroy_perms(snapname, cr)) 586 return (err); 587 588 mutex_enter(&sdp->sd_lock); 589 590 search.se_name = name; 591 sep = avl_find(&sdp->sd_snaps, &search, NULL); 592 if (sep) { 593 avl_remove(&sdp->sd_snaps, sep); 594 err = zfsctl_unmount_snap(sep, MS_FORCE, cr); 595 if (err) 596 avl_add(&sdp->sd_snaps, sep); 597 else 598 err = dmu_objset_destroy(snapname); 599 } else { 600 err = ENOENT; 601 } 602 603 mutex_exit(&sdp->sd_lock); 604 605 return (err); 606 } 607 608 /* 609 * This creates a snapshot under '.zfs/snapshot'. 610 */ 611 /* ARGSUSED */ 612 static int 613 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, 614 cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp) 615 { 616 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 617 char name[MAXNAMELEN]; 618 int err; 619 static enum symfollow follow = NO_FOLLOW; 620 static enum uio_seg seg = UIO_SYSSPACE; 621 622 dmu_objset_name(zfsvfs->z_os, name); 623 624 *vpp = NULL; 625 626 err = zfs_secpolicy_snapshot_perms(name, cr); 627 if (err) 628 return (err); 629 630 if (err == 0) { 631 err = dmu_objset_snapshot(name, dirname, B_FALSE); 632 if (err) 633 return (err); 634 err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp); 635 } 636 637 return (err); 638 } 639 640 /* 641 * Lookup entry point for the 'snapshot' directory. Try to open the 642 * snapshot if it exist, creating the pseudo filesystem vnode as necessary. 643 * Perform a mount of the associated dataset on top of the vnode. 644 */ 645 /* ARGSUSED */ 646 static int 647 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 648 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 649 int *direntflags, pathname_t *realpnp) 650 { 651 zfsctl_snapdir_t *sdp = dvp->v_data; 652 objset_t *snap; 653 char snapname[MAXNAMELEN]; 654 char *mountpoint; 655 zfs_snapentry_t *sep, search; 656 struct mounta margs; 657 vfs_t *vfsp; 658 size_t mountpoint_len; 659 avl_index_t where; 660 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 661 int err; 662 663 /* 664 * No extended attributes allowed under .zfs 665 */ 666 if (flags & LOOKUP_XATTR) 667 return (EINVAL); 668 669 ASSERT(dvp->v_type == VDIR); 670 671 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) 672 return (0); 673 674 /* 675 * If we get a recursive call, that means we got called 676 * from the domount() code while it was trying to look up the 677 * spec (which looks like a local path for zfs). We need to 678 * add some flag to domount() to tell it not to do this lookup. 679 */ 680 if (MUTEX_HELD(&sdp->sd_lock)) 681 return (ENOENT); 682 683 ZFS_ENTER(zfsvfs); 684 685 mutex_enter(&sdp->sd_lock); 686 search.se_name = (char *)nm; 687 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { 688 *vpp = sep->se_root; 689 VN_HOLD(*vpp); 690 err = traverse(vpp); 691 if (err) { 692 VN_RELE(*vpp); 693 *vpp = NULL; 694 } else if (*vpp == sep->se_root) { 695 /* 696 * The snapshot was unmounted behind our backs, 697 * try to remount it. 698 */ 699 goto domount; 700 } else { 701 /* 702 * VROOT was set during the traverse call. We need 703 * to clear it since we're pretending to be part 704 * of our parent's vfs. 705 */ 706 (*vpp)->v_flag &= ~VROOT; 707 } 708 mutex_exit(&sdp->sd_lock); 709 ZFS_EXIT(zfsvfs); 710 return (err); 711 } 712 713 /* 714 * The requested snapshot is not currently mounted, look it up. 715 */ 716 err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname); 717 if (err) { 718 mutex_exit(&sdp->sd_lock); 719 ZFS_EXIT(zfsvfs); 720 return (err); 721 } 722 if (dmu_objset_open(snapname, DMU_OST_ZFS, 723 DS_MODE_STANDARD | DS_MODE_READONLY, &snap) != 0) { 724 mutex_exit(&sdp->sd_lock); 725 ZFS_EXIT(zfsvfs); 726 return (ENOENT); 727 } 728 729 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP); 730 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 731 (void) strcpy(sep->se_name, nm); 732 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap)); 733 avl_insert(&sdp->sd_snaps, sep, where); 734 735 dmu_objset_close(snap); 736 domount: 737 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) + 738 strlen("/.zfs/snapshot/") + strlen(nm) + 1; 739 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP); 740 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s", 741 refstr_value(dvp->v_vfsp->vfs_mntpt), nm); 742 743 margs.spec = snapname; 744 margs.dir = mountpoint; 745 margs.flags = MS_SYSSPACE | MS_NOMNTTAB; 746 margs.fstype = "zfs"; 747 margs.dataptr = NULL; 748 margs.datalen = 0; 749 margs.optptr = NULL; 750 margs.optlen = 0; 751 752 err = domount("zfs", &margs, *vpp, kcred, &vfsp); 753 kmem_free(mountpoint, mountpoint_len); 754 755 if (err == 0) { 756 /* 757 * Return the mounted root rather than the covered mount point. 758 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns 759 * the ZFS vnode mounted on top of the GFS node. This ZFS 760 * vnode is the root the newly created vfsp. 761 */ 762 VFS_RELE(vfsp); 763 err = traverse(vpp); 764 } 765 766 if (err == 0) { 767 /* 768 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>. 769 * 770 * This is where we lie about our v_vfsp in order to 771 * make .zfs/snapshot/<snapname> accessible over NFS 772 * without requiring manual mounts of <snapname>. 773 */ 774 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs); 775 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs; 776 (*vpp)->v_vfsp = zfsvfs->z_vfs; 777 (*vpp)->v_flag &= ~VROOT; 778 } 779 mutex_exit(&sdp->sd_lock); 780 ZFS_EXIT(zfsvfs); 781 782 /* 783 * If we had an error, drop our hold on the vnode and 784 * zfsctl_snapshot_inactive() will clean up. 785 */ 786 if (err) { 787 VN_RELE(*vpp); 788 *vpp = NULL; 789 } 790 return (err); 791 } 792 793 /* ARGSUSED */ 794 static int 795 zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp, 796 offset_t *offp, offset_t *nextp, void *data, int flags) 797 { 798 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 799 char snapname[MAXNAMELEN]; 800 uint64_t id, cookie; 801 boolean_t case_conflict; 802 int error; 803 804 ZFS_ENTER(zfsvfs); 805 806 cookie = *offp; 807 error = dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id, 808 &cookie, &case_conflict); 809 if (error) { 810 ZFS_EXIT(zfsvfs); 811 if (error == ENOENT) { 812 *eofp = 1; 813 return (0); 814 } 815 return (error); 816 } 817 818 if (flags & V_RDDIR_ENTFLAGS) { 819 edirent_t *eodp = dp; 820 821 (void) strcpy(eodp->ed_name, snapname); 822 eodp->ed_ino = ZFSCTL_INO_SNAP(id); 823 eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0; 824 } else { 825 struct dirent64 *odp = dp; 826 827 (void) strcpy(odp->d_name, snapname); 828 odp->d_ino = ZFSCTL_INO_SNAP(id); 829 } 830 *nextp = cookie; 831 832 ZFS_EXIT(zfsvfs); 833 834 return (0); 835 } 836 837 /* 838 * pvp is the '.zfs' directory (zfsctl_node_t). 839 * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t). 840 * 841 * This function is the callback to create a GFS vnode for '.zfs/snapshot' 842 * when a lookup is performed on .zfs for "snapshot". 843 */ 844 vnode_t * 845 zfsctl_mknode_snapdir(vnode_t *pvp) 846 { 847 vnode_t *vp; 848 zfsctl_snapdir_t *sdp; 849 850 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 851 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN, 852 zfsctl_snapdir_readdir_cb, NULL); 853 sdp = vp->v_data; 854 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR; 855 sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 856 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 857 avl_create(&sdp->sd_snaps, snapentry_compare, 858 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 859 return (vp); 860 } 861 862 /* ARGSUSED */ 863 static int 864 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 865 caller_context_t *ct) 866 { 867 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 868 zfsctl_snapdir_t *sdp = vp->v_data; 869 870 ZFS_ENTER(zfsvfs); 871 zfsctl_common_getattr(vp, vap); 872 vap->va_nodeid = gfs_file_inode(vp); 873 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2; 874 ZFS_EXIT(zfsvfs); 875 876 return (0); 877 } 878 879 /* ARGSUSED */ 880 static void 881 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 882 { 883 zfsctl_snapdir_t *sdp = vp->v_data; 884 void *private; 885 886 private = gfs_dir_inactive(vp); 887 if (private != NULL) { 888 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0); 889 mutex_destroy(&sdp->sd_lock); 890 avl_destroy(&sdp->sd_snaps); 891 kmem_free(private, sizeof (zfsctl_snapdir_t)); 892 } 893 } 894 895 static const fs_operation_def_t zfsctl_tops_snapdir[] = { 896 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 897 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 898 { VOPNAME_IOCTL, { .error = fs_inval } }, 899 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_snapdir_getattr } }, 900 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 901 { VOPNAME_RENAME, { .vop_rename = zfsctl_snapdir_rename } }, 902 { VOPNAME_RMDIR, { .vop_rmdir = zfsctl_snapdir_remove } }, 903 { VOPNAME_MKDIR, { .vop_mkdir = zfsctl_snapdir_mkdir } }, 904 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 905 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_snapdir_lookup } }, 906 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 907 { VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapdir_inactive } }, 908 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 909 { NULL } 910 }; 911 912 /* 913 * pvp is the GFS vnode '.zfs/snapshot'. 914 * 915 * This creates a GFS node under '.zfs/snapshot' representing each 916 * snapshot. This newly created GFS node is what we mount snapshot 917 * vfs_t's ontop of. 918 */ 919 static vnode_t * 920 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset) 921 { 922 vnode_t *vp; 923 zfsctl_node_t *zcp; 924 925 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 926 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 927 zcp = vp->v_data; 928 zcp->zc_id = objset; 929 VFS_HOLD(vp->v_vfsp); 930 931 return (vp); 932 } 933 934 static void 935 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 936 { 937 zfsctl_snapdir_t *sdp; 938 zfs_snapentry_t *sep, *next; 939 vnode_t *dvp; 940 941 VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr) == 0); 942 sdp = dvp->v_data; 943 944 mutex_enter(&sdp->sd_lock); 945 946 if (vp->v_count > 1) { 947 mutex_exit(&sdp->sd_lock); 948 return; 949 } 950 ASSERT(!vn_ismntpt(vp)); 951 952 sep = avl_first(&sdp->sd_snaps); 953 while (sep != NULL) { 954 next = AVL_NEXT(&sdp->sd_snaps, sep); 955 956 if (sep->se_root == vp) { 957 avl_remove(&sdp->sd_snaps, sep); 958 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 959 kmem_free(sep, sizeof (zfs_snapentry_t)); 960 break; 961 } 962 sep = next; 963 } 964 ASSERT(sep != NULL); 965 966 mutex_exit(&sdp->sd_lock); 967 VN_RELE(dvp); 968 VFS_RELE(vp->v_vfsp); 969 970 /* 971 * Dispose of the vnode for the snapshot mount point. 972 * This is safe to do because once this entry has been removed 973 * from the AVL tree, it can't be found again, so cannot become 974 * "active". If we lookup the same name again we will end up 975 * creating a new vnode. 976 */ 977 gfs_vop_inactive(vp, cr, ct); 978 } 979 980 981 /* 982 * These VP's should never see the light of day. They should always 983 * be covered. 984 */ 985 static const fs_operation_def_t zfsctl_tops_snapshot[] = { 986 VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapshot_inactive }, 987 NULL, NULL 988 }; 989 990 int 991 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp) 992 { 993 zfsvfs_t *zfsvfs = vfsp->vfs_data; 994 vnode_t *dvp, *vp; 995 zfsctl_snapdir_t *sdp; 996 zfsctl_node_t *zcp; 997 zfs_snapentry_t *sep; 998 int error; 999 1000 ASSERT(zfsvfs->z_ctldir != NULL); 1001 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1002 NULL, 0, NULL, kcred, NULL, NULL, NULL); 1003 if (error != 0) 1004 return (error); 1005 sdp = dvp->v_data; 1006 1007 mutex_enter(&sdp->sd_lock); 1008 sep = avl_first(&sdp->sd_snaps); 1009 while (sep != NULL) { 1010 vp = sep->se_root; 1011 zcp = vp->v_data; 1012 if (zcp->zc_id == objsetid) 1013 break; 1014 1015 sep = AVL_NEXT(&sdp->sd_snaps, sep); 1016 } 1017 1018 if (sep != NULL) { 1019 VN_HOLD(vp); 1020 /* 1021 * Return the mounted root rather than the covered mount point. 1022 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid> 1023 * and returns the ZFS vnode mounted on top of the GFS node. 1024 * This ZFS vnode is the root of the vfs for objset 'objsetid'. 1025 */ 1026 error = traverse(&vp); 1027 if (error == 0) { 1028 if (vp == sep->se_root) 1029 error = EINVAL; 1030 else 1031 *zfsvfsp = VTOZ(vp)->z_zfsvfs; 1032 } 1033 mutex_exit(&sdp->sd_lock); 1034 VN_RELE(vp); 1035 } else { 1036 error = EINVAL; 1037 mutex_exit(&sdp->sd_lock); 1038 } 1039 1040 VN_RELE(dvp); 1041 1042 return (error); 1043 } 1044 1045 /* 1046 * Unmount any snapshots for the given filesystem. This is called from 1047 * zfs_umount() - if we have a ctldir, then go through and unmount all the 1048 * snapshots. 1049 */ 1050 int 1051 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr) 1052 { 1053 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1054 vnode_t *dvp; 1055 zfsctl_snapdir_t *sdp; 1056 zfs_snapentry_t *sep, *next; 1057 int error; 1058 1059 ASSERT(zfsvfs->z_ctldir != NULL); 1060 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1061 NULL, 0, NULL, cr, NULL, NULL, NULL); 1062 if (error != 0) 1063 return (error); 1064 sdp = dvp->v_data; 1065 1066 mutex_enter(&sdp->sd_lock); 1067 1068 sep = avl_first(&sdp->sd_snaps); 1069 while (sep != NULL) { 1070 next = AVL_NEXT(&sdp->sd_snaps, sep); 1071 1072 /* 1073 * If this snapshot is not mounted, then it must 1074 * have just been unmounted by somebody else, and 1075 * will be cleaned up by zfsctl_snapdir_inactive(). 1076 */ 1077 if (vn_ismntpt(sep->se_root)) { 1078 avl_remove(&sdp->sd_snaps, sep); 1079 error = zfsctl_unmount_snap(sep, fflags, cr); 1080 if (error) { 1081 avl_add(&sdp->sd_snaps, sep); 1082 break; 1083 } 1084 } 1085 sep = next; 1086 } 1087 1088 mutex_exit(&sdp->sd_lock); 1089 VN_RELE(dvp); 1090 1091 return (error); 1092 } 1093